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1 Introduction

The structure of moduli space of vacua plays a crucial role in studying the dynamics of

supersymmetric field theory. Sometimes one can find exact solutions by analyzing various

properties of the moduli space, such as the singularity structure, asymptotical behavior,

etc; and the typical example is the Seiberg-Witten solutions of N = 2 theory [1, 2].

The full moduli space of four dimensional N = 2 theory has the general structure⋃
α

Cα ×Hα, (1.1)

where α labels the components of branches, and Cα are parametrized by Coulomb moduli

fields and Hα are parametrized by Higgs moduli fields. The Cα are special Kahler mani-

folds and the Hα are hyperkahler manifolds, and their metrics do not mix due to N = 2

supersymmetry [3, 4]. There is usually a pure Coulomb branch, which we simply denote as

C; sometimes, there is also a pure Higgs branch H which touches with the Coulomb branch

at a single point (such as SCFT points). Mixed branches are emanating from special loci

of the Coulomb branch as shown in figure 1, and the corresponding submanifolds on the

Coulomb branch are called the Higgs or mixed branch roots [4].

The Coulomb branch of N = 2 theory has been studied extensively, and the Seiberg-

Witten solution can often be found easily by using the brane construction [5–7], or using

the relation to integrable systems [8, 9]. However, the pure Higgs branches are much less

studied, see e.g., [4, 10–15] for some examples. Furthermore, the full structure of moduli

spaces including mixed branches was studied only in very few examples such as N = 2

SQCD [4, 10] using the non-renormalization theorem and exact solution on the Coulomb

branch. (See also the discussion using type IIA brane construction [5, 16–18].) But the

method there is based on solving the equations of motion of Lagrangians explicitly, and it

is not easily generalized to more complicated quivers or non-Lagrangian theories. The aim

of this paper is to give a systematic method to study the full structure of moduli space

which is applicable to a large class of theories including non-Lagrangian theories.

We are going to study the full moduli space of N = 2 theories obtained by twisted

compactification of 6d N = (2, 0) AN−1 theory on a Riemann surface, called class S
theories [19–23].1 Instead of using field theory method, we are going to use the geometric

method developed in [26–28] (see also [29]) to determine various branches.

Let’s first recall some of the basic features of M5 brane construction which leads to this

class of theories. There are five scalars ϕI (I = 1, 2, 3, 4, 5) in the adjoint representation of

AN−1 = SU(N) which describe the transverse fluctuation of M5 branes. Four dimensional

theory is derived by twisted compactification of the 6d theory on a Riemann surface C,

and one get a Higgs field Φ in the canonical (or cotangent) bundle of C which describes

the Coulomb branch deformations. There are other real scalars ~ϕ = (ϕ1, ϕ2, ϕ3) which are

1By class S theories, we mean four dimensional theories which can be derived from compactifying 6d

theory on a Riemann surface with all kinds of defects, such as regular defects, irregular defects, etc. This

class of theories include many well studied theories such as SQCD, Argyres-Douglas theory [24], Maldacena-

Nunez theory [25], etc.
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Figure 1. The vacuum structure of N = 2 theory: C: Coulomb branch; H: Higgs branch; M: Mixed

branch.

in the trivial bundle of C and describe the Higgs branch deformations. Generically, the

Coulomb branch and Higgs branch are determined as follows:

• The Coulomb branch is described by turning on only the deformations in Φ, and the

Seiberg-Witten curve is then given by the spectral curve of Φ:

0 = det(xIN − Φ) = xN +
N∑
i=2

φi(z)x
N−i, (1.2)

here φi are degree i holomorphic differential on Riemann surface.

• The pure Higgs branch is described by turning on only ~ϕ deformations (we can get

another scalar from Bµν field on M5 brane [16].).

• Mixed branches are described by turning on both ~ϕ and Φ.

Let’s discuss the mixed branch in more detail. The deformation in ~ϕ is simple: they

can be diagonalized with constant eigenvalues:

~ϕ = diag(~a(1)In1 , · · · ,~a(k)Ink), (1.3)

where ns are integers such that
∑k

s=1 ns = N , Ins are ns×ns the unit matrices, and ~a(s) are

constants. Now the crucial thing is that brane dynamics requires the commuting condition

[Φ, ~ϕ] = 0, which impies that the Seiberg-Witten curve has to be factorized as:

det(xIN − Φ) = xN +
N∑
i=2

φix
N−i = 0→

k∏
s=1

(
xns +

ns∑
i=1

φs,i(z)x
ns−i

)
= 0, (1.4)

here φs,i(z) are various holomorphic differentials, and ns are the same as above.

There are more variations due to punctures on the Riemann surface C. Regular punc-

tures are classified by Young diagrams with total number of boxes N , and one can define

an ordering between two Young diagrams. In the mixed branch, a Young diagram Y D

of SU(N) theory is split into a collection of Young diagrams Y D
s of SU(ns) theory, see

figure 2. (The superscript D will be explained later in this paper.) One can form a new

– 3 –
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Figure 2. The Higgs and mixed branch roots can be described as: the SU(N) Hitchin system

is decomposed into SU(n1) × SU(n2) × . . . × SU(nk) × U(1)k−1 Hitchin systems, and the regular

punctures of SU(N) are decomposed into sums of regular punctures of lower rank Hitchin systems.

Young diagram Y ′D with N boxes by assembling Y D
s together, and the constraint on Y ′D

is that

Y ′D ≤ Y D, (1.5)

where we used the ordering between two Young diagrams. There is a mixed branch corre-

sponding to each collection Y D
s .

Unlike regular singularity, the constraint from irregular singularities is more rigid, as

the boundary condition of Φ is fixed at the puncture and sometimes the curve can not

be factorized in an arbitrary way. The factorization pattern of Seiberg-Witten curve of

equation (1.4) has to be consistent with the boundary condition on the irregular puncture.

This paper is organized as follows. In section 2, we give a general algorithm of how

to find mixed branch roots, and how to count the dimensions of the Coulomb and Higgs

factors. In section 3 we derive those rules following the strategy outlined above. In section 4

and appendix A, we reproduce the results of N = 2 SQCD by our method. In section 5,

theories defined using regular singularities are discussed. In section 6, we study Argyres-

Douglas theories. Finally in section 7, we give a short discussion.

2 General rules for finding mixed branches

In general, the moduli space of N = 2 supersymmetric field theory has the general form⋃
α

Cα ×Hα, (2.1)

where α runs over all the components of the moduli space, and Cα and Hα are Coulomb

factor and Higgs factor, respectively. In other words, Cα is parametrized by vevs of vector

multiplets, and Hα is parametrized by vevs of hypermultiplets. For Lagrangian theory, the

Higgs branch can be found using classical equations of motion due to non-renormalization

– 4 –
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theorem [4]. Coulomb branch is much more difficult to determine because one needs to

take into account various quantum corrections, and the result can be elegantly summarized

using Seiberg-Witten curve.

In this section we would like to state the rules of how to find the roots of these mixed

branches Cα ×Hα and give the formulas for the dimensions of the Coulomb factor Cα and

the Higgs factor Hα. Derivations of the rules are given in the next section 3. One of the

branches is the pure Coulomb branch C × {0}, which we denote as just C. Then, the root

of the branch Cα ×Hα is the intersection of it with C.

2.1 Pure Coulomb branch of class S theories

The Seiberg-Witten curve describing the Coulomb branch C is given by the general form [19,

20, 23],

0 = xN +

N∑
i=2

φi(z)x
N−i, (2.2)

where z is the coordinate of the base Riemann surface C, and x is the coordinate of the

fiber of the canonical (or cotangent) bundle K = T ∗C. The φi(z) is a section of the line

bundle K⊗i, i.e., it is an i-th differential on C. Neglecting punctures, its contribution to

the dimension of Coulomb moduli can be found using the Riemann-Roch theorem,

dim(φi) = dimH0(C,K⊗i) = (2i− 1)(g − 1), (2.3)

where we used the vanishing theorem H0(C,K1−i) = 0 for i > 1.

On the Riemann surface C, we can also add various regular and irregular punctures.

Let us recall some properties of them. We consider local properties near one puncture, and

we take the coordinate so that the puncture is at z = 0 for regular singularity.

Regular singularities. Regular (or tame) singularities [19] are classified by a partition

of N , [m1, · · · ,m`], which satisfies N = m1 + · · ·+m`. Without loss of generality we take

m1 ≥ m2 · · · ≥ m`. This partition can be represented by a Young diagram Y such that

the a-th column has ma boxes (i.e., its hight is ma). In our convention, a full puncture is

represented by [1, 1, . . . , 1], and a simple puncture is represented by [N − 1, 1].

The order of pole pi at the regular singularity of the differential φi(z) can be easily

found from the Young diagram2

φi(z) = O(z−pi), pi = i− si, (2.4)

where si is the height of the ith box of the Young diagram. The counting is from left to

right and from bottom to top. See figure 3 for examples of Young diagrams.

The local contribution of a regular puncture to the Coulomb branch dimension is

d(Y D) =

N∑
i=2

pi =
1

2

(
N2 −

∑̀
a=1

m2
a

)
, (2.5)

2Unless otherwise stated, we take mass parameters of regular singularities to be zero.
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Figure 3. Upper: regular puncture are represented by Young diagrams. Bottom: two types of

irregular singularities are represented by Newton polygon, and a third type is represented by a

collection of Young diagrams.

where Y D is the Young diagram obtained by transposing Y , i.e., the rows of Y D are

columns of Y . The reason for using Y D in (2.5) will become clearer in the next section.

