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1 Introduction

One of the main tasks of the LHC was and will be the search for supersymmetric (SUSY)

particles. The largest production cross sections are expected for gluinos (g̃) and squarks

(q̃) of the first generation. After the first run of the LHC at a center of mass (c.m.)

energy of mostly 8 TeV, no significant excesses have been observed in corresponding search

channels [1, 2] (see [3] for a recent summary).

The absence of excess events can be interpreted in terms of lower bounds on gluino

and squark masses, once assumptions on their decay cascades are made. These depend on

the masses and couplings of many other SUSY particles, at least on the mass of the lightest

SUSY particle (LSP). Within simplified models (assuming simple 1-step decay cascades)

or the Minimal SUSY extension of the Standard Model (MSSM), lower bounds on gluino

and squark masses are typically in the 1.2-2 TeV range, and ∼ 1.7 TeV if gluino and squark

masses are assumed to be similar [1, 2]. Although these constraints do not rule out the

MSSM, they eliminate a significant part of its “natural” parameter space [4].

However, the MSSM is not the only SUSY extension of the Standard Model (SM) which

alleviates the hierarchy problem, provides an acceptable dark matter candidate and leads

to Grand Unification of the running gauge couplings. In the present paper we consider the

Next-to-Minimal SUSY extension of the Standard Model (NMSSM) [5], where the coupling

of the two Higgs doublets of the MSSM to an additional gauge singlet field S renders

more natural a value of ∼ 126 GeV of the SM-like Higgs boson [6–11], while preserving

the attractive features of the MSSM. Besides the Higgs sector, the NMSSM differs from

the MSSM through the presence of an additional neutralino (the singlino, the fermionic

component of the singlet superfield). The singlino can be the LSP, which can modify

considerably the SUSY particle decay cascades [12–20].

The strongest constraints from searches for gluinos and squarks of the first generation

originate from channels where one looks for events with jets with large transverse momen-

tum pT and missing transverse energy Emiss
T [1, 2]. The Emiss

T is due to having all SUSY

decay cascades ending in a stable LSP (under the assumption of R-parity conservation),

which escapes detection (if neutral, as required for dark matter).
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In the present paper we point out that a singlino-like LSP in the NMSSM can reduce

significantly the missing transverse energy at the end of SUSY particle decay cascades.

This is due to the kinematics of the last process in a SUSY particle decay chain, NLSP →
LSP + X, where NLSP denotes the Next-to-LSP, and X a particle (e.g. a Higgs boson)

decaying into visible components of the SM. For a light LSP, if the mass of X is close to

the mass of the NLSP, little energy and momentum are transferred from the NLSP to the

LSP; most of the energy is transferred to X. Correspondingly, the LSP in the final state

leads to little Emiss
T , whereas large Emiss

T is one of the relevant search criteria for SUSY

particles in general.

The possibility to discover squarks and gluinos without relying on Emiss
T , but on leptons,

has been studied earlier in [21–23]. The study of [23] discusses decays of an NLSP into a

scalar (decaying visibly into SM particles) and the LSP, referring to the NMSSM without,

however, considering the particular kinematic configurations analysed below.

A scenario similar to the one discussed here has been named “Stealth Supersymme-

try” [24, 25]. There, however, a complete “stealth sector” is added to the MSSM in order

to obtain the above kinematic configuration of the NLSP decay.

An extensive survey of present constraints on gluinos from searches, including several

without relying on Emiss
T , is given in [26]. Among the scenarios analysed in [26] are so-

called “minimal Hidden Valley” models. These are similar to the ones considered here after

replacing the extra singlet scalar and its fermionic superpartner [26] by the corresponding

states of the NMSSM (and the NLSP higgsino by a bino-like NLSP). It was already found

in [26] that the kinematic configuration discussed above leads to the weakest constraints.

The present scenario is opposite to the one of “compressed supersymmetry” [27–32]

where the masses of the NLSP and the LSP are assumed to be similar, and little energy is

transferred to X. Then jets (or leptons) with large pT would be rare. Moreover, unless a

hard jet is emitted from the initial state (“monojet”), the Emiss
T due to two LSPs emitted

from two SUSY particles back-to-back in the transverse plane tend to cancel.

In the MSSM, the kinematic configuration considered here cannot play a major rôle:

a light LSP (with a mass of a few GeV) can only be bino-like, since winos or higgsinos

would have charged partners with similar masses, already ruled out by LEP (see [33] and

references therein). All squarks — appearing also in gluino decays — have hypercharge

and hence couple to the bino. If the LSP is a very light bino, squarks will in general decay

directly into the bino, and hardly pass through an NLSP (e.g. a heavier neutralino or

chargino) and a state X (a Higgs, Z or W boson). Thus only a fraction of cascade decays

leads to a reduction of Emiss
T , so that the interpretation of the absence of signal events in

terms of lower bounds on SUSY particle masses remains practically unchanged.

On the other hand, in the NMSSM the bino can be the NLSP, the singlino a light LSP,

and X a priori a Higgs, a Z or even a W boson (if the NLSP is a chargino). Then the

decays of X can still give rise to missing energy in the form of neutrinos; this is the case

for the decays of the W and Z bosons, and also for the SM-like Higgs (when it decays via

WW ∗ or ZZ∗).

However, in the NMSSM additional Higgs bosons exist, which can be lighter than

the Z boson and are not excluded by LEP due to small couplings to ZZ(see [5, 34] and
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references therein). A lighter CP-even Higgs boson H1 with a mass below MZ would have

very small decay rates into WW ∗, but decay dominantly into bb̄ and, to some extent, into

τ+τ−. Although the latter decays can also give rise to some Emiss
T , the scenario NLSP

→ LSP + H1 with MH1
<∼ MNLSP < MZ would be the most difficult one with respect

to signatures based on Emiss
T . (Subsequently we denote scenarios with as little Emiss

T as

possible as “worst case”.)

In the case of squark/gluino pair production, some Emiss
T can also originate from W ,

Z and/or Higgs decays which appear during decay cascades involving charginos and/or

heavier neutralinos. Again, a “worst case” scenario would be one where this does not

happen if, for instance, the chargino and heavier neutralino masses are close to (or above)

the squark masses.

In the present paper we concentrate on such “worst case” scenarios: first, we present

the properties of points in the NMSSM which are not excluded by present SUSY searches

although all sparticle masses are below ∼ 1 TeV. Second, we propose search strategies for

these difficult scenarios, putting forward an analysis of events at the LHC near 14 TeV c.m.

energy, based on the decay products of two H1 bosons in the bb̄τ+τ− + jets final state.

Our simulations indicate that, for not excessively heavy squarks and gluinos (i.e. a not too

small production cross section), a signal can be visible above Standard Model backgrounds.

In the next section we discuss in detail scenarios within the general NMSSM, in which

Emiss
T is reduced for kinematic reasons. Results of event simulations of such a benchmark

point are discussed, which explain the reduced sensitivity of present SUSY searches to such

a scenario. We also discuss simplified models with varying LSP and H1 masses, and the

corresponding reduction of signal events. In section 3 we attempt to extract signals for H1

pair production at the LHC with 14 TeV c.m. energy, with dedicated cuts which do not

rely on Emiss
T . Instead, we attempt to identify b-jets and τ -leptons from boosted H1 bosons

with the help of a jet reconstruction with a small jet cone radius R = 0.15. Section 4

contains a summary and conclusions.

2 “Missing” missing energy in the NMSSM

Given a possible last step in a SUSY particle decay chain NLSP → LSP + X in the limit

of a narrow phase space, MNLSP − (MLSP + MX) � MNLSP, the energy (momentum)

transferred from the NLSP to the LSP in the laboratory frame is proportional to the ratio

of masses:
ELSP

ENLSP
' MLSP

MNLSP
. (2.1)

Hence, if the LSP is light, little (missing transverse) energy is transferred to the LSP; the

transverse energy is carried away by X. The effect is the more important the narrower the

phase space is. As explained in the Introduction, such a scenario is difficult to realise in

the MSSM where such a light LSP must be bino-like.

