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ABSTRACT: The current searches of supersymmetry (SUSY) are based on the neu-
tralino lightest sparticle (LSP). In this article we instead focus on SUSY with sneutrino
LSP. It is well motivated in many contexts, especially in which sneutrino services as a
dark matter candidate. We first develop a simplified model, which contains the stop,
chargino/neutralino and sneutrino, to describe the LHC phenomenologies of a large class
of models with sneutrino LSP. Then we investigate bounds on the model using the SUSY
searches at the 8 TeV LHC. Strong exclusion limits are derived, e.g., masses of stop and
chargino can be excluded up to about 900 GeV and 550 GeV, respectively. We also propose
optimizations for some searches without turning to higher energy and luminosity.
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1 Introduction and motivation

After the discovery of the standard model (SM)-like Higgs boson, supersymmetry (SUSY),
which provides the most attractive solution to the hierarchy problem related to the Higgs
field, becomes more theoretically attractive. Generically, the supersymmetic SMs (SSM)
predict three kinds of new particles (i.e., the super-partner of the SM members), the colored
particles like stop, the electroweak particles like Higgsinos and sleptons, and the missed
particles, i.e., those are neutral and sufficiently long-lived at the LHC. It is expected that
the lightest sparticle (LSP) should come from the third kind, since it then can be a weakly
interacting massive particle (WIMP) dark mater (DM) candidate [1]. The early LHC
searches for SUSY focused on the colored particles because they have large production rates
at a hadronic collider, but now search for the electroweak sparticles is gaining increasing
interests. In either case, the LSP shall play a key role because it is the terminal of other
superparticles decay, thus providing missing energy to suppress the huge QCD backgrounds.

The nature of LSP is also pretty relevant to SUSY search because it can affect the
sparticle decay chain thus the characteristic signature. But this aspect is not stressed much.
The reason is due to the fact that in the benchmark model, the minimal SSM (MSSM),
the lightest neutrino y; is the unique viable WIMP DM candidate [2—4]. However, beyond



it the lightest sneutrino 7; can also service as a good candidate [5-15]. In the MSSM 7,
is a fully electroweak complex scalar vy, and thus Z boson mediates so large DM-nucleon
recoil [16] that it has been excluded by the DM direct detection experiments like LUX [17]
(given a correct DM relic density). In the low scale seesaw models, which are well motivated
to explain neutrino masses, the situation changes. In those models, right handed neutrino
(RHN)-like singlets usually are introduced and the corresponding sneutrino-like states may
either properly mix with the vy, or couple significantly to visible fields, thus forming a viable
WIMP DM. This paper is devoted to investigate SUSY search in the case of a sneutrino
rather than neutralino LSP.

The leptonic nature of sneutrino LSP will bring a significant difference, since in general
it leads to multi-leptons in the final states of sparticle decay.! Compared to the neutralino
LSP scenario, it is thus more likely to expose SUSY at LHC. In particular, if 7y is flavour
biased, sparticle decay will yield different amount of lepton flavours. This may enhance
the sparticle discovery potential by requiring a specific lepton flavour tagging. There are
previous works taking advantage of the leptonic nature to explore relevant signatures. For
example, based on the supersymmetric inverse seesaw [6, 9-15], ref. [21] studied the tri-
lepton plus missing Ep signature from Clixg production. Again in this model, ref. [12]
studied the signature of same sign dilepton plus jets and missing energy from gluino- and
squark- pair as well as the squark-gluino associated productions. Other relevant studies,
some of which studied the previous signatures earlier, can be found in [22-32]. But these
signatures are fairly model dependent thus not representative signatures of SUSY with
a sneutrino LSP. Based on the simplified model for this SUSY scenario, we find that
the opposite-sign dilepton plus missing energy with or without b-jets do capture its most
common collider feature. And the current SUSY searches have already imposed stringent
constraints on it.

The paper is organized as following. In section II, we will develop the simplified model
to describe a large class of supersymmetric models with a sneutrino LSP. We also discuss
the decay topologies in the model. In section III we make the collider setup and investigate
the bounds on the model in light of the current LHC searches. Possible optimizations are
also briefly discussed. Section IV is the discussion and conclusion. Some necessary and
complementary details are given in the appendices.

2 Simplified model for SUSY with sneutrino LSP

In this section we will first develop the simplified model for SUSY with sneutrino LSP
and introduce the conventions. Then, we analyze the basic collider features of the model,
including decay lifetime and topologies of the sparticles within the model.

