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1 Introduction

There are several ‘eternal problems’ in the theoretical physics, that have been discussed

already for several decades. The problem of the electromagnetic mass of an electron is one

of them. A charge is a source of the electromagnetic field. The latter has energy and, when

a charged particle moves, it has momentum as well. The energy of the field contributes

to the total energy of the particle, and at least a part of its proper mass is connected

with this contribution. In the classical physics an electron is a point particle, so that its

electromagnetic energy diverges. In the simplest case when the charge e is distributed

uniformly over the surface of a sphere of the radius ε the electromagnetic contribution to

the self energy is

E = e2/(2ε) . (1.1)

The electromagnetic field of a charged particle is distributed in space. Its configuration,

and hence its energy, depends on the boundary conditions. Hence, in a general case the

field contribution to the self-energy besides the local divergent part contains an additional

term which depends on properties of the matter outside the charge, as well as the boundary

conditions. In a general case, the latter is non-local. If such a contribution depends on the

position of the charge and changes when the charge changes its location, then there exists

a non-local self-force acting on the charge.

Similar effect exists when a charge is located in a spacetime with non-trivial gravita-

tional field, for example, near a black hole. The black hole metric acts on the field generated

by a charge, in a way, similar to a dielectric [1] with the inhomogeneous refraction index.

It deforms the electric field so that it is not only decreasing at infinity, but takes very

special form at the horizon of the black hole, which, for example, guarantees the regularity

of the field in a freely falling frame. However, using the analogy with a dielectric, it can

be quite tricky to arrive to an intuitive explanation of a correct scaling of the self-force on

the distance from the horizon and even a sign of the effect (see discussion in [2]). Concrete

calculations are often required to get the correct answer. Knowledge of exact solutions in

some cases would be of great luck and help.

When the mass of the black hole is large, the curvature near the event horizon is small.

The horizon becomes practically flat and the gravitational field near it is approximately

static and homogeneous. In other words, the geometry in the vicinity of the horizon can

be approximated by a Rindler metric. If a charge is located close to the horizon the field

near it is similar to the field of a charge in the Rindler space. However, at far distances

from the charge the difference in the boundary conditions and the topology of the horizon

for these two cases (the charge near the black hole and in the Rindler spacetime) becomes
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important for the self-energy problem. We shall discuss this difference in the present paper

and demonstrate that it is related to the contributions of zero-modes of the corresponding

elliptic field operator.

First calculation of the electromagnetic self-energy of a charge in a static homogeneous

gravitational field was performed by Fermi in 1921 [3]. In particular, he demonstrated that

the ‘weight’ of a system of electric charges is a product of its electrostatic energy by the

gravitational acceleration, so that the electromagnetic contribution to the gravitational

mass is identical to (properly calculated) contribution to its inertial mass, as it is required

by the equivalence principle.

For a charge located near a static vacuum black hole the self-energy was calculated

in [4]. In the case of an electric charge near a four-dimensional Schwarzschild black hole

the self-force is repulsive. Later this result was generalized to the case of electric and

scalar charges near Reissner-Nordström black holes [5, 6] and stationary, axisymmetric

black holes [7].

Expressions for the finite part of the self-energy in the homogeneous gravitational field

can be obtained by straightforward calculations [6]. The result is very simple

Eres = −1

2
e2a . (1.2)

The purpose of this paper is to generalize these results to the case when a charged particle is

in a homogeneous gravitational field in the higher dimensional spacetime. There are several

reasons why this problem might be interesting. First of all, higher dimensional aspects of

the high energy physics attracted a lot of interest in connection with different models of

the brane worlds and large extra dimensions. In such models the fundamental scale of

the quantum gravity can be in the energy range of several TeV, which opens an intriguing

possibility of the micro black hole creation in modern colliders. An interesting question

is how the problem of the self-energy is modified when the spacetime has one or more

extra dimensions. Another reason that makes this problem interesting is purely theoretical

curiosity. The electromagnetic field in the higher dimensional spacetime is not conformal

invariant. Moreover, in the case when the spacetime has odd number of dimensions, the

Huygens-Fresnel principle is violated even in flat spacetime, namely, the retarded Green

function is not localized on the surface of the past null cones, but has ‘tail’ inside it. Static

Green functions, that are the main topic of this paper, also reveal specific properties that

are alternating with the odd-even dimensionatity of the spacetime. Recently, Beach et

al. [2] calculated the self-energy and self-force for an electric and scalar charges near 5-

dimensional spherically symmetric vacuum black hole. They explicitly demonstrates the

presence of a special logarithmic factor in the expression for the self-force.

An interesting consequence of this phenomena is the following. It can be shown that the

self-energy problem for a point charge in a static D-dimensional spacetime can be reduced

to the calculation of the quantum fluctuations of a scalar field in the Euclidean (D − 1)-

dimensional theory (see [8]). When D is odd, the corresponding (D − 1)-theory possesses

quantum anomalies. Their contribution to the self-energy of a charge in a Majumdar-

Papapetrou class of metrics was analyzed in [9, 10]. In three dimensions this anomaly was

used to calculate the self-energy of dipoles [11].
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In the present paper we focus on a simpler problem: the self-energy and the self-force of

a point charge in the static homogeneous higher dimensional gravitational field. We assume

that a charge is at rest in such a field. Since its worldline is not geodesic, it has acceleration,

which we denote by a. Let us emphasize that according to the equivalence principle, this

problem is identical to a study of the self-force acting on a uniformly accelerated charge in

the Minkowski spacetime in the absence of the gravitational field.

Because, besides the charge e, this problem contains only one dimensional parameter,

the value of the acceleration, an expected expression for the self-energy and the self-force

can be easily obtained up to a numerical factor by simple arguments based on the dimen-

sional analysis. First of all, let us notice that the dimensionality of the electric charge

depends on the number of dimensions. For example, the energy E of the interaction of two

equal charges e, and the force f between them in D-dimensional spacetime have the form

E ∼ e2

RD−3
, f ∼ e2

RD−2
. (1.3)

Here R is the distance between the charges.

As we shall see, for a point particle both self-energy and self-force are divergent. Based

on relations (1.3) one may arrive to a correct result that the leading divergence of these

quantities is

Ediv ∼ e2

εD−3
, fdiv ∼ e2

εD−3
a . (1.4)

One can define a finite residual part of the self-energy and the self-force, which are obtained

by subtraction of all the divergences. Both residual self-energy and self-force are also

proportional to the charge squared, while a−1 has the dimensionality of the length.1 Thus

one can write for them the expressions

Eres ∼ e2aD−3 , f res ∼ e2aD−2 . (1.5)

It is easy to see that in the four-dimensional case the expression for Eres correctly reproduces

(up to a numerical factor) the exact result eq. (1.2). In the five-dimensional case, the

corresponding exact expressions can be obtained by taking proper limit of the results

of [2]. By the comparison of the exact results [2] with eq. (1.5) one finds out that in the five

dimensions these expressions should be modified by a logarithmic term. Our calculations

in the present paper confirm that such a logarithmic factor appears in all odd-dimensional

cases

Eres ∼ e2aD−3 ln(al) , f res ∼ e2aD−2 ln(al) , D is odd . (1.6)

The parameter l which is required in order to make the expression under the loga-

rithm dimensionless, is an infrared (IR) cut-off. It should be emphasized that the case

of the homogeneous gravitational field is not realistic and is a certain idealization. The

gravitational field created by an extended compact object can be approximated by the

homogeneous one only in a domain, where its spatial change (and hence curvature) can

be neglected. Similarly, one can support uniform acceleration only for some finite interval

1We use units where G = c = 1.
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of time. One can expect that the parameter l reflects the role of these natural infrared

cut-offs.

In order to perform calculations of the self-energy for a point charge one needs at

first regularize its infinities. In higher dimensions this problem becomes more severe,

because divergences are stronger and have a more complicated structures. In D dimensions,

when D ≥ 4, the leading ultraviolet (UV) divergence of the self-energy is of the form

e2/εD−3, where ε is the UV cut-off length parameter. These divergencies can be absorbed

into the renormalization of the local mass of the particle. In four dimensions this mass

renormalization is sufficient to make equations of motion well defined and to determine a

remaining finite self-energy of the charged particle, which is the difference of energies of a

charged and a neutral particles of the same renormalized masses. In higher dimensions new

subleading UV divergencies appear which require special treatment. In a general case these

divergences contain the acceleration and its higher derivatives as well as the curvature and

its derivative (in a case of a curved spacetime) terms (see, e.g., discussion of the in [12, 13]).

Simple dimensional analysis shows that in our case of the homogeneous gravitational field

(constant acceleration) UV-divergent terms in the self-force have the following structure

fdiv
µ = e2aµP , P =

D−3∑
p=0

c
(p)
D

ap

εD−3−p . (1.7)

In the odd number of spacetime dimensions D the terms in the sum contain also ln(aε)

contribution.