The particle content of the NMSSM differs from that of the MSSM by an additional

singlino-like neutralino S̃, and additional singlet-like CP-even and CP-odd Higgs bosons [5].

Notably the NMSSM spectrum contains three CP-even Higgs bosons Hi, i = 1, 2, 3 (ordered
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in mass). The singlino-like neutralino can be the LSP with a bino-like NLSP (as occurs

for the regions of parameter space considered below). Then the above scenario of little

Emiss
T being transferred to the LSP can be realised with a singlet-like CP-even Higgs boson

H1 playing the rôle of X, whose subsequent decays give rise to little invisible transverse

energy in the form of neutrinos. Typical values for the masses would be a few GeV for the

singlino-like neutralino S̃, a bino-like NLSP with a mass Mbino just below MZ , and MH1

just below Mbino−MS̃ . Note that, due to its reduced coupling to the Z boson, such a light

H1 can still be compatible with constraints from Higgs searches at LEP [34].

In the simplest Z3 invariant realisation of the NMSSM, the diagonal elements of the

mass matrices for the (pure) singlet-like states S̃, HS and AS satisfy [19]

M2
S̃
∼M2

HS
+

1

3
M2
AS

, (2.2)

which forbids MHS
� MS̃ and hence MH1 � MLSP unless soft SUSY breaking trilinear

couplings are in the multi-TeV range, in which case there can be strong deviations from the

equality of eq. (2.2) for the mass eigenstates (after diagonalization of the mass matrices).

However, MHS
� MS̃ is possible in the presence of Z3 violating terms like a soft

SUSY breaking tadpole term ξSS, and/or a holomorphic soft SUSY breaking mass term
1
2m
′
S

2S2+h. c.. Such terms are generated automatically in gauge mediated supersymmetry

breaking (GMSB), if the singlet superfield has couplings to the messenger fields [35].

Hence we consider in the following a general NMSSM, still with a Z3 invariant super-

potential

WNMSSM = λŜĤu · Ĥd +
κ

3
Ŝ3 + . . . . (2.3)

In the above hatted letters denote superfields, and the ellipses denote the MSSM-like

Yukawa couplings of Ĥu and Ĥd to the quark and lepton superfields. We allow for the

following NMSSM specific soft SUSY breaking terms

− Lsoft
NMSSM = m2

S |S|2 +

(
λAλHuHdS + ξSS +

1

2
m′S

2
S2 +

1

3
κAκS

3

)
+ h. c. . (2.4)

The remaining MSSM-like soft breaking terms are chosen to be flavour and CP conserving;

the first two sfermion families are degenerate, and LR-mixing is only taken into account

for the third generation of squarks and leptons.

As can be seen from eq. (2.3), a vacuum expectation value 〈S〉 generates an effective

µeff term µeff = λ 〈S〉, which has to be larger than ∼ 100 GeV for the charged higgsinos to

satisfy bounds from LEP. Given the diagonal singlino mass term MS̃ = 2κ 〈S〉, a singlino

mass of a few GeV is obtained for κ about two orders of magnitude smaller than λ.

For completeness we comment on the possibilities to obtain consistent properties of

dark matter in such a scenario. Within GMSB, a gravitino can be lighter than S̃ which

would thus not be the “true” LSP, but decay radiatively into a gravitino and a photon

(through a small photino component from a non-vanishing mixing with the bino/wino).

However, the singlino life time would be so large that this decay would occur outside the

detectors and have no impact on our subsequent analyses. (On the other hand, the singlino

life time should not exceed ∼ 100 s in order not to spoil nucleosynthesis unless the NLSP
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Parameter Value Parameter Value Particle(s) Mass

λ 6.5× 10−3 M1 90 GeV MH1 83 GeV

κ 1.9× 10−5 M2 950 GeV MH2 123.2 GeV

tanβ 20 M3 830 GeV MH3,A2,H± ∼ 950 GeV

µeff 900 GeV At -1500 GeV MA1 12.9 GeV

ξS −1.02× 109 GeV3 Ab -1000 GeV Msquarks ∼ 860 GeV

m′S
2 3.6× 103 GeV2 msleptons 600 GeV Mstop1 810 GeV

Aκ 0 GeV msquarks (u,d,s,c) 830 GeV Mstop2 1060 GeV

Aλ 50 GeV msquarks (t,b) 900 GeV Mgluino 893 GeV

Mχ0
1

5.26 GeV

Mχ0
2

89 GeV

Table 1. Parameters (left and middle column) and particle masses (right column) of a NMSSM

benchmark point.

density is diluted through entropy production.) Alternatively, the singlino relic density can

be reduced to comply with the observed dark matter relic density through the exchange of

a CP-odd Higgs state AS in the s-channel, provided MAS
∼ 2MS̃ . We have checked that

this is indeed possible, and the benchmark point given below has this property.

Returning to the issue of Emiss
T , its suppression is maximised if no neutrinos from Z/W

decays are emitted during squark/gluino decay cascades. In a truly “worst case scenario”

winos, higgsinos, sleptons, stops and sbottoms are not produced neither in squark nor in

gluino decays. Bino → Z+ singlino decays are impossible, if the bino mass is below MZ .

In table 1 we give the parameters and particle masses of a benchmark point with these

properties, for which physical masses and decay branching fractions have been obtained

with the public code NMSSMTools 4.2.1 [36, 37].

The parameters M1, M2, M3 At, Ab in table 1 denote the soft SUSY breaking bino-,

wino- and gluino mass terms and Higgs-stop, Higgs-sbottom trilinear couplings, respec-

tively. The lightest neutralinos are denoted by χ0
1 (singlino-like) and χ0

2 (bino-like), respec-

tively. The gaugino mass terms are non-universal, but lead to a go-theorem for branching

fractions corresponding to a simplified model: squarks decay to 100% into χ0
2 and the

corresponding quark, χ0
2 to 100% into χ0

1 + H1. Gluinos decay with approximately equal

branching fractions only into squarks + quarks of the first two generations. Hence the

decay chains are

q̃ → q χ0
2 → q H1 χ

0
1 ;

g̃ → q̃ q . (2.5)

The small value of λ suppresses mixings of the singlet-like A1 with the doublet-like A2

such that χ0
2 decays into χ0

1 +H1 in spite of the lighter A1, and suppresses mixings of the

singlet-like χ0
1 with higgsinos/winos which can lead to unacceptable invisible decay rates

of the Standard Model-like H2 into χ0
1 + χ0

1. Despite the small value of λ (but due to the

large value of tanβ) the mass of H2 — still consistent with ∼ 126 GeV within the expected
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theoretical error in NMSSMTools — is larger than in the MSSM due to mixing of H2 with

H1 [38].

Despite the large value of tanβ, constraints from flavour physics (notably B decays,

see [39]) are satisfied: first, the charged Higgs boson as well as squark, gluino and chargino

masses are in the 860-1000 GeV range (and At negative, but |At| not too large), hence

“MSSM”-like contributions to εK , Bs,d−B̄s,d mixing and b→ s γ are not excessively large.

Contributions from CP-odd scalars to Bs,d → µ+µ− are small since the MSSM-like state

A2 is also heavy, whereas the light NMSSM-like state A1 is practically decoupled. Thus all

phenomenological constraints (except for the muon anomalous magnetic moment) tested

in NMSSMTools are satisfied. (The public code SUSY FLAVOR v2.11 [40, 41] was used to

numerically evaluate the contributions to K-mixing observables, notably to εK .)

