PUBLISHED FOR SISSA BY €} SPRINGER

RECEIVED: October 1, 2013
REVISED: September 11, 2014
ACCEPTED: September 20, 2014
PUBLISHED: October 15, 201/

Self-dual continuous series of representations for
U,(sl(2)) and U,(osp(1]2))

Leszek Hadasz, Michal Pawelkiewicz’ and Volker Schomerus®

“M. Smoluchowski Institute of Physics, Jagiellonian University,

W. Reymonta 4, 30-059 Krakow, Poland

YDESY Theory Group, DESY Hamburg,

Notkestrasse 85, D-22603 Hamburg, Germany

E-mail: hadasz@th.if .uj.edu.pl, michal.pawelkiewicz@desy.de,
volker.schomerus@desy.de

ABSTRACT: We determine the Clebsch-Gordan and Racah-Wigner coefficients for continu-
ous series of representations of the quantum deformed algebras U, (sl(2)) and U,(osp(1]2)).
While our results for the former algebra reproduce formulas by Ponsot and Teschner, the
expressions for the orthosymplectic algebra are new. Up to some normalization factors,
the associated Racah-Wigner coefficients are shown to agree with the fusing matrix in the
Neveu-Schwarz sector of N = 1 supersymmetric Liouville field theory.

KeEYwoORDS: Field Theories in Lower Dimensions, Quantum Groups, Conformal and
W Symmetry, Integrable Field Theories

ARX1v EPRINT: 1305.4596

OPEN AcCESs, (© The Authors.

Article funded by SCOAP®. doi:10.1007/JHEP10(2014)091


mailto:hadasz@th.if.uj.edu.pl
mailto:michal.pawelkiewicz@desy.de
mailto:volker.schomerus@desy.de
http://arxiv.org/abs/1305.4596
http://dx.doi.org/10.1007/JHEP10(2014)091

Contents

1 Introduction 1
2 Self-dual continuous series for U, (sl(2)) 3
3 The Clebsch-Gordan coefficients for U, (sl(2)) 4
3.1 The intertwining property )
3.2 Orthogonality and completeness 7
4 The Racah-Wigner coefficients for U, (sl(2)) 9
5 Self-dual continuous series for U, (osp(1]2)) 11
6 The Clebsch-Gordan coefficients for U, (osp(1|2)) 13
6.1 Intertwiner property 14
6.2 Orthogonality and completeness 15
7 The Racah-Wigner coefficients for U, (osp(1|2)) 16
8 Comparison with fusing matrix of Liouville theory 17
8.1 Liouville field theory and U,(sl(2)) 17
8.2 Neveu-Schwarz sector of the N' = 1 superconformal theory 20
9 Conclusions 22
A Some special functions 23
A.1 Special functions for Uy (sl(2)) 23
A.2 Special functions for U, (osp(1|2)) 24
B Integral identities 25
B.1 Integral identities for U, (sl(2)) 25
B.2 Integral identities for Uy (osp(1[2)) 26
C Removing the regulator 27
1 Introduction

Quantum deformed Lie (super-)algebras are being studied partly because of their intimate

relation with 2-dimensional conformal field theory and 3-dimensional Chern-Simons theory.

Through the investigation of finite dimensional representations of g-deformed Lie algebras,

for example, one can obtain solutions of the Moore-Seiberg polynomial equations which



describe the fusing and braiding structure of Wess-Zumino-Witten (WZW) models with
compact target group G. Because of the deep relation between WZW models and Chern-
Simons theory, the same data also appear as building blocks for expectation values of
Wilson loops in 3-dimensional topological theories.

The quantum deformed superalgebra U, (sl(2)) is known to possess a very interesting
self-dual series of infinite dimensional representations, see e.g. [1, 2]. As shown by Ponsot
and Teschner [3, 4], this series furnishes a solution of the Moore-Seiberg relations which
is relevant for Liouville conformal field theory. In fact, the Racah-Wigner coefficients
(6j symbols) for these representations are known to agree with the fusing matrix of Liouville
theory, up to some convention dependent normalization. The same data also appear in the
context of SL(2) Chern-Simons theory or quantum Teichmiiller theory [5-9]. The basic
building block in this case is Faddeev’s quantum dilogarithm [10],

—2izw
¢ dw) . (1.1)

P (2) = Pp(2) = exp (/C sinh(wb) sinh(w/b) 4w

This special function plays an important role in mathematical physics. The quantum
dilogarithm has many beautiful properties, in particular it satisfies a five term (pentagon)
relation [10, 11]. The latter may be considered as a quantization of Roger’s five-term
identity for the ordinary dilogarithm and it can be formulated as an integral identity, also
known as Ramanujan’s identity.

Our goal here is to extend the results described in the previous paragraph to the Lie
superalgebra U, (osp(1|2)). This algebra was first introduced in [12]. Finite dimensional
representations and their Racah-Wigner coefficients were studied in [13] and other subse-
quent papers. The series of representations we are about to analyse below allows us to
obtain the fusing matrix of N=1 Liouville field theory. In building the basic representa-
tion theoretic data, and in particular the Racah-Wigner coefficients, Faddeev’s quantum
dilogarithm gets accompanied by a second function

6—2izw dw
D (2) = — 1.2
b (2) = exp </C cosh(wb) cosh(w/b) 4w) (1.2)
From CIDbi we shall pass to the functions ®7, v = 0, 1, which are obtained through
log @1 (z) = log @ () — (—1)" log @; (2). (1.3)

The precise relation of ®p to the functions S, that appear below is spelled out in
appendix A.2. Our functions ®} share many features with Faddeev’s quantum diloga-
rithm. In particular, they satisfy the same set of integral identities with an additional sum
over the v index wherever the standard identities involve an integration over x. These iden-
tities include a new variant of the pentagon relation for Faddeev’s quantum dilogarithm.
Clearly, the pair ®} should play a central role for the N = 1 supersymmetric extension of
quantum Teichmiiller theory.

The plan of this paper is as follows. The first part is devoted to U,(sl(2)). The
main purpose here is to review (and correct) the known results and to explain how they



are proved. This will help us later to analyse representations of U, (osp(1]2)). In fact,
with the right notations, most formulas for the supersymmetric algebra resemble those
for Uy (sl(2)). In addition, the strategy of the proofs can essentially be carried over form
the non-supersymmetric theory. The first part commences with a short description of
Uy(sl(2)) and its self-dual representations. Then we construct the Clebsch-Gordan maps
for the decomposition of products of self-dual representations and prove their intertwin-
ing and orthonormality property. Section 4 contains the Racah-Wigner coefficients for
Uy(sl(2)). The same steps are then taken in the second part on the quantum deformed
algebra U,(osp(1]2)). Once more, we describe the algebra and a series of self-dual repre-
sentations whose Clebsch-Gordan coefficients are determined in section 6. Our main result
for the associated Racah-Wigner coefficients is contained in section 7. Finally, we compare
our expressions for the Racah-Wigner coefficients of U, (0sp(1|2)) with the known formulas
for the fusion matrix of N = 1 Liouville field theory [14-16] and find agreement. The paper
concludes with a list of open problems and further directions to explore.

2 Self-dual continuous series for U,(sl(2))

The goal of this section is to introduce the quantum deformed enveloping algebra U, (sl(2))
along with a continuous series of representations that has first appeared in a paper by
Schmuedgen [1]. Faddeev discovered that one class of these representations is self-dual [2]
before this particular series was further analysed by Ponsot and Teschner [3, 4] in the
context of Liouville theory.

The g-deformed universal enveloping algebra U, (sl(2)) of the Lie algebra sl(2) is gen-
erated by the elements K, K, E*, with relations

KEi _ qilEiK’

_ K2 o K_2
[EY BT =y,
q—4q
where ¢ = ¢i™” is the deformation parameter. We shall parametrize the deformation

through a real number b so that ¢ takes values on the unit circle. Given such a choice, the
deformed algebra comes equipped with the following *-structure

K*=K, (E%)*=E*. (2.1)

The tensor product of any two representations can be built with the help of the following
co-product
AK)=K&K, AE)=E"oK+K ' 'oE". (2.2)

Finally, there is one more object we shall need below, namely the quadratic Casimir element
C of Uy(sl(2)) which reads

qK? +q 1 K=2 42
(q—q1)?