For later use, let us define partial ordering of two Young diagrams. We define

Y D ≥ Y ′D ⇐⇒ pi ≥ p
′
i ⇐⇒

a∑
b=1

m̃a ≥
a∑
b=1

m̃′a. (2.6)

where Y D = [m̃a]. The second equivalence can be checked by using (2.4). Notice that this

is only a partial ordering: it is possible that neither Y D ≥ Y ′D nor Y D ≤ Y ′D.

Irregular singularities. We can also have irregular (or wild) singularities, which are

needed for asymptotically free theories and Argyres-Douglas theories. The irregular singu-

larities which are relevant for SQCD will be discussed in detail in appendix A. The irregular

singularities which are relevant for Argyres-Douglas theories can also be summarized by a

Newton polygon, see figure 3, and the local contribution to the Coulomb moduli can also

be found from Newton polygon, for details, see [23]. The leading order eigenvalues of x

can be read from the slop of the Newtwon polygon:

Type I : x ∼ 1

z2+ k
N

(1, ωN , . . . , ω
N−1
N )

Type II : x ∼ 1

z2+ k
N−1

(0, 1, ωN−1, . . . , ω
N−2
N−1)

Type III : x ∼ An
zn

+
An−1

zn−1
+ . . .+

A1

z
(2.7)

here k is the height of the marked point in the Newton polygon of figure 3, ω` = exp(2πi/`),

and the eigenvalue degeneracy of Ai is determined by the Young diagrams Yi.
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The major feature of irregular singularity is that the leading order behavior is fixed as

the UV data, and we can not change it by tuning the Coulomb branch moduli. For regular

singularities, one can actually tune the Coulomb branch moduli to change the singularity.

2.2 Mixed branches

Now we can state our general rules for finding the roots of mixed branches Cα ×Hα.

Step 1. The first step is to choose a partition of N : X = [n1, n2, · · · , nk]. Then we take

the curve (2.2) to be of factorized form

xN +
N∑
i=2

φi(z)x
N−i = 0→

k∏
s=1

(
xns +

ns∑
i=1

φs,i(z)x
ns−i

)
= 0, (2.8)

where φs,i are holomorphic differentials on the Riemann surface, and we also have
∑

s φs,1 =

0 due to the traceless condition.

The existence of type I and type II irregular singularities would constrain the possible

factorization X:

• Type I irregular singularity: define d as the maximal common divisor of (k,N). Then

the maximal partition X is

Xmax = [
N

d
,
N

d
, . . . ,

N

d
], (2.9)

and other possible factorization is derived by combining the columns of X.

• Type II irregular singularity: define d as the maximal common divisor of (k,N − 1),

then the maximal partition X is

Xmax = [
N − 1

d
,
N − 1

d
, . . . ,

N − 1

d
, 1] (2.10)

and other partitions are found by combining columns expect the last column with

height one.

When there are more than one irregular singularity, X is constrained to be compatible

with all irregular singularities.

Step 2. The second step is to take into account local punctures. After the above global

factorization, the SU(N) theory is split into a sum of SU(ns) (and U(1)) theories. For each

regular puncture, a dual Young diagram Y D of the SU(N) theory is split into a sum of

diagrams Y D
s for SU(ns) theories. The important point is that these Y D

s are not uniquely

determined from Y D. A choice of the collection Y D
s corresponds to the choice of a mixed

branch we consider.

One can form a Young diagram of N boxes Y ′D by combining Y D
s . The columns of

Y ′D are taken to be the columns of Y D
s . Then the only constraint on Y D

s is

Y ′D ≤ Y D. (2.11)

– 7 –
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Step 3. We consider every possible set of X and Y D
s , and find the curve consistent with

the above conditions. If (2.8) cannot be further factorized in a generic curve, this is the

root of a branch Cα × Hα, where the label α is specified as α = {X,Y D
s }. If (2.8) is

factorized in a generic curve, this is just a boundary of some other mixed branch and we

discard this case.

Now let us give the formulas for the dimensions of the branches.

Coulomb factor. Once the factorization and local data are given, the dimension of the

Coulomb factor Cα can be easily found from the factorized Seiberg-Witten curve: each

factor is the spectral curve of a lower rank SU(ns) or U(1) Hitchin system. Each U(1)

Hitchin system contributes dimension g to the Coulomb branch dimension.

Here we give an explicit formula for the Coulomb branch factor if there are only regular

punctures. First, let us define local contribution of a puncture p as

dimC Cα(p) ≡
k∑
s=1

d(Y D
s ), (2.12)

where d(Y D
s ) is defined as in (2.5). Then, the total dimension is given by

dimC Cα = (k − 1)g +

k∑
s=1

(n2
s − 1)(g − 1) +

∑
p

dimC Cα(p), (2.13)

where k is the number of elements in the partition X = [n1, · · · , nk]. The local contribution

of the irregular singularity can be found using the method discussed in [23].

Higgs factor. The dimension of the Higgs factor Hα has several contributions. There is

global contribution due to the factorization of the Seiberg-Witten curve. The quaternionic

dimension of this part is simply k − 1.

There is also contribution from local punctures, and an explicit form of the regular

puncture contribution can be easily written down. Defining Y ′ as the dual Young diagram

of Y ′D, the local Higgs branch dimension is given by

dimHHα(p) = d(Y ′)− d(Y ). (2.14)

This local contribution is always non-negative due to the constraint on Y
′

given by (2.11),

which is actually equivalent to Y ′ ≥ Y . There is no local contribution to Higgs branch

from type I and type II irregular singularity. The total dimension of the Higgs branch is

given by (assuming there is only regular puncture):

dimHHα = k − 1 +
∑
p

dimHHα(p). (2.15)

3 Vacuum structure of class S theories

In this section, we derive the rules for finding mixed branches stated in the previous section.

The reader who is only interested in applications of the rules can skip this section. The

essential ingredients are generalized Hitchin’s equations and 5d maximal Super-Yang-Mills

(SYM) twisted on the Riemann surface C [26–28], T ρ[SU(N)] theories of Gaiotto and

Witten [30] placed at punctures [22], and irregular singularity classified in [23].

– 8 –
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3.1 5d maximal SYM and generalized Hitchin’s equations

The class S theories are defined as the low energy limit of 6dN = (2, 0) theory compactified

on a Riemann surface C with punctures. If we further compactify it on a circle S1 so that

the 6d theory is placed on R3×S1×C, we get an S1 compactification of four dimensional

theory (in the small area limit of C). The same configuration can be looked at in a different

way. We first compactify the theory on S1 and get 5d maximal SYM, then we study the 5d

theory on R3 × C. Actually, the 5d maximal SYM might be enough to compute (BPS or

protected) quantities of the 6d N = (2, 0) theory on S1 (see e.g., [31, 32]). Then, denoting

the are of the Riemann surface as A, we claim (see [28] for more discussions and the scope

of validity of the claim),3

Vacuum moduli space of 4d class S theory on R3 × S1

= Vacuum moduli space of 6d class N = (2, 0) theory on R3 × S1 × C|A→0

= Vacuum moduli space of 5d maximal SYM on R3 × C|A→0. (3.1)

Furthermore, in this relation, the Coulomb branch and Higgs branch are exchanged,

Coulomb (Higgs) branch of 4d class S theory on R3 × S1

= Higgs (Coulomb) branch of 5d maximal SYM on R3 × C. (3.2)

The Coulomb branch of 4d theory on S1 is a Hyperkahler manifold. The Coulomb

branch has a distinguished complex structure which we denote as I. This complex structure

does not depend on the radius of S1 [33], so we can learn the moduli space of 4d theory

using complex structure I of Coulomb branch of 4d theory on S1.4 Moreover, in complex

structure I there is a fibration structure which can be identified with the Seiberg-Witten

fibration over the Coulomb moduli space.

Now we are going to describe the structure of the moduli space of vacua using the 5d

theory. The 5d maximal SYM contains gauge fields AM (M = 0, 1, 2, 3, 4) and five real

adjoint scalars ϕI (I = 1, 2, 3, 4, 5). It must also be twisted on the Riemann surface so

that half of the supersymmetry is preserved by the compactification. Then, taking the

coordinate of R3 × C as (xµ, z) where µ = 0, 1, 2 and z is a complex coordinate on C, the

fields of the 5d SYM are given by

(~ϕ,Aµ), (Φ, Az̄). (3.3)

Here, Φ(= ϕ4 +iϕ5) is a complex adjoint field, which takes values in K⊗ad(E), where K =

T ∗C is the canonical bundle and ad(E) is the vector bundle in the adjoint representation

of the gauge group. The fact that Φ is a section of the canonical bundle K comes from

the twisting of SO(2)R ⊂ SO(5)R R-symmetry to preserve eight superchages. The ~ϕ =

(ϕ1, ϕ2, ϕ3) are real adjoint fields in ad(E), Aµ is the gauge field on R3 and Az̄ is the

gauge field on C. The ~ϕ is a triplet of the SU(2)R = SO(3)R ⊂ SO(5)R R-symmetry. The

3See also [12] for finite area effects.
4This is true not only for the Coulomb branch but also for the entire vacuum moduli space, up to the

caveat discussed in section 4 of [28].
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combinations (~ϕ,Aµ) and (Φ, Az̄) are taken so that each of them form a single multiplet

of the supersymmetry. An important point is that (Φ, Az̄) corresponds to the Coulomb

moduli fields of the 4d class S theory, and (~ϕ,Aµ) corresponds to the Higgs moduli fields

of the 4d theory.