One of possible ways to deal with these divergences is to add corresponding counter-

terms to the action for the particle motion and choose them so that the divergences can be

absorbed by a redefinition of the coefficients of these counter-terms. These counterterms are

necessary to consider even in flat spacetime and even for a constant acceleration motion [14].

In six-dimensional curved spacetimes the counterterms were explicitly calculated in [13].

For a motion of a particle with the constant acceleration a it is sufficient to consider

only counter-terms of the form

Scounter = −1

2

∫
Q(a)u2dτ , Q(a) =

D−3∑
p=0

C
(p)
D ap . (1.8)

Here u is the velocity of the particle, τ is the proper time, and Q(a) is a polynomial of

the power D− 4 of the acceleration a (or, in odd dimensions, a function which is obtained

from such a polynomial by including the ln(aε) term).

The variation of this action restricted to the motion with constant a is

δScounter

δxµ
= aµ

[
Q(a)− a∂Q(a)

∂a

]
. (1.9)

Here the polynomial in the square brackets is of the same order as Q(a). The chosen

structure of Scounter allows one to include the divergences eq. (1.7) into it by simple redefi-

nition of the coefficients C
(p)
D in Q(a). Note that taking into account logarithmic terms is

manageble and does not complicate the problem. Let us emphasize that such an approach
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would inevitably result in a theory containing higher than second derivatives in the par-

ticle equation of motion. The consistency of such a theory is a complicated problem that

we are not able to discuss here. Let us mention only that if one prefers not to introduce

the counter-terms similar to eq. (1.8), one may try to include the divergencies similar to

eq. (1.7) into a redefinition of the proper mass of the particle. However in such a case

the self-force of higher-dimensional classical point charges would become dependent on the

composition of extended classical charges. In other words the self-force can be used as the

probe of an internal structure of extended sources [15]. In the present paper we adopt the

renormalization approach. We shall use a modification of the proper time cut-off regular-

ization for calculation of the divergencies eq. (1.7) and calculate the finite residual part of

the self-force by subtracting these divergences.

Before describing the structure of the present paper, let us make one more general

remark. The problem of self-force becomes very popular in connection to the discussion of

motion of compact massive objects (for example small size black holes) near a large black

hole. The methods based on the general theory developed by DeWitt and Brehme [16]

and their recent modifications are widely used for this purpose. We would like to remark

that the non-local forces, similar to that we discuss in this paper, cannot be found in such

calculations.2

The paper is organized as follows: in the section 2 a brief review is given of the

general method which we use to compute the self-energy and self-force for a point electric

charge in a static spacetime. In the section 3 we apply this approach and a regularization

technique to an electric charge in a homogeneous gravitational field. In the section 4 the

results of calculations of the self-energy and the self-force of the electric charges in higher-

dimensional spacetimes are collected together. In sections 5, 6, and 7 we repeat the same

steps of calculations of the self-energy and the self-force, but in application to the scalar

charges. The section 8 is the summary of the results. In appendix A we provide definitions

and a general derivation of the density of the self-force and self-energy for electrically and

scalar charged media. In appendix B we collected the details of calculations of the Green

functions expansions, used in the derivation of our final results for the self-energy and

self-force.

2 An electric charge in a static spacetime

2.1 Equations

The action for the Maxwell field in a D−dimensional spacetime has the form

I = − 1

16π

∫
dX

√
−gD FµνFµν +

∫
dX

√
−gDAµ J

µ . (2.1)

Its variation with respect to the potential Aµ gives the field equation

Fµν;ν = 4πJµ , (2.2)

where Jµ is the current.
2Just to give a simple explanation, let us consider an electric charge in a flat space in the presence of

a conducting mirror. Since the curvature identically vanishes in the vicinity of the charge along all its

world-line, all the terms in the Brehme-DeWitt decomposition are the same as in the empty space. So that

the interaction of the charge with its ‘image’ is beyond their approximation.
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Let us consider a static spacetime and write its metric in the form

ds2 = gD
µνdX

µdXν = −α2dt2 + gab dx
adxb , ∂tα = ∂tgab = 0 , (2.3)

so that one has

Xµ = (t, xa) , a, b = 1, . . . , D − 1 , (2.4)

gD = det gD
µν = −α2 g , g = det gab , gD

00 = −α2 , gD
ab = gab . (2.5)

This spacetime has the Killing vector ξµ describing the symmetry of the metric under the

time translations. The Killing vector is defined up to an arbitrary constant factor, which

can be chosen by fixing the norm of the Killing vector ξ =
√
−ξµξµ = α(x) to be equal

to one at some point xo, that is α(xo) = 1. The proper time of an observer at this point

coincides with the coordinate time t.

Later on we consider the energy of a static point charge located at some point y, which

does not necessarily coincide with the point xo of the normalization of the Killing vector

ξµ. At the same time we shall use this vector to define the energy of the system. As a

result a so calculated energy E is in fact a function of two variables, E(xo, y). Similarly

one obtains the regularized value and finite residual self-energy Eε(xo, y) and E res(xo, y),

respectively. These quantities will be useful for the calculations of the self-force, because

one is able to find the change of the energy of the charge when its position y changes, while

the normalization point xo is fixed. On the other hand, when one discusses the energy of

the charged particle, it is always possible to choose a position of the normalization point

xo to coincide with the position of the charge, y, so that one can write

E(y) = E(y, y) , Eε(y) = Eε(y, y) , Eres(y) = E res(y, y). (2.6)

These are the ‘energies’ evaluated by the observer placed at the position of the charge.

For a static source Jµ = δµ0J
0 the vector potential Aµ can be reduced to the only

nontrivial component A0, which obeys the equation

1

α
√
g
∂a

(
1

α

√
g gab∂bA0

)
= 4πJ0 . (2.7)

Following the paper [10] we introduce another field variable ψ instead of the electric

potential

A0 = −α1/2 ψ . (2.8)

Then we can rewrite our problem as that for the scalar field ψ in (D − 1)-dimensional space

and interacting with the external dilaton field α. The equation for the field ψ is

(4+ V )ψ = −4πj . (2.9)

Here,

4 = gab∇a∇b (2.10)
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is the (D − 1)-dimensional covariant Laplace operator, V is the potential, and j is the

effective charge density

V = −3

4

(∇α)2

α2
+
4α
2α
≡ −α1/2 4 (α−1/2) , j ≡ α3/2J0 . (2.11)

The field ψ is chosen in such a way that the operator O = (4 + V ) is self-adjoint in the

space with the metric gab.

2.2 Energy

We define the static Green function G00(x, x′) as a solution of the equation

1
√
g
∂a

(
1

α

√
g gab∂bG00(x, x′)

)
=

1
√
g
δ(x− x′) , (2.12)

satisfying the properly chosen regularity conditions at the infinity and at the horizon (if

the latter is present). It is easy to check that the static Green function G00(x, x′) is the

time integral of the D−dimensional retarded Green function over the whole time t range.

Using the static Green function one can write the vector potential in the form

A0(x) = 4π

∫
Σ
dx′ α(x′)

√
g(x′)G00(x, x′) J0(x′) . (2.13)

The energy function E of a static charge distribution reads

E = −
∫

Σ
T νµ ξ

µdΣν = −
∫

Σ
dx
√
g αT 0

0 . (2.14)

Substituting here the electromagnetic contribution to the stress-energy tensor eq. (A.29)

one can show that

E =

∫
Σ
dx
√
g α−1gab∂aA0∂bA0 . (2.15)

Taking into account the Maxwell equations and boundary conditions at infinity and at the

horizon we get [5, 6, 10]

E = −2π

∫
dx dx′

√
−gD(x)

√
−gD(x′) J0(x)G00(x, x′) J0(x′) . (2.16)

Using the potential ψ given by eq. (2.8) the energy function eq. (2.16) can be presented

in the form

E =
1

8π

∫
dx
√
g gab

(
ψ,a +

α,a
2α

ψ
)(

ψ,b +
α,b
2α
ψ
)
. (2.17)

One can write

E = 2π

∫
dxdx′

√
g(x)

√
g(x′) j(x)G(x, x′) j(x′) . (2.18)

Here G is the Green function corresponding to the operator O = 4+ V in (D− 1)-dimen-

sional space

(4+ V )G(x, x′) = −δ(x, x′) . (2.19)
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The Green functions G and G00 are related to each other as follows

G00(x, x′) = −α1/2(x)α1/2(x′)G(x, x′) . (2.20)

A point electric charge e moving along the worldline γ defined by the equation Xµ =

Y µ(τ) is described by the distribution (see, e.g., [17–19])

Jα(X) = e

∫
γ
dτ gDα

µ(X,Y (τ))uµδD(X,Y (τ)) . (2.21)