2.1 Simplified model

We are at the position to make a simplified model for SUSY with sneutrino LSP, 7. On
top of 7, the model should contain three other superpartners, the stop ¢, chargino C* and

In the text we will show the decay of interest is prompt. The resulting signatures are different to the
signatures of long-lived charged sparticle or displaced vertex, which usually appear in the case of quite weak
couplings between the sneutrino LSP and sparticles in the visible sector [18-20].



neutralino x. They represent the colored sparticles and electroweak sparticles, respectively.
In particular, C'/x are always relevant when we are studying the colored sparticle (like stop)
decaying into the sneutrino LSP. In addition, they have been extensively searched at the
present LHC (based on the ordinary SUSY with neutralino LSP) and thus we can avail
ourself of the public data to constrain them here. In a word, they are the proper minimal
field content for the simplified model. The relevant interactions are casted in the following
effective Lagrangian

= . 1
Lo = mi* +mP +meOC + gmyxx
+ [C‘i (g%PL + Q%PR> bt 1+ C- (QEPL 4 Q%PR) e~ U+ h.c.]
+ [X (9LPL + g Pr) tt* + X (97 P + g5 Pr) vU + h.c.] (2.1)

with flavor index of leptons implied. Couplings involving the gauge bosons are not written
out explicitly, and they are relevant only when we are discussing the chargino/neutralino
productions. The sneutrino is assumed to be complex, but sneutrino being real scalar will
not affect our discussions much.

The lagrangian of the simplified model is not simple. It contains quite a few free param-
eters. The effective coupling constants gy, /g can be expressed in terms of the gauge /Yukawa
coupling constants and the mixing angles in the stop and chargino sectors, etc. For instance,
in the supersymmetric inverse seesaw models the sneutrino LSP DM may be a highly com-
plex scalar, thus dominated by the singlets [14]. Then we can further simplify the model
by working in the Higgsino-limit with C~ = (flg, (fI;[ )NT, where the couplings can be
derived from the term in the superpotential, y, LH,N:

95 =1, ¢gr=0; g;i=1, gr=0. (2.2)

Similar chiral structure appears in the wino-limit.> Note that in such limits the two de-
generate neutralinos in eq. (2.1) pair up to form a Dirac fermion. In the collider search the
concrete values of coupling constants are not important, except that branching ratios are
of concern. Thus in various chiral limits we simply set the corresponding gz, to be 1 or
0.3 Different chiral structures will lead to similar results, if we do not rely on the angular
distributions of final states. We have more comments on this point in appendix B.

To end up this section, we would like to add some comments on the applicability
of the simplified model in eq. (2.1). Firstly, in the non-thermal gravitino dark matter
scenario, where gravitino gains correct relic density via the left-handed sneutrino NLSP
later decay [37—-39], sneutrino actually behaves as the LSP at colliders. Thus, such a SUSY
scenario can be described by the simplified model. Next, in fact we do not need so large
g®¥ to make the sneutrino DM thermal. We only require it to ensure chargino dominantly

2This limit happens in the supersymmetric low-scale type-I seesaw model, in which 7; is a well mixture
of 71, and N, the right-handed sneutrino [5-8].

3This assumption is justified in the thermal 7; scenario, where it should couple to the visible sector with
large couplings to annihilate away effectively. But if N has extra interactions [11, 24, 33-36], it may break
down.
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Figure 1. Left: production cross sections of stop pair, H*H® and H*HT. Right: decays of
stop/Higgsino. In top3 and top4, we set m, = 1.1m; and m¢c = 1.5my, respectively.

decays into v + e rather than into x +W™*. In this sense non-thermal sneutrino DM [40, 41]
also may be described. Finally, ¢°, etc., should be sufficiently large so that f/ C/x decay
promptly at the LHC.

To examine the second and third points aforementioned, we perform analytical cal-
culations of the relevant decay rates and cast the complicated analytical expressions in
appendix A. For illustration, we consider the right-handed stop/sneutrino and Higgsino-
limit. First, to make chargino dominantly decays into sneutrino, one may need

2 P *
Y 2 \/( S2ml oonw (2.3)

2 3"
mi—m;)Q/m%

> 107°; While as the

~

For example, for my = 100GeV and m, = 0.99mc, we need vy,
degeneracy decrease slightly, says m, = 0.95m¢, we need a much larger y, 2 1073, In the
thermal sneutrino DM scenario where 1, ~ 1 and therefore the non-gauge decay tends to
be dominant, in particular for sizable C' — x degeneracy. Second, the traveling distances of
stop, etc., are estimated as:

1.975 x 10716 I
55— t—twp, bip,
FRyt Yy
cT = (2.4)
1.975 x 10716 - .
— 3 H — vp.
FRyV

From figure 1 we see that as long as 3, = 107° (y,, = 10~7), stop (chargino) will three-body
(two-body) decay promptly at the LHC.

2.2 Decay topologies in the simplified model

In the simplified model, the decay chains of ¢, etc., terminate at the sneutrino LSP. Along
these chains with chargino propagator, charged leptons are produced and potential to
present characteristic signatures at the LHC. While decays with neutralino propagator
bring no substantial difference to the conventional SUSY signature.