Due to the small width of A1 it is difficult, however, to determine the dark matter

relic density accurately with the code micrOMEGAs [42] inside NMSSMTools — for our

benchmark point its numerical value seems smaller than the desired value Ωh2 ∼ 0.12 [43,

44], which shows in any case that the relic density can be reduced sufficiently.

We have simulated events at the LHC at 8 TeV for this point using MadGraph/-

MadEvent [45] which includes Pythia 6.4 [46] for showering and hadronisation. The emis-

sion of one additional hard jet was allowed in the simulation; the production cross sections

for squark-squark, squark-gluino, squark-antisquark and gluino-gluino production were ob-

tained by Prospino at NLO [47, 48], including correction factors from the resummation

of soft gluon emmission estimated from [49, 50]. (At 8 TeV, the total squark-gluino pro-

duction cross section for the benchmark point is ∼524 fb.) The output in StdHEP format

was given to CheckMATE [51] which includes the detector simulation DELPHES [52] and

compares the signal rates to constraints in various search channels of ATLAS and CMS.

Additional analyses were performed by means of MadAnalysis 5 [53, 54].

Following CheckMATE, the signal rates for the above benchmark point are compatible

with constraints from available search channels for SUSY. In spite of the many b-jets from

H1 decays, the dominant constraints for this point originate from the search for jets and

Emiss
T in [1], more precisely from channel D requiring 5 hard jets, Emiss

T > 160 GeV and

Emiss
T /meff(5j) > 0.2, where meff(Nj) is the scalar sum of transverse momenta of the

leading N jets and Emiss
T .

Searches for events at the LHC with jets and bb̄ pairs have also been performed by

ATLAS in [55] however aiming at resonances in the bb̄bb̄ final state. Also the upper bounds

on signal rates in bb̄γγ final states from CMS [56] and ATLAS [57] are satisfied, amongst

others since the γγ invariant mass required there does not cover our range of MH1 .

AnMT2 Higgs analysis was performed by CMS in [58], which aimed at a scenario similar

to those discussed here: squark/gluino decay cascades ending in χ0
2 → χ0

1 +HSM . In one of

the considered channels (high HT region) the cut on Emiss
T was lowered to Emiss

T > 30 GeV.

The absence of significant excesses was interpreted in terms of a gluino-induced simplified

model leading to Mgluino >∼ 850 GeV (depending in Mχ0
1
); however, Mχ0

2
= Mχ0

1
+ 200 GeV

was assumed in this analysis.

Further searches for excesses in events with jets without lower cuts on Emiss
T have been

performed in [59–62]. The most constraining search channel in [59] is the one requiring

– 6 –
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Figure 1. Spectra of Emiss
T before cuts for the benchmark point (blue) and a similar point in the

MSSM with a bino LSP (red).

7 jets with pT > 80 GeV and at least two tagged b-jets. After a simulation we find about 240

events in this channel for the benchmark point, complying with the data at the 2 σ level.

Concerning the search for three-jet resonances in [60], we find that the two b-jets from H1

decays merge sufficiently often into one single jet such that the event rates and acceptance

are about 20 times smaller than the one assumed in [60] for gluino pair production with

RPV decays into three jets, and the limits are well satisfied. Regarding the search for two-

jet resonances in [61] we find that the average two-jet mass peaks at ∼ 800 GeV (somewhat

below the squark/gluino masses) and the acceptance after cuts (within a window of a width

of ∼ 15% times the mass) is <∼ 4%; consequently the signal complies with the limits shown

in figure 3 in [61]. Finally we have studied ST , the sum of |pT | of objects with |pT | > 50 GeV

relevant for the search for microscopic black holes in [62]. For all multiplicities N >∼ 3 . . . 10

the signal events are below 10% of the data points shown in figures 2 and figures 3 in [62]

without any peak-like structure, and thus this search is not restrictive. Hence present

analyses, potentially sensitive to the decay products of two H1 bosons in the final state,

are not sensitive to the benchmark point.

Given that the masses of the gluino and the squarks of the first generation are well

below 1 TeV it is clear that a corresponding point in the parameter space of the MSSM

would be well excluded, the reason being the different spectra of Emiss
T . To clarify this

effect we show in figure 1 the spectrum of Emiss
T for the benchmark point and for a similar

point in the MSSM, which differs from the benchmark point only in a stable bino, which

is now the LSP.

In figure 1 one sees the dramatic reduction of Emiss
T due to the NLSP → LSP +

H1 decay; the few remaining events with large Emiss
T for the benchmark point (denoted

by NMSSM BMP in figure 1) originate from neutrinos from τ and b decays after H1 →
τ+τ−, bb̄ (and, to a minor extent, from the singlino).

In fact, the final states from H1 decays not only reduce Emiss
T , but lead also to an

increase of meff(Nj). Hence the cut Emiss
T /meff(5j) > 0.2 in [1] reduces the number of

– 7 –
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MS̃ (GeV): 1 3 5 7 9 11 13 15 17

MH1 (GeV): RE
miss
T :

87 .125

85 .134 .134

83 .147 .146 .145

81 .166 .169 .161 .160

79 .192 .194 .186 .186 .179

77 .232 .224 .225 .221 .211 .207

75 .273 .276 .268 .261 .266 .252 .247

73 .319 .316 .309 .310 .307 .302 .298 .294

71 .358 .366 .362 .359 .353 .355 .353 .345 .343

Table 2. Ratios REmiss
T of the number of events with Emiss

T > 160 GeV (before other cuts) in the

NMSSM, over the number of events in the MSSM (with the bino as LSP), as function of MS̃ and

MH1 keeping Mbino fixed at 89 GeV.

signal events even more dramatically by a factor ∼ 0.07, and events passing this cut satisfy

Emiss
T > 160 GeV automatically. (For the MSSM-like point, channel D is actually not the

most constraining channel, but rather channel AM.)

How sensitive are these reductions of signal events to the masses of the involved parti-

cles? In order to answer this question we have varied both the singlino mass MS̃ from 1 GeV

to 17 GeV and MH1 from 87 GeV to 71 GeV, keeping the bino mass fixed at 89 GeV. We first

studied the ratio RE
miss
T defined by the ratio of the number of events with Emiss

T > 160 GeV

(before other cuts) in the NMSSM, over the number of events in the MSSM with the bino

as LSP. The results for RE
miss
T are shown in table 2. (The relative statistical error on RE

miss
T

is about 2% for RE
miss
T ∼ 0.15, decreasing slightly with increasing RE

miss
T .)

We see that, for the singlino mass MS̃ in the kinematically allowed range, RE
miss
T

varies little with MS̃ for fixed MH1 : on average, RE
miss
T decreases slightly with increasing

MS̃ towards the boundary of phase space. On the other hand, for fixed MS̃ , RE
miss
T has a

stronger increase with decreasing MH1 (away from the boundary of phase space).

As stated above, the impact of the “missing” Emiss
T on the signal rates in channel D [1]

after all cuts including Emiss
T /meff(5j) > 0.2 is actually stronger. In figure 2 we show the

ratio of signal events in the NMSSM over the number of events in the MSSM with the bino

as LSP, after all cuts for this channel, as function of MH1 (keeping the singlino mass fixed

at the value of the benchmark point of 5.3 GeV). The error bars indicate the statistical

fluctuations from our simulations as determined by CheckMATE.

We see that the reduction of signal events remains very strong, even if MH1 is several

GeV away from the boundary of phase space. Hence the result of the analyses summarised

in table 2 and figure 2 is that suppressing the number of signal events in typical SUSY

search channels does not require a particular fine-tuning of masses.