Having collected the most important formulas concerning the algebraic structure, we now

C=EE" -

want to introduce the series of representations we are going to analyse in this work. It



is parametrized by a label a that takes values in a € % + iR, where @ is related to
the deformation parameter through Q = b + %. The carrier spaces P, of the associated
representations consist of entire analytic functions f(z) in one variable x whose Fourier
transform f (w) is meromorphic in the complex plane with possible poles in

Sy = {w::tz' (a—Q—nb—mbfl);n,mGZSO}- (2.3)

On this space, we represent the element K through a shift operator in the imaginary
direction,
ib

ib
To(K) =e2% = T;2 . (2.4)

By construction, the operator 7% defined in the previous equation acts on functions
feP, as

T2 f(z) == f(z+a). (2.5)
The expressions for the remaining two generators E* are linear combinations of two shift
operators in opposite directions

e:l:i7rba T% _ e:Fiwboz T*%

To (BF) = =207 = ™" [(21) 710, £ 0], (2.6)

q—q!
Here and in the following we shall use the symbol & to denote & = ) —« and we introduced

the following notation
sin(mbz)

2], = Sin(rb?)’ (2.7)

We claimed before that the representations m, are self-dual in a certain sense. Now we can
make this statement more precise. To this end, let us define a second action 7, of Us(sl(2))
with ¢ = exp(im/b?) on the space P, through the formulas (2.4) and (2.6) with b replaced
by b~!. Remarkably, the two actions 7, and 7, commute with each other. This is the
self-duality property we were referring to.

3 The Clebsch-Gordan coefficients for U, (sl(2))

The action 7y, ® mq, of the quantum universal enveloping algebra U,(sl(2)) on the tensor
product of any two representations m,, and 7, is defined in terms of the coproduct, as
usual. Such a tensor product is reducible and its decomposition into a direct sum of
irreducibles is what defines the Clebsh-Gordan coefficients. In this case at hand, one has
the following decomposition,

®
POQ & 7)041 = / da3 Pa3.

Q .
5 HRT

We are going to spell out and prove an explicit formula for the homomorphism

f(anCCl) — Ff(ag,xg) = / as g

R xr3 T2 T1

dzoday [ ] fxa,x1).



Here, f(x2,21) denotes an element in P,, ® Po, and Fr(as,x3) is its image in Pu,. In
order state a formula for the Clebsch-Gordan map, we build

Sb(z)

Do) = g oy

(3.1)
from the special function Sy, see appendix A for a precise definition, and we introduce

‘ 1, _ _
291 = 112 — Q + 5(20634-041 + a2),

. 1, _ _
231 = 113 + 5(0&1 — 043) ,

Z39 = 1T39 + 5(542 —a3),

where &; € /2 + iR is defined as before through &; = Q — o and we used z;; = z; — ;.
The symbols «;; stand for

ag =ar+ar+a3—Q, a1 =Q+ a1 —az —as, asy =Q — a1 +as —as.

With all these notations, we are finally able to spell out the relevant Clebsh-Gordan
coefficients [4],

a3 (9 o
[ s 1} = N'D(z21; a91)D(223; cva3) D(z13; cu13) (3.2)
xTr3 Ty I
where
T _ _
N = exp |:2(0430[3 — Qg — 051041) . (33)

Let us note that this product form of the Clebsch-Gordan coefficients is familiar e.g. from
the 3-point functions in conformal field theory which may be written as a product. Al-
though the representations we study here are not obtained by deforming discrete series
representations of sl(2), i.e. of those representations that fields of a conformal field theory
transform in, the familiar product structure of the Clebsch-Gordan coefficients survives.

3.1 The intertwining property

The fundamental intertwining property of the Clebsch-Gordan coefficients takes the fol-
lowing form
a3 (g (] Q3 g (1
X = A(X 3.4
() | 22020 | 0 (6 )ACY) (3.4
for X = K, E*. The equation should be interpreted as an identity of operators in the
representation space Py, @ Py,. While the operators K and E* may be expressed through
multiplication and shift operators, the Clebsch-Gordan map itself provides the kernel of an
integral transform. With the help of partial integration, we can re-write the intertwining
relation as an identity for the integral kernel,

3 (g (1

Moy (X) [ ] = (T, @ Ta, ) ALX) [a?’ 2 0‘1} , (3.5)

T3 T2 T1 T3 T2 T1



where the superscript * means that we should replace all shift operators by shifts in the
opposite direction, i.e. (T2%)! = T, and exchange the order between multiplication and
shifts, i.e (f(z)T*)" = T,7% f(x). In this new form, the intertwining property is simply an
identity of functions in the variables x;.

One can check eq. (3.5) by direct computation. This is particularly easy for the element

K for which eq. (3.5) reads

D a3 g —- b oz ag o
T2 =T,,7 Ty 2 . (3.6)
r3 T2 T1 xr3 T2 T1

Since the Clebsch-Gordan maps depend only in the differences z;; we can replace T, =
T12T13 etc. where T;; denotes a shift operator acting on x;;. Consequently, the intertwining
property for K becomes

b b
[‘”” aza (3.7)

T2 2
T13 T23

ib ib ib a3 g o
T3 9 Il

b _ib _ib b
— T2 2 2 2
:| 12 23 12 13 T3 To T1

which is trivially satisfied since all shifts commute. This concludes the proof of the inter-
twining property (3.5) for X = K.

For X = E the check is a bit more elaborate. Using the anti-symmetry [z, = —[z]p
of the function (2.7) and the property 8% = —d, of derivatives, we obtain

27bx —~ Qg a2
e”” 3[5x3+a3]b[ =
€r3 T2 T
ib ib
_ 27h 2|3 g ap _ 27b -5 |3 Qg
— [(5332 — Ozg]b e mor2 TIQI l: — [5:01 — Oél]b e e Tm 2
Ir3 T X Ir3 Ty I

where 0, = (27)710,. After a bit of rewriting we find

. — = 1 2 '
|:ez7rb(a1—a2)/2 |:—Z'9321 +Q — 5(512 + 541):| Tzzll)TQZg
b

o 1 L
e imb(aata)/2 [—mg +Q+5(as - alﬂ TiRT
b

_ o~ imhQ o —mba imb(aa-+s) /2 [_ix% L 1(@2 B Ckg):| ] [ag as Oél] _o
2 bl LT3 T2 11

Now, because of the shift properties of the function Sy, see appendix A.1, we have

b Sp(—iz + ay) _ [—iz + a1], Sp(—iz + al)Tib‘
T Sp(—ix+ag)  [—ix + ag, Sp(—ix +az)
With the help of this equation it is easy to check that our Clebsch-Gordan coefficients
obey the desired intertwining relation with ET. For the intertwining property involving
X = E~ one proceeds in a similar way.



3.2 Orthogonality and completeness

The Clebsh-Gordan coefficients for the self-dual series of U, (sl(2)) satisfy the following
orthogonality and completeness relation

[ oo [z22]" [fa225] = 191(200)| 250 — B)o(as — ). (3)
/@ dag/ |Gy (2as)* [G25201] " [930201] = 6(22 — y2)6 (21 — 11) - (3.9)
=+iR+ R

In writing the first equation we have assumed that i(Q/2 — a3) > 0 and i(Q/2 — 53) > 0.
Without this assumption, there would be a second term on the left hand side involving the
delta function 6(Q — ag — B3). Except for the normalizing factor on the right hand side of
eq. (3.8), these relations follow from the intertwining properties of Clebsch-Gordan maps.
We shall discuss a derivation of eq. (3.8) in some detail here, even though some proofs
were published recently, see below. This will allow us to skip over some painful details
later when we discuss the corresponding issues for the deformed superalgebra. In order
to compute the integral on the left hand side of eq. (3.8) we shall employ a star-triangle
relation for the functions Sy along with several of its corollaries. All necessary integral
formulas are collected in appendix B.1.!