Here τ is the proper time of the particle, uµ = dY µ(τ)/dτ is the velocity of the particle,

gDα
µ(X,X ′) is the parallel transport operator, and δD(X,X ′) is the invariant D-dimensional

δ-function

δD(X,X ′) =
1√
−gD

δD(X −X ′) . (2.22)

We are studying static charges in the static spacetimes eq. (2.3). For a static point charge

located at a fixed point y, the only non-vanishing component of the current is

J0(x) = e
1

α(y)
√
g(y)

δ(x− y) . (2.23)

The rescaled point current eq. (2.11) takes the form3

j(x) = e
α1/2(y)√
g(y)

δ(x− y) . (2.28)

Finally we arrive at the following relation

E = 2πe2 α(y)G(y, y) . (2.29)

It was demonstrated in [10] that this relation allows the following ‘elegant’ interpreta-

tion. Consider eq. (2.17) as an action for a quantum field ψ in a curved D− 1 dimensional

3Charges are normalized in such a way that the interaction energy of two point charges e1 and e2 placed

at a distance r from each other in D−dimensional Minkowski spacetime is

E =
Γ
(
D−3
2

)
π

D−3
2

· e1e2
rD−3

=
4π

(D − 3)Ω(D-2)

· e1e2
rD−3

, Ωn =
2π(n+1)/2

Γ((n+ 1)/2)
, (2.24)

where Ωn is the area of n-dimensional unit sphere. The interaction force between charges in D dimensions

reads

f =
4π

Ω(D-2)

· e1e2
rD−3 .

(2.25)

In the paper [2] authors work in a different system of units, such that the force between two charges ẽ1 and

ẽ2 in the D−dimensional Minkowski spacetime is given by

f =
ẽ1ẽ2
rD−3

. (2.26)

Thus, our normalization of the charges and that of the paper [2] are related as

e2 =
Ω(D−2)

4π
· ẽ2 , Ω2 = 4π , Ω3 = 2π2 , Ω4 =

8π2

3
, Ω5 = π3 . (2.27)
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Euclidean space with metric gab and the dilaton field α. In this case the Green function

G(x, x′) in the limit x′ → x is nothing but the fluctuations of the field ψ. Having in mind

this interpretation in what follows we shall use the notation

〈ψ2〉 = lim
x,x′→y

G(x, x′) . (2.30)

Let us notice that one can also write

α(y)〈ψ2〉 = − lim
x,x′→y

G00(x, x′) . (2.31)

Thus one can write eq. (2.29) in the form

E = 2πe2 α 〈ψ2〉 . (2.32)

This representation relates the energy of the point charge e and quantum fluctuations

of the (D − 1)-dimensional Euclidean quantum field ψ with the action eq. (2.17). From

(D − 1)-dimensional point of view ψ is a scalar field.

Of course, the energy of the charge is divergent and it has to be regularized (the

subscript ε marks the regularized quantities) either by point splitting or in any other way

Eε = 2πe2 lim
x,x′→y

√
α(x)α(x′)Gε(x, x

′)

= −2πe2 lim
x,x′→y

Gε 00(x, x′) .
(2.33)

For our purpose the covariant regularization is preferable. In this case one can put x′ = x

while keeping the ultraviolet (UV) regularization parameter ε fixed and only then take a

limit ε→ 0.

2.3 Self-force

The self-force acting on a static charge in a static spacetime eq. (2.3) can be defined in

terms of an integral of a force density fα(X) (in a roman font)

fα = −Tαβ ;β (2.34)

over the constant time slice Σ. Here Tαβ is the stress-energy tensor of the matter field

including the interaction term with the current, but the contribution of the mass distri-

bution is excluded. For a static charge the force has only spatial components fα = (0, fa).

The integral force acting on the static charge distribution can be defined along the lines of

the articles [15, 17, 20] and has the form

fa(y) =
1

α(y)

∫
Σ
ga
b(y, x) fb(x)α(x)

√
g(x) dx . (2.35)

Here y marks the spatial location of the particle and ga
b(y, x) is the parallel transport

operator within the hypersurface Σ. It’s important to understand that the current density

J0, the stress-energy tensor Tµν , the force density fα, etc. are, in fact, the functions of
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two points in Σ: the point x and the position of the particle y. For the point charge

J0(x) = J0(x|y) = eδ(x − y)/(α(x)
√
g(x)), and the coordinate y enters via the argument

of the δ−function.

Substituting Tµν for the electric field eq. (A.29) to eq. (2.34) we get

fa(y) =
1

α(y)

∫
Σ
ga
b(y, x)Fa0(x)J0(x)α(x)

√
g(x) dx . (2.36)

Then one can use eq. (2.13) to obtain

fa(y) =
4π

α(y)

∫
M

dx dx′
√
g(x)

√
g(x′)α(x)α(x′)J0(x)J0(x′)ga

b(y, x)
∂

∂xb
G00(x, x′) .

(2.37)

For the point charge the integration of δ−functions over the space leads to a simple result

fa(y) = e2 4π

α(y)

∂

∂xa
G00(x, x′)|x=y, x′=y . (2.38)

Here the derivative has to be taken before placing points x and x′ on the worldline of the

charge. In coincident points x = x′ = y the parallel transport operator reduces to the unit

matrix δba. One can symmetrize the expression in eq. (2.38) to obtain

fa(y) = 2πe2 1

α(y)

∂

∂xa
(
G00(x, x′) +G00(x′, x)

)
|x=y, x′=y . (2.39)

We rewrite it as

fa(y) = 2πe2 1

α(y)

∂

∂ya
G00(y, y) . (2.40)

This expression is formal because it is divergent and has to be properly regularized.

Regularization of the self-force can be performed by the same methods as those of the

self-energy. Then the regularized self-force acting on the charge can be written in terms of

a variation of the self-energy function over the position of the charge.

fεa = 2πe2 1

α(y)
∂aGε00(y, y) = −2πe2 1

α(y)

∂

∂ya
(α(y)Gε(y, y)) = − 1

α

∂

∂ya
Eε . (2.41)

Note that α = 1 at the position of the observer xo rather than the charge. Therefore, if we

want to evaluate the self-force at the position y of the charge, then we can put α(y) = 1,

but only at the very end of computations after taking the derivative over y.

3 Electric charge in the Rindler spacetime

3.1 Static Green function

The D−dimensional Rindler metric which describes a static homogeneous gravitational

field reads

ds2 = −a2z2dt2 + dz2 + dx2
⊥ , dx2

⊥ = δijdx
idxj , i, j = 2, . . . , (D − 1) ,

α = az , x ≡ xa = (z, xi) .
(3.1)
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We consider a particle at rest at the proper distance z from the horizon. Using the trans-

lation invariance of the metric one can always choose xi = 0. In what follows we assume

this choice.

The particle at rest at z = const has a velocity

uα =
1

az
δαt , (3.2)

and it experiences a constant acceleration

wα =
1

z
δαz . (3.3)

We remind that t is a proper time of an observer at rest at z = a−1 and, hence, at this

point

wα = a δαz . (3.4)

Our next goal is to find the static electromagnetic Green function in the Rindler

spacetime. In a general case one can add to it a solution of the corresponding homogeneous

equation. This ambiguity is fixed by a proper choice of the boundary conditions. In our

case the homogeneous equation is

(4+ V )ψ =

[
∂2
z + ∂2

x⊥
− 3

4z2

]
ψ = 0 . (3.5)

A solution can be decomposed into modes

ψ ∼ exp(ik⊥x⊥)Z(z) , (3.6)

where Z is a solution of the equation

d2Z

dz2
− |k⊥|2Z −

3

4z2
Z = 0 . (3.7)

This equation has two singular points: horizon z = 0 and infinity z =∞. Its solution has

two arbitrary constants. For |k⊥| 6= 0 one of them is ‘killed’ by the requirement that the

solution is finite at the infinity. Near the horizon one has

Z ∼ C0z
−1/2 + C1z

3/2 + . (3.8)

Thus we obtain

A0 = −α1/2ψ ∼ −a1/2(C0 + C1z
2) exp(ik⊥x⊥) . (3.9)

Keeping the leading term at the horizon one has for |k⊥| 6= 0

FµνF
µν ∼ z−2A2

0,x⊥
∼ C2

0k
2
⊥z
−2 . (3.10)

Thus a regularity of the electromagnetic field at the horizon implies that C0 = 0. To

summarize, in a general case a homogeneous solution dependent on x⊥ cannot be both

regular at the horizon and restricted at infinity. For |k⊥| = 0 the regularity of the field

strength at the horizon does not restrict constants C0 and C1. Such a solution is, in fact, a
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zero mode of our field operator. The remaining freedom is a choice of the constant potential

value A0 at the spatial infinity. But one can always put it equal to zero without changing

the strength of the field. Such a solution is unique. This simple analysis shows that if only

one finds the static Green function for our problem, which is regular at the horizon and

vanishing at the infinity, this solution is unique.