On the other hand we should keep in mind that contributions from neutrinos from

squark decay cascades to Emiss
T are suppressed (due to the heavy charginos/extra neutrali-

– 8 –
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Figure 2. The ratio R of signal events in the NMSSM over the number of events in the MSSM

with the bino as LSP, after all cuts for channel D in [1], as function of MH1 keeping the singlino

mass fixed at 5.3 GeV.

nos) for all points considered above. Otherwise, as we have checked, searches for jets and

Emiss
T (typically from [1]) exclude squarks/gluinos with masses below 1 TeV due to contri-

butions from neutrinos from squark decay cascades to Emiss
T , even if the LSPs contribute

little to Emiss
T .

The next question is whether other search strategies, not relying on strong cuts on

Emiss
T , can be sensitive to such difficult SUSY scenarios with two H1 bosons in the final

state. A first proposal towards extracting corresponding signals — which will be improved

in a future publication — is presented in the next section.

3 Towards the extraction of signals in bb̄+ τ+τ− final states at 14 TeV

Signals from Higgs production via neutralino decays in sparticle decay cascades have been

analysed previously, mostly in the context of the MSSM in [17, 63–72]. There, however,

significant lower cuts on Emiss
T were applied, since in the considered scenarios the LSP had

no reason to be particularly soft.

In the present scenario the final states of squark and gluino production are characterised

by jets with large pT , little Emiss
T , but remnants of two H1 Higgs bosons. The couplings of

H1 to SM particles originate from a small mixing of H1 with the SM-like Higgs boson (since

the third CP-even Higgs state is very heavy). Hence its branching ratios coincide — up to

kinematic suppressions of decays into WW ∗/ZZ∗ — with those of the SM-like Higgs boson;

we obtain BR(H1 → bb̄) ∼ 0.85. The coupling of H1 to two light singlet-like CP-odd states

A1 is proportional to the squares of the NMSSM-specific Yukawa couplings λ, κ which are

small (see table 1); accordingly the branching fraction BR(H1 → A1A1) ∼ 5 × 10−6 is

neglibly small. (Due to the smallness of the mixing the prospects for a direct discovery

of H1 at the LHC are rather dim: its couplings to SM particles squared, and hence its
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Figure 3. Expected Emiss
T distribution for the benchmark point at the LHC at 13 and 14 TeV c.m.

energy.

production cross sections and signal rates, are only 6% − 6.5% of the ones of a SM-like

Higgs boson of similar mass.)

Subsequently we describe an approach towards the extraction of a possible signal in

the bb̄ + τ+τ− final state, using the same simulation methods described in the previous

section.

First we have studied Emiss
T for the benchmark point for pp collisions at the LHC at

13 TeV and 14 TeV c.m. energy assuming an integrated luminosity of 100 fb−1. As can be

seen in figure 3, Emiss
T is still peaked at low values.

When looking for the remnants of two H1 Higgs bosons, an important question is which

transverse momenta can one expect for these particles. In figure 4 we show the leading

and next-to-leading pT distribution corresponding to the benchmark point. (Here and in

the following we concentrate on 14 TeV c.m. energy.) We see that the pT of the leading

H1 is peaked near 400 GeV, and the pT of the next-to-leading H1 is peaked near 200 GeV,

which can be used for cuts on the final states.

We next describe the sequence of cuts which were applied. The analysis of the events

was performed in two steps: to start with, jets were constructed by Fastjet [73] (part of the

Delphes package [52]) using the anti-kT algorithm [74] and a jet cone radius R = 0.5. This

value was chosen such that, as often as possible, all decay products of the leading H1 (but

no other hadrons) are part of a single jet whose mass distribution is analysed at the end.

We require four hard jets (including b-tagged jets) with pT >

400 GeV, 200 GeV, 80 GeV, 80 GeV, respectively. A significant Emiss
T is not part

of the signal; some Emiss
T can be expected, however, from neutrinos of τ decays once we

require 2 τ in the final state (see figure 3). Hence we only impose Emiss
T > 30 GeV.

Then, jets of the same event were reconstructed with a jet cone radius R = 0.15.

The aim is to identify as many “slim” b-jets as possible, together with their kinematic

properties. The value R = 0.15 is just marginally larger than the granularity 0.1 × 0.1 of
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Figure 4. Transverse momentum distributions of the leading H1 (blue) and next-to-leading H1

(red) after squark and gluino production at the LHC at 14 TeV c.m. energy for the benchmark

point.

the ATLAS hadronic tile calorimeter (we use the ATLAS detector card inside Delphes).

For b-tagged jets we require pT > 40 GeV and assume a b-tag efficiency of 70% (mistag

efficiencies from c-jets of 10%, and from light quark/gluon jets of 1%).

Among the jets reconstructed with R = 0.15 we require ≥ 2 b-jets and ≥ 2 hadronic τ

leptons. Since the invariant mass of the pair of τ -leptons is difficult to reconstruct we just

require Mττ < 120 GeV and, in order to remove the background from fake τ leptons (see

below), Mττ > 20 GeV.

The 2 b-jets next to each other (with the smallest ∆R) are combined into a 2b-

pseudojet, 2bPJ.

Among the jets constructed with a jet cone radius R = 0.5 we look for the one closest to

the 2bPJ (as close as ∆R < 0.1); this jet Ĵ is our candidate for the remnants of H1 → bb̄.

For Ĵ we further require pT > 400 GeV. Since Ĵ is assumed to include the 2bPJ, the

invariant mass of the 2bPJ should be smaller than the mass of Ĵ . (The mass of the 2bPJ

can be considerably smaller due to radiation off the b-quarks not included in the R = 0.15

jets.) Finally we require the mass of Ĵ to be 40 GeV < M
Ĵ
< 120 GeV, and plot M

Ĵ
in

this range.

The result displayed in figure 5, which is based on the simulation of ∼ 230000

events, shows that M
Ĵ

peaks indeed near the mass of H1, 83 GeV for the benchmark

point considered here. The event rates are normalised to an integrated luminosity of

100 fb−1; for the total squark-gluino production cross section at 14 TeV we have 5232 fb at

NLO+NNLO. The impact of the above cuts is shown in table 3; within the signal region

40 GeV< M
Ĵ
< 120 GeV the cross section is about 23 fb. Given the H1 → τ+τ− branching

fraction of about 8% and the tagging efficiencies, the dominant reduction of signal events

results from the requested ≥ 2 b-jets and ≥ 2 τ leptons.

A priori, the following Standard Model backgrounds contribute to the final states

defined above: jjbb̄τ+τ− from QCD and electroweak production, jjtt̄ possibly with addi-
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Benchmark point jjbb̄ background

Cross section in fb 5232 1.47× 105

pT (jets) > 400, 200, 80, 80 GeV 3513 6835

Emiss
T > 30 GeV 3118 3875

≥ 2 b-jets, ≥ 2 τh with 20 GeV < Mττ < 120 GeV 99.3 97.7

∆R(Ĵ , 2bPJ) < 0.1 48.9 37.8

pT (Ĵ) > 400 GeV 27.1 12.9

M2bPJ < M
Ĵ

24.1 9.6

40 GeV < M
Ĵ
< 120 GeV 22.8 7.5

Table 3. Impact of the cuts described in the text on the event rates of the benchmark point and

the dominant jjbb̄ background (the latter after cuts at the parton level as described in the text).

Figure 5. Plot of MĴ (in red) for the benchmark point at 14 TeV c.m. energy, after application

of the cuts described in the text and in table 3. The background contribution from jjbb̄ with two

mistagged τ leptons is shown in blue.

tional mistagged τ leptons, and jjbb̄ with two mistagged τ leptons. We have estimated

these backgrounds using the same simulation methods applied for the signal. Since we re-

quire four well separated hard jets in the final state, each jet is assumed to originate from

a corresponding parton (quark or gluon for the jets “j”). In order to make our cut analysis

sufficiently efficient, we also applied cuts at the parton level in MadGraph on jets and

b-quarks: for b-quarks we required pT > 100 GeV and |η| < 2, and for the four leading jets

(including b-quarks) pT > 200 GeV, 100 GeV, 80 GeV, 80 GeV, respectively. We checked

that these cuts do not generate a bias in the M
Ĵ

spectrum after applying the additional

cuts described above and in table 3.