Before we proceed proving the orthogonality relations, let us point out that the
equations (3.8) involve products of the Clebsch-Gordan kernels. Since these are distri-
butional kernels, one must take some care when multiplying two of them. Following [4],
the strategy is to regularize the Clebsch-Gordan maps through some e prescription, then to
multiply the regularized kernels before we send the parameter € to zero in the very end of
the computation. For the problem at hand, one appropriate regularization takes the form

Qg g (o € € 3e € €
— D( +o _7) D ( z30+€ azo—— D< +-; +7> , (3.10
[ 3 T 1:|6 N Z91 B a1 5 (232 €; 039 2) Z31 9 a3 9 ( )

with the same normalization (3.3) as above. Our prescription is different from the one
used in [4].

Inserting the regularized Clebsch-Gordan maps into the orthogonality relation (3.8),
we obtain

d$2d$

043042041:| |:53042041:| :n/dSUdele( ’L$21—|—Q (O&Q—i-oq))x

[1‘3 T2 T1 Y3 2 T1 |, Sy (—iza1 + Q — 5(0(2 + ay))
= 1
X Sh <—1$21—Q+ (2534-0414-042)4-;) Sk <il‘21 +Q - B (2a3 + a1 + @) + ;) X
1 5 . . _
X Sp ( — Y3 +Q+ (a1 — B3 —2an) — 6) Sp <2$13 - 5(061 —ag —20g) — 6) X
€ ) 1, - _ €
X S, <w13 + (a3 —a) + 2> Sh <Z(!E1 —y3) — B (53 - a1) + 2) X

x D* <232 +€,a39 — 3;) D <§32 + €, Q30 — 32€> =:1I7.

LOur derivation resembles a similar calculation for the undeformed group SL(2,C) performed by Lev
Lipatov in [17].



In writing this expression we have expressed all the D-functions that contain some depen-
dence on the variable x; in terms of Sy, see eq. (3.1). We brought all but three of the Sy
functions to the numerator with the help of the property S Yz) = Sp(Q — z). In taking
the complex conjugate, we used that the variables x;,y3 and our regulator ¢ are real. The
labels «; and (3, on the other hand, satisfy o] = & = Q — a; and 85 = B3 = Q — fs.
Finally, we introduced N , 232 and as3o. These are obtained from N, 232 and ass by the
substitution 25 — y3 and a3 — B3. The constant prefactor 7 is given by n = NA.

Before we continue our evaluation of the integrals we note that the fraction of
S-functions in the first line of the previous equation cancels out. Hence, we are left with a
product of six S-functions that contain all the x1 dependence of the integrand. It turns out
that we can actually evaluate the x; integral with the help of the following star-triangle
equation, see e.g. [18],

3 3
/dl‘l H Sp(iz1 + i) Sp(—iz1 + ;) = H Sp(vi + 5j) (3.11)

i=1 ij=1
which holds as long as the arguments on the left hand side add up to @, i.e. if

3

Z(’VH-&') =Q.

i=1

It is not difficult to check that the arguments which appear in our formula for I above
satisfy this condition. Hence, we can perform the integral over z; to obtain

Sp(—i(ys —x3) + 5 (a3 — B3) +€) Sy (az+as—a —§) "
Sp (—i(ys — x3) — & (a3 — Bs) +2€) Sp (B3 + a2 —ay + §)
" /dxg Sp (—izas — Q+% (2534—@24-5473)-1-6) Sp (—i(za —y3) + 5 (az — PB3) +€) _
Sh (—i(m - y3)+% (2643—1-5424-53) —6)) Sh (—ixgg + Q-i—%(dQ —asg) — 6)
Sy (—i(ys —x3) + 3 (a3 — B3) +€) Sp(az+as—ag —5)
Sb (—i(ys — ws) — & (a3 — B3) +2€) Sy (B3 + az — ay + §)
/dT Sp(T + &1 +¢€) Sp(r =& +¢)
i SH(Q+T+E& —€) Sp(Q+T—E& —¢)

In the first step we evaluated the right hand side of the star-triangle relation (3.11) and we

If =nSy (B3 — a3 +¢)

=Sy (B3 — az +¢)

=:15.

expressed the remaining two D-functions that appear in I through the functions Sy,. After
these two steps, the formula for I{ should contain a total number of 9 + 4 = 13 functions
Sp. It turns out that four of them cancel against each other so that we are left with the
nine factors in the first two lines of the previous formula. In passing to the lower lines we
simply performed the substitutions

7

& = —§(y3 — x3)

1 6B +as) -2,
(



In this form we can now also carry out the integral of the variable 7 using a limiting case
of the Saalschiitz formula, see appendix B.1, to find

. (=& —y+¢) Sv(as+ar—a1—5)
=m0+ 975 Be— ) S (1 +asta—ai+ )

o e—imE-Er Sp(2e — £ )Sp(2€ + &) SK(26 — &4+ )Sp(2e + &)
Sy (40)

EL

X

where v = 83 — a3 € iR and

€ =66 =il w5~ gyl
§r=6&+& =F3+az3—QeciR\{0}.

Having performed both integrations, it remains to remove our regulator e. The most
nontrivial part of this computation is to show that

i (€ 7)€ — & —7)Sh(2¢ +£)
e—0 Sb(46)

= §(i)3(i€_) . (3.12)

A full proof is given in appendix C. The remaining factors in I§ possess a regular limit. In
particular we find
1

. . _ 2 — o\ |2
i S, (2¢ — €4)50(2e +&4) = a e e ey — IS (Bt as) [ (313)

Finally, for the normalization factor n = NN we obtain

— G (asaz—azaz—a10on) , F (Bsfs—Graz—ar10n1) _ ,— 5 7(7+203-Q)

n=e
Putting all these results together we have shown that

*
a3 ag 041] [53 a2 al} B
T3 T2 X1 |, LY3 T2 21|,

— Ty (y+263—Q)

e—0

lim dl‘gdl‘l [

= e_iﬂf*§+ € _ Sb(dg + O_é2 — 0_61)
|Sh(B3 + @s)|? Sp (v + az+ ae —aq)

= |y (Bs + as) |726(i (Bs — as) 6(ys — x3) -

6(iv)o(i€-)

This is the orthonormality relation we set out to prove. The proof of eq. (3.9) can be
also be worked out, following the helpful comments in [4]. An alternative proof of the
orthonormality and completeness relations was published recently in [19] and [20]. The
latter is particularly elegant.

4 The Racah-Wigner coefficients for U,(sl(2))

The Racah-Wigner coefficients describe a change of basis in the 3-fold tensor product of
representations. Let us denote these three representations by 7,,,7 = 1,2, 3. In decompos-
ing their product into irreducibles 7, there exists two possible fusion paths, denoted by ¢



and s, which are described by the following combination of Clebsch-Gordan coefficients

5 [agaﬂ (M;xi):/dxt [a4at0q] [atagaﬂ | @1)

gy 6 T4 Tt L1 6 Tt T3 T 6

as Qi Qg O3 Qg Qs (2 (X
®;,. [ } (r4;25) = /dms [ } [ ] , (4.2)
agor ], Ty T3 Ts |, [ Ts T2 11 |,

which are related by

a3 gy g T g
@35[ 3 2} (x4;xi):/dat|5b(2at)|2x[ ! ,4] q>gt{ 3 2] (z4;2i) | (4.3)

g |, oy Oy Ty g0 |,

where the above kernel y is related to 6j symbol by

o) fneed o —a)i ). )
b

oy oy Ty o iy O

The regularization we use here is the same as in the previous section. From the two objects
®¢ and ®! we obtain the Racah-Wigner coefficients as

Qg 05T as o as o

X [ 1 j*] = lim [ 32,0, [ s 2] EAEDE [ s 2} (24 25). (4.5)
Oy Oy Ty e—0 a4 aq ], Oy 0 |,

After inserting the concrete expressions (3.10) for the regularised Clebsch-Gordan coeffi-

cients one may evaluate the integrals to obtain [4]

a1 A3, Qg - o QSb(a4)Sb(a1)