Before heading towards the main intent of this subsection, analyzing the decay topolo-
gies of t and C, x, we first show their production cross sections at the LHC. Stop, a colored
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Figure 2. Decay Processes.

sparticle, has a large cross section of pair production. While productions of the electroweak
sparticles C'/x depend on their ingredients. If x is a SU(2) [, singlet, such as bino or singlino
in the NMSSM, its direct production will be suppressed. However, when C/x are in the
Higgsino-limit or wino-limit, the C' and y associated production will dominate over others.
We show the numerical results, calculated by Prospino2 [42—44], in figure 1.

We now proceed to discuss the decay topologies. Evidently, the complete list is hard
to be exhausted, because the decays heavily depend on the mass hierarchies. We thus only
concentrate on the typical scenarios, which can be seen in the Feymann diagrams figure 2.
If stop is so heavy, says owing to the relatively heavy SM-like Higgs boson, that it decouples
from the simplified model, then we will have to probe SUSY in this scenario via the C'/x
productions and decays (into sneutrino). Three decay topologies are generated

pp = CC — IFIT 4 Eiiss,
— CFx — 1% + EIiss,

— XX — Fmiss, (2.7)

The present LHC searches are only sensitive to the first topology as will be shown later.
If stop is relatively light, it will have a large production rate and give additional visible
particles (such as the top or bottom quark) along the decay chains mediated by C/x.
Basically, the stop decay topologies are classified into four categories:

Top1l: neutralino is the next-to LSP (NLSP), with chargino decoupled. Moreover, stop is
heavy enough so that x is on-shell. Evidently, we can not distinguish this case to the
ordinary case, i.e., the stop pair production with t—t+ E}niss.

Top2: stop instead is the NLSP, and then yx is off-shell, i.e., the decay is three-body
which means that the top quark of top2 is softened relative to that of topl. As
a consequence, it is more difficult to hunt the stop than in the ordinary scenario.
However, based on the different kinematic properties of final states between two
body and three body decay as we will discuss in detail later, the scenarios can in
principle be distinguished from the neutralino LSP case, if some signal events are
observed at future collider.

Top3&4: corresponding to topl&2, these two are got by replacing x with C. By virtue of
the hard leptons in the final states, top3&4 have better discovery prospects.

Based on these decay topologies, in the following section we will derive the current bounds
on the simplified model by explaining the relevant SUSY searches at the 8 TeV LHC.



Number | Reference Sensitive Channel
1 [49] t — bl
2 [50] t — bl
3 [51] t — tup
4 [52] t— tup
5 [53] t—tvir, t — bri
6 [54] C*TCF =2 x1i
7 [55] t—bro, CECT — 2 x 7
8 [56] Ctx =TV 2 XD
9 [57] CEx =1l 2xD

Table 1. The LHC searches used in this paper, where [ denotes either electron or muon. The
number assigned for each search will be used in our plots to show the corresponding search which
gives the strongest bound.

3 Constraining the simplified model at 8 TeV LHC

In this section we derive the bounds on chargino/stop in terms of the decay topologies
given previously. We also make comments on the possible optimizations of some searches
for the corresponding signatures.

3.1 Event generation and testing procedures

In this paper events are generated by MadGraphb [45], where Pythia6 [46] and PGS [47]
have been packed to implement parton shower, hadronization and detector simulation. For
detector simulation with PGS, we take the b-tagging efficiency 70%, with c-mistag and light-
jet mis-tag rates 20% and 10%, respectively. Efficiency of tau-tagging is involved [48], and
we simply take the “medium” jet discrimination quality for tau-tagging, whose efficiency
is 40% (We neglect the mis-tag rate for non-7 jets, which is quite low, ~ 1%). For later
convenience, we list the tau decay branching ratios:

Br(r — evervy) = 17.9%, Br(r — pvuv,y) = 17.4%,
Br(hadronic 1-prong decay) = 49.5%, Br(hadronic 3-prong decay) = 15.2%. (3.1)

The current LHC searches that have sensitivity to the decay topologies in the simplified
model are shown in table 1. In the simulation we only consider one specific chirality
structure, e.g., tgp — brérr (All decays are prompt and have unit branching ratio). We
have explicitly checked that changing the chirality can affect the distribution of events
merely at the level of uncertainty. It thus allows us to use the same cuts used in the
experiment analysis, to get the number of events in each signal region. In top2(4) we
fix my(mc) = 1.1(1.5)mg;,
final states slightly. More detail of the event simulation and check the validations of our

and different ratios only change the kinematic distributions of

implementing the experimental searches are discussed in appendix B.
We briefly describe how to derive the bounds (see also ref. [58]). In each signal region

. ; Ni oo . ; ; . .
S; a variable R, = ~i = is introduced. Ny, ., and Nj p respectively are the experimental
limit



upper limit and new physics contributed number of events. Then new physics with Nziv P
will be excluded, as long as there exists any R!,. > 1. The ATLAS collaborator explicitly
gave Ny, but CMS only presented the observed number of events and expected number
of background events and the uncertainty in each signal region, so we have to derive the
95% C.L. Nyjmi: from these data. This can be done via the standard Bayesian procedure:

1 Niimit
N/ L(nops| Ns, Np, 0p) P(Ng)dNg = 0.95, (3.2)
0

where N' = [ L(nops|Ns, Npp, 0) P(Ns)d Ny, with a uniform prior probability P(N;), is a
normalisation factor. Taking into account the uncertainties of background and signal, we
should take the following likelihood:

505 50p ﬂi ds?
ds/ dbP (ngps; pr)e 208 (3.3)

27‘(’0’ 1/27‘(’0’ /50’5 50y

Practically, the probability function P(ngps; ) takes Possion distribution pebse™* /nps!
for smaller n,,, < 100 while Gaussian e("obS*“)2/2“/\/27ru for larger nyps > 100. Here the
expectation value u = Ng+ds—+ Np+db, and we assume the error o3 = 0.01 ns. The derived

E(nobs’N& Nba Jb

Niimit from eq. (3.3) will not change much as long as the signal uncertainty is within a few
tens of percent, see appendix B.

3.2 Bounds on chargino/sneutrino

In this subsection we consider the bound on chargino/neutralino by decoupling stop. As
have been discussed in section 2.1, we have three kinds of decay topologies, depending on
the patterns of production. Among them, we do not discuss the one from xx production,
which gives missing energy only. It can be probed only if an initial visible particle like a
hard jet is emitted, but the current mono-jet plus E?iss search [59] is not able to impose
a competitive bound, relative to the bounds from other decay topologies.

The only effective bound comes from C*CT pair production followed by C* — [7. In
what follows we will discuss two cases with [ = e/u and 7, respectively.

e For the light lepton case, the decay topology gives rise to the signature of Opposite-
Sign Dilepton (OSDL) plus large missing energy. The search for slepton pair produc-
tion [54] can probe this signature. In this search, the leptonic mp, variable [60-62]

mp, = qu;n [maX(mT(plzl, ar), mr(pZ, pps — QT))}, (3.4)
plays an important role to suppress the huge t¢ (and WW as well) backgrounds,
from which mqp, shows the sharp edge at my . While the edge of signal mp, ~ m¢
is clearly larger than myy, in particular for the heavier chargino. A large E%liss may

appear in the backgrounds, owing to the mis-measured momentum of jets or leptons.
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Figure 3. Bounds on charigno/neutrlaino in the Higgsino-limit (Both H*HT and HiH1 9 pro-
ductions are included). Top (bottom) left: the maximal R,;s (we have set any R,;s larger than 2
to be 2) among all search channels for final states with £ (7); top (bottom) right: the color coding
of the channel which gives the most stringent bound, see table 1. The same labels will be used
throughout this paper.

miss,rel .

In order to reduce that, the quality E, is introduced:*

[ if Agy; > /2
miss,rel _ (3'5)
T . )
Eznglss X sin AQSZJ’ if Aqﬁw‘ < 7T/2

miss and its nearest

where A¢; ; is the azimuthal angle between the direction of pr
lepton or jet. In addition, Z—veto is used to suppress the OSDL background from

Z decay.

The resulted constraints on charigno/sneutrino masses are similar to these on slep-
tons/neutralino masses in [54], but the exclusion limits is much higher by virtue
of the larger cross section of chargino pair. The results are displayed in the upper
panels of figure 3. From it one can see that mass of (the Higgsino-like) chargino
smaller than 550 GeV has been excluded, except that it degenerates with sneutrino,
ie, mg—mz S 50GeV.

e In the case of 7 final state, e.g., the sneutrino LSP is dominated by the third genera-
tion of sneutrino, the constraint becomes comparatively weaker. Among three decay
modes of the T—pair, the one with both hadronically decaying 7 acquires the most
stringent bound in terms of ref. [55]. It searches the signature of two tau-jets plus
large Ejr‘}iss, using similar ways to the above case to suppress backgrounds. For the

4Its variants are frequently used by many groups, in any context where E**° is a crucial kinematic cut.
A good case in point is the search of tf plus EX® signature from stop pair production, as discussed later.
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mode with both leptonically decaying 7, the bound can be obtained as the | = e/u
case discussed before. We show the final bounds in the bottom panels of figure 3.
The exclusion is significantly weaker than the previous case, and m¢ can only be
excluded up to 350 GeV (for my < 150 GeV). The reason, asides from the branching

ratio suppression, is mainly blamed to the low 7—tagging efficiency and the softer

mmro.