The classical equations for supersymmetric vacua of the 5d SYM are given by gener-

alized Hitchin’s equations [26] (see also [29]),5 which in general can describe theories with

four superchages. In the case of eight supercharges (i.e., 4d N = 2), they are simplified

as [28]

Fzz̄ + [Φ,Φ†] = 0 (3.4)

Dz̄Φ = 0 (3.5)

Dz ~ϕ = Dz̄ ~ϕ = 0 (3.6)

[~ϕ,Φ] = 0 (3.7)

[ϕi, ϕj ] = 0 (i, j = 1, 2, 3) (3.8)

where Fzz̄ = ∂zAz̄ − ∂z̄Az + [Az, Az̄].

The Coulomb branch of the 4d theory (or equivalently the Higgs branch of 5d theory)

is described by the first two equations which are precisely the Hitchin’s equations [34,

35]. This branch can be determined using the classical Hitchin’s equations due to non-

renormalization theorem.

The classical configuration of the Higgs branch of the 4d theory (or Coulomb branch

of 5d theory) can be described by the expectation values of the scalar fields ϕi, whose

solutions are just constant matrices, and there are various quantum corrections to the

metric of the moduli space which are difficult to calculate. However, for our purpose of

studying the mixed branch structure and counting dimensions of moduli space, we can still

use the classical equations due to the nonrenormalization theorem discussed in [28]. Due to

the commuting condition between Φ and ϕi, we get the breaking pattern on the Hitchin’s

equations, and therefore determine the mixed branch roots.

3.2 Factorization of the Seiberg-Witten curve

Let us solve these equations in detail. From (3.8), the ~ϕ are simultaneously diagonalized

by SU(N) gauge transformations. Let us assume that this is done. Then we get

~ϕ =


~a(1)In1 0 . . . 0

0 ~a(2)In2

...
...

. . . 0

0 . . . 0 ~a(k)Ink

 (3.9)

Here N = n1 +n2 + · · ·+nk defines a partition of N , X = [ns] = [n1, · · · , nk]. The Ins are

ns × ns unit matrices, and ~a(s) = (a
(s)
1 , a

(s)
2 , a

(s)
3 ) are vectors with ~a(s) 6= ~a(t) for s 6= t and

5In the generalized Hitchin system, the fields Φ1 = (ϕ1 + iϕ2)/
√

2, Φ2 = Φ and Az̄, are used. We must

supplement them with ϕ3 and Aµ to describe the complete moduli space of vacua.

– 10 –
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∑k
s=1 ns~a

(s) = 0. These ~a(s) are constants because of (3.6). The SU(N) gauge symmetry is

broken to a subgroup H = SU(n1)× · · · × SU(nk)×U(1)k−1. Furthermore, (3.6) and (3.7)

gives a constraint

Φ =


Φ(1) 0 . . . 0

0 Φ(2)
...

...
. . . 0

0 . . . 0 Φ(k)

 , Az̄ =


A

(1)
z̄ 0 . . . 0

0 A
(2)
z̄

...
...

. . . 0

0 . . . 0 A
(k)
z̄

 (3.10)

where Φ(s) and A
(s)
z̄ are ns × ns matrices. Then (3.4) and (3.5) are equivalent to

F
(s)
zz̄ + [Φ(s), (Φ(s))†] = 0, Dz̄Φ

(s) ≡ ∂z̄Φ(s) + [A
(s)
z̄ ,Φ(s)] = 0, (3.11)

for each s = 1, · · · , k. Therefore, each pair (A
(s)
z̄ ,Φ(s)) satisfies Hitchin’s equations. If the

vevs of (A
(s)
z̄ ,Φ(s)) completely break the SU(ns) gauge symmetries, the unbroken gauge

group is U(1)k−1. Then, taking the zero mode of Aµ (µ = 0, 1, 2) on C and dualizing these

gauge fields to scalar fields on R3, we get dual scalars b(s) (s = 1, · · · , k) with
∑

s nsb
(s) = 0.

For the moment, we neglect punctures. Then, the general structure is as follows.

Mixed branches are labelled by the partition of N , X = [ns]. The Higgs factor Hbulk
α

consists of the moduli fields (~a(s), b(s)) which contribute to the quaternionic dimension of

Hα as k− 1 (or real dimension 4(k− 1)). Here we added the word “bulk” to Hbulk
α because

we are neglecting punctures. The Coulomb factor Cα consists of the solutions of Hitchin’s

equations with the gauge group H = SU(n1)× · · · × SU(nk)×U(1)k−1.

If generic solutions of Hitchin’s equations for (A
(s)
z̄ ,Φ(s)) do not break SU(ns) com-

pletely, the above branch is just a boundary of a more larger branch. For example, con-

sider a simple case where the only solution to the SU(ns) Hitchin’s equations is trivial,

(A
(s)
z̄ ,Φ(s)) = 0. This can happen e.g., when the genus is g = 0 and there are no punctures.

Then, we can smoothly go to another branch as

~a(s)Ins → diag(~a(s,1), · · · ,~a(s,ns)) (3.12)

while satisfying (3.4)–(3.8). This means that we can go to the branch in which ns → 1 +

· · ·+1. More generally, if (A
(s)
z̄ ,Φ(s)) breaks SU(ns) to a nontrivial subgroup H ′s ⊂ SU(ns),

we can smoothly turn on a vev of ~ϕ in the Cartan subalgebra of the unbroken group H ′s.

The integer ns is further partitioned to ns = ns,1 + ns,2 + · · · . So we do not consider the

original partition [ns] as a separate mixed branch.

The spectral curve of the original Hitchin system is given as

0 = det(xIN − Φ) = xN +
N∑
i=2

φi(z)x
N−i. (3.13)

Under the decomposition (3.10), the curve is factorized as:

det(xIN − Φ) = xN +

N∑
i=2

φix
N−i = 0→

k∏
s=1

(
xns +

ns∑
i=1

φs,i(z)x
ns−i

)
= 0. (3.14)
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Constraint on factorization from Irregular singularity. If there are irregular sin-

gularities, the factorization pattern of the SW curve is constrained because the irregular

singularity can not factorize in an arbitrary way. The reason is that the leading order term

is fixed and define the UV theory, so we can not tune the leading order behavior of the

SW curve. Near the irregular singularity, the curve has the following form (we put the

singularity at z =∞):

Type I : (xN/d + zk/d)d = 0,

Type II : x(x(N−1)/d + zk/d)d = 0,

Type III : (x+ zn−2)N = 0, (3.15)

where in the Type I (or type II) case, d is the maximal common divisor of k and N (or

N − 1), and we have neglected all the coefficients. From these, one can easily see the rules

stated in section 2.

3.3 Local moduli from regular singularities

Regular punctures are realized [22, 28] by coupling the 3d N = 4 T ρ[SU(N)] theories [30]

to the 5d SYM. These theories are extended in the R3 direction, and they are localized at

punctures on the Riemann surface C.

3.3.1 T ρ[SU(N)] theories

We first review some properties of T ρ[SU(N)] necessary for our purposes; see [22, 30] for

more details.

Moduli space of T [SU(N)] theory. First, let us recall some of the important properties

of the T [SU(N)] theory, i.e., ρ = 0. It has Coulomb branch and Higgs branch, and there

are SU(N)C × SU(N)H global symmetries where SU(N)C acts on the Coulomb branch and

SU(N)H acts on the Higgs branch. Since it has 3d N = 4 supersymmetry, both of the

branches are hyperkahler, and hence there are hyperkahler moment maps ~ν = (ν1, ν2, ν3)

and ~µ = (µ1, µ2, µ3) of the flavor symmetries SU(N)C and SU(N)H, respectively. They

take values in the Lie algebra of SU(N)C×SU(N)H. It is convenient to define holomorphic

moment maps as νh = ν1 + iν2 and µh = µ1 + iν2. Then, they are nilpotent matrices, i.e.,

νNh = µNh = 0, or equivalently their eigenvalues are zero, when there is no mass deformation.

(Mass deformation will be important later.) Vacuum moduli space is parametrized by µh
and νh.

Mixed branches of the T [SU(N)] theory are given as follows. Let us take a partition

of N , Y ′ = [m′a] = [m′1,m
′
2 · · · ,m′`]. Corresponding to each partition, we can define an

embedding of SU(2) into SU(N),

ρ′ : SU(2)→ SU(N), (3.16)

such that the fundamental (N -dimensional) representation of SU(N) is decomposed into

irreducible representations of SU(2) as

N→m′1 + m′2 + · · ·+ m′`, (3.17)

– 12 –



J
H
E
P
1
0
(
2
0
1
4
)
1
3
4

where ma is the ma dimensional (spin (ma − 1)/2) representation of SU(2). Similarly, we

can consider the dual Young diagram of Y ′ which we call Y ′D = [m̃′a], and we can define

another embedding ρ′D : SU(2)→ SU(N).