Lo ], = ShCan @
/ a St (ug + t)Sp(ta + t) S (us + t)Sp(Uz + )

Sp(u2s + 1) Sy (23 + ) Sy (2005 + 1) Sp(Q + 1)

(4.6)

where the four variables a; are associated with the four Clebsch-Gordan maps that appear
in egs. (4.1) and (4.2)

a] = a1 — ot + oy, a2 = Qg — a3 + i

a3 = az — Qg+ a4, ay = g — a1 + Qg

and similarly for the remaining set of variables,

Uy = g + a1 —ag, Uy = g + Q1 — Q,
uz = as +ayq — Qg U3 = as + aq — a3, (4.7)
U3 = Qs + p + 14 — Q2 U3 = Qs + Q¢ + (g — Qg

The derivation of eq. (4.6) from eq. (4.5) is in principle straightforward, though a bit
cumbersome. One simply has to evaluate the integrals. The integrals over the variables
xi,t = 1,2,3, are performed with the help of Cauchy’s integral formula. The resulting
integral expression involves delta functions in both the difference ay — o/, and x4 — 2.
Hence the integrals over z; and «/, are easy to perform at the end of the computation. So,
let us get back to the integrals over z;,7 = 1,2,3. It is convenient so start with z;. In

,10,



order to perform the integration, one needs to keep track of all the poles in the integrand
along with their residues. Since the functions ®° and ®' are ultimately built from S,
through equations (3.1), (3.10), (4.1) and (4.2), this step only requires knowledge of the
poles and residues of Sy,. All this information on .Sy, can be found in appendix A.1. Once
the integration over x1 has been performed, one focuses on the variable x3. There are a few
poles that have been around before we integrated over x;. In addition, the integration over
x1 brought in some new poles through the usual pole collisions (pinching). These must all
be accounted for before we can apply Cauchy’s formula again to perform the integration
over x3. Similar comments apply to the final integral over xo. Many more details on this
computations can be found in section 5 of the paper by Ponsot and Teschner [4]. Let us
stress again that no fancy identities are needed at any stage of the calculation.

After these comments on the derivation of eq. (4.6), let us list a few more properties
of the Racah-Wigner symbols. To begin with, they can be shown to satisfy the following
orthogonality relations

dag| Sy (20 2({&1&2 a5}> {Oqozz as} — 1S (2a)28(cer — By).
/é—i-iR“' 19o(20e)] 063044‘5:: b a3a4‘at b |90 (20)"0( 0 = 1)

As a consequence of their very definition, the Racah-Wigner symbols must also satisfy the
pentagon equation

/ dél{a1a2|ﬁl} {04151|B2} {04203|51} :{51a3|52} {a1a2|51}
9 1ir+ azayg 01 )y lawas v fy lasy2 1)y agas 71y lmas )y
More recently, Teschner and Vartanov found an interesting alternative expression for the

Racah-Wigner coefficients [21]. We will discuss this representation along with its extension
to the supersymmetric case in an accompanying paper.

5 Self-dual continuous series for U,(osp(1|2))

After this extended review of the quantum deformed enveloping algebra U, (sl(2)) and its
self-conjugate series of representations we are now well prepared to turn to the algebra
Uy(0sp(1]2)). We shall restate its definition here before we describe a 1-parameter series of
self-conjugate representations.

Following [12], the quantum deformed superalgebra U,(osp(1|2)) is generated by the
bosonic generators K, K~ along with two fermionic (odd) ones v(*). These satisfy the
relations

Ko®) = ¢Fly& K

2 -2
{U<+>,U<—>} S S
/2 — g2

where ¢ = '™ as before. The similarity with the defining relations of Uy (sl(2)) is striking,
except that the elements v* are fermionic (odd) so that we prescribe the anti-commutator

— 11 —



{.,.} of v™") with v(-) instead of the commutator. The algebraic relations are compatible
with the following star structure

K=K, o = ) (5.1)
and with the coproduct
A(K) =K® K, A(U(i)) — U(i) ® K + K_l ® U(i), (52)

that can be used to define tensor products of representations. It is easy to verify that the
following even element of U, (0sp(1]2)) commutes with all generators,

gK' 4 g K 2 (K + g K vy
(q—q1)° q% + q_%
i.e. C is a Casimir element. In addition, the algebra U, (osp(1]2)) also contains an element
(@ which is defined as

1 1 K2+ K2
— 2 (D)) _ (), (=) - T
Q 2(v v vy )+2q1/2+q—1/2'

Up to some shift, the element ) may be considered as the square root of the quadratic

o) (o )
q—4q q—4q

This concludes our short description of the algebraic setup so that we can begin to discuss

C- L ()22

)

Casimir element C',

the representations we are about to analyse. Following the intuition developed from the
non-supersymmetric case, we shall introduce representation on carrier spaces Q, which are
parametrized by a single parameter « of the form « € % + iR where ) = b + % and the
relation between b and ¢ is the same as before. The spaces Q,, are graded vector spaces. By
definition, they consist of pairs (f%(z), f!(x)) of functions f7 which are entire analytic and
whose Fourier transform f7 (w) is allowed to possess poles in the set S, that was defined
in eq. (2.3). The upper index j indicates the parity of the element, i.e. vectors of the form
(f°,0) are considered even while we declare elements of the form (0, f!) to be odd. On
these carrier spaces, we represent the elements K and v* through

R A B (R S

where T denotes the shift operator that was defined in eq. (2.5) and we introduced

sin (232) cos (252)
o =) = 2 (5.4)
S1n (T) COS (T)
Consequently, the matrix elements in our expression for m,(v*) are given by
B ei?‘rQba T% . e—i;rba T_%
[6w + O‘]— = 1 1 ’
g2 —q 2
iTba ib —imba ib
B e 2 T2 +¢ 2 T 2
[650 + a]+ = 1 —1 :
qz +q 2

— 12 —



It is not difficult to check that our prescription respects the algebraic relations in the
universal enveloping algebra U, (osp(1]|2)) and hence provides a family of representations.
In these representations, we can evaluate the Casimir element C' and its square root @,

N R o

where o(p denotes the 2-dimensional identity matrix and o3 is the Pauli matrix that is
diagonal in our basis. Note that the value of the Casimir element C' is the same in the
representations m, and 7wg. This is because the representations are actually equivalent. In
fact, one may easily check that the following unitary operator

S1(a—iw)

O o 7/ = - N\

o S1(a—iw
Ia — < So(af'iw) 1( ) ) )

So(a—iw)

involving the special functions S, defined in appendix A.2, satisfies
76(X) Iy = Toma(X) , for X =K,o®),

In order to discuss the reality properties of our representation, we need to introduce the

12 _ _—1/2
A2 = (9 0 ) where 7 (5.5)

following matrix

0o 0= qu/z Y2

A square root A of the matrix A\? appears in the definition of the scalar product
(0.0 =Y [ dag' @) 2 @), (5.6)
i?j

A short calculation shows that the adjoint with respect to this scalar product imple-
ments the * operation we defined above, i.e. (g, X f) = (Xg, f) for all three generators of
U,(0sp(1]2)). Once again one can check that the representations 7, admit duality b — b~!
in the same sense as above. More concretely, our formulas can be used to define a rep-
resentation of Us(osp(1]2)) with ¢ = ¢™ " on Q, such that the corresponding operators
(anti-)commute with the representation operators for the original action of U, (0sp(1|2)) on
Q. Let us mention that a similar series of representations was recently discussed in [22],

though the precise relation to the ones we consider here is not clear to us.