After the cuts, the background from jjbb̄τ+τ− from QCD and electroweak production

turned out to be negligibly small, with a cross section in the signal region of about 0.007 fb.
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Figure 6. Plot of MĴ at 14 TeV c.m. energy, for a point with MH1
= 60 GeV, MNLSP = 67 GeV

and MLSP = 5 GeV after application of the cuts described in the text and in table 3.

After all cuts, the background from jjtt̄ is also small, with a cross section in the signal

region of about 0.44 fb.

However, the background from jjbb̄ with two mistagged τ leptons is relatively large

due to the fact that we tag for b-jets and τ -leptons using jet reconstruction with a small

jet cone radius R = 0.15. Many of such “slim” jets are mistagged as τ -leptons, often as

pairs with a relatively low invariant mass. A priori, about 5% of all jjbb̄ events after cuts

contain such a fake τ pair. This fake rate can be reduced by a factor ∼ 1
2 after a cut

Mττ > 20 GeV, which reduces the signal by only about 12%. Then this background results

in a cross section in the signal region of about 7 fb. Its contribution to M
Ĵ
, based on the

simulation of 300000 events, is also shown in figure 5, and it seems that the signal can be

distinguished clearly from this background.

In practise the background is often obtained from data-driven control regions. Once

it is measured, modifications of the cuts given above and/or additional cuts (for example

on the absence of isolated leptons) are likely to improve the signal/background ratio even

further.

Of course, the mass MH1 can differ from the value MH1 = 83 GeV assumed for the

benchmark point. In order to see the impact of a lighter H1 we have repeated the simulation

for a point with the same sparticle spectrum but MH1 = 60 GeV, MNLSP = 67 GeV and

MLSP = 5 GeV. The resulting M
Ĵ

spectrum is shown in figure 6 and again we see that the

sequence of cuts allows, in principle, to identify MH1 from the M
Ĵ

spectrum.

The H1H1 final state, characteristic of squark/gluino production in the present sce-

nario, resembles actually Higgs pair production in the Standard Model up to the unknown

H1 mass but, provided that squarks and gluinos are not excessively heavy, with an as-

sociated larger cross section (see [75–79] for some recent studies in the Standard Model).

Corresponding techniques like more refined subjet-based analyses applied to the bb̄ τ+τ−

final state in [75] can probably be useful here as well.

The squark/gluino production cross sections would decrease, of course, for squarks

and/or gluinos heavier than their benchmark value (860/890 GeV, respectively), and the
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Figure 7. Expected Emiss
T distribution at the LHC at 14 TeV c.m. energy for two simplified models

with squark ∼ gluino masses of 1000 GeV and 1400 GeV.

kinematics will change. First we investigate the impact of heavier squarks and gluinos

on the shape of Emiss
T . We illustrate this with simplified models where, as in the case

of the previous benchmark point, squarks decay with a 100% branching ratio into the

bino-like NLSP (still with a mass of 89 GeV) which can only decay (with 100% BR) into

H1 and the singlino-like LSP (both still with masses of 83 GeV and 5 GeV, respectively).

The corresponding Emiss
T distributions are shown in figure 7 for squark/gluino masses of

1000 GeV or 1400 GeV. (The gluinos are taken 5 GeV heavier than squarks to allow, for

simplicity, for flavour democratic gluino 3-body decays into quarks + squarks of the first

two generations.)

One finds that Emiss
T still strongly peakes at low values; hard cuts on Emiss

T would

remove again most of the signal events. The transverse momenta of the the leading and

next-to-leading H1 for squarks/gluinos with masses of 1000 GeV and 1400 GeV, respec-

tively, are shown in figure 8. As visible from figure 8, the average transverse momenta of

the H1 states are considerably larger for heavier squarks/gluinos.

Finally we ask whether the shape of the M
Ĵ

spectrum changes for heavier

squarks/gluinos. Using the same analysis and cuts as before, the resulting M
Ĵ

spectrum

is shown in figure 9 for squark/gluino masses of 1000 GeV, 1200 GeV and 1400 GeV. We

see that the shape of the M
Ĵ

spectrum remains unchanged; only the signal rate decreases

as expected (slightly less, in fact) as does the production cross section which is now about

2226 fb, 693 fb and 242 fb for squark/gluino masses of 1000 GeV, 1200 GeV and 1400 GeV,

respectively. However, for squark/gluino masses above 1400 GeV, the signal obtained with

the present cuts (and jet analysis) starts to fall below the background from jjbb̄ with two

mistagged τ leptons (shown in figure 5).

On the other hand, since the production of heavier squarks and gluinos generates both

H1 states and jets with larger transverse momenta, cuts can be optimised. Search channels

with significantly harder cuts on the transverse momenta of at least the candidate Ĵ-jets
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Figure 8. Transverse momentum distributions of the leading H1 (blue) and next-to-leading H1

(red) after squark and gluino production at the LHC at 14 TeV c.m. energy. We assume simplified

spectra, with squarks/gluino masses of 1000 GeV and 1400 GeV.

Figure 9. MĴ at 14 TeV c.m. energy for simplified model spectra with MH1
= 83 GeV, MNLSP =

89 GeV and MLSP = 5 GeV, and squark/gluino masses of 1000 GeV, 1200 GeV and 1400 GeV,

respectively.

(assumed to contain the remnants of the leading H1) can be employed. Corresponding

analyses will be the subject of future publications.

4 Conclusions and outlook

The most important result of the present paper is the existence of scenarios in the general

NMSSM in which a light singlino at the end of sparticle decay cascades reduces strongly

the missing transverse energy, one of the essential criteria in standard search channels for

supersymmetry. In such “worst case scenarios” hardly any missing transverse energy is

produced along each step of sparticle decay cascades. We present a realistic benchmark
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point, consistent with the properties of the Standard Model-like Higgs boson at ∼ 126 GeV

and the dark matter relic density, satisfying present constraints from SUSY search channels

with all sparticle masses below ∼ 1 TeV.

The two NMSSM-like Higgs bosons H1, produced in each event of squark, squark-

gluino or gluino pair production in this scenario, allow for new search channels which

do not rely on large missing transverse energy, but on the H1 decay products. We have

presented an analysis which shows that, for not too heavy squarks/gluinos, a H1 signal can

be visible above the Standard Model background in the bb̄τ+τ− + jets final state. This

analysis can certainly be improved in various aspects, but already indicates the lines along

which a signal can be obtained.

Among the possible improvements are analyses based on jet substructure as is the

case of Higgs pair production into the same final state in [75] (replacing the step of our

analysis based on a jet cone radius of 0.15), which may also help to reduce the background

from mistagged tau pairs. Also searches for a (bb̄)(bb̄) final state as in [79] might be

feasible. Finally, in order to get some direct information on the masses of the originally

produced squark/gluino pairs (beyond the production cross section), analyses based on jet

substructure may be combined with analyses based on MT2 as, for example, in [58].

Variants of the benchmark scenarios discussed here could also be realised in principle:

first, winos and/or higgsinos could be lighter and appear in squark decay cascades. Then

standard SUSY search channels relying on Emiss
T and jets, isolated leptons etc., start to

become sensitive to squark/gluino production but it remains to be studied when, in the

presence of a light singlino and for the kinematical situation discussed here, such search

channels become more sensitive than the type of analysis presented here.