To end up this section, we would like to make a comment on the sensitivity to the
C/x associated production. From figure 1 one can see that it has an even larger cross
section than the chargino pair production, given C'/x in the Higgsino/wino-limit. Consider
first the mono-lepton (e/u) plus E%ﬂss signature, to which the only known relevant search
by the CMS Collaboration [53] is not sensitive. The reason is simple: the CMS search
heavily relies on the M7 variable, which however has only been optimized for the heavy
W' (~ 1TeV) search. Consequently, it fails in imposing bounds on the relatively light
C/x, see figure 4. But My is indeed a good variable to probe new physics, so hopefully
we can improve the low My region, by using additional cuts, to enhance sensitivity to
this channel. The mono-7 channel, which gives rise to the mono-jet plus E%liss signature,
deserves special attention. Now, exclusion on new physics cross section from mono-jet
search is merely about 100fb [59]. But jet flavor tagging may help much. Using the
extrapolation from charm-tagging in the mono-jet search [59], the sensitivity is enhanced
by about two magnitudes of order and reaches o > 0.7 pb (roughly corresponding to a
bound m¢ > 600 GeV in the Higgsino limit).

3.3 Bounds on stop/sneutrino

Bounds on stop are complicated due to its rather rich decay topologies, topl-4. But topl
is identical to the ordinary SUSY case with stop pair production followed by ¢ — ty, so in
what follows we focus on top2-4.

3.3.1 Bounds from top2: t — tDv

The final states of stop pair production in this channel contain a pair of top quarks plus
missing energy, just the same as those of tt* — ¢ + 2 in the conventional SUSY scenario.
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Figure 5. Bounds on stop/sneutrino masses from the ¢ — tvi> channel. Color scheme is the same
as figure 3.

As a matter of fact, the latter is expected to be the bulk signature in the supersymmetric
models like MSSM and careful searches for it have been performed [51, 52]. Hence they
can be used to well probe stop/sneutrino in our paper.

The most sensitive searching channel is different in different stop/sneutrino mass re-
gions, depending on the efficiency of reconstructing the top quark. When their mass
difference is relatively large (2 300 GeV), top quark from the heavy stop decay can be
reconstructed rather effectively in a small cone and then search for the hadronic decay-
ing stop pair, aided by a large E%‘iss, is able to give the strongest bound [52]. When the
mass difference becomes smaller, top reconstruction becomes worse and hence the semi-
leptonic stop pair, which gives one isolated hard lepton, will instead impose the strongest
bound [51]. As the mass difference further decreases, namely it enters into the degener-
ate region, the signatures turn out to be almost indistinguishable from the ¢ background.
Thus here we fail to make bounds on the stop/sneturino masses and should turn to other
strategies [63—65]. But this topic is beyond the scope of this work.

The resulted bounds on stop and sneutrino masses are shown in figure 5. It is seen
that the exclusion limits have reached m; < 600 GeV and m; S 100 GeV, but it is mildly
weaker than the ordinary case ¢ — ty, which has reached the region m; S 700 GeV and
my < 250 GeV. This is not surprising. In top2 stops are three-body decaying, which renders
the kinematic distributions of the finals states more dispersed than these of the ordinary
two-body decay. Especially, the missing energy is substantially softened. These features
lead to the decreased sensitivity to the signature when we use data of searching stop pair

with ¢ — tx to probe top2.

Actually, one can extend the current exclusion limit on the heavier stop (= 600 GeV),
by using HEPTopTagger [66] instead of the algorithm taken by experimentalists to tag
the hadronic decaying tops.Even requiring the reconstructed top mass within a narrow
window,[150, 200] GeV, HEPTopTagger can tag the top-jet with pr > 200 GeV efficiently
(~ 37%). Thus it may help to improve our search for three-body decaying stop which
produces relatively soft top. We have checked this for a mildly heavy stop with mass
600 GeV (and mp = 100 GeV), to find that the top-tagging efficiency still reaches 20.77%
before the pr cut.
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Figure 6. Bounds on stop/sneutrino masses. Top panels: from the ¢ — bl¥ channel; bottom
panels: from the £ — b7 channel. Color scheme is the same as figure 3.

3.3.2 Bounds from top4: t — bl

We postpone the more complicated case, top3, to the last subsubsection and here we focus
on top4 first. As before, we respectively discuss two cases | = e/p and [ = 7.

e For | = e/p, the final states contain two hard b-jets, two hard leptons with oppo-
site sign (i.e., OSDL) and large missing energy. We can explore such a signature
through the search for stop pair production followed by ¢ — bC then C' — W*y,
which is another conventional bulk signature for stop [49]. This search is somewhat
like the search of slepton pair production discussed previously, where the leptonic
mTQ(ﬁlTl,ﬁ:,g,p?SS) is an useful discriminator. And the presence of two hard b-jets
further enhances the sensitivity to the signature. Note that the experimental cut on
mps is relatively low, which benefits our case, where stop three-body decay leads to

a softer mrs.