6 The Clebsch-Gordan coefficients for U,(osp(1]2))

As in the case of U,(sl(2)), we are interested in the Clebsch-Gordan decomposition of the
representation 7, ® mq,,

®
Tay @ Moy ~ / dog oy -

Q .
5 HIRT
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We shall show below that there exist two independent intertwiners for any given choice of
a1, a9 and as. We shall label these by an index v. The corresponding Clebsch-Gordan
coefficients are defined as

(v) js

J
i a3 g 1 :a
FJSV)B(OZ?),:U?)) =Y | dagday L o } [ (@2, 21) -
jor VB 372 T L2

In order to construct these coefficients, we introduce the following products

v(r+1)(o+1) ST+V+1 (221 +%) Sy+o+1(2’23+€) ST+U+1/ (213+ %)
Sr(za1+021) So(z03—5+ao3) Srior1(zi3+etaiz)’

DY (i i) =(~1) (6.1)

where z;; and «;; in the same way as in the U,(sl(2)) case. In addition, we have introduced
a parameter € that will serve as a regulator in products of Clebsch-Gordan coefficients later
on, just as in the case of Uy(sl(2)). The Clebsch-Gordan maps are now obtained as

Z(_l)(j1+0)(j2+T+a)(_|p|)V(l_(jl_j2)2)_j1j26j1+j2+y7j3./\/‘1/2D7(-I;) (24 i) -

[ag oy ay ] (v) 3
J2J1 T,0

T3 To T

(6.2)
The normalizing factor N''/2 is the square root of the N we defined in eq. (3.3). Regular-
ization is understood whenever it is necessary. If we remove the regulator €, we obtain the
Clebsch-Gordan coefficients

asar 1B fTasapar] \ @5
= lim )
T3 T T e—0 T3 T T1 |,

J2J1 J2J1

The intertwiner properties and orthogonality relations for these Clebsch-Gordan coefficients
are established following the same steps as in the case of U, (sl(2)). Our discussion in the
subsequent section will therefore focus on equations containing additional signs and on the
final results.

6.1 Intertwiner property

The Clebsh-Gordan coefficients satisfy the intertwining properties for X = K, v(+)

. ' v v O j3 ] . a3 09 X 3
5425?[ 01 1] :5§s(ﬂaz®ﬂa1)N(X)pjﬂk[ s o1 1]

i
WQB(X) NEN
T3 T2 L1 | 4,4, T3 To T

J2g1

The transpose on the right hand side is defined with respect to the scalar product (5.6).
All these equations may be checked by direct computations. For X = K the analysis is
identical to the one outlined in section 3.1. So, let us proceed to X = v(*) right away.

— 14 —



When written out in components, our basic intertwining relation reads

1 [ 7(0)0
(v(+)> a3 o2

o3 0 |T3 T2 T1 0o

(v(+))0 [ag az a1 ]!
a3 1 [1x3 X2 T1 o1

r 7(0)1
)" o]
o3 113 T2 T1 19

r 7(0)0
COM R
@3 0[T3 2271 ]y

01

() [
)|
_ Al (vm)lllo [
— afy (v9) [

00
00

01

01

11

a3 g (1
T3 9 I1
a3 g (1
T3 X9 I1
a3 g 1
Tr3 T I
a3 a2
T3 X9 I

0)1

|
|

+A%, <U(+)>
+Al, <v(+))

01
©)0

00

01

] — Ay ()

01

For the second set of Clebsch-Gordan coefficients we find,

0T
(v(+)) Q3 Qg v
a3
1173 T2 21
((+ )0 o3 9 (V]
a3 1123 T2 21
((Jr )1 a3 (g (V1
Yas 0|3 22 X7 |
( )1 [ g a |
0 [Z3 X2 21 |

S ()1

J11
1M1

Joo
110

01 [ ]
—At () a3 a2 (+)
AlO (U ) 11 L L3 T2 T | 01 AlO (2} )
01 [agaga]MO
:At (+) 3 2 4 A (+)
10(1) )00_:6’3.%'2%1_01 + O(U )
oo [ 1M1 1
= At (p) a3 a2 M t ()
AlO (U ) 01 L L3 T2 T | 00 +A10 (2} )

—_Al (,U<+>)1 !

|

10

Q3 (g (1
xr3 T2 Ty

1)1

|

11

As in the nonsupersymetric case one may employ the identities

10

00

11

01

(00 00
AL (p(H)
Ll o (v > 10 [

10

11

0

sz Sl( 1T+ al) _ [*Z':L‘ + a1]1 So(*ix + al) Tib
Si(—iz +az) [—ix + asg)i So(—ix +ag)
b So( ir+a1)  [~iz+ai]o Si(—iz + a1) ib
So(—iz +az) [—ix+ag)o Si(—ix +ag) ¥

b So(—iz + ap) ,q% —q_% [—iz + ai]o S1(—ix + a1)

T Si(—iz + az) _Zq% +q,% [—ix + ag]1 So(—ix + a2)

LL3 T2 X1 |

[a3 az a1 ]
L L3 T2 X1 |

_043 Q2 011_

LT3 L2 T1

a3 09 (1

|
|

Tr3 Ty Il
a3 (g (1
T3 g I
a3 a2 (0
x3 T2 Ty

Q3 2 (]

|

T3 T2 T1

Qa3 Qi

|

xr3 r2 T1

ib

xr

|
|

|

—053 a3 al_

|

|

(0)1

10
(0)0

11
(0)0

00
(0)1

10

411

(M1

00

to check that all the intertwining relation for X = v(*) is satisfied. The same steps are

carried out to discuss X = v(7). Details are left to the reader.

6.2 Orthogonality and completeness

The most difficult part in the analysis of the Clebsch-Gordan coefficients is once again

concerning their orthonormality relations. The intertwining relations we have established

in the previous subsection guarantee that

>

ja.gz Y R

a3 0
dedxl [13122111]

(/’L)vi3
kak1

(V) 7j3

Jj2j1 |Ysx2x1

[53 Qg

)

\J2k2 \J1k1 —

_1)tD R _ inc (3
=32/ S () DD, (203)| 726,076 (By — as) O(ys — x3), (6.3)

[
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up to an overall factor. This normalization is established with the help of a set of integral
identities which follow from a supersymmetric version of the star-triangle identity, see
appendix B.2. In particular one uses

v T (7 )" (v)e _ 16(_1)p1/ 2 —
Z/dxgdxl(—l)(p+ ) (D;’f,) ) DT(Uer) = méy,u(s(ﬂii — a3)d(ys — x3),

where we introduced

DW= DW€( 13, 9, 21; a3, a9, 1), DW¢€ = DW€(y3, 9, 21; B3, 2, 1) -

Since the analogous computation for U,(sl(2)) was described in great detail in section 3.2
we can leave the derivation of eq. (6.3) as an exercise.

7 The Racah-Wigner coefficients for U,(osp(1|2))

The definition and computation of the Racah-Wigner coefficients for U, (osp(1]2)) proceeds
very much along the same lines as for U, (sl(2)), see section 4. After giving a precise
definition in the Racah-Wigner coefficients, we will state an explicit formula. It resembles
the one for U,(sl(2)), see eq. (4.6), except that all special functions carry an additional
label v € {0, 1}.

As in the case of Uy(sl(2)) be begin by defining the following two maps for the decom-
position of triple tensor products,

vivay & (v1)1 (vr2)n
<I>ta a3 @2 (x4;25) = Z / dzy e e s o2 (7.1)
Clagar |, Kl — T4 Tt X1 Ty T3 L9 )

enl e jk
as a7\ aqasas ] P Tag ag a [0™
<<I>33[ 3 2] ) ($4;$i):Z/de[ e } { 50 1] . (7.2)
Qa1 ], jkl m T4 L3 Ls Je jm LTs P2 X1 1e i
From these two maps we can compute the Racah-Wigner coefficients through the usual
prescription
a1 a3 o vava
<{ | ™2 } ) 51(2a4)| 726 (o — ) 6 () — z4) = (7.3)
s o fy) .

as 0[2 viva\ m * Oég Oé2 v3vga\ N

: 3 t /. .