Second, the final state ”X” in the final step NLSP → X + LSP of sparticle decay

cascades does not necessarily have to be a light NMSSM-specific Higgs boson H1. Again,

if X is for instance a Z boson or a combination of Z and HSM bosons (depending on the

branching fractions of the NLSP), standard SUSY search channels can become relevant

since more Emiss
T is expected from X decays. However, if the number of events with Emiss

T

is still reduced due the particular kinematical situation discussed here, channels which

depend less on Emiss
T but more on X decay products would again be more promising. Such

cases merit also to be studied in the future.

Acknowledgments

We are grateful to Y. Kats for helpful comments on additional searches for new physics.

We acknowledge help from A. Belyaev for background simulations, and thank B. Fuks,

S. Kulkarni and S. Moretti for helpful discussions. A. M. T. and U. E. acknowledge

support from European Union Initial Training Network INVISIBLES (PITN-GA-2011-

289442). U. E. acknowledges support from the ERC advanced grant Higgs@LHC, and

from the European Union Initial Training Network HiggsTools (PITN-GA-2012-316704).

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

– 16 –

http://creativecommons.org/licenses/by/4.0/


J
H
E
P
1
0
(
2
0
1
4
)
1
1
3

References

[1] ATLAS collaboration, Search for squarks and gluinos with the ATLAS detector in final states

with jets and missing transverse momentum and 20.3 fb−1 of
√
s = 8 TeV proton-proton

collision data, ATLAS-CONF-2013-047.

[2] CMS collaboration, Search for new physics in the multijet and missing transverse

momentum final state in proton-proton collisions at
√
s= 8 TeV, JHEP 06 (2014) 055

[arXiv:1402.4770] [INSPIRE].

[3] I. Melzer-Pellmann and P. Pralavorio, Lessons for SUSY from the LHC after the first run,

Eur. Phys. J. C 74 (2014) 2801 [arXiv:1404.7191] [INSPIRE].

[4] J.L. Feng, Naturalness and the Status of Supersymmetry, Ann. Rev. Nucl. Part. Sci. 63

(2013) 351 [arXiv:1302.6587] [INSPIRE].

[5] U. Ellwanger, C. Hugonie and A.M. Teixeira, The Next-to-Minimal Supersymmetric

Standard Model, Phys. Rept. 496 (2010) 1 [arXiv:0910.1785] [INSPIRE].

[6] L.J. Hall, D. Pinner and J.T. Ruderman, A Natural SUSY Higgs Near 126 GeV, JHEP 04

(2012) 131 [arXiv:1112.2703] [INSPIRE].

[7] U. Ellwanger, A Higgs boson near 125 GeV with enhanced di-photon signal in the NMSSM,

JHEP 03 (2012) 044 [arXiv:1112.3548] [INSPIRE].

[8] A. Arvanitaki and G. Villadoro, A Non Standard Model Higgs at the LHC as a Sign of

Naturalness, JHEP 02 (2012) 144 [arXiv:1112.4835] [INSPIRE].

[9] S.F. King, M. Muhlleitner and R. Nevzorov, NMSSM Higgs Benchmarks Near 125 GeV,

Nucl. Phys. B 860 (2012) 207 [arXiv:1201.2671] [INSPIRE].

[10] Z. Kang, J. Li and T. Li, On Naturalness of the MSSM and NMSSM, JHEP 11 (2012) 024

[arXiv:1201.5305] [INSPIRE].

[11] J.-J. Cao, Z.-X. Heng, J.M. Yang, Y.-M. Zhang and J.-Y. Zhu, A SM-like Higgs near 125

GeV in low energy SUSY: a comparative study for MSSM and NMSSM, JHEP 03 (2012) 086

[arXiv:1202.5821] [INSPIRE].

[12] U. Ellwanger and C. Hugonie, Neutralino cascades in the (M+1)SSM, Eur. Phys. J. C 5

(1998) 723 [hep-ph/9712300] [INSPIRE].

[13] U. Ellwanger and C. Hugonie, Topologies of the (M+1) SSM with a singlino LSP at LEP-2,

Eur. Phys. J. C 13 (2000) 681 [hep-ph/9812427] [INSPIRE].

[14] A. Dedes, C. Hugonie, S. Moretti and K. Tamvakis, Phenomenology of a new minimal

supersymmetric extension of the standard model, Phys. Rev. D 63 (2001) 055009

[hep-ph/0009125] [INSPIRE].

[15] S.Y. Choi, D.J. Miller and P.M. Zerwas, The Neutralino sector of the next-to-minimal

supersymmetric standard model, Nucl. Phys. B 711 (2005) 83 [hep-ph/0407209] [INSPIRE].

[16] K. Cheung and T.-J. Hou, Light Pseudoscalar Higgs boson in Neutralino Decays in the

Next-to-Minimal Supersymmetric Standard Model, Phys. Lett. B 674 (2009) 54

[arXiv:0809.1122] [INSPIRE].

[17] O. Stal and G. Weiglein, Light NMSSM Higgs bosons in SUSY cascade decays at the LHC,

JHEP 01 (2012) 071 [arXiv:1108.0595] [INSPIRE].

– 17 –

http://cds.cern.ch/record/1547563
http://dx.doi.org/10.1007/JHEP06(2014)055
http://arxiv.org/abs/1402.4770
http://inspirehep.net/search?p=find+EPRINT+arXiv:1402.4770
http://dx.doi.org/10.1140/epjc/s10052-014-2801-y
http://arxiv.org/abs/1404.7191
http://inspirehep.net/search?p=find+EPRINT+arXiv:1404.7191
http://dx.doi.org/10.1146/annurev-nucl-102010-130447
http://dx.doi.org/10.1146/annurev-nucl-102010-130447
http://arxiv.org/abs/1302.6587
http://inspirehep.net/search?p=find+EPRINT+arXiv:1302.6587
http://dx.doi.org/10.1016/j.physrep.2010.07.001
http://arxiv.org/abs/0910.1785
http://inspirehep.net/search?p=find+EPRINT+arXiv:0910.1785
http://dx.doi.org/10.1007/JHEP04(2012)131
http://dx.doi.org/10.1007/JHEP04(2012)131
http://arxiv.org/abs/1112.2703
http://inspirehep.net/search?p=find+EPRINT+arXiv:1112.2703
http://dx.doi.org/10.1007/JHEP03(2012)044
http://arxiv.org/abs/1112.3548
http://inspirehep.net/search?p=find+EPRINT+arXiv:1112.3548
http://dx.doi.org/10.1007/JHEP02(2012)144
http://arxiv.org/abs/1112.4835
http://inspirehep.net/search?p=find+EPRINT+arXiv:1112.4835
http://dx.doi.org/10.1016/j.nuclphysb.2012.02.010
http://arxiv.org/abs/1201.2671
http://inspirehep.net/search?p=find+EPRINT+arXiv:1201.2671
http://dx.doi.org/10.1007/JHEP11(2012)024
http://arxiv.org/abs/1201.5305
http://inspirehep.net/search?p=find+EPRINT+arXiv:1201.5305
http://dx.doi.org/10.1007/JHEP03(2012)086
http://arxiv.org/abs/1202.5821
http://inspirehep.net/search?p=find+EPRINT+arXiv:1202.5821
http://dx.doi.org/10.1007/s100520050316
http://dx.doi.org/10.1007/s100520050316
http://arxiv.org/abs/hep-ph/9712300
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9712300
http://dx.doi.org/10.1007/s100520050727
http://arxiv.org/abs/hep-ph/9812427
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9812427
http://dx.doi.org/10.1103/PhysRevD.63.055009
http://arxiv.org/abs/hep-ph/0009125
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0009125
http://dx.doi.org/10.1016/j.nuclphysb.2005.01.006
http://arxiv.org/abs/hep-ph/0407209
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0407209
http://dx.doi.org/10.1016/j.physletb.2009.03.003
http://arxiv.org/abs/0809.1122
http://inspirehep.net/search?p=find+EPRINT+arXiv:0809.1122
http://dx.doi.org/10.1007/JHEP01(2012)071
http://arxiv.org/abs/1108.0595
http://inspirehep.net/search?p=find+EPRINT+arXiv:1108.0595


J
H
E
P
1
0
(
2
0
1
4
)
1
1
3

[18] D.G. Cerdeño, P. Ghosh, C.B. Park and M. Peiró, Collider signatures of a light NMSSM
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[50] M. Krämer, A. Kulesza, R. van der Leeuw, M. Mangano, S. Padhi et al., Supersymmetry

production cross sections in pp collisions at
√
s = 7 TeV, arXiv:1206.2892 [INSPIRE].