For the Maxwell field we have to find the regularized Green function for the operator

eq. (2.9) with the potential eq. (2.11). In the Rindler spacetime V = −3/(4z2) and

(4+ V )G(x, x′) =

[
∂2
z + ∂2

x⊥
− 3

4z2

]
G(x, x′) = −δ(x, x′) . (3.11)

We construct the Green function by using the heat kernel K(s|x, x′), which is the solution

the equation [
− ∂

∂s
+4+ V

]
K(s|x, x′) = 0 (3.12)

with the boundary conditions

K(0|x, x′) = δ(x, x′) . (3.13)

For the Rindler metric eq. (3.1) 4 is a flat (D − 1)-dimensional Laplace operator. The

static Green function

G(x, x′) =

∫ ∞
0

dsK(x, x′) . (3.14)

The static Green function in coincidence limit and, hence, the self-energy function

diverges. The standard way of extracting the UV divergences is to regularize the heat

kernel. In general, the regularized heat kernel can be obtained by multiplying the heat

kernel by a weight function ρ(s, ε), which vanishes for s� ε2 and is equal to one for s� ε2.

For example, a proper time cut-off regularization corresponds to a choice ρ = θ(s − ε2).

For our calculations it is more convenient to choose

ρ(s, ε) = exp(−ε2/4s) , (3.15)

Kε(s|x, x′) = ρ(s, ε)K(s|x, x′) . (3.16)

The corresponding regularized static Green function reads

Gε(x, x
′) =

∫ ∞
0

dsKε(s|x, x′) . (3.17)

Note that this regularization is covariant and can be performed originally in D dimensions

for arbitrary spacetime. The result of an integration of this heat kernel over the time t is

consistent with the static heat kernel Kε(s|x, x′).
One can check that the solution of eqs. (3.12)–(3.13) for the regularized static heat

kernel is

Kε(s|x, x′) =
√
zz′

2π

(4πs)D/2
e
−
z2 + z′2 + x2

⊥ + ε2

4s I1

(
zz′

2s

)
, (3.18)

where I1 is the Bessel function and

x2
⊥ ≡ δij(xi − x′i)(xj − x′j) . (3.19)
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The choice of the Bessel function I1 is dictated by the condition that in the limit of small

s the heat kernel eq. (3.18) tends to the regularized heat kernel in the (D− 1)-dimensional

flat space

Kε

∣∣∣
s→0
→ 1

(4πs)
D
2
−1

e
−

(z − z′)2 + x2
⊥ + ε2

4s . (3.20)

The regularized Green function is the integral eq. (3.17) of the regularized heat kernel

over the proper time

Gε =

√
zz′

2πβ
Iβ1 , β =

D

2
− 1 , (3.21)

and

Gε00 = −a zz
′

2πβ
Iβ1 , (3.22)

where we defined

Iην =

∫ ∞
0

uη−1 e−puIν(cu) du . (3.23)

Here are a few useful forms of the integral expressed in terms of the hypergeometric function

F or the associated Legendre function P ρσ

Iην = p−η−ν
( c

2

)ν Γ(η + ν)

Γ(ν + 1)
F

(
η + ν

2
,
η + ν + 1

2
; ν + 1;

c2

p2

)
= (p− c)−η−ν

( c
2

)ν Γ(η + ν)

Γ(ν + 1)
F

(
η + ν, ν +

1

2
; 2ν + 1;− 2c

p− c

)
= e−πνi/2Γ(η + ν)(p2 − c2)−η/2 P−νη−1

(
p√

p2 − c2

)
,

(3.24)

where

u =
1

4s
, p = z2 + z′2 + x2

⊥ + ε2 , c = 2zz′ . (3.25)

Let R and R̄ be the distances from the observation point to the charge and its image

correspondingly

R2 = (z − z′)2 + x2
⊥ , R̄2 = (z + z′)2 + x2

⊥ . (3.26)

The combination p− c = R2 + ε2 entering the Green function controls its singular behavior

in the limit of coincident points. Using the relations

p =
1

2
(R̄2 +R2) + ε2 , c =

1

2
(R̄2 −R2) (3.27)

one can express the heat kernel and the Green function in terms of R and R̄.

Thus we can write the regularized static Green function in the form

Gε00 = −aΓ (β + 1)

2πβ
(zz′)2

(R2 + ε2)β+1
F

(
β + 1,

3

2
; 3;− 4zz′

R2 + ε2

)
, (3.28)

One can check that both Gε00(x, x′) and Gε(x, x
′) vanish when one of the arguments, e.g.,

x, is placed on the horizon. It means that they satisfy zero Dirichlet boundary conditions

on the Rindler horizon.
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To obtain the general solution for the Green function G00 one should remove regu-

larization (put ε = 0) in eq. (3.28) and add a symmetric in z and z′ zero-mode solution

C0 + C1 (z2 + z′2) + C2 z
2z′2 of a homogeneus equation of the Maxwell equation.

This general solution

G00 = −a
Γ
(
D
2

)
2π

D
2
−1

(zz′)2

RD
F

(
D

2
,
3

2
; 3;−4zz′

R2

)
+ C0 + C1 (z2 + z′2) + C2 z

2z′2 (3.29)

is parametrized by three arbitrary constants C0, C1, C2, which are to be fixed by the bound-

ary conditions at the horizon and at infinity. In our particular case we require G00 to be

finite, when either z or z′ are on the horizon, and G00 to vanish at infinity. It leads to the

choice C0, C1 = C2 = 0.

The static Green functions for particular dimensions of the spacetime are given in the

appendix B. Their asymptotics at ε→ 0 can be found in appendix C.1.

3.2 Near-horizon limit of the Schwarzschild black hole

The geometry of a static black hole near the horizon can be approximated by the Rindler

metric. If a charge is close to the horizon its field in the Rindler domain can be described by

the above constructed solution. This means that this solution can be obtained as a special

limit of the field created by the charge in the black hole geometry. We illustrate this by

a simple example of a four dimensional Schwarzschild metric, where the exact solution for

the field of a point charge is known. The static Green function near a Schwarzschild black

hole of mass M is is [21, 22]

GSchw
tt = − M

4πrr′
− (r −M)(r′ −M)−M2 cos θ

4πrr′
√

(r −M)2 + (r′ −M)2 − 2(r −M)(r′ −M) cos θ −M2 sin2 θ
.

Here the first term (the Linet term [22]) is regular outside the black hole. It describes the

potential of a weakly charged black hole. This term −M/(4πrr′) is important to keep the

total charge of the black hole equal to zero and corresponds to the zero mode which is finite

on the horizon and vanishes at infinity. In the near horizon limit this term boils down to

a trivial constant zero mode in the Rindler space.

Near the horizon the Schwarzschild radial and angle coordinates are related with the

proper distance z to the horizon and transverse coordinate x⊥ as

r = 2M

(
1 +

z2

16M2
− z4

768M4

)
+O(M−6) , (3.30)

cos θ = 1−
x2
⊥

8M2
+O(M−4) (3.31)

The Rindler limit can be obtained by taking the limit of large M provided one considers

the domain near the horizon, where the proper distances from the horizon to the charge

and the observation point are kept fixed and finite. In this limit the coordinate time x0

is defined as the red-shifted Schwarzschild time t rescaled in such a way that the timelike

Killing vector is normalized to unity when the proper distance to the horizon is equal to

a−1.
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Then one gets

GSchw
00 ≈ − a

8π

(R+ R̄)2

RR̄
, (3.32)

where R and R̄ are given by eq. (3.26).

Our solution eq. (3.29) in four-dimensional Rindler space takes the form

G00 = − a

8π

(R− R̄)2

RR̄
. (3.33)

The difference between them is, evidently, the constant zero mode contribution

GSchw
00 = G00 −

a

2π
. (3.34)

Similar calculations can be done for the scalar Green functions. In that case no extra zero

mode contributions appear. The difference of the Green functions for the black hole and

Rindler spacetimes reflects the difference of their geometry and topology of the horizon.

4 Electromagnetic self-energy and self-force: results

4.1 Divergent part of the static Green function

In order to derive renormalized self-energy function one has to subtract the UV divergent

parts from the Green function eq. (3.21). Their local structure is given by the Hadamard

expansion. They can also be deduced from the heat kernel expansion in powers of the

proper time s. The generic structure of these divergences is

Kdiv
ε (s|x, x′) =

e−
2σ(x,x′)+ε2

4s
−λ2s

(4πs)(D−1)/2
[a0(x, x′) + sa1(x, x′) + · · ·+ s[(D−3)/2]a[(D−3)/2](x, x

′)] .