Define e′ = ρ′(σ+) and e′D = ρ′D(σ+), i.e., the image of the raising operator σ+ of

SU(2). Then, they are nilpotent matrices (because acting raising operators too many

times gives zero). Mixed branches are classified by Y ′, and the branch labeled by Y ′ is

given as

(νh, µh) ∈ Oe′D ×Oe′ (3.18)

where, for a given matrix A, OA is the orbit of A by the action of the complexified group

SU(N)C = SL(N), OA = {gAg−1 : g ∈ SU(N)C}. This means that the mixed branch

structure
⋃
α Cα×Hα of the T [SU(N)] theory is given as α = Y ′, Cα = Oe′D and Hα = Oe′ .

Let us compute the dimension of the orbit Oe′ . It is computed as the number of linearly

independent generators of SU(N) which do not commute with e′ = ρ′(σ+). The adjoint

representation of SU(N) is decomposed under SU(2) as

N2 − 1→

⊕̀
a=1

m′a−1⊕
j=1

(2j + 1)

⊕ [(`− 1) · 1]
⊕2

⊕
a<b

m′b⊕
k=1

(m′a + m′b − 2k + 1)


≡
⊕
c

(2jc + 1), (3.19)

where c in the last equation runs over irreducible representations which appear in the de-

composition. Corresponding to this decomposition, the generators of SU(N) are given as

T ′c,m, −jc ≤ m ≤ jc such that [ρ(σ3/2), T ′c,m] = mT ′c,m, [ρ(σ+), T ′c,m] ∝ T ′c,m+1 etc. Gener-

ators corresponding to the highest spin state in each irreducible representation commutes

with ρ(σ+), i.e., [ρ(σ+), T ′c,jc ] = 0. So the complex dimension of Oe′ is given as

dimCOe′ = (N2 − 1)−

(∑̀
a=1

(m′a − 1) + (`− 1) + 2
∑̀
b=1

(b− 1)m′b

)

= N2 +N − 2
∑
a

am′a =

(
N2 −

∑
a

m̃′2a

)
≡ 2d(Y ′), (3.20)

where we used the relation between Y ′ = [m′a] and Y ′D = [m̃′a]. Similarly, the complex

dimension of Oe′D is given by dimCOe′D = 2d(Y ′D).

Moduli space of T ρ[SU(N)] theory. An easy way to obtain the T ρ[SU(N)] is as follows.

Take an embedding ρ : SU(2) → SU(N) corresponding to a partiton of N , Y = [ma]. In

the T [SU(N)] theory, we give a vev 〈µh〉 = ρ(σ+) ≡ e to the moment map µh. Then, in the

low energy limit, the T [SU(N)] theory flows to the T ρ[SU(N)] theory with some Goldstone

multiplets associated to the spontaneous breaking of the flavor SU(N)H symmetry by the

vev 〈µh〉 = e. By Goldstone multiplets, we mean Goldstone bosons and their superpartners.
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The Goldstone multiplets are given by the orbit of e = ρ(σ+). Eliminating them,

we get

µh = ρ(σ+) +
∑
c,m

Tc,mµc,m

→ ρ(σ+) +
∑
c

Tc,−jcµc,−jc (3.21)

where Tc,m is defined according the decomposition as in (3.19) using Y = [ma]. In the

above, we used the fact that µc,m for m > −jc are Goldstone multiplets and we have

eliminated them. Therefore, the Higgs branch of the T ρ[SU(N)] theory is parametrized by

the fields µc,−jc . A matrix of the form (3.21) is an element of the so called Slodowy slice

Sρ. The Higgs branch of the T ρ[SU(N)] theory is parametrized by this µh in (3.21).

A matrix of the form (3.21) can take values in the orbit Oe′ for some e′ = ρ′(σ) if

and only if e can be reached as as a limit of elements of Oe′ . In other words, e must be

contained in the closure of Oe′ , denoted as Ōe′ . So we must have Oe ⊂ Ōe′ . It is known

that Oe ⊂ Ōe′ if and only if the corresponding partitions Y = [ma] and Y = [m′a] satisfy

Y ≤ Y ′, where the partial ordering between partitions of N is defined in (2.6).

Now we can describe the mixed branch structure
⋃
α Cα×Hα of the T ρ[SU(N)] theory.

The branches are labeled by a partition Y ′ = [m′a] of N , which satisfies Y ′ ≥ Y . The

Coulomb and Higgs components are given as

Cα(T ρ[SU(N)]) = Oe′D (3.22)

Hα(T ρ[SU(N)]) = Oe′ ∩ Sρ, (3.23)

where e′ and e′D are the nilpotent elements corresponding to Y ′ = [m′a] and the dual

Y ′D = [m̃′a] as before, and Sρ is the Slodowy slice (3.21). The quaternionic dimensions (or

half the complex dimension) of them are given as

dimH Cα(T ρ[SU(N)]) =
1

2
dimCOe′D = d(Y ′D). (3.24)

dimHHα(T ρ[SU(N)]) =
1

2
(dimCOe′ − dimCOe) = d(Y ′)− d(Y ). (3.25)

The subtraction of dimCOe in dimHHα comes from the fact that we have eliminated the

Goldstone multiplets in (3.21).

For example, the pure Coulomb branch C×{0} is given by the orbit OeD corresponding

to the partition Y D = [m̃a] dual to Y = [ma]. This will reproduce the usual rule of regular

singularities given in (2.4).

Notice that the constraint Y ′ ≥ Y is equivalent to Y ′D ≤ Y D.6 So in all the branches,

we must have the constraint

νh ∈ ŌeD . (3.26)

6If two partitions [m̃a] and [m̃′a] satisfy [m̃′a] ≤ [m̃a], then [m′a] ≥ [ma]. This claim is proved as follows.

Examining the Young diagram, one can see that
∑a
b=1 m

′
b = N−

∑
b max{m̃′b−a, 0}. Then by taking c such

that m̃′c = a and m̃′c+1 < a, we get
∑
b max{m̃′b − a, 0} =

∑c
b=1(m̃′b − a) ≤

∑c
b=1(m̃b − a) ≤

∑
b max{m̃b −

a, 0}, where we have used the definition of the partial ordering (2.6). Thus we get
∑a
b=1 m

′
a ≥

∑a
b=1 ma

for a = 1, 2, · · · , proving [m′a] ≥ [ma].
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3.3.2 T ρ[SU(N)] coupled to 5d SYM

Now let us couple the T ρ[SU(N)] theory to the 5d SYM at a point p ∈ C which will

be a puncture. We gauge the Coulomb branch SU(N)C symmetry of T ρ[SU(N)] by the

gauge group of the 5d SYM. In particular, this coupling includes a superpotential coupling

between the holomorphic moment map νh and the complex adjoint field ϕh = ϕ1 + iϕ2,

W ⊃ tr(ϕh(p)νh), (3.27)

where ϕh(p) is the value of ϕh evaluated at the point p.

There are two important effects of this coupling. First, by giving the vev (3.9), this

coupling gives a mass term of νh. Then the Higgs branch moment map µh is no longer a

nilpotent matrix, but it is such that its characteristic polynomial is given by [28]

det(xIN − µh) = det(xIN − ϕh), (3.28)

where x is an arbitrary variable. (When ϕh = 0, this equation means that all the eigenvalues

of µh are zero, and hence µh is nilpotent.)

The other effect of (3.27) is that this term gives a source of Φ. In the bulk superpo-

tential of the 5d SYM, there is also a coupling of the form W ⊃
∫
d2z tr(ϕhDz̄Φ) and the

equation of motion of ϕh gives Dz̄Φ ∼ δ2(z)νh, where we have assumed that the point p is

located at z = 0. Then we get a pole of Φ as7

Φ ∼ νh
z

+O(1) (z → 0). (3.29)

Suppose that the νh is in the orbit ν ∈ OeD corresponding to the partition [m̃a]. Then,

combining the pole term νh/z and also the order one term O(1) in the above equation,

one can check that the singularity of the spectral curve is precisely given by (2.4). The

constraint (3.26) ensures that the singularities cannot be stronger than (2.4).

Now we can study the local contribution Cα(p) × Hα(p) from the puncture p to the

mixed branch Cα ×Hα of the 4d field theory.

Coulomb factor. The commutation relation [Φ, ~ϕ] = 0 requires that the residue νh of

the pole of Φ at the puncture as given in (3.29) must be of the form

νh =


ν

(1)
h 0 . . . 0

0 ν
(2)
h

...
...

. . . 0

0 . . . 0 ν
(k)
h

 . (3.30)

Furthermore, each of the block ν
(s)
h must be nilpotent. Thus there is a partition of ns,

Y D
s = [m̃s,a], the corresponding embedding ρ

(s)
D : SU(2) → SU(ns) and the nilpotent

7Strictly speaking, (3.29) is not an actual solution of Hitchin’s equations if [νh, ν
†
h] 6= 0. We must

use the usual argument that imposing (3.4) and dividing by the gauge group is equivalent to dividing by

complexified gauge group. Then, using complexified gauge transformation to set Az̄ = 0, we get (3.29).
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element e(s)D = ρ
(s)
D (σ+) such that

ν
(s)
h ∈ Oe(s)D (s = 1, 2, · · · , k). (3.31)

Then, the singularity of the spectral curve is specified by Y D
s .