[51] M. Drees, H. Dreiner, D. Schmeier, J. Tattersall and J.S. Kim, CheckMATE: Confronting

your Favourite New Physics Model with LHC Data, arXiv:1312.2591 [INSPIRE].

[52] DELPHES 3 collaboration, J. de Favereau et al., DELPHES 3, A modular framework for

fast simulation of a generic collider experiment, JHEP 02 (2014) 057 [arXiv:1307.6346]

[INSPIRE].

[53] E. Conte, B. Fuks and G. Serret, MadAnalysis 5, A User-Friendly Framework for Collider

Phenomenology, Comput. Phys. Commun. 184 (2013) 222 [arXiv:1206.1599] [INSPIRE].

– 19 –

http://dx.doi.org/10.1088/1126-6708/2005/02/066
http://arxiv.org/abs/hep-ph/0406215
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0406215
http://dx.doi.org/10.1016/j.cpc.2006.04.004
http://dx.doi.org/10.1016/j.cpc.2006.04.004
http://arxiv.org/abs/hep-ph/0508022
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0508022
http://dx.doi.org/10.1007/JHEP06(2013)043
http://arxiv.org/abs/1304.5437
http://inspirehep.net/search?p=find+EPRINT+arXiv:1304.5437
http://dx.doi.org/10.1088/1126-6708/2007/12/090
http://arxiv.org/abs/0710.3714
http://inspirehep.net/search?p=find+EPRINT+arXiv:0710.3714
http://dx.doi.org/10.1016/j.cpc.2012.11.007
http://dx.doi.org/10.1016/j.cpc.2012.11.007
http://arxiv.org/abs/1203.5023
http://inspirehep.net/search?p=find+EPRINT+arXiv:1203.5023
http://pos.sissa.it/cgi-bin/reader/contribution.cgi?id=PoS(EPS-HEP 2013)081
http://arxiv.org/abs/1308.6299
http://inspirehep.net/search?p=find+EPRINT+arXiv:1308.6299
http://dx.doi.org/10.1016/j.cpc.2013.10.016
http://arxiv.org/abs/1305.0237
http://inspirehep.net/search?p=find+EPRINT+arXiv:1305.0237
http://dx.doi.org/10.1088/0067-0049/208/2/19
http://arxiv.org/abs/1212.5226
http://inspirehep.net/search?p=find+EPRINT+arXiv:1212.5226
http://dx.doi.org/10.1051/0004-6361/201321591
http://arxiv.org/abs/1303.5076
http://inspirehep.net/search?p=find+EPRINT+arXiv:1303.5076
http://dx.doi.org/10.1007/JHEP06(2011)128
http://arxiv.org/abs/1106.0522
http://inspirehep.net/search?p=find+EPRINT+arXiv:1106.0522
http://dx.doi.org/10.1088/1126-6708/2006/05/026
http://dx.doi.org/10.1088/1126-6708/2006/05/026
http://arxiv.org/abs/hep-ph/0603175
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0603175
http://dx.doi.org/10.1016/S0550-3213(97)80027-2
http://arxiv.org/abs/hep-ph/9610490
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9610490
http://arxiv.org/abs/hep-ph/9611232
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9611232
http://dx.doi.org/10.1142/S0217751X11053560
http://arxiv.org/abs/1105.1110
http://inspirehep.net/search?p=find+EPRINT+arXiv:1105.1110
http://arxiv.org/abs/1206.2892
http://inspirehep.net/search?p=find+EPRINT+arXiv:1206.2892
http://arxiv.org/abs/1312.2591
http://inspirehep.net/search?p=find+EPRINT+arXiv:1312.2591
http://dx.doi.org/10.1007/JHEP02(2014)057
http://arxiv.org/abs/1307.6346
http://inspirehep.net/search?p=find+EPRINT+arXiv:1307.6346
http://dx.doi.org/10.1016/j.cpc.2012.09.009
http://arxiv.org/abs/1206.1599
http://inspirehep.net/search?p=find+EPRINT+arXiv:1206.1599


J
H
E
P
1
0
(
2
0
1
4
)
1
1
3

[54] E. Conte and B. Fuks, MadAnalysis 5: status and new developments, J. Phys. Conf. Ser.

523 (2014) 012032 [arXiv:1309.7831] [INSPIRE].

[55] ATLAS collaboration, A search for resonant Higgs-pair production in the bb̄bb̄ final state in

pp collisions at
√
s = 8 TeV, ATLAS-CONF-2014-005.

[56] CMS Collaboration, Search for resonant HH production in 2gamma+2b channel,

CMS-PAS-HIG-13-032.

[57] ATLAS collaboration, Search for Higgs Boson Pair Production in the γγbb̄ Final State using

pp Collision Data at
√
s = 8TeV from the ATLAS Detector, arXiv:1406.5053 [INSPIRE].

[58] CMS Collaboration, Search for supersymmetry in hadronic final states using MT2 with the

CMS detector at
√
s = 8 TeV, CMS-PAS-SUS-13-019.

[59] ATLAS collaboration, Search for massive particles in multijet signatures with the ATLAS

detector in
√
s = 8 TeV pp collisions at the LHC, ATLAS-CONF-2013-091.

[60] CMS Collaboration, Search for light- and heavy-flavor three-jet resonances in multijet final

states at 8 TeV, CMS-PAS-EXO-12-049.

[61] CMS collaboration, Search for pair-produced dijet resonances in four-jet final states in pp

collisions at
√
s = 7 TeV, Phys. Rev. Lett. 110 (2013) 141802 [arXiv:1302.0531] [INSPIRE].

[62] CMS collaboration, Search for microscopic black holes in pp collisions at
√
s = 8 TeV,

JHEP 07 (2013) 178 [arXiv:1303.5338] [INSPIRE].

[63] A. Datta, A. Djouadi, M. Guchait and F. Moortgat, Detection of MSSM Higgs bosons from

supersymmetric particle cascade decays at the LHC, Nucl. Phys. B 681 (2004) 31

[hep-ph/0303095] [INSPIRE].

[64] P. Bandyopadhyay, A. Datta and B. Mukhopadhyaya, Signatures of gaugino mass

non-universality in cascade Higgs production at the LHC, Phys. Lett. B 670 (2008) 5

[arXiv:0806.2367] [INSPIRE].

[65] K. Huitu, R. Kinnunen, J. Laamanen, S. Lehti, S. Roy et al., Search for Higgs Bosons in

SUSY Cascades in CMS and Dark Matter with Non-universal Gaugino Masses, Eur. Phys.

J. C 58 (2008) 591 [arXiv:0808.3094] [INSPIRE].

[66] P. Bandyopadhyay, Probing non-universal gaugino masses via Higgs boson production under

SUSY cascades at the LHC: A Detailed study, JHEP 07 (2009) 102 [arXiv:0811.2537]

[INSPIRE].

[67] S. Gori, P. Schwaller and C.E.M. Wagner, Search for Higgs Bosons in SUSY Cascade Decays

and Neutralino Dark Matter, Phys. Rev. D 83 (2011) 115022 [arXiv:1103.4138] [INSPIRE].