(4.1)

Here an(x, x′) are the Schwinger-DeWitt coefficients. Because we are dealing with the

regularized version of the heat kernel, we can safely take first a coincidence limit x = x′

and then integrate the obtained expression over the proper time s

Gdiv
ε (x, x) =

∫ ∞
0

dsKdiv
ε (s|x, x) , (4.2)

and finally take an asymptotic of the result at small values of the UV cut-off ε. When

x = x′

Kdiv
ε (s|x, x) =

e−
ε2

4s
−λ2s

(4πs)(D−1)/2
[a0(x, x) + sa1(x, x) + · · ·+ s[(D−3)/2]a[(D−3)/2](x, x)] . (4.3)

Here λ is an arbitrary IR cut-off parameter. In the case of the electric charge in the Rindler

spacetime the first three Schwinger-DeWitt coefficients are

a0(x, x) = 1 , a1(x, x) = V = − 3

4 z2
, a2(x, x) =

1

2
V 2 +

1

6
4 V = − 15

32 z4
. (4.4)

Now expanding Gε(x, x) at small ε and subtracting the Gdiv
ε (x, x) we get

〈ψ2〉 = Gε(y, y)−Gdiv
ε (y, y) . (4.5)
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4.2 Self-force

Substitution of the results of the above calculations for different spacetime dimensions (see

appendix C.1) into eqs. (2.29) and (2.41) allows one to find both the divergent and the

finite residual parts of the self-energy and the self-force. The results can be summarized

as follows. One starts with the equation of motion of a neutral particle with mass m0

m0aµ = F ext
µ , (4.6)

where F ext
µ is an external force. When the particle has an electric charge e this equation is

modified and takes the form

m0aµ = F ext
µ + fµ , (4.7)

where fµ is an additional ‘self-force’ proportional to e2. The calculations show that it can

be presented in the form

fµ = fdiv
µ + f res

µ . (4.8)

Here fdiv
µ is a divergent in the limit ε → 0 part of the self-force. It has the following

structure

fdiv
µ = e2aµP (a) , P (a) =

kD∑
k=0

c
(2k)
D

a2k

εD−3−2k
. (4.9)

Here D is the number of spacetime dimensions and kD = (D − 3)/2 for odd D and kD =

D/2− 2 for even D. For odd D in the last term of this expression one should substitute

1

ε0
→ ln(ελ̃) , λ̃ = λeγ/2 , (4.10)

where λ is the infrared cut-off and γ is the Euler’s constant. The numerical coefficients

c
(2k)
D are given below.

D = 4 c
(0)
4 = −1

2

D = 5 c
(0)
5 = − 1

2π c
(2)
5 = 3

16π

D = 6 c
(0)
6 = − 1

4π c
(2)
6 = − 3

32π

D = 7 c
(0)
7 = − 1

2π2 c
(2)
7 = − 3

32π2 c
(4)
7 = 45

512π2

D = 8 c
(0)
8 = − 3

8π2 c
(2)
8 = − 3

64π2 c
(4)
8 = − 45

1024π2

It should be emphasized that fdiv
µ is determined by local terms in the Hadamard

expansion of the Green function. We denote by f res
µ the finite part of the self-force which

is the residue obtained by subtracting the local divergent terms from fµ. This part of the

force depends on the boundary conditions and, hence, in a general case is non-local. Our

calculations give

f res
µ = e2aµa

D−3[AD +BD ln(8λ̃/a)] . (4.11)

For even D the logarithmic terms are absent and one has BD = 0. The coefficients AD
and BD (for odd dimensions) are summarized below.
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D = 4 A4 = 0 B4 = 0

D = 5 A5 = 11
32π B5 = − 3

16π

D = 6 A6 = 0 B6 = 0

D = 7 A7 = 381
2048π2 B7 = − 45

512π2

D = 8 A8 = 0 B8 = 0

The leading divergence of P (a) is ∼ c
(0)
D /εD−3 and it does not depend on the acceler-

ation. One can absorb it into m0, by redefining the mass

m0 → m = m0 − e2 c
(0)
D

εD−3
. (4.12)

In the four dimensional spacetime this is the only divergent term in the expression for fdiv
µ ,

so that one can say that the problem of divergence of the self-force can be solved by a

standard method of the mass renormalization, that is by redefining the universal coupling

constant in the action for the particle motion. After this one usually says that we must

use the action where m0 is substituted by m, and the value of this parameter m should be

determined from observations.

In the higher dimensions one certainly meets a new problem: there exist subleading

divergences in the self-force and they depend on the choice of the solution (on the parameter

of the acceleration). One may say that these divergences can also be absorbed into a

redefinition of the mass of the particle, so that after such a redefinition the equation (4.6)

would take the form

m(a)aµ = F ext
µ + f res

µ . (4.13)

However, in order to obtain such an equation from the least action principle one should

modify the action for a free particle. Namely instead of the standard action for a neutral

particle

S0 = −m0

2

∫
dτu2 , (4.14)

one should consider the action

S = S0 −
1

2

∫
dτQ(a)u2 , Q(a) =

kD∑
k=0

C
(2k)
D a2k . (4.15)

Here u is the velocity of the particle. For odd D the term C
(D−3)
D aD−3 with highest power

of a should be replaced by [C
(D−3)
D + C̃

(D−3)
D ln(8λ̃/a)]aD−3. The coefficient C

(0)
D is nothing

but the change of the mass of the particle. The variation of this action results in the

following new form of the equation of motion

m0aµ +

(
Q− a∂Q

∂a

)
aµ + . . . = F ext

µ + f res
µ . (4.16)
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The dots denote terms which contain ȧν and äν . These terms vanish for the motion with

constant acceleration and the equation takes the form

m0aµ =

(
a
∂Q

∂a
−Q

)
aµ + F ext

µ + f res
µ . (4.17)

By comparing this equation with eq. (4.8) and eq. (4.9) one finds that they are the same if

a
∂Q

∂a
−Q = e2P (a) , (4.18)

or, what is equivalent, if one chooses

C
(2k)
D =

e2

2k − 1

c
(2k)
D

εD−3−2k
. (4.19)

Let us make a few comments connected with possible interpretations of the obtained

results. One can try to interpret eq. (4.16) as follows. After absorbing the term Q(a = 0)

into a redefinition (renormalization) of the mass, one may insist that the rest divergent

terms in the right-hand side of eq. (4.17) describe a real physical force acting on an ac-

celerated charged particle in the higher dimensions. However, there is another option,

which from our point of view is more preferable. Namely, one can assume that in order to

have a consistent theory of a particle in the higher dimensions one needs to start with a

generalized action of the form eq. (4.15) with arbitrary coefficients C
(2k)
D . In such a case,

in the presence of charge the subleading divergent terms in eq. (4.7) can be absorbed by

redefinition of these coefficients by adding the terms of the form eq. (4.19). It should be

emphasized that this renormalization procedure does not require the knowledge of the state

of motion (acceleration a). After such a redefinition is performed, following the standard

renormalization procedure adopted in the quantum field theory, one may consider C
(2k)
D as

the finite renormalized coupling constants, the value of which should be found from exper-

iments. This approach was advocated, for example, by Galtsov in [12, 13]. In such a case

the finite non-local contribution to the force f res
µ can be interpreted as a finite self-force.

4.3 Self-energy

After this detailed dicussion of the self-force let us make a few brief comments on the

residual (renormalized) value of the self-energy. In four dimensions we reproduce the old

result for the self-energy function [6]

E res = −e
2 a

2
, D = 4 . (4.20)

We present here also the results for Eres. The residual terms of the self-energy function in

other dimensions can be obtained by using appendix C.1.

In even-dimensional spacetimes higher than four dimensions the energy function seems

to vanish, though concrete computations we performed for D = 6 and D = 8,

E res = 0 , D = 6, 8 . (4.21)
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In odd-dimensional spacetimes D = 5, 7 we obtain

E res = −3 e2 a

16πz

[
ln (4λz) + γ − 5

6

]
D = 5 , (4.22)

E res = − 15 e2 a

512π2z3

[
ln (4λz) + γ − 107

60

]
D = 7 . (4.23)

Let us remind that the self-energy functions E res(xo, y) depend on two points, a position

of the charge ya and the point of normalization of the Killing vector xao. In the above

expressions we use the following choice: xao = (a−1, xi = 0) and ya = (z, yi = 0). Hence

the energy functions are functions of two parameters a and z. For the self-energy one

has Eres(a−1) = E res(a−1, a−1). The expression for the self-force of the charge, given by

eq. (2.41) calculated at the point z = a−1.

4.4 Summary of results

The results of the calculations of the residual self-energy Eres and self-force f res
a can be

summarized as follows:

• Four dimensions. Self-energy is negative and constant. The self-force vanishes.

Eres = −e
2 a

2
, f res

z = 0 . (4.24)

• Five dimensions.