- 1% Z /d x <(I)C¥t [a/ a :| ) (le’mi) (‘I’fxs |:04 a :| > ($47$i)
T ikim 4 e gkl 41 Je gkl

where the integration measure is d*z = H?Zl dx;. After integration and summation, the
right hand side turns out to be independent of o), 2y and n. Using the explicit formulas
for the regularized Clebsch-Gordan maps along with our knowledge of poles and residues
of the special functions S,, see appendix B.2, we can perform the integrations with the
help of Cauchy’s integral formula to obtain,

a1 a3 O iz vy Svi(@a)Sy, (a1) )
= _1)vevstra Pral\®4)oun \91) 9 4
({az 044‘0% }b>yw2 521- vi=0 mod 2(=1) Sy, (2) 0, (@3) |S1(20) |7 % (7.4)

. _1\v(vatuy) S1tvtvg (Ua + 1) S1 4040, (g + t)SlJrz/Jer (u3 + t)Sl+V+V3 (a3 +1t)
x [ Aty (-1)
i Svtvatus (u23 + t)SV-I-Vz-f—Vg (23 + 1) Sy (2as +1)S,(Q + 1)

,16,



All the variables a; and wu;, @; etc. where defined in section 4. Note that they are associated
to the four vertices which in turn correspond to the indices v;. In this form, our result
appears as a natural extension of the expression (4.6) for the Racah-Wigner coefficients
of Uy(sl(2)). The sum over v accompanies the integral over t. The shift v — v + 1 in
the index of S, appears for those S, that we decided to write into the numerator. The
parameters v; are placed such that they mimic the arguments of the S,. Unfortunately,
we do not have a simple rule to explain the sign factor, but of course it comes out of the
calculation as stated.

8 Comparison with fusing matrix of Liouville theory

As we outlined in the introduction, the Racah-Wigner coefficients for the self-dual series of
representations we considered here coincide with the Fusing matrices of (supersymmetric)
Liouville theory, at least up to some normalization dependent prefactors. For the case of
Uy(sl(2)) this was shown by Teschner in [23, 24]. Entries of the fusing matrix of N =1
supersymmetric Liouville theory were computed in [14] and we are now going to compare
these with the Racah-Wigner symbols (7.4) of U,(osp(1|2)), after a short review of the
non-supersymmetric theory.

8.1 Liouville field theory and U,(sl(2))

The fusion matrix of Liouville field theory can be obtained by calculating the exchange
relations for the chiral operators in the scalar field representation [23, 24] (see also [25] for
an earlier construction). To spell out this result we need to introduce some notation.

The Verma module VA of the Virasoro algebra of the highest weight A and the central
charge c is defined as a free vector space generated by all vectors of the form

VAMK = L,mj . Lo v, (8.1)

where m; > ... > mg > mq, m, € N and vx is the highest weight state with respect to the
Virasoro algebra,
Lova = Ava, Ly,van =0, m > 0. (8.2)

The chiral vertex operator,
V[Aﬁil} (2) : Va, = Vag,

is a linear map parameterized by the conformal weight of the “intermediate” module Va,
and defined by the commutation relations

L0 V]33, ] )] = 27 (20 + (0 + 1A V]2 ] (2), (8.3)
the form of the Virasoro algebra and a normalization

V[ 5z } (2)va, = 220722721 (1 4 O(2)) va,, 2= 0. (8.4)

AzAg
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With the notion of the chiral vertex operator at hand we can define a four-point
conformal block,

Fa [3182]() = (van V]33 0V]22 ) Gvar ). (8.5)

where (-, -) is the usual hermitian, bilinear form on Va, which is uniquely characterized
by the conditions L}, = L_,, and (va,va) = 1. Finally, the Liouville fusion matrix (or
monodromy of conformal block) is defined as an integral kernel appearing in the relation

Az A as « A1 A
Fa 282 () = [@ o P ARz 0 -, (.6)
b (2

with A; = «;(Q — ;). It appears to be difficult to derive the form of the fusion matrix
directly from its definition. However, there exists a simple relation (which we shall formu-
late explicitly below) between the fusion matrix and the braiding matrix of the Virasoro
chiral vertex operators, i.e. the integral kernel appearing in the formula

V2] el e = /@ e B el Jeovla e e

The latter can be derived by direct calculations of the exchange relation of chiral vertex
operators in the free field representation [23, 24].

—%, act on the Hilbert space L*(R).
Denote by F the Fock space generated by action of negative modes of the algebra

Let the hermitian operators p,q, with [p,q] =

L =a_m,

1
[am,an] = §m5m,,n, m,n € Z\ {0}, a

on the vacuum €2, where a,,© = 0, m > 0. On the Hilbert space H = L?(R)®F there exists
a well known representation of the Virasoro algebra with the central charge ¢ = 1 + 6Q?,
given by,

Lo(p) = > anamn+(2p+imQa,,  m#0,
n#0,m

= 1
Lo(p) =2 Z apna_n +p° + ZQz'

n=1

(8.8)

Each state of the form |v,) = |p) ® Q, with p|p) = p|p), is of highest weight with respect to
the algebra (8.8) and satisfies

LoP)w) = A@w) . A =p*+;Q°=a(Q—a), a=2+ip

Acting on such a state with L_,,(p) one generates a Virasoro Verma module VA(p)-
The normal ordered exponentials

Ea(x) — o4 erup<(x) e2a:cp e2a<p>(ac) e (8.9)
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where
[ee] o0

a_ ; a ;
pol()=—i) =t o (x)=i) e,
n n
n=1 n=0

together with the screening charge

serve as building block for a chiral field

g2 (z) = E%(2)(Q(x))". (8.10)

Commutation relations of the field (8.10) with the Virasoro algebra generators are of
the form

Lalp) g5 )] = (< +na(@ - ) ) 20 (s11)

and coincide with (8.3) (with A(p) substituted for Ag) for w chiral vertex operator trans-
formed from the complex z plane to the zero-time slice of an infinite cylinder. It is also
easy to check that g{(x) maps vectors form V,, to V, with ¢ = p; — i(a + bs). The
field (8.10) therefore yields a model for a family of (unnormalized) vertex operators with
Ay = A(p) and arbitrary (thanks to a possibility of adjusting the value of s) A; = A(py)
and Az = A(q).

Suppose there exists an exchange relation

gsy (z2)gs) (71) = /dt1dt2 B(ailsi, ti) gp)! (x1)gg, (12). (8.12)
Using
E%(2)EP (y) = e 2msien(=v) EF (1) E* (),

and a clever representation of the screening charges in term of a Weyl type operators it is
possible to normal order both sides of (8.12). Schematically

8oy (v2)gs)! (z1) = E** (22) E™ (21) A(x) P21 (p, 1),
g, (z1)gs,) (w2) = E* (22) E* (21) A(X) Pra(p, 1),

where the functions A, P; o and P> are explicitly known and the operators x, p,t satisfy
commutation relations

Pl =2 Ipt)=[td=0.

Upon acting on a common eigenstate of p and t the formula (8.12) thus boils down to a
relation involving just functions of eigenvalues of these operators and the integral kernel B
we are after. The special function G, appears in this formula thanks to identities of the form

e (14e72P) o = Gy ($4ip) Gt ($+ip) = Gy ($+ip+b) G (§+ip)

which also allow to calculate an arbitrary power of the screening charge Q.
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To calculate the braiding matrix of the normalized vertex operators, appearing in
eq. (8.7), one needs to determine the matrix element of the chiral field g%(1) between
highest weight states of the Verma modules V() and V(). This was achieved in [23, 24]
by deriving and solving a pair of difference equations for this matrix element, which follow
from considering the four-point correlation function involving degenerate field E3 (x).

Finally, a relation between braiding matrix and the fusion matrix can be derived by
considering a sequence of “moves” including braiding of generic vertices, “elementary”
braiding of a generic vertex with the vertex acting on the vacuum Verma module (with
A = 0) and use of a state-operator correspondence [24] (see also [26] for a more detailed
explanation). It reads

Fooa,[2282] = Ba,a, [2281] - (8.13)

Qg ] a4 2

The resulting form of the Liouville fusion matrix, to be found for instance in [27] section
3.5, coincides with eq. (4.6) up to a factor due to a different normalizations of chiral vertex
operators and Clebsh-Gordan coefficients.