The bounds are displayed in the top panels of figure 6. The bounds are fairly
stringent, e.g., the stop mass have been excluded up to about 900 GeV, leaving
only the degenerate region where the mass difference between ¢ and the LSP is
smaller than 50 GeV. These exclusions are even more stringent than the exclusions
for stop/neutralino in ref. [49], since there OSDL comes from the leptonic W pair,
suppressed by branching ratio. On top of that, here the leptons are directly produced
from stop decay, so they can be quite hard.

e For [ = 7, searches depend on the decay of 7. In the case of two hadronically decaying
taus, the final states contain two tagged b- and 7-jets. Despite of no direct searches
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for such a signature, we can still probe them indirectly by means of the searches which
tag two hadronically decaying taus or two b-jets. Similarly we can have sensitivity
to the semi-leptonic decaying 7 case. As for the two leptonic decaying taus case, the
resulted signature actually is the same as the one discussed above. But here its cross
section is suppressed by the squared 7 leptonic branching ratio Br?(r — fvv) ~ 0.1.

The current bounds on this channel are shown in the bottom panels of figure 6. The
stop mass is excluded up to about 600 GeV for my below 150 GeV. The bound on
the heavier stop region is set by the CMS search [53] for signature of two b-jets,
one lepton and E%liss. While at the lighter stop region with m; < 350 GeV and the
degenerate region as well, the strongest bound comes from the search for final state
with two tau-jets plus EXS [49] or two b-jets plus E [55]. And here the sneutrino
mass has been excluded up to 200 GeV.

The bounds on this case will be further improved if tau is tagged out. Naively,
the tau-richness in the final state is able to suppress the background by an order
of magnitude, since tau in the background mainly comes from W/Z boson decays,
suppressed by the small branching ratios. Then, we may be able to push the bound
on stop much above 600 GeV in the semi-leptonic tau channel.

3.3.3 Bounds from top3: t — bx — bl D

Top3 and top4 share the same final states, but bounds on the former involve an extra
parameter, mass of the chargino m¢. As a result, making a comprehensive bound becomes
much more complicated, and we have to take several typical values of m¢ and then in-
vestigate the corresponding bounds on stop/sneutrino. Concretely, three typical cases are
considered (we focus on [ = e/u case):

e The chargino mass is close to the sneutrino mass. In this case the lepton from chargino
decay is too soft to be detected and then chargino behaves as a missing particle at
the collider. The signature is two hard b-jets plus large EE}“SS, just the same as that
of the ordinary channel ¢ — bC*, C* — W*yx with me ~ m,. From ref. [49] the
stop mass has been excluded up to 600 GeV.

e Instead, the chargino mass is close to the stop mass, rendering the soft b-jets invisible.
Evidently, this case is reduced to chargino pair production with a rescaled production
cross section. Therefore, in the light of the bounds on charigno made in section. 3.2
and the production cross sections in figure 1, we estimate the bound on the stop
mass, ~900 GeV.

e Generically, the chargino mass is neither close to the sneutrino nor the stop mass. In
this case the signature is identical to that of top4 and bounds again can be derived
in the light of ref. [49]. We consider three representative examples for charigno mass:

mg+ = 0.8Xmyg, mg= = 0.5 Xmyzand my+ = 0.2 X m;. In each example, the strongest

bound on stop mass is reached for a very light sneutrino. Concretely, it can be ex-

cluded up to about 850 GeV, 850 GeV and 600 GeV, respectively. The comparatively

- 12 —



s F ~ ~ % 045 ..
. 04— —— 1-blv (600,100)
D7 71,_)1:\/\/ £ E 1-5bC (600,100)
F 0.035 -----15bC (600,200)
006 t—)tx E ~—1bC (600,300)
E 0.03F —— 1-bC (600,400)
00sE- t5bC (600,500)
0.04
0.03—
0021 3 g
0.01 r
T P B il N S T A B e L
fo0 200 300 400 500 600 .. 700 0 700 200 300 400 500 , _ 600

.
m_(t .t ,E")Ge m’ /GeV
S "

Figure 7. Comparisons of the mpo distributions for two- and tree-body stop decays at parton
level. Left: mya(ty,ta, %) for decays mediated by neutralino. We take m; = 600 GeV and
mrsp = 100 GeV. Right: mY., for decays mediated by chargino. We take m; = 600 GeV and vary
the charigno mass.

weaker bound on the third example is due to the smallness of myo(pi}, pi2, piriss),
which reflects the light chargino mass.

3.3.4 mys distinguishes the three-body from two-body decays

For a given process, signatures of three-body and two-body decays are the same with each
other, e.g., stop pair production in topl and top3, top2 and top4. Thus, (after the discovery
of event excess) it is of interest to explore a kinematic variable to tell the difference. Specific
to our article, mrs is a good candidate.

First consider topl (equivalent to ¢ — tx) and top3. With the reconstructed top
quarks, we can construct ng(tl,tQ,piI}ﬂss). And we plot the distributions for topl and
top3 in the left panel of figure 7. Their shapes are clearly different: the curve for topl,
namely for two-body decay, is much flatter and drops suddenly near mg; by contrast, the
curve for top3, the three-body decay case, drops much earlier and faster. Alternatively,
one can tell the difference by observing the property of curve at the tail. In two- and
three-body decay they are convex and concave, respectively. Similar conclusion applies to
top2 and top4, for which we use the modified mr2, i.e. mb., [67):

mip = min U max[Mr (B, 1 ), Mr (o, 53 )] ¢ - (3.6)
P +P =P+ 7Ty

where the leptons are also identified as missing energy and the bottom quarks are the only
visible particles.