Eres = −3 e2 a2

16π

[
ln

(
4λ

a

)
+ γ − 5

6

]
, (4.25)

f res
z = −3 e2a3

16π

[
ln

(
4λ

a

)
+ γ − 11

6

]
. (4.26)

• Six dimensions

Eres = 0 , f res
z = 0 . (4.27)

• Seven dimensions.

Eres = −15 e2 a4

512π2

[
ln

(
4λ

a

)
+ γ − 107

60

]
, (4.28)

f res
z = −45 e2a5

512π2

[
ln

(
4λ

a

)
+ γ − 127

60

]
. (4.29)

• Eight dimensions

Eres = 0 , f res
z = 0 . (4.30)

The invariant self-force is equal to the absolute value of the z-component of the self-force

f res =
√
f res
a f res a = |f res

z |.
One can see that the residual self-force in even dimensions vanishes. We obtained this

result for D ≤ 8, however one can make a conjecture that this result is valid in any even
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dimensional spacetimes with a static homogeneous gravitational field. Let us also notice

that in odd dimensions the residual self-energy and the residual self-force depend on the IR

cutoff λ = 1/l which has the dimensionality of inverse length. A similar logarithmic terms

are also present in the expression for the self-force of a charge near a five-dimensional static

black hole (see discussion in [2]).

5 A scalar charge in a static spacetime

5.1 Equations

Let us consider now a self-energy of a scalar charge in a static spacetimes. A minimally

coupled massless scalar field Φ is described by an action

I = − 1

8π

∫
dX

√
−gD Φ;µΦ;µ +

∫
dX

√
−gD JΦ . (5.1)

It obeys the equation

�Φ = −4πJ . (5.2)

The energy function E of a static configuration of the scalar field is given by the integral

eq. (2.14) of the stress-energy tensor of the scalar field eq. (A.39). Taking into account

only the scalar field contribution, we have

T 0
0 =

1

8π
Φ;aΦ;a + ΦJ . (5.3)

The expression for the energy can be written as

E = −1

2

∫
dx
√
g α JΦ− 1

8π

∫
dx ∂a (

√
g αΦΦ;a) . (5.4)

The last term is proportional to the surface integral of ΦΦ;a over the boundary. It vanishes

because of the boundary conditions at infinity and on the horizon.

Similarly to the electromagnetic case it is useful to introduce another field variable ϕ

Φ = α−1/2 ϕ . (5.5)

The field ϕ satisfies the equation

(4+ V )ϕ = −4πj , (5.6)

V =
(∇α)2

4α2
− 4α

2α
≡ −4(α1/2)

α1/2
, (5.7)

j = α1/2J . (5.8)

Here

4 = gab∇a∇b . (5.9)
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5.2 Self-energy

In terms of this field the energy can be rewritten in the form

E = − 1

8π

∫
dx
√
g gab

(
ϕ,a −

α,a
2α

ϕ
)(

ϕ,b −
α,b
2α
ϕ
)
. (5.10)

This expression for the energy can be interpreted as the Euclidean action of a (D − 1)-

dimensional scalar field ϕ interacting with the external dilaton field α. One can use this

analogy to reformulate the problem of calculation of the self-energy of a point charge in

terms of the Euclidean quantum field theory defined on (D− 1)−dimensional space and in

the presence of the external dilaton field.

For a point scalar charge q located at y the charge distribution reads

J = q
1
√
g
δ(x− y) . (5.11)

Thus, the self-energy function of point scalar charges can be written in the form [8]

E = −2πq2α(y)G(y, y) = −2πq2α(y) 〈ϕ2〉 . (5.12)

Here G(y, y) is the coincidence limit x, x′ → y of the regularized Green function. The

Green function G corresponds to the operator eq. (5.6)

(4+ V )G(x, x′) = −δ(x, x′) . (5.13)

For point sources energy function E diverges. To deal with this divergence one has to

use some regularization and renormalization schemes. Following the same arguments as in

electromagnetic case we obtain

Eε = −2πq2 lim
x,x′→y

√
α(x)α(x′)Gε(x, x

′) . (5.14)

5.3 Self-force

The self-force of the static scalar charge distribution J in the static spacetime can be de-

fined [15, 23] exactly in the same way as that of the electric charge distribution eqs. (2.35)–

(2.34).

fa(y) =
1

α(y)

∫
Σ
ga
b(y, x) fb(x)α(x)

√
g(x) dx , (5.15)

fα = −Tαβ ;β . (5.16)

The stress-energy tensor of the scalar charge eq. (A.39) without mass terms reads

Tµν =
1

4π

(
Φ;µΦ;ν − 1

2
gDµνΦ;αΦ;α

)
− uµuν ΦJ . (5.17)

The divergence of the stress-energy tensor gives the density of the self-force

fα = ΦJ wα + J(δβα + uαu
β)∇βΦ , (5.18)
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where

wα = uσ∇σuα (5.19)

is the acceleration vector corresponding to the worldline with the velocity uα.

We define the self-force density of the scalar charge distribution as the right-hand side

of the equation of motion eq. (A.37)

µwα = fα . (5.20)

Here µ is the mass density of the source and

fα = J(δβα + uαu
β)∇βΦ+ wα ΦJ . (5.21)

This force, evidently, is orthogonal to the velocity uα of the charge. So, for the Tµν in the

form eq. (5.17) the problem of dependence of the mass of the point scalar charge on its

proper time, discussed in [23], does not appear.

Note that the force density eq. (5.21) is the sum of terms of two kinds. The first one

is determined by a gradient of the scalar field, while the second term in fα is proportional

to the acceleration vector and to the value of the scalar field. The second term has the

structure similar to the contribution of the mass density, though it depends on the value of

the scalar field at the position of the charge. This similarity is sometimes used to move this

term to the left-hand side of the motion equation and redefine the inertial mass density of

the charge and the force (see, e.g., [17] and references therein) as

µ̃ = µ− JΦ , (5.22)

f̃α = fα − wα ΦJ . (5.23)

In this representation the force f̃α depends only on ∇βΦ [2, 17, 19, 23]

f̃α = J(δβα + uαu
β)∇βΦ , (5.24)

but in the general case the ‘inertial’ mass µ̃ is position dependent.

In this paper we use the motion equations eqs. (5.20), (5.21), (A.37) in their original

form, that is without any redefinition of the mass and the force. This choice guarantees

an agreement between the change of the self-energy function of the charge and the work

of the self-force during adiabatic displacement of the charge. At the end of this section we

provide the results for both kinds of forces.

In the case of a static charge in the static spacetime eq. (2.3) the expression for self-force

reads

fa(y) = − 1

α(y)

∫
Σ
ga
b(y, x)Tbβ

;β(x)α(x)
√
g(x)dx

=
1

α(y)

∫
Σ
ga
b(y, x) (J∇bΦ+ Jubu

σ∇σΦ+ wb JΦ) α(x)
√
g(x)dx .

(5.25)

Its velocity is proportional to the Killing vector, while the acceleration is wµ = α−1∂µα.

The time component of the self-force and ∇0Φ vanish, and we obtain

fa(y) =
1

α(y)

∫
Σ
dx
√
gαga

b(y, x) (J∇bΦ+ wb JΦ) . (5.26)
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Substituting eq. (5.5) and eq. (5.8) in this relation one gets

fa(y) =
1

α(y)

∫
Σ

dx
√
gga

b(y, x)

(
j∇bϕ+

1

2
wb jϕ

)
=

4π

α(y)

∫
Σ

dxdx′
√
g(x)

√
g(x′) j(x)j(x′)ga

b(y, x)

(
∂

∂xb
G(x, x′) +

1

2
wbG(x, x′)

)
=

4π

α(y)

∫
Σ

dxdx′
√
g(x)

√
g(x′)

j(x)j(x′)√
α(x)

√
α(x′)

ga
b(y, x)

∂

∂xb

(√
α(x)

√
α(x′)G(x, x′)

)
.