Let us combine the partitions Y D
s to define Y ′D = [m̃′a] whose columns are the columns

of Y D
s . Because of the constraint (3.26), this partition must satisfy Y ′D ≤ Y D.

The Coulomb factor Cα(p) is parametrized by ν
(s)
h . However, the following point must

be taken into account. As explained in section 3.1, we compactified the 4d theory on S1.

Then, in the low energy 3d theory, a U(1) massless gauge multiplet is dualized to two real

scalars (or equivalently one complex scalar). Therefore, the dimension of Coulomb moduli

space C(3d)
α is doubled from the 4d Coulomb moduli space C(4d)

α . Having this distinction

between the 3d and 4d theory in mind, we conclude that

C(3d)
α (p) =

k⊕
s=1

Oe(s)D (3.32)

and

dimC C(4d)
α (p) = dimH C(3d)

α (p) =
k∑
s=1

d(Y D
s ). (3.33)

This is what we have written in (2.12).

Higgs factor. The µh must satisfy (3.28). Furthemore, the νh satisfies (3.30) and (3.31).

From these facts, it is natural to expect the following (see section 2.3 and 2.4 of [22]). For

each s, let Ys = [ms,a] be the partition of ns dual to Y D
s , ρ(s) : SU(2) → SU(ns) be the

corresponding embedding, and e(s) = ρ(s)(σ+). Let e′′ =
⊕

s e(s) be the block diagonal

N ×N matrix. Then we define the matrix

ϕh + e′′ =


a

(1)
h In1 + e(1) 0 . . . 0

0 a
(2)
h In2 + e(2)

...
...

. . . 0

0 . . . 0 a
(k)
h Ink + e(k)

 , (3.34)

where a
(s)
h = a

(s)
1 + ia

(s)
2 . Suppose that a

(s)
h are generic so that a

(s)
h 6= a

(t)
h for s 6= t. In this

case, we propose that µh is in the orbit of ϕh + e′′,

µh ∈ Hα(p) ≡ Oϕh+e′′ ∩ Sρ. (3.35)

The complex dimension of the orbit Oϕh+e′′ is given by

dimCOϕh+e′′ = dimCOϕh +

k∑
s=1

dimCOe(s)

=

(
N2 −

k∑
s=1

n2
s

)
+

k∑
s=1

(
n2
s −

∑
a

m̃2
s,a

)
= 2d(Y ′) (3.36)

where Y ′ = [m′a] is the partition of N dual to Y ′D = [m̃′a].
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We can perform a consistency check by taking the limit ϕh → 0. In this case, the

T ρ[SU(N)] theory at the puncture has no (holomorphic) mass term, and hence we have

µh ∈ Oe′ ∩ Sρ, (3.37)

where e′ = ρ′(σ+) is a nilpotent element corresponding to the partition Y ′ = [m′a]. There-

fore, we should get

lim
ϕh→0

Oϕh+e′′ = Oe′ . (3.38)

Actually, the dimension of Oϕh+e′′ computed above is the same as the dimension of Oe′ .

This is required because, even if ϕh = ϕ1 + iϕ2 → 0, this limit should be smooth as long

as ϕ3 is generic.8

We conclude that the quaterionic dimension of Hα(p) is given as

dimHHα(p) = d(Y ′)− d(Y ). (3.39)

This is the formula written in (2.14).

4 N = 2 SUSY QCD

In this section, we reproduce the results of the moduli space of vacua in SQCD obtained

by Seiberg and Witten for SU(2) [2] and by Argyres, Plesser and Seiberg for SU(N) [4].

4.1 SU(2)

We study the SU(2) SQCD with Nf flavors. Although these models are simple, they

illustrate our method without technical complication.

We consider massless cases. In addition to the regular singularities discussed in the

previous sections, we also need some irregular singularities. The curve is x2 + φ2(z) = 0,

and the singularities we use are given as

A : φ2 = O(z−1), (4.1)

B : φ2 =
Λ2

z3
+O(z−2), (4.2)

C : φ2 =
Λ2

z4
+O(z−2), (4.3)

where Λ is a parameter which roughly corresponds to the dynamical scales of field the-

ory. The first singularity A is the regular singularity corresponding to the partition

Y = [ma] = [1, 1] or equivalently its dual partition is Y D = [m̃a] = [2]. The second

and third singularities B and C are irregular singularities which are obtained [20] from

the M-theory uplift of type IIA brane configurations [5]. More details on those types of

irregular singularities are discussed in appendix A, but here we simply claim that (4.2)

and (4.3) have no local contribution to the Higgs branch.

Let us summarize the important points.

8The ϕ3 does not appear in the complex structure of T ρ[SU(N)], but it appears in the metric. If we use

SU(2)R symmetry, the case ϕh = 0 and ϕ3=generic can be transformed into ϕh=generic.
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• If the curve is factorized as x2 +φ2 = (x+ f(z))(x− f(z)), there is a contribution to

the quaternionic dimension of the Higgs branch as +1 coming from the term k − 1

in (2.15), i.e., the curve is factorized according to the partition X = [ns] = [1, 1].

• If there is a singularity of type B, then it is impossible to factorize the curve as

x2 + φ2 = (x+ f(z))(x− f(z)) since we cannot have Λ2/z3 + · · · = (f(z))2 for some

single valued function f(z). On the other hand, in the case of the singularity of type

C, there is no such local obstacle.

• For a singularity of type A, we can have local contribution to the Higgs branch if and

only if the O(z−1) term vanishes. In this case we have Y ′D = [m̃′a] = [1, 1], and the

local contribution to the quaternionic dimension, calculated by the formula (2.14), is
1
2(22 − 12 − 12) = 1.

Zero flavor Nf = 0. The theory with no flavor is realized by putting two irregular

singularities of type B, (4.2), on a Riemann sphere parametrized by z ∈ C∪ {∞}. Putting

the singularities at z = 0 and z =∞, the curve is

0 = x2 −
(

Λ2

z3
+
u

z2
+

Λ2

z

)
, (4.4)

where u is the Coulomb modulus. (Note that near z →∞, we must use the coordinates z′ =

1/z and x′ = −z2x.) We cannot factorize the curve, and there are no local contributions

to the Higgs branch from the punctures. Thus there is no Higgs branch, reproducing the

result of field theory.

One flavor Nf = 1. The theory with one massless flavor is realized by putting one

irregular singularity of type B, (4.2), and one irregular singularity of type C, (4.3), on a

Riemann sphere. Putting singularities at z = 0 and z =∞, the curve is

0 = x2 −
(

Λ2

z4
+
u

z2
+

Λ2

z

)
. (4.5)

In this case, there is no Higgs branch as in the case of Nf = 0.

Two flavors Nf = 2. The theory with two massless flavors can be realized in two different

ways. The first way is to put two type C singularities. The second way is to put one type

B irregular singularity and two type A singularities, (4.1).

First, let us study the first realization. We use two type C singularities. Putting

singularities at z = 0 and z =∞, the curve is

0 = x2 −
(

Λ2

z4
+
u

z2
+ Λ2

)
. (4.6)

The curve can be factorized if and only if u = ±2Λ2. In this case, we have

0 =

(
x+

(
Λ

z2
± Λ

))(
x−

(
Λ

z2
± Λ

))
. (4.7)
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Therefore, the Higgs branch is emanating from the Coulomb branch points u = ±2Λ2 and

its quaternionic dimension is 1. This is exactly as was found by Seiberg and Witten [2].

Next, let us study the second realization. We take regular punctures of type A at

z = 0, 1 and a puncture of type B at z =∞. The curve is

0 = x2 −
(

Λ2

z
+

u′

z(z − 1)

)
. (4.8)

We cannot factorize the curve in this case because of the existence of the singularity of type

B. However, there are contributions to the Higgs branch dimension from regular punctures.

Notice that

(
Λ2

z
+

u′

z(z − 1)

)
→


Λ2 − u′

z
z → 0

u′

z − 1
z → 1

(4.9)

Then, we can have local contribution to the Higgs branch from the puncture at z = 0 when

u′ = Λ2, and from the puncture at z = 1 when u′ = 0. At each of these points, we have the

Higgs branch with the quaternionic dimension 1. Therefore, we find the same structure as

the case of the above first realization if we identify the moduli parameters as u = 2u′−Λ2.

It is interesting that the way the Higgs branch appears is quite different in the two

realizations. In the first realization, the Higgs branch comes from the “bulk” contribu-

tion, while in the second realization the Higgs branch comes from local contributions from

punctures. However, the final results are the same in both cases.

Three flavors Nf = 3. The theory with three massless flavors is realized by putting two

regular singularities of type A at z = 0, 1 and one irregular singularity of type C at z =∞.

The curve is

0 = x2 −
(

Λ2 +
u

z(z − 1)

)
. (4.10)

Note that the local contributions to the Higgs branch from the punctures at z = 0, 1 are

both turned on when u = 0. Furthermore, only in this case the curve is factorized,

0 =
(
x+ Λ2

) (
x− Λ2

)
. (4.11)

Therefore, the Higgs branch is emanating from the single point u = 0 and the quaternionic

dimension is 3. This is exactly as in [2].