4 Conclusions and discussion

Due to a successful WIMP dark matter candidate, the lightest neutralino LSP is assumed
to be the termination of sparticle cascade decays. It is the premise of most SUSY searches.
But sneutrino LSP can also be a good thermal DM candidate in many supersymmetric
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SMs with low-scale seesaws. Thus it is well motivated to explore SUSY with sneutrino
LSP. We construct a simplified model to describe their collider phenomenologies. Asides
from the sneutrino, the model contains a stop, charigno and neutraino which can promptly
decay into sneutrino at the LHC.

As a result of the leptonic nature of the sneutrino, leptons, associated with sneutrino,
appear in the decay topologies of sparticles. This means that they may leave clear tracks
at the collider. In fact, we find that the current SUSY searches at the LHC have already
put strong bounds on them:

e For C — (v, the bound on charino/neutrino masses in the Higgsino-limit reaches
550 GeV, leaving the degenerate region with mz — my < 50 GeV untouched. But
for C' — 7v the bound is substantially weakened, only excluding m¢ < 350 GeV and
mgy < 150 GeV. This is owing to both the inefficient 7—tagging and the absence of
specific searches.

e Mass of the NLSP stop has been excluded up to about 600 GeV for ¢ — tvv and up to
about 900 GeV for ¢t — bfv. In the former case, my is excluded up to about 100 GeV
while in the latter case only sneutrno in the degenerate region survives. For t — brD,
compared to the £ — bl channel, the current searches have much weaker sensitivities
not only for the heavier stop above 600 GeV but also for the heavier sneutrino with
mass above 200 GeV.

e [f stop is not the NLSP, it will decay into neutralino or chargino first. The former
case is just the same as the usual neutralino LSP scenario. The latter case can be
divided into three categories, depending on the chargino mass. The stop mass have
been excluded up to about 600 GeV/900 GeV and 850 GeV for chargino mass close
to the sneutrino/stop mass and close to neither sneutrino nor stop mass.

We also briefly discuss possible optimizations for their searches without turning to the
future LHC running.

What’s more, the sneutrino LSP shows its features in many ways at collider which
might enable us to distinguish it from neutralino LSP. Given the mass of mother particle,
the first obvious result for three body decay with two invisible final states would be the
softening of the visible particle which in turn will lead to softer missing energy. So, if we
know the scale of a new particle production(e.g. from the initial state radiation [68]) and
the scale of the particle decay, we might be able to tell which decay channel it is decaying
through. Secondly, because the sneutrino LSP is carrying a lepton number, there will
be more leptons produced in sneutrino LSP scenario than in neutralino LSP scenario. If
those are charged leptons, then we may tell the natural of the LSP just according to the
lepton number conservation. Thirdly, the width of three body decay depends on the mass
of mediated particle. If the mediated particle is heavy enough, the produced new particle
may have signature of displaced vertex. Further more, it may becomes long-lived particle,
which is shown as charged track or R-hardron at collider. Finally, a more general method
to distinguish those two scenarios is using the distribution of some featured kinematical
variables. As we have briefly discussed in section 3.3.4, the distribution of mys variable
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can indeed distinguish ¢ — tvi from ¢ — ty and ¢ — blD from ¢ — bC*. We are hopping
to find more effective discriminator, which we leave for the future study. In any case, the
distinction is only meaningful after the discovery of a new signal.
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A The stop and higgsino decays

In this appendix, we give the general expressions for the stop and chargino/neutralino
decay widths. The Feymann diagrams are shown in figure 2. For the stop three-body
decaying into sneutrino, we have

L MR e a0 7
I'= EM% 919r9L)" + 91.9r(9R)" | f3 (A1)

M2 . M5
+ 3567 T (@2 + BP0 ) Pt g - (@22 + 6P h? )

where ﬁ is the three-body final state phase space integral, given by

2
MM p2(p2 )2 (m2 — m? — P2)
(me=mg)* 2my X ot o

. mb
Frx [0 ar ,
iy PPE =
2
m24+P2—m2
omA pmi—mg)? \/( i 21% q> _ P%(P)% — m%)2(m% — mg — P)%)
=t aP2 ,
wehy PEPE- i
2
B m2+P2—P2 2/ 2 2\2
e (G L N
3 —_ — ~ .2
w0 PEPE -

In eq. (A.1), one can easily track the origin of each term, back to the chiral structure of
the vertices. We can express the effective coupling constants in terms of the fundamental
coupling constants and mixing angles. For ¢t — tv7, we have [69]