(5.27)

For a point charge located at y the charge density distribution is

j = q

√
α
√
g
δ(x− y) . (5.28)

So that one finally obtains

fa(y) =
4πq2

α(y)

∂

∂xa

(√
α(x)

√
α(x′)G(x, x′)

) ∣∣∣
x=y,x′=y

. (5.29)

The derivative has to be taken before placing points x and x′ on the worldline of

the charge. This divergent expression has to be regularized. Following the lines of the

electromagnetic case one can rewrite it formally as

fεa(y) = 2πq2 1

α(y)

∂

∂ya
(α(y)Gε(y, y)) . (5.30)

Comparing this formula with the expression for the self-energy function eq. (5.12) one

can see that

fa = − 1

α
∂aE . (5.31)

Thus, the relation between the self-force and the variation of the self-energy function over

the position of the charge is the same as in the electromagnetic case. This fact is not

surprising but it’s a good test of the validity of derivation of the self-force.4

6 Scalar charge in the Rindler spacetime

For the scalar field in the D−dimensional Rindler space we have to find the regularized

Green function and the heat kernel for the operator 4 + V , where 4 is the flat (D − 1)-

dimensional flat Laplace operator and the potential V = 1/(4z2)

(4+ V )G(x, x′) =

[
∂2
z + ∂2

x⊥
+

1

4z2

]
G(x, x′) = −δ(x, x′) . (6.1)

4In the articles [2, 17, 19, 23] the modified self-force f̃µ has been used. It can be derived by integrating

densities eqs. (5.23) and (5.24). The result of computations can be presented in the form

f̃µ = fµ +
2

α
wµ E = − 1

α
(∂µE − 2wµE) . (5.32)

This formula is applicable to static scalar charges in arbitrary static spacetimes.
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Choosing the same regularization as for Maxwell field we get

Kε(s|x, x′) = ρ(s, ε)K(s|x, x′) , ρ(s, ε) = exp(−ε2/4s) . (6.2)

The regularized static Green function is

Gε(x, x
′) =

∫ ∞
0

dsKε(s|x, x′) . (6.3)

One can check that the solution for the regularized static heat kernel is

Kε =
√
zz′

2π

(4πs)D/2
e
−
z2 + z′2 + x2

⊥ + ε2

4s I0

(
zz′

2s

)
, (6.4)

where I0 is the Bessel function and x2
⊥ ≡ gij(xi − x′i)(xj − x′j).

The regularized Green function is the integral eq. (6.3) of the regularized heat kernel

over the proper time

Gε =

√
zz′

2πβ
Iβ0 , β =

D

2
− 1 , (6.5)

where Iην is defined in eq. (3.24). The regularized static scalar Green function can be

written in the exact closed form

Gε =
Γ (β)

2πβ
(zz′)1/2

(R2 + ε2)β
F

(
β,

1

2
; 1;− 4zz′

R2 + ε2

)
, (6.6)

where R is given by eq. (3.26).

Note that the static Green function for the original scalar field Φ (see eq. (5.2)), differs

from Gε by the factor (zz′)−1/2

G(x, x′) = 〈Φ(x)Φ(x′)〉 = (zz′)−1/2G(x, x′) . (6.7)

Along the lines of the electromagnetic case, one can obtain the general solution for the

Green function G(x, x′) from eq. (6.7) if one adds zero-mode solutions parametrized by

three arbitrary constants C0 + C1 ln(zz′) + C2 ln z ln z′ . This general solution reads

G(x, x′) =
Γ
(
D
2 − 1

)
2π

D
2
−1

1

RD−2
F

(
D

2
− 1,

1

2
; 1;−4zz′

R2

)
+C0+C1 ln(zz′)+C2 ln z ln z′ . (6.8)

The three arbitrary constants C0, C1, C2 are to be fixed by the boundary conditions when

x or x′ are at the horizon and at infinity. Analysis, similar to that of the solution for the

vector potential of the electric charge, shows that regular at the horizon and vanishing

at infinity scalar field configuration corresponds to C0 = C1 = C2 = 0. One can check

that Gε(x, x
′) given by eq. (6.6) vanishes when one of the arguments, e.g., x, is placed on

the horizon. It means that it satisfies zero Dirichlet boundary conditions on the Rindler

horizon. The static Green functions for particular dimensions of the spacetime are given

in the appendix B. Their asymptotics at ε→ 0 are in appendix C.2.
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7 Scalar self-energy and self-force: results

7.1 Divergent part of the static Green function

To renormalize the self-energy one has to subtract the UV divergent parts from the Green

function eq. (6.5). The local structure of divergences is given by the first terms in expansion

eq. (4.3) of the heat kernel over the proper time parameter. In the case of the scalar charge

in the Rindler spacetime the corresponding Schwinger-DeWitt coefficients are

a0(x, x) = 1 , a1(x, x) = V =
1

4 z2
, a2(x, x) =

1

2
V 2 +

1

6
4 V =

9

32 z4
. (7.1)

The residual finite value for quantum fluctuations of the field ϕ at the point y reads

〈ϕ2〉res = Gε(y, y)−Gε
div(y, y) , (7.2)

which enters the formula eq. (5.12) for the self-energy of the charged particle. For different

spacetime dimensions (see appendix C.2) we finally obtain the self-energy function of the

scalar charge which has the constant acceleration.

7.2 Self-force

The divergent and finite parts of the residual self-force acting on the scalar charge can be

computed along the same lines as in the electromagnetic case (section 4.2)

m0aµ = F ext
µ + fµ , fµ = fdiv

µ + f res
µ . (7.3)

Here fdiv
µ is a divergent in the limit ε→ 0 part of the self-force and f res

µ is the finite residual

part of the self-force. They can be derived from the corresponding divergent and residual

finite parts of the self-energy using the relations (see also eq. (2.41))

fεa = − 1

α

∂

∂ya
Eε , fdiv

a = − 1

α

∂

∂ya
Ediv , f res

a = − 1

α

∂

∂ya
E res . (7.4)

Note that in the Rindler spacetime α = az. It is equal to one at the point of observation.

It should be emphasized that in this approach the bare mass m0, or its renormal-

ized version m (see eq. (4.12)), are constants. In the literature on the self-force of scalar

charges [2, 12, 13, 17, 19, 23] the same motion equation eq. (7.3) is often presented in

the form where some specific, proportional to the acceleration, part of fa is moved to the

left-hand side of the motion equation and included into the redefinition of the inertial mass

(see eqs. (5.22)–(5.24)), which then becomes dependent on the position of the scalar charge.

We denote the corresponding remaining part of the self-force in the motion equation as f̃a.

It is related to the self-energy function as

f̃div
a = − 1

α

(
∂

∂ya
Ediv − 2waEdiv

)
, f̃ res

a = − 1

α

(
∂

∂ya
E res − 2waE res

)
. (7.5)

The divergent part of the self-force has the following structure

fdiv
µ = q2aµP (a) , P (a) =

kD∑
k=0

c
(2k)
D

a2k

εD−3−2k
. (7.6)
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Here kD = (D− 3)/2 for odd D and kD = D/2− 2 for even D. For odd D in the last term

of this expression one should make a substitution

1

ε0
→ ln(ελ̃) , λ̃ = λeγ/2 , (7.7)

where λ is the infrared cut-off and γ is the Euler’s constant. The numerical coefficients

c
(2k)
D are

D = 4 c
(0)
4 = 1

2

D = 5 c
(0)
5 = 1

2π c
(2)
5 = 1

16π

D = 6 c
(0)
6 = 1

4π c
(2)
6 = − 1

32π

D = 7 c
(0)
7 = 1

2π2 c
(2)
7 = − 1

32π2 c
(4)
7 = 27

512π2

D = 8 c
(0)
8 = 3

8π2 c
(2)
8 = − 1

64π2 c
(4)
8 = − 27

1024π2

The finite residual part of the self-force has the structure

f res
µ = q2aµa

D−3[AD +BD ln(8λ̃/a)] . (7.8)

For even D the logarithmic terms are absent and one has BD = 0. Our calculations lead

to the following the coefficients AD and BD

D = 4 A4 = 0 B4 = 0

D = 5 A5 = 5
32π B5 = − 1

16π

D = 6 A6 = 0 B6 = 0

D = 7 A7 = 243
2048π2 B7 = − 27

512π2

D = 8 A8 = 0 B8 = 0

Similarly we obtain the coefficients for the divergent and finite residual parts of f̃a

f̃div
µ = q2aµP̃ (a) , P̃ (a) =

kD∑
k=0

c̃
(2k)
D

a2k

εD−3−2k
. (7.9)

D = 4 c̃
(0)
4 = −1

2

D = 5 c̃
(0)
5 = − 1

2π c̃
(2)
5 = 3

16π

D = 6 c̃
(0)
6 = − 1

4π c̃
(2)
6 = − 3

32π

D = 7 c̃
(0)
7 = − 1

2π2 c̃
(2)
7 = − 3

32π2 c̃
(4)
7 = 45

512π2

D = 8 c̃
(0)
8 = − 3

8π2 c̃
(2)
8 = − 3

64π2 c̃
(4)
8 = − 45

1024π2
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The finite residual part of the tilde-self-force has the structure

f̃ res
µ = q2aµa

D−3[ÃD + B̃D ln(8λ̃/a)] . (7.10)

D = 4 Ã4 = 0 B̃4 = 0

D = 5 Ã5 = 11
32π B̃5 = − 3

16π

D = 6 Ã6 = 0 B̃6 = 0

D = 7 Ã7 = 381
2048π2 B̃7 = − 45

512π2

D = 8 Ã8 = 0 B̃8 = 0

One can see an amazing coincidence of electromagnetic residual self-forces fdiv
µ and f res

µ

(see eqs. (4.9) and (4.11)) with the scalar ones f̃div
µ and f̃ res

µ (see eqs. (7.9) and (7.10)).