Four flavors Nf = 4. The theory with four massless flavors is realized by putting four

regular singularities of type A at z = 0, q, 1,∞. The curve is

0 = x2 −
(

u

z(z − q)(z − 1)

)
. (4.12)

All the local contributions to the Higgs branch and the factorization of the curve is possible

if and only if u = 0. Therefore, the Higgs branch is emanating from u = 0 and has the

quaternionic dimension 5. This point is the superconformal point of the theory.
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Mass deformation and AD point. Let us briefly describe mass deformation. Generic

deformation would typically eliminate the Higgs branch. Consider the first realization of

SU(2) theory with two flavors. The curve turning on generic mass deformation is

x2 =
Λ2

z4
+
m1Λ

z3
+
u

z2
+
m2Λ

z
+ Λ2. (4.13)

The above curve can be factorized if and only if

m1 = m2 = m,
u

Λ2
=

m2

4Λ2
+ 2,

m1 = −m2 = m,
u

Λ2
=

m2

4Λ2
− 2. (4.14)

So for non-zero m = m1 = ±m2, there is only one Higgs branch of dimension 1, which is

consistent with the fact that the flavor symmetry is broken to U(2) by the mass term. The

above curve can be further factorized for the following special value of m:

x2 =
Λ2

z4
(z ± 1)4, m1 = m2 = m = ±4Λ,

x2 =
Λ2

z4
(z ± i)4, m1 = −m2 = m = ±4iΛ. (4.15)

There should be new massless particles here, but our method tells us that the Higgs branch

dimension does not change at this point. This suggests that the new massless particles

might be nonlocal relative to the massless particles which are already present in (4.14).

This point is actually the Argyres-Douglas point as discussed in [10].

4.2 SU(N)

In this section we study the SU(N) SQCD. First, let us summarize the result of Argyres,

Plesser and Seiberg [4] obtained by field theory methods.

• There is a baryonic Higgs branch for Nf ≥ N , and the quaternionic dimension is

N(Nf −N) + 1. There is no Coulomb direction in this branch.

• There are non-baryonic mixed branches with a label 0 ≤ r ≤ min([
Nf
2 ], N − 2). The

complex dimension of the Coulomb factor Cr is N − r − 1, and the quaternionic

dimension of the Higgs factor Hr is r(Nf − r). The pure Coulomb branch is the case

r = 0.

Here we only treat the conformal theory Nf = 2N which only requires regular singu-

larities. Other cases are discussed in appendix A.

4.2.1 Nf = 2N

This theory is described by a Riemann sphere with two simple punctures (Y = [ma] =

[N − 1, 1] or Y D = [m̃a] = [2, 1N−2]) and two full punctures ([Y ] = [ma] = [1N ] or

Y D = [m̃a] = [N ]). We put two full punctures at z = 0,∞, and two simple punctures at

z = 1, q. The Seiberg-Witten curve is

0 = xN +

N∑
i=2

ui
zi−1(z − 1)(z − q)

xN−i. (4.16)

– 20 –



J
H
E
P
1
0
(
2
0
1
4
)
1
3
4

SU(N) SU(N−r)

Figure 4. The factorization patter of rth mix branch of the SU(N) theory with 2N flavors.

Non-baryonic branch. Suppose that some of the ui is nonzero. Then we can define r

(0 ≤ r ≤ N − 2) such that uN−r 6= 0 and uN−r+1 = · · · = uN = 0. Then the curve is

factorized as

0 = xr

(
xN−r +

N−r∑
i=2

ui
zi−1(z − 1)(z − q)

xN−i

)
. (4.17)

This means that we have factorization corresponding to the partition X = [ns] = [N−r, 1r].
In the second step, we should choose the local puncture type on the SU(N − r) factor.

However, it is easy to see that to have nonzero uN−r, the punctures have to be chosen as

in the figure 4: the full (simple) puncture of SU(N) becomes the full (simple) puncture of

SU(N − r). We have the following data on the split of punctures:

Full puncture : Y D
f = [N ], Y

′D
f = [N − r, 1r]

Simple puncture : Y D
s = [2, 1N−2], Y

′D
s = [2, 1N−2] (4.18)

Using the formula (2.14), local contribution to the Higgs component from a full or

simple puncture is given by

dimHHr(full) = d(Y
′
f )− d(Yf ) =

1

2

(
N2 − (N − r)2 − r · 12

)
(4.19)

dimHHr(simple) = d(Y
′
s )− d(Ys) = 0. (4.20)

Then, the formula (2.15) gives the total Higgs branch dimension as

dimHHr = r + 2 dimHHr(full) + 2 dimHHr(simple)

= r(2N − r), (4.21)

where we have used k = r + 1. This is exactly what was found in [4] with Nf = 2N .

Baryonic branch. In the above we have assumed uN−r 6= 0 for some r. The remaining

possibility is to have all the ui to be zero. The curve is just 0 = xN , which corresponds to the

partition X = [ns] = [1N ]. At all the punctures we automatically have Y ′D = [m̃′a] = [1N ].

Local contribution from a full or simple puncture is given by

dimHH(full) =
1

2

(
N2 −N · 12

)
(4.22)

dimHH(simple) =
1

2

(
N2 −N · 12

)
− 1

2

(
N2 − 22 − (N − 2) · 12

)
. (4.23)
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Then, the formula (2.15) gives

dimHH = (N − 1) + 2 dimHHr(full) + 2 dimHHr(simple)

= N2 + 1. (4.24)

This is exactly what was found in [4] with Nf = 2N .

5 Theories defined using regular singularities

Our method can be also applied to theories whose Lagrangian description is not yet know.

One of such theories is the so called TN theory. Pure Higgs branch H (i.e., branch where

there are no Coulomb moduli fields) are studied in [11, 14]. But it is not so easy to study

the mixed branch structures directly by field theory. Here we use our method to study

these structures. The case of the partition X = [ns] = [1N ] was studied in [28].

5.1 TN theory

The TN theory is realized by using a Riemann sphere with three full punctures. Each full

puncture has SU(N)H Higgs branch symmetry, so the TN theory has SU(N)A×SU(N)B×
SU(N)C flavor symmetry.

In this case, what are discussed in sections 2 and 3 suggest the following interpretations.

First, the factorization of the curve (2.8) is realized by giving vevs to Higgs branch operators

of the TN theory so that the low energy theory is given by smaller TN theories [14]

TN → Tn1 + Tn2 + · · ·+ Tnk + (free fields). (5.1)

Here the free fields come from some k− 1 moduli fields responsible for the above breaking

which roughly represent the relative “positions” of Tns on moduli space,9 and also the

Goldstone multiplets associated to the spontaneous breaking [SU(N)]3 → [S(U(n1)×· · ·×
U(nk))]

3. There are 3× 1
2(N2−

∑k
s=1 n

2
s) Goldstone multiplets (in quaternionic dimension).

Next, we consider the partition ns → Y D
s = [m̃s,a] at three punctures, which we call

A,B and C respectively. Thus, for each s, we have Y D
s,A, Y

D
s,B and Y D

s,C , and their dual

partitions Ys,A, Ys,B and Ys,C . Then, we can Higgs the punctures of the Tns theory by

giving nilpotent vevs to the moment maps to get more general three-punctured theories

specified by these partitions [22, 36, 37]

Tns → Tns (Ys,A, Ys,B, Ys,C) + (Goldstone multiplets), (5.2)

where the Goldstone multiplets are the ones associated to the spontaneous breaking of

[SU(ns)]
3 by nilpotent vevs. As discussed in section 3, each puncture contributes d(Ys) =

1
2(n2

s−
∑

a m̃
2
s,a) to the quaternionic dimension of Goldstone multiplets. Combining all the

9In terms of the M5 brane realization of the TN theory, this means that the N M5 branes are separated

as N → [n1, n2, · · · , ns].
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low energy free fields in the above process gives the dimension of the Higgs factor Hα given

in (2.15). Then we go to the Coulomb branch of the remaining theory

k∑
s=1

Tns (Ys,A, Ys,B, Ys,C) . (5.3)

This process gives the mixed branches of the TN theory.

For this process to define a mixed branch of the TN theory, Tns (Ys,A, Ys,B, Ys,C) must

be such that its generic curve cannot be factorized. If some of ns is 1, we interpret the

Tn=1 theory to be empty.

The above picture of the vacua structure suggests that we can find all the lower three

punctured sphere theory on the Coulomb branch moduli space of the TN theory.

5.2 Maldacena-Nunez theory

N = 2 Maldacena-Nunez theories [25, 38] are defined by a genus g Riemann surface with

no punctures at all. Therefore, we only need to consider a partition X = [ns] of the curve

0 = xN +
∑

i φi(z)x
N−i.

If g = 0, the only possible curve is just 0 = xN , since there are no nontrivial holomor-

phic sections of φi. Hence the only branch allowed by our rule is the case X = [1N ]. This

is the Higgs branch with quaternionic dimension N − 1. There is no Coulomb branch.

If g = 1, then the most general curve is given by 0 =
∏N
i=1(x − ci) where ci are

constants with
∑N

i=1 ci = 0. Therefore, also in this case, the only possible partition allowed

is X = [1N ]. The quaterionic dimension of the Higgs branch is N−1. In fact, the Coulomb

branch and Higgs branch are combined into a manifold with complex dimension 3(N − 1),

which agrees with the field theory result as the theory is just N = 4 SYM.