[68] G.D. Kribs, A. Martin, T.S. Roy and M. Spannowsky, Discovering the Higgs Boson in New

Physics Events using Jet Substructure, Phys. Rev. D 81 (2010) 111501 [arXiv:0912.4731]

[INSPIRE].

[69] G.D. Kribs, A. Martin, T.S. Roy and M. Spannowsky, Discovering Higgs Bosons of the

MSSM using Jet Substructure, Phys. Rev. D 82 (2010) 095012 [arXiv:1006.1656] [INSPIRE].

[70] A. Belyaev, J.P. Hall, S.F. King and P. Svantesson, Novel gluino cascade decays in E6

inspired models, Phys. Rev. D 86 (2012) 031702 [arXiv:1203.2495] [INSPIRE].

[71] B. Bhattacherjee, A. Chakraborty, D. Kumar Ghosh and S. Raychaudhuri, Using Jet

Substructure at the LHC to Search for the Light Higgs Bosons of the CP-Violating MSSM,

Phys. Rev. D 86 (2012) 075012 [arXiv:1204.3369] [INSPIRE].

– 20 –

http://dx.doi.org/10.1088/1742-6596/523/1/012032
http://dx.doi.org/10.1088/1742-6596/523/1/012032
http://arxiv.org/abs/1309.7831
http://inspirehep.net/search?p=find+EPRINT+arXiv:1309.7831
http://cds.cern.ch/record/1666518
http://cds.cern.ch/record/1697512
http://arxiv.org/abs/1406.5053
http://inspirehep.net/search?p=find+EPRINT+arXiv:1406.5053
http://cds.cern.ch/record/1646394
http://cds.cern.ch/record/1595753
http://cds.cern.ch/record/1563139
http://dx.doi.org/10.1103/PhysRevLett.110.141802
http://arxiv.org/abs/1302.0531
http://inspirehep.net/search?p=find+EPRINT+arXiv:1302.0531
http://dx.doi.org/10.1007/JHEP07(2013)178
http://arxiv.org/abs/1303.5338
http://inspirehep.net/search?p=find+EPRINT+arXiv:1303.5338
http://dx.doi.org/10.1016/j.nuclphysb.2003.12.012
http://arxiv.org/abs/hep-ph/0303095
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0303095
http://dx.doi.org/10.1016/j.physletb.2008.10.014
http://arxiv.org/abs/0806.2367
http://inspirehep.net/search?p=find+EPRINT+arXiv:0806.2367
http://dx.doi.org/10.1140/epjc/s10052-008-0786-0
http://dx.doi.org/10.1140/epjc/s10052-008-0786-0
http://arxiv.org/abs/0808.3094
http://inspirehep.net/search?p=find+EPRINT+arXiv:0808.3094
http://dx.doi.org/10.1088/1126-6708/2009/07/102
http://arxiv.org/abs/0811.2537
http://inspirehep.net/search?p=find+EPRINT+arXiv:0811.2537
http://dx.doi.org/10.1103/PhysRevD.83.115022
http://arxiv.org/abs/1103.4138
http://inspirehep.net/search?p=find+EPRINT+arXiv:1103.4138
http://dx.doi.org/10.1103/PhysRevD.81.111501
http://arxiv.org/abs/0912.4731
http://inspirehep.net/search?p=find+EPRINT+arXiv:0912.4731
http://dx.doi.org/10.1103/PhysRevD.82.095012
http://arxiv.org/abs/1006.1656
http://inspirehep.net/search?p=find+EPRINT+arXiv:1006.1656
http://dx.doi.org/10.1103/PhysRevD.86.031702
http://arxiv.org/abs/1203.2495
http://inspirehep.net/search?p=find+EPRINT+arXiv:1203.2495
http://dx.doi.org/10.1103/PhysRevD.86.075012
http://arxiv.org/abs/1204.3369
http://inspirehep.net/search?p=find+EPRINT+arXiv:1204.3369


J
H
E
P
1
0
(
2
0
1
4
)
1
1
3

[72] A. Belyaev, J.P. Hall, S.F. King and P. Svantesson, Discovering E6 SUSY models in gluino

cascade decays at the LHC, Phys. Rev. D 87 (2013) 035019 [arXiv:1211.1962] [INSPIRE].

[73] M. Cacciari, G.P. Salam and G. Soyez, FastJet User Manual, Eur. Phys. J. C 72 (2012)

1896 [arXiv:1111.6097] [INSPIRE].

[74] M. Cacciari, G.P. Salam and G. Soyez, The Anti-k(t) jet clustering algorithm, JHEP 04

(2008) 063 [arXiv:0802.1189] [INSPIRE].

[75] M.J. Dolan, C. Englert and M. Spannowsky, Higgs self-coupling measurements at the LHC,

JHEP 10 (2012) 112 [arXiv:1206.5001] [INSPIRE].

[76] A. Papaefstathiou, L.L. Yang and J. Zurita, Higgs boson pair production at the LHC in the

bb̄W+W− channel, Phys. Rev. D 87 (2013) 011301 [arXiv:1209.1489] [INSPIRE].

[77] A.J. Barr, M.J. Dolan, C. Englert and M. Spannowsky, Di-Higgs final states augMT2ed –

selecting hh events at the high luminosity LHC, Phys. Lett. B 728 (2014) 308

[arXiv:1309.6318] [INSPIRE].

[78] V. Barger, L.L. Everett, C.B. Jackson and G. Shaughnessy, Higgs-Pair Production and

Measurement of the Triscalar Coupling at LHC(8,14), Phys. Lett. B 728 (2014) 433

[arXiv:1311.2931] [INSPIRE].

[79] D.E. Ferreira de Lima, A. Papaefstathiou and M. Spannowsky, Standard model Higgs boson

pair production in the (bb)(bb) final state, JHEP 08 (2014) 030 [arXiv:1404.7139] [INSPIRE].

– 21 –

http://dx.doi.org/10.1103/PhysRevD.87.035019
http://arxiv.org/abs/1211.1962
http://inspirehep.net/search?p=find+EPRINT+arXiv:1211.1962
http://dx.doi.org/10.1140/epjc/s10052-012-1896-2
http://dx.doi.org/10.1140/epjc/s10052-012-1896-2
http://arxiv.org/abs/1111.6097
http://inspirehep.net/search?p=find+EPRINT+arXiv:1111.6097
http://dx.doi.org/10.1088/1126-6708/2008/04/063
http://dx.doi.org/10.1088/1126-6708/2008/04/063
http://arxiv.org/abs/0802.1189
http://inspirehep.net/search?p=find+EPRINT+arXiv:0802.1189
http://dx.doi.org/10.1007/JHEP10(2012)112
http://arxiv.org/abs/1206.5001
http://inspirehep.net/search?p=find+EPRINT+arXiv:1206.5001
http://dx.doi.org/10.1103/PhysRevD.87.011301
http://arxiv.org/abs/1209.1489
http://inspirehep.net/search?p=find+EPRINT+arXiv:1209.1489
http://dx.doi.org/10.1016/j.physletb.2013.12.011
http://arxiv.org/abs/1309.6318
http://inspirehep.net/search?p=find+EPRINT+arXiv:1309.6318
http://dx.doi.org/10.1016/j.physletb.2013.12.013
http://arxiv.org/abs/1311.2931
http://inspirehep.net/search?p=find+EPRINT+arXiv:1311.2931
http://dx.doi.org/10.1007/JHEP08(2014)030
http://arxiv.org/abs/1404.7139
http://inspirehep.net/search?p=find+EPRINT+arXiv:1404.7139

	Introduction
	``Missing'' missing energy in the NMSSM
	Towards the extraction of signals in b bar(b)+ tau**+ tau**- final states at 14 TeV
	Conclusions and outlook