8.2 Neveu-Schwarz sector of the N/ = 1 superconformal theory

The Neveu-Schwarz (or NS for short) supermodule VA of the highest weight A and the
central charge c is a free vector space spanned by vectors of the form

VAMK = LfMGfKI/A = L—m]—-‘-L—mlG—ki-wG—klyAa (8.14)
where K = {ki, ko, ..., k;} and M = {mq,ma,...,m;} are arbitrary ordered sets of indices
1
ki > ...> ko >k, kSEN_i’ mj = ...2=mg = mi, m, € N.

Here va is the highest weight state of to the NS algebra,

[Luny L] = (M = 0) Lon g + ~=m (m2 = 1) mim,

12
m — 2k
1 3
{Gr,Gi} = 2L + % <k2 - 4> Oky1, €= 5t 3Q%,

even with respect to the the fermion parity operator (—1)f" defined by relations
[(-1)", L] = {(-1)", G} =0.
The NS module is thus a direct sum of an even and an odd (with respect to (—1)") subspaces
Va = VA @ VR.

This Zs grading reflects itself in a parity structure of the chiral vertex operators: we define
them as two families of even,

Ve[AggJ (2): VL, — VL, Ve[;sgl} (2): VI = VL, n=eo
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and two families of odd linear maps

Vo[ Ay }(2) VZI — VZB, VO[*AQ }(z) V21 — VZB, €e=o0,0=e¢e,

AzAq AzAq

uniquely specified by the (anti)commutation relations (here _As stands either for As
or for xAy)

| =2 0. + (m+ DA V[ 22 | 2),
s22,]@)] =2 o+ 1) (A0 + 1) vz |2,

} (8.16)
{Grv sz ] @)} = 7% (0. + ma(2k + 1) Ve[ 22 | (),

and appropriate normalization conditions. We are thus in a position to define four even

Az _A
P[RR ) = (van Ve Ve %, | Ghva ) (8.17)
and four odd conformal blocks,
Az A o o)
R R = (vanve[si  ve[s, [ va ) (3.18)
As in the Liouville case we define the fusion matrices F' by the relation
A as _« A _A
PR R e / dov Y Fosa[632)" 5 FR[ A1 22 (1= 2). (8.19)
Q+ZR+ p=eo

Calculation of the braiding matrices above, given in [15], is parallel to the calculation in
the Liouville case and we shall not present any of its details here, referring the interested
reader to the original paper. To relate the findings of that paper to the form of the 6j
symbols given in (7.4) let us start by observing that formulae (5.10), (4.61) and (4.53)
from [15] give

Fl(at + oy — al)l“l(o?t + oy — al)Fl(at + Qg — al)Fl(&t + a4 — 051)

Fl(as + g — ag)Fl (ds + ay — ag)Fl(as + Qyq — ag)l“l(ézs + ayq — 043)
Fl(at—FaQ — ag)l“l(@t+a2 — ag)rl(at-f-@g — ag)l“l(dt + a9 — 043)
Fl(as+a2 — al)l“l(ds + g — al)Fl(as—f—&g — al)l“l(@s + a9 — al)

L TR0l e
) 4T1(Q — 204)'1 (2a: — Q) / = o, [Oz4 az]

F [a3 az]e —
QsOt |ag e

iR

where

Ju ag 041 Z a2+t (072+t)Sl,(@4—oz3+a1+t)Sy(a4—ag—i—al —l—t)‘
s 0‘4 “2 Sy(ay +as +1)Sy(ar + as +t)S,(as + a1 + ) Sy (as + a1 +t)

It was proven in [14] that this function enjoys the following symmetry property

F ag a2]1€ F g aq]€
Qst g o] € T T astt |z a €
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so that we have

Fl(at + a3 — ag)Fl(o?t + a3 — ag)I‘l(at + a3 — OQ)Fl(@t + a3 — Ozg)
Fl(as + a3 — 0_44)F (O_és + a3 — C_¥4)F1(Oés + a3 — 0_64)F1(C_k3 + Qg3 — 0_44)
) 1(@15 + o] — 544)F1<O¢t + o] — 5&4)F1 (@t + a1 — d4)
Fl(Oés + a1 — ag)Fl(as + o] — 042)F1<Oés + a1 — Oég)Fl(O_és + a1 — 062)
(
(

y 1 Fl 2a5)F1 20_45) /dt J [d4 062]
AT1(Q — 2a)T1 (200 — Q) J @ o lesen

F a3z az]®
Qst g o] e

I’l(at + a1 — oy

iR
where, after a shift of the integration variable ¢t — ¢t + o, — «g,

dt dt v(ug +t)Sy (g + ) Sy (ug + ) S, (s + t)

e a4 012 2
/ i Josor [ag a1] / Z Sy (ugg + 1) S, (a3 + 1)S, (205 +1)S,(Q + 1) (8.20)
iR

with the variables u;, @; etc. defined in section 4. Comparing eq. (8.20) with eq. (7.4) we

thus see that .
a1 O3 Qg
F[os22]®
sl <{042 044’0%}10)117

with the proportionality constant again due to a different normalization of chiral vertex
operators and 6j symbols.

Repeating the same calculation for the other components of the fusion matrix given
by eq. (5.10) from [15] we obtain

11
F[a3 ag]eooc CM1043’O¢S
o Q204 Qr Jy, /g0

00 00
s e (Lo oo Flaltox ({o o) )
a4 O Qo Qo v/ 11 ) a4 Qo oy v/ 00

Similarly, components of the fusion matrix given by formula (5.11) from [15], as well as the

and

remaining eight components of the fusion matric appearing in (8.19) not explicitly given
in that paper, are expressible in terms of the 6j symbols (7.4).

9 Conclusions

In this work we have constructed and studied a set of infinite dimensional self-dual repre-
sentations of the quantum deformed algebra U, (osp(1]2)). In particular, we computed the
Clebsch-Gordan coefficients (6.2) for the decomposition of tensor products of self-dual rep-
resentations and the associated Racah-Wigner coefficients (7.4). All these data were built
out of a pair of special functions @g(z). In our analysis we employed a number of beau-
tiful integral identities for these functions, see section 6 and appendix B.2. These mimic
corresponding identities satisfied by the quantum dilogarithm, only that all integrations
are now accompanied by a summation of discrete indices v = 0, 1.
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There are a number of issues that would be interesting to address. To begin with, we
have only computed the fusing matrix for the Neveu-Schwarz sector of N = 1 Liouville field
theory. It would certainly be important to include matrix elements when some of the fields
are taken from the Ramond-sector. Representations from the Ramond sector of the field
theory should be associated with another series of self-dual representations of U, (0sp(1]2)).
Once these representations have been identified one needs to extend the above analysis to
products within such an enlarged class of representations. In field theory, at least some
elements of the extended fusing matrix are known. Since their form is not very different
from what we encountered in the Neveu-Schwarz sector, the entire analysis is likely to rest
on the set of integral identities we stated and used above.

Another interesting direction is to extend the number of supersymmetries. In stepping
from N = 1 to N = 2 supersymmetric Liouville theory, we must replace U, (osp(1|2))
by U,(osp(2]2)) = Uy(sl(1]2)). Even though this is probably the most relevant case, it
would be possible to continue and study the entire series U, (osp(IN|2)). Finally, let us also
mention that there exists an intriguing duality between the 6j symbols for finite dimensional
representations of U, (sl(2)) and Uy(osp(1]2)), see [13, 28]. It would be very interesting to
extend this duality to the self-dual series. We shall return to these issues in forthcoming
publications.
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A Some special functions

This appendix contains definitions and a short list of important properties for the special
functions that appear in the main text. The first subsections deals with those functions
that arise in the context of U, (sl(2)) while the second subsection is tailored towards out
discussion of Uy (0sp(1]2)). Derivations of some of the identities can be found at many
places in the literature.