—2¢/2ie .
g7 = 3 N11Cr + 191 Cyp N1y,
cw
q 1e 1 .
9p = meL §N115W + Nisew | + iy N14Cpp,
1€ . .
g% = —=——Cys1, (N1u1sw + Nizew) + iy, N1aCyr, gt = iy, N14C5p (A.3)

\/iswcw
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where Cj; and Cpp, respectively denote the left- and right-handed stop components, and
C5r1, and Cyp, respectively denotes the left- and right-handed sneutrino components. Each
of them has two parts, the bino/wino and Higgsino contributions. For t — blv,

. e .
97 = iypCip Uta, g% = JC{LVH + iy CrpVia,

ie . .
gt = QCZLVH + 1y, Cy. V12, g% = iyCsrUna . (A4)

The two-body decay processes of chargino/neutralino are shown in the middle of fig-

ure 2. The decay width is calculated to be

(95)% + (gh)? (MEyx — ™)
3

327 My

I = : (A.5)

where g} and g%, come from the vertex gt P, + g Pg. For Higgsino (chargino) decay, gt
and g% can be written as

g5 =iy Cor(iyiCsr),  gn = iy Cor(iy,Cor) - (A.6)

The three-body decay of chargino into neutralino and off-shell W boson is shown in
the right of figure 2. The decay width is given by
5 5
1 mg me
4

~ 1 .
_ Wh2 2 W2 2 W oW 2
I' x Br(ev) 25673 mk (92 )°92 + (9r )"92) [1 + 19873 m (91 9r 92)f2 (A7)

where the integral functions

N mi (me—my)? \/E 1 1
fl:W/o dP2w((m%—mz)(m%—mi—ﬂ%)—k),

m, V(P2 —m%,)2\2 X 6

~ m5 (mc_mx)2 \/%

fo= W/ AP} 55— PP . (A.8)
me G R

In the Higgsino-limit, & and gg/, g}‘g/, g9 are explicitly given by

k= m¢ +mi + Py — 2(mgml + Pyymg + Piym?)

1€
9 =gp =g = oo (A.9)

B Simulation and Validation

In this appendix we give some details about the simulation for signatures used in the text.
To ensure the validation of our simulation, we also presented the check for the usual SUSY
searches in the relevant literatures.

Without loss (much) of generality, in the simulation only one specific chiral struc-
ture of the simplified model given in eq. (2.1) is considered. Concretely, we work in the
Higgsino-limit and take fL — tRﬁS* — tR(VLﬁR) for t0p1/37 and ER — bLI:I;'_* — bL(eLﬁR)
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Low AM
Signal Region | EXSS > 100 GeV | ERSS > 150GeV | ERSS > 200 GeV | ERSS > 250 GeV
Background 1662 + 203 537 + 75 180 + 28 66 + 13
Data 1624 487 151 52
Nup 473 189 59 29
High AM
Signal Region | EWiSS > 100 GeV | ERisS > 150 GeV | ERSS > 200 GeV | EWSS > 250 GeV
Background 79 £ 12 387 19+5 9.9 £ 2.7
Data 90 39 18 5
Nup 46 22 15 7.1

Table 2. CMS-PAS-SUS-13-011.
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Figure 8. Left: experimental bounds on masses of stop and neutralino LSP given in [53]. Right:
our check. Color scheme is the same as figure 3.

for top2/4. The UFO model files of the corresponding simplified model is generated by
SARAA4.0 [70]. Practically, we employ decays at the matrix element level so as to gain
full helicity information in the final states, and find that decays in Pythia, which disre-
gards helicity, leads to almost the same result. This justifies our simplifying treatment at
the beginning.

Comments are in orders. Firstly, we do not discriminate electron and muon, because
the difference between their detector efficiency is within the uncertainty in the simulation.
Thus, as long as the flavour of the final state lepton is not concerned, which is the case
in the current experimental analysis, our simulation is applicable to both flavour of the
sneutrino LSP. Secondly, we emphasized that that the default PGS does not identify the
sneutrino LSP as missing energy, and consequently it might be used to reconstruct jet. We
have adapted the PGS for all flavors of sneutrinos being recognized as missing energy.

We now proceed to discuss the validation of our Monte Carlo simulation. We examined
all the channels which give the strongest bounds in the text and found that the results are in
accord with the LHC results, with the maximal deviation less than 50 GeV. For illustration,
we show the check on ref. [53]. It searchs the final states with one isolated lepton, b-jets and
missing energy. This search is sensitive to both ¢ — tv# channel and t — brv, channel. In
order to check both the Bayesian procedure used to estimate the upper limit and the cuts
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implemented, we generate the same process as that of ref. [53]. We scan the parameters m;,
m~
X

+ and mygp with My = 0.5m; + 0.5msp and then compare our bounds with theirs.
The results are shown in figure 8. In table 2, the upper limit of number of events for new

physics contribution in each signal regions is given.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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