If g > 1, we can have the following factorization:

0 =

k∏
s=1

(
xns +

ns∑
i=1

φs,i(z)x
ns−i

)
, (5.4)

This means all the partitions [na] are possible, and one can easily find the dimensions of

the Higgs and Coulomb factor using our general formula.

Let’s remark an interesting point for the branch labeled by the partition X = [1N ]. In

this branch, we have the maximal Higgs branch deformations. Unlike the sphere case, we

still have Coulomb branch deformations which are described by the curve

(x− h1)(x− h2) . . . (x− hN ) = 0, (5.5)

and hi are sections of the canonical bundle. This means that there is no pure Higgs branch

for this class of theories. See [28] for more detailed discussions on this case.

6 Argyres-Douglas theory

Here we use our method to determine the Higgs branch of Argyres-Douglas theory [23, 24,

39]. We will recover and extend the results obtained in [13]. The theories we consider are

discussed in [23, 40, 41].
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6.1 (A1, AN ) theory

This theory is described by a sphere with one irregular singularity which we put at z =∞.

N=2n-1. The Seiberg-Witten curve is

x2 = z2n + c2z
2n−2 + · · ·+ cnz

n + cn+1z
n−1 + un+2z

n−2 + . . .+ u2n (6.1)

where ci (i = 2, · · · , n) are coupling parameters of the theory, cn+1 is a mass parameter,

and ui (i = n+ 2, · · · , 2n) are Coulomb branch moduli.

To find the Higgs branch, we need to consider the factorization of the Seiberg-Witten

curve. In fact, there is a factorization happening at a single point on the moduli space:

x2 − (z2n + c2z
2n−2 + · · ·+ cn+1z

n−1 + un+2z
n−2 + . . .+ u2n)

=

(
x+ zn +

n∑
i=2

aiz
n−i

)(
x− zn −

n∑
i=2

aiz
n−i

)
. (6.2)

There are 2n− 1 equations for 2n− 1 parameters cn+1, ui (i = n+ 2, · · · , 2n) and ai (i =

2, · · · , n) when ci (i = 2, · · · , n) are fixed. By tuning cn+1 appropriately, factorization

occurs for certain values of ui determined by ci uniquely. For example, for the SCFT case

(ci = 0), we find a one dimensional Higgs branch coming out from ui = 0.

N=2n. The curve for this theory is

x2 = z2n+1 + c2z
2n−1 + · · ·+ cn+1z

n + un+2z
n−1 + · · ·+ u2n+1 (6.3)

It is impossible to factorize the curve because of the existence of the leading term z2n+1.

Therefore there is no Higgs branch.

6.2 (A1, DN ) theory

This theory is described by one irregular singularity at z =∞ and one regular singularity

at z = 0.

N=2n+2. The curve is

x2 = z2n + c1z
2n−1 + · · ·+ cn+1z

n−1 + un+2z
n−2 + · · ·+ u2n+1

z
+
m2

z2
, (6.4)

where ci (i = 1, · · · , n) are some parameters, cn+1 and m are mass parameters and ui (i =

n+ 2, · · · , 2n+ 1) are Coulomb moduli.

We only consider the case in which m = 0 and also cn+1 is tuned appropriately so that

the curve can be factorized. Then, if u2n+1 = 0, we get a local contribution to the Higgs

factor Hα from the puncture at z = 0. Therefore, we have a mixed branch at u2n+1 = 0.

The Coulomb factor Cα is the same as the (A1, A2n−1) theory discussed above, and the

Higgs factor Hα has quaternionic dimension 1.
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At a single point on the Coulomb moduli space, we can factorized the curve as

x2 − z2n + c1z
2n−1 + · · ·+ cn+1z

n−1 + un+2z
n−2 + · · ·+ u2n+1

z

=

(
x+ zn +

n∑
i=2

aiz
n−i

)(
x− zn −

n∑
i=2

aiz
n−i

)
. (6.5)

At this point, we must also set u2n+1 = 0. There is a Higgs branch coming out of this

point. The quaternionic dimension is 2 by counting the contributions from the bulk and

the puncture. In particular, the Higgs branch at the SCFT point (ai = 0) has dimension

2, which agrees with the result in [13].

N=2n+3. The curve is

x2 = z2n+1 + c1z
2n + · · ·+ cn+1z

n + un+2z
n−1 + · · ·+ u2n+2

z
+
m2

z2
, (6.6)

Again we consider the case m = 0. Then, there is a mixed branch defined by u2n+2 = 0.

The contribution to the Higgs factor Hα comes from the puncture at z = 0, and the

Coulomb factor Cα is the same as the (A1, A2n) theory.

6.3 (A1, EN ) theory

The Seiberg-Witten curve at the EN type SCFT point is

E6 : x3 + z4 = 0,

E7 : x3 + xz3 = 0,→ x(x2 + z3) = 0,

E8 : x3 + z5 = 0. (6.7)

It is easy to see that only the curve for E7 theory is factorizable, and there is only one type

of factorization with X = [2, 1], so the dimension of Higgs branch is one.

7 Conclusion

We have developed a general method to find the vacua structure of class S theory using

generalized Hitchin equation. We derived our results using the geometric method from six

dimensional (2, 0) theory. For those 4d theories with lagrangian description, it is interesting

to check our result using field theory calculations. The holomorphic factorization of Seiberg-

Witten curve and reduction of singularity at punctures play a crucial role in our method,

and a field theory interpretation of this fact would be welcome.

Let’s summarize the possible moduli space structure of N = 2 theories:

• Typically, there is a Coulomb branch, a Higgs branch and mixed branches. Such

examples include the theory defined by a sphere with regular punctures.

• Sometimes there is only a Coulomb branch. The typical example is the pure SU(2)

SYM and (A1, AN−1) AD theory with even N .
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• There is only a Higgs branch for the free field theory such as bifundamentals.

• There is no pure Higgs branch, namely only a Coulomb and mixed branches exist.

This situation happens e.g. for the theory defined on a higher genus Riemann surface.

We focused on the theories obtained from AN−1 type N = (2, 0) theory in this paper,

but our method is also applied to other theories using D [42, 43] and E [44] type (2, 0)

theory. It would be interesting to extend our study to those other types of theories.

The singularity structure on the Coulomb branch of N = 2 theory is crucial for the

discovery of Seiberg-Witten solution [1, 2]. New massless particles appear at those singu-

larities. The loci where Higgs or mixed branches appear must have massless particles, but

the appearance of new massless particles does not necessary mean that there is a mixed

branch. The method described in this paper detects mixed branches rather than massless

particles. It would be very interesting to develop a systematic way to find massless par-

ticles and their types (e.g., mutually local or nonlocal, abelian or nonabelian, etc.). The

study of effective field theory on the Higgs branch roots is particular interesting, as those

singularities might survive under N = 1 deformation [4]. We leave the study of those

effective theories and N = 1 deformation to the future.
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A More on SQCD

In this appendix we study the SU(N) SQCD with general numbers of flavors Nf < 2N .

A.1 Irregular singularities

We will need some irregular singularities, so we review them.

The rules. From a brane realization of SU(N) SQCD with K < N flavors [5], one can

see that there exists an irregular singularity of the form [20]

φi(z) =
ΛN−K

z1+N−K δi,N−K +O(z−i), (A.1)

where Λ is a parameter which is roughly a dynamical scale of the corresponding field theory.

This singularity has the flavor symmetry U(K).

A slight generalization of this singularity is the following. We take a partition of K,

Y = [ma] where K = m1 + · · ·+m`. Then we have a puncture labeled by (K,Y ). Consider

the dual partition Y D = [m̃a]. The singularity is now given by

φi(z) =
ΛN−K

z1+N−K δi,N−K +O(z−pi), (A.2)
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where

pi =

{
i, 2 ≤ i ≤ N −K,
i+ 1− a, (N −K) +

∑a−1
b=1 m̃b < i ≤ (N −K) +

∑a
b=1 m̃b

(A.3)

If K = N − 1, we need to shift x in the curve (2.2) so that the xN−1 term is cancelled.

The rules discussed in section 2.2 is slightly changed as follows. Take a partition

X = [ns] used in the factorization of the curve (2.8). One of the numbers in [ns], say nr,

must satisfy nr ≥ N−K. Then, we take a partition of nr−N+K, denoted as Y D
r = [m̃r,a]

where
∑

a m̃s,a = nr −N +K, and assume

φr,i =
ΛN−K

z1+N−K δi,N−K +O(z−pr,i)

pr,i =


0 i = 1

i 2 ≤ i ≤ N −K,
i+ 1− a (N −K) +

∑a−1
b=1 m̃r,b < i ≤ (N −K) +

∑a
b=1 m̃r,b

. (A.4)

The other blocks, i.e., ns with s 6= r, has a partition of ns denoted as Y D
s = [m̃s,a], and

the singularities are given similar to (2.4) as in the regular puncture case. We combine the

partitions Y D
s = [m̃r,a] and Y D

r = [m̃s,a] (s 6= r) as discussed in section 2 to get a partition

of K denoted as Y ′D = [m̃′a] where
∑

a m̃
′
a = K. Then we require that Y ′D ≤ Y D.

The local contribution to the quaternionic dimension of Hα is given by the formula

dimHHα(p) = d(Y ′)− d(Y ), (A.5)

where Y ′ is the partition of K dual to Y ′D, and d(Y ) is defined as

d(Y ) =
1

2

(
K2 −

∑̀
a=1

m̃2
a

)
. (A.6)

We stress that the relevant partitions are partitions of K instead of N in this irregular

case.