A.1 Special functions for U,(sl(2))

The basic building block for all objects that appear in the context of the quantum al-
gebra Uy(sl(2)) is Barnes’ double Gamma function. For fex > 0 it admits an integral
representation

o0 dt e—azt _ e—%t (
logI'y(x) = / — — — — ,
(@) 0o t|(1—et)(1—eb) 2et t

wlQ
|
8
~——
o
Nla}
|
8
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where Q = b + %. One can analytically continue I'y, to a meromorphic function defined
on the entire complex plane C. The most important property of I'y, is its behavior with
respect to shifts by b®,

Vi 2rbbr—3
Fb (bl’)

™ _5+%
Fb(x) N Fb (:E + b_l) = \/i)b(x)l“b(x) . (Al)
b

These shift equation allows us to calculate residues of the poles of I',. When x — 0, for

Ip(z +b) =

instance, one finds

I'h(Q)

r = —" 1). A2

o) = 22 o) (A2)

From Barnes’ double Gamma function we can build two other important special functions,
Iy (z)

Sp(r) = =—————, A3

Gy(z) = e~ 27@Q2) g (). (A.4)

We shall often refer to the function Sy, as double sine function. It is related to Faddeev’s
quantum dilogarithm through,

Py (z) = AG,? (—m + g) :

where

A= im1-4)/12 02, (A.5)
The Sy, function is meromorphic with poles and zeros in
Sp(x) =0 x=Q+nb+mb ', n,mecZs,
Sy(x) ' =0 2=—nb—mb !, n,m € Zx>q.

From its definition and the shift property of Barnes’ double Gamma function it is easy to
derive the following shift and reflection properties of Gy,

Gl +b) = (1= ™) Gy (a), (A.6)
G ()G (Q — x) = ™=@, (A7)
We also need to the asymptotic behavior of the function Gy, along the imaginary axis,
Gp(x) ~ 1, Jmz — 400,
Gbixi ~ e (@=Q) Jmz — —o0. (4.8)
A.2 Special functions for U,(osp(1|2))

In discussing the representation theory of the quantum superalgebra U, (osp(1]2)) we need
the following additional special functions

1 (z) = ns(z) = Iy, (g) I, (x J; Q) ,

To(r) =Tr(z) =T <$;b> Iy, <$+2b1> :
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Furthermore, let us define

S1(z) = Sns(z) = FNZ?%%’ G (x) = Grs () = Goe™ T2 Sxs(w), (A.9)
So(x) = Sp(x) = FRF(z;_)x) L Gola) = Grlx) = e~ T e TH@ D gy ()

where (o = exp(—irQ?/8). The functions S, are related to the supersymmetric analogue
of Faddeev’s quantum dilogarithm through

Oy (z) = AQG;1 (—ix + 622) ,

with a constant A as defined in eq. (A.5). As for S}, the functions So(z) and S;(x) are
meromorphic with poles and zeros in

So(z) =0 2=Q+nb+mb ", n,m e Zso,m+n € 22+ 1,
Si(z)=0ez=Q+nb+mb"', n,mécZsy,m+nc 27,
So(x) ' =0e2=—nb—mb ', n,m € Zsg,m+n € 2Z + 1,

Si(z)'=0s2=—nb—mb !, n,m € Zso,m+n € 27Z.

As in the previous subsection, we want to state the shift and reflection properties of the
functions G7 and Gy,

G, (z+ B = (1 - (_1)Vem‘b*1x) Gy (@), (A.10)
G (2)G(Q — ) = ez W12 eZe(@=Q) (A.11)
Asymptotically, the functions G; and G behave as

Gy(z)~1, Jmx — +o0, (A.12)
Gy(x) ~ e%(”—l)gge%fﬁ(z—@ , Jmzr — —oo. (A.13)

B Integral identities

For our proof of the orthogonality relations of Clebsch Gordan coefficients we need a number
of integral formulas for the special functions discussed in the previous section. We shall
state these identities here. In both subsections we shall start with the star triangle relations
and then deduce a number of simpler integral identities.

B.1 Integral identities for U,(sl(2))

The most complex identity we need in the main text is the following star triangle relation
for double sine function,

/danbx—i-az)Sb —z+b;) H Sp(a; + b))
=1

i,j=1
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which holds provided that the arguments satisfy the balancing condition

3

Z(ai+bi) =Q.

i=1

A proof can be found e.g. in [18]. Here, we will only state the necessary results. The star
triangle relation can be reduced to the Saalschiitz summation formula [11]

: dTeQﬂiTQ =
i) o Gp(t+a+b+c—d+ Q)Gy(T+ Q)Gy(T + d)

Gh(Q+b—d)Gr(Q + ¢ —d)GK(Q + a —d)
Gr(Q+b+c—d)Gr(Q+a+c—d)Gr(Q+a+b—d)’

1 /ioo Gp(T 4+ a)Gp(T + b)Gp(T + ¢)

= Q=G (a) Gy (b) Gy (c)

A useful consequence of the Saalschiitz summation formula can be obtained by taking the
limit ¢ — 700

oo 1 Gp(T+d)Gr(T+ Q)
= Q=D Gy (a) Gy (D) Gy (Q + b — d)

/ioo diew”Q Gb(T+(I)Gb(T+b) -

Gp(Q +a —d)
Gb(Q-i-a—i-b—d)'

Also, by taking the additional limits ¢ — —ico, d — —ico with a — d 4+ Q) fixed one may
derive the well known Ramanujan summation formula

—€ = s (Bl)
—ico Gh(t+Q)  Gula+p)
which holds for arbitrary « = a — d + @ and § = b. Ramanujan’s summation formula
is a five-term (pentagon) identity. In may be considered a quantization of the familiar
Rogers five-term identity satisfied by dilogarithms. In fact, the function G}, that was used
throughout most of this test is closely related to Faddeev’s quantum dilogarithm &y, which
we introduced in the introduction, see eq. (1.1).

B.2 Integral identities for U,(osp(1]2))

In the supersymmetric case, the star triangle relations take the following form

3 3
. (vt dx
S (R ee))/2 / — [ St + a0 1w (2 +0) =2 T Svr, (ai + 1),
=1

v=0,1 ij=1
with
> (vi+ pi) =1 mod 2 (B.2)
i
and the balancing condition
3
Z(ai +bi) =Q.
i=1
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From these equations one can get 16 “supersymmetric” analogues of the Saalschiitz sum-
mation formula, some of which are stated with proofs for instance in [14]. As in the
non-supersymmetric case, taking the limit d — ioo leads to the reduced formulae

Z /zoo dr ’LTFTQ Uera(T—i—a)Gngpﬁ(T—Fb)

_ 9il=pe( =3 Fel@—0) Gpa(a)Gp, (0)G14py—pe (@ +a = ¢)Gryp,—p(Q+b—0)
’ Gputm—p(@Q+atb—oc) ’

where (y = exp (—inQ / 8) is the same constant factor as before. From these identities one
can easily obtain a system of four equations that generalize Ramanujan’s formula (B.1) to
the supersymmetric case,

Z /100 dT pﬂO’ it T 0+ pa (T + a) _ QCO—IGPa (a)GlJFPB (6)

Gpa+p5 (a+p) .

B.
=01 Got1(T+ Q) ( 3)

The notations are the same as in section B.1. The last identity is is supersymmetric version
of the pentagon identity for Faddeev’s quantum dilogarithm.

C Removing the regulator

Lets consider the distribution

e Shle+2)Sple— & —z)5p(2e +€-)
D(,¢-) = lim S, (46) ‘

We need to show that the following holds
D(x, &) = 6(iz)o(ig-).

In order to do so we integrate this equation along the imaginary axis against an arbitrary
test function f = f(z,y) to find

[7 [ it -

~ im d:n/ %f (.2 Sp(e+x)Sy(e —y — x)Sy(2¢ + y) _

e—0 St (4€)
3 0 dg /mo ﬁf de B
=y o 2mi 270 (v, (e +x)e—z—y)(2e+y)
. 100 dx /zoo d 4
= lim Y, €X) =
=0 .. 2mi 1+2)(1-z—-y)(2+y)

= o dy 4 -
</ 2772/100 2t (1 +x (1—x—y)(2+y)>f(0’0)_
= £(0,0).

In the last step of our short computation we have evaluated the double integral using
Cauchy’s formula.
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