Derivation. The above rules are derived as follows. If we use complex gauge transfor-

mations Φ → gΦg−1, g ∈ SU(N)C, to make the Higgs field of the Hitchin system Φ block

diagonal, the irregular singularity is given as (assuming that the singularity is at z = 0),

Φ→1

z

(
νh 0

0 0

)
+ Λ

(
0 0

0 W (z)

)
(A.7)

where νh is a K ×K nilpotent matrix in the orbit νh ∈ ŌY D , and W (z) is an (N −K)×
(N −K) matrix whose eigenvalues are given as

W (z)→ 1

z1+1/(N−K)
diag(1, ωN−K , · · · , ωN−K−1

N−K ) + · · · (A.8)

where ωN−K = exp(2πi/(N−K)). The first K×K block behaves just as regular singularity.

The commutation relation [Φ, ~ϕ] = 0 requires that the block which commutes with W (z)
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must be proportional to an identity matrix. Along the lines of the discussion around (A.4),

this block of ~ϕ is an nr × nr unit matrix with nr ≥ N −K.

In [28], it was proposed that the holomorphic moment map µh of the U(K) flavor

symmetry is related to ϕh as

det(xIN − ϕh) = det

(
xIN −

(
µh 0

0 0

)
+

trµh
N

IN

)
. (A.9)

Also from this, we can see that φh must be proportional to the unit matrix in the block

which contains W (z).

Now the matrices νh and µh are just as in the regular case. The rules stated above

can be found as in the regular singularity.

A.2 Mixed branches of SQCD

Now we study mixed branches of SQCD using the irregular singularities discussed above.

A.2.1 Nf < N

Before going to the general cases, let us consider the case Nf < N in a simple realization

as a warm-up. We proceed as if Nf < N − 1, but the case Nf = N − 1 can be obtained

just by shifting x to cancel the xN−1 term in the curve.

On a Riemann sphere, we put the singularity (A.1) with K = Nf at z = 0, and with

K = 0 at z =∞. The curve is

0 = xN +

N∑
i=2

ui
zi
xN−i +

ΛN−Nf

z1+N−Nf
xNf +

ΛN

zN−1
. (A.10)

Because of the existence of the singularity at z = ∞ (i.e., the last term ΛN/zN−1 in the

above equation), it is impossible to factorize the curve, so we have X = [ns] = [N ]. All the

contributions to the Higgs factor comes from the puncture at z = 0.

Let us apply (A.4) to the puncture at z = 0 with K = Nf . Because of the existence of

the last term ΛN/zN−1 in (A.10) which has a pole of order N − 1 at z = 0, one can check

that the partition must be of the form Y ′D = [m̃′a] = [Nf − r, r], where 0 ≤ r ≤ [Nf/2].

Then the curve is given as

0 = xN +
N−r∑
i=2

ui
zi
xN−i +

ΛN−Nf

z1+N−Nf
xNf +

ΛN

zN−1
. (A.11)

The dimension of the Coulomb branch Cr is N − r − 1 spanned by u2, · · · , uN−r. The

quaternionic dimension of the Higgs component Hr is computed by using (A.5) as

dimHHr =
1

2

(
N2
f − (Nf − r)2 − r2

)
= r(Nf − r). (A.12)

This is exactly as was found by Argyres, Plesser and Seiberg [4].
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A.2.2 Nf = N1 +N2

Now let us consider more general cases. We take Nf = N1+N2, and assume that N1,2 < N .

Using the singularity (A.7) for K = N1, N2 at z = 0,∞ respectively, the curve is

0 = xN +

N∑
i=2

ui
zi
xN−i +

ΛN−N1

z1+N−N1
xN1 +

ΛN−N2

z−1+N−N2
xN2 . (A.13)

When factorizing the curve as in (2.8), there are two possibilities.

1. One factor contains both the higher singular terms at z = 0,∞, i.e., the factorization

is of the form

0 =

(
xn1 +

ΛN−N1

z1+N−N1
xN1−N+n1 +

ΛN−N2

z−1+N−N2
xN2−N+n1 + · · ·

)
(· · · ). (A.14)

2. Higher singular terms at z = 0 and z =∞ are contained in separate blocks,

0 =

(
xn1 +

ΛN−N1

z1+N−N1
xN1−N+n1 + · · ·

)(
xn2 +

ΛN−N2

z−1+N−N2
xN2−N+n2 + · · ·

)
(· · · ).

(A.15)

This is possible only if Nf = N1 +N2 ≥ N .

We call the first branch as mesonic branch and the second branch as baryonic branch.

Mesonic branch. Assume that the curve is factorized as in (A.14). Then the factors

which do not contain the higher pole terms have only regular singularities at z = 0 and∞.

Then, one can see that the only possibility is the factorization of the form

0 = xN−n1

(
xn1 +

n1∑
i=2

ui
zi
xn1−i +

ΛN−N1

z1+N−N1
xN1−N+n1 +

ΛN−N2

z−1+N−N2
xN2−N+n1

)
. (A.16)

Then the partition specifying the factorization is given by X = [ns] = [n1, 1
N−n1 ].

First, let us consider the case n1 > max{N − N1, N − N2}. In this case, we can

assume un1 6= 0, since otherwise the curve would be further factorized according to the

partition [ns] = [n1− 1, 1N−n1+1] if un1 = 0. Then, the condition un1 6= 0 requires that the

partitions Y ′D = [m̃′a] of N1 and N2 at z = 0 and z = ∞ must be [N1 − N + n1, 1
N−n1 ]

and [N2 −N + n1, 1
N−n1 ], respectively. Thus we get

dimHHα =(N − n1) +
1

2

(
N2

1 − (N1 −N + n1)2 − (N − n1) · 12
)

+
1

2

(
N2

2 − (N2 −N + n1)2 − (N − n1) · 12
)

=r(Nf − r), (A.17)

where we have defined r = N − n1 and Nf = N1 + N2. From the constraint max{N −
N1, N −N2} < n1 ≤ N , we get 0 ≤ r < min{N1, N2}
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Next, let us consider the case n1 = max{N −N1, N −N2}. Without loss of generality,

we assume N1 ≥ N2 and n1 = N −N2. The curve is

0 = xN2

(
xN−N2 +

N−N2∑
i=2

ui
zi
xN−N2−i +

ΛN−N1

z1+N−N1
xN1−N2 +

ΛN−N2

z−1+N−N2

)
. (A.18)

Here we do not assume that uN−N2 is nonzero.

Now, the situation is somewhat similar to section A.2.1. The existence of the last

term ΛN−N2/z−1+N−N2 makes it impossible to factorize the curve further. Furthermore,

because of this last term, the partition Y ′D = [m̃′a] of N1 at z = 0 must be of the form

[N1 −N2 − r′, r′, 1N2 ], where 0 ≤ r′ ≤ [(N1 −N2)/2]. The partition Y ′D = [m̃′a] of N2 at

z =∞ is given by [1N2 ]. The nonzero Coulomb moduli are given by u2, · · · , uN−N2−r′ , so

the dimension of the Coulomb factor Cα is N − N2 − r′ − 1. The dimension of the Higgs

component Hα is

dimHHα = N2 +
1

2

(
N2

1 − (N1 −N2 − r′)2 − r′2 −N2

)
+

1

2

(
N2

2 −N2

)
= r(Nf − r), (A.19)

where we have defined r = r′ +N2. It satisfies min{N1, N2} = N2 ≤ r ≤ [Nf/2].

Summarizing what we have found above, mesonic mixed Higgs-Coulomb branches are

labelled by r, 0 ≤ r ≤ [Nf/2]. The Higgs branch dimension is r(Nf−r), while the Coulomb

branch dimension is N − r − 1. This is exactly as was found in [4].

Baryonic branch. Next let us consider the case (A.15). In this case, one can check that

the only possible curve allowed by the singularities is given by

0 = xNf−N
(
xN−N1 +

ΛN−N1

z1+N−N1

)(
xN−N2 +

ΛN−N2

z−1+N−N2

)
. (A.20)

So all the Coulomb moduli are fixed. This factorization corresponds to the partition

X = [ns] = [N −N1, N −N2, 1
Nf−N ].

Expanding this curve, we find that u2N−Nf = Λ2N−Nf 6= 0. Then, the partitions

Y ′D = [m̃′a] of N1 and N2 at z = 0 and z = ∞ are given by [N − N2, 1
Nf−N ] and

[N −N1, 1
Nf−N ], respectively. Therefore we get

dimHHα = (Nf −N + 1) +
1

2

(
N2

1 − (N −N2)2 − (Nf −N)
)

+
1

2

(
N2

2 − (N −N1)2 − (Nf −N)
)

= N(Nf −N) + 1. (A.21)

This reproduce the result of [4].

It is remarkable that the final results do not depend on N1 and N2 separately, but

depend only on the combination Nf = N1 +N2, although each bulk and local contributions

to dimHHα are different for different pairs (N1, N2). This means that different brane

constructions lead to the same low energy 4d theory as expected.

There are also constructions of SQCD with Nf ≥ N by using two regular punctures

(one of them is full and the other is simple), and one irregular puncture. We leave that

case for the reader.
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