7.3 Self-energy

In even dimensions D = 4, 6, 8, etc. self-energy function vanishes. In odd-dimensional

spacetimes we have

E = − q2 a

16πz

[
ln (4λz) + γ − 3

2

]
D = 5 , (7.11)

E = − 9 q2 a

512π2z3

[
ln (4λz) + γ − 23

12

]
D = 7 . (7.12)

As earlier the self-energy functions E res(xo, y) depend on two points, a position of the charge

ya and the point of normalization of the Killing vector xao. We put xao = (a−1, xi = 0) and

ya = (z, yi = 0) and wrote the residual self-energy functions as functions two parameters

a and z. For the residual self-energy one has Eres(a−1) = E res(a−1, a−1). The residual

self-force of the charge is calculated at the point z = a−1.

7.4 Summary of results

The results of the calculations of the finite residual self-energy Eres and self-forces f res
a and

f̃ res
a can be summarized as follows:

• Four dimensions. The self-energy and self-forces vanish.

Eres = 0 , f res
z = 0 , f̃ res

z = 0 . (7.13)

• Five dimensions.

Eres = −q
2 a2

16π

[
ln

(
4λ

a

)
+ γ − 3

2

]
, (7.14)

f res
z = −q

2a3

16π

[
ln

(
4λ

a

)
+ γ − 5

2

]
, (7.15)

f̃ res
z = −3q2a3

16π

[
ln

(
4λ

a

)
+ γ − 11

6

]
. (7.16)
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• Six dimensions. The self-energy and self-force vanish

Eres = 0 , f res
z = 0 , f̃ res

z = 0 . (7.17)

• Seven dimensions.

Eres = −9 q2 a4

512π2

[
ln (4λz) + γ − 23

12

]
, (7.18)

f res
z = −27 q2a5

512π2

[
ln

(
4λ

a

)
+ γ − 9

4

]
, (7.19)

f̃ res
z = −45 q2a5

512π2

[
ln

(
4λ

a

)
+ γ − 127

60

]
. (7.20)

• Eight dimensions

Eres = 0 , f res
z = 0 , f̃ res

z = 0 . (7.21)

Similar to the electric charge the self-force for the scalar charge vanishes in even di-

mensions. In odd dimensions the self-energy and the self-force depend on the IR cutoff

λ that needs to be chosen from physical arguments (see discussion of this problem, e.g.,

in [2]).

8 Discussion

In the present paper we calculated a self-energy and a self-force for a point charge in a

higher-dimensional static homogeneous gravitational field.

One of the results, presented in the present paper, seems to be quite interesting and

intriguing. Namely, we demonstrated that in even dimensions 4 ≤ D ≤ 8 the finite residual

part of the self-force for both electric and scalar charge identically vanishes. We do not

know a deep reason for this, but one might make the conjecture, that is a common feature

of even dimensional spacetimes with the number of dimensions greater than or equal to

four.

In 4 dimensions this result can be expected for the following reason. The invariant

residual self-force acting on a charge e near a Schwarzschild or a Reissner-Nordström black

hole of mass M is [4, 5, 17]

f res = (f selfµf res
µ )1/2 =

e2M

r3
. (8.1)

In order to pass to the Rindler limit in this formula one needs to take the limit, when the

gravitational radius rg = 2M infinitely grows while the proper distance to the horizon is

fixed. In this limit f res = 0 that coincides with our result. In the higher even dimensions the

vanishing of the residual self-force in the Rindler spacetime implies that the corresponding

invariant of this self-force for the charge near the black hole remains finite on the horizon.

This result is valid both for electric and scalar charges.

The results obtained for a static homogeneous gravitational field can be directly applied

without any changes to the case of a uniformly accelerated motion of the charge in the
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higher dimensional Minkowski spacetime. In four dimensions the vanishing of the resudual

self-force acting on a uniformly accelerated charge is well known property (see e.g. [24, 25]).

The obtained in this paper results indicate that a similar property is valid for accelerated

scalar and electric charges in any even dimensional Minkowski spacetime.

A natural question arises about the validity of the calculations and the results. For

example, one can ask the question: at what distance from the horizon the residual self-force

of the charge becomes comparable with the gravitational attraction of the particle with the

mass m. Let us neglect for a moment logarithmic factors. The finite part of the self-force

is of the order of f res ∼ e2aD−2. On the other hand, in order to provide the acceleration

of a particle of mass m, one should apply the force f = ma. They become comparable

f res ∼ f , when

aD−3
∗ ∼ m

e2
. (8.2)

We denote by l∗ = a−1
∗ a distance to the horizon corresponding to this solution. We also

denote by rm a classical radius of the charged particle

m =
e2

rD−3
m

, (8.3)

then condition eq. (8.2) implies that

l∗ ∼ rm . (8.4)

In other words the induced finite self-force correction, acting on the charge, is of the

same order as the force, which produces the acceleration (directed towards the horizon [2])

when the distance to the horizon is small and comparable with the classical radius of the

charge. One can expect, that study of such regimes would require more detailed knowledge

concerning the internal structure of the particle, so that one cannot trust the obtained

results in this range of parameters. In a way, this problem is similar to the famous problem

of self-accelerated radiating charged particle motion in the classical electrodynamics (see,

e.g. [1, 25, 26]).

As we have already told the static homogeneous gravitational field is an idealization.

The corresponding Rindler metric naturally served as an approximation for the static metric

of a compact object in a spacetime domain of the size small with respect to the size of the

object (a black hole). An interesting question is how the expressions for the mass-shift due

to the self-interaction for a particle in the homogeneous gravitational field and near the

black hole are connected. In four-dimensional case this problem was analyzed long time

ago (see, e.g., [4–6]). The self-energy shift for a charged particle near a black hole can be

written in the form

Eres =
1

2
e2 a . (8.5)

This expression is similar to eq. (1.2), but differs from it by the sign. This difference is a

result of two factors: (1) the topology of the black hole exterior differs from the topology

of the Rindler space in the external with respect to the horizon domain; (2) the integral

expression for the electromagnetic field energy is not uniformly convergent, so that its
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limit when M →∞ differs from a similar integral, in which this limit is performed ‘inside’

the integral. As a result of the non-trivial spatial topology of a black hole, the Maxwell

equations for a static electric field in its background allow the existence of a ‘zero-mode’.

It describes a spherically symmetric electric field, which does not have sources in the

black hole exterior. By adding such a solution one can make a black hole to be ‘weakly

charged’. For the self-mass problem one chooses the Green functions so that such a mode

is suppressed and the black hole remains uncharged. Then the electric potential on the

horizon, which is always constant, does not vanish. In the homogeneous gravitational field

such zero-modes are absent and a regular solution has zero potential at the horizon. It is

interesting, whether a similar phenomenon occurs in the higher dimensions.

As we mentioned, in the odd dimensional cases the expressions for the residual self-

energy and self-force contain logarithmic factors. Similar factors were discovered in [2]

for the self-energy problem near 5-dimensional black hole. It is quite interesting question,

what is a physical meaning of the cut-off parameter, that enters these expressions. One

of the options is that it might be related with the scale that controls the validity of the

homogeneous gravitational field approximation.

To obtain finite expressions for the self-energy and self-force we used special prescrip-

tion for its regularization. This method is quite natural and basically it is some covariant

version of the Hadamard regularization. However, an interesting question is whether there

is an agreement in the results for different types of such ‘covariant’ regularizations. One

certainly expects that the results obtained for a covariant regularization are more robust,

than, say, for more naive regularizations, such as extended charged sphere. In the latter

case an inevitable problem is connected with an ambiguity of the charge density distri-

bution over the ‘particle’. In higher dimensions this problem is more severe than in the

4-dimensional case.

In our approach we study a pure classical problem: the Planck constant does not enter

any of the relations. However, it is quite interesting to consider a similar problem in the

quantum field theory. In the four dimensional case Ritus [27, 28] calculated the shift of the

self-mass for an electron moving in the static homogeneous electric field. His ‘quantum’

results were in good agreement with the classical calculations (for details, see [5, 6]). It is

worthwhile to repeat similar comparison in higher dimensions.
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A Motion of a continuous charged medium in a curved spacetime

A.1 Fock’s approach

In the present paper we focus on the properties of point charges. However, it is instructive

to consider this case as a special limit of continuous media, when its density takes the form
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of the delta-like distribution. Using this approach we derive in this appendix the equation

of motion and the stress-energy tensor for charged media moving in a curved spacetime.

For the electrically charged media we reproduce well known results. For the case of scalar

charge we derive a consistent set of equations which have quite interesting form and allows

us to analyze the motion of scalar charges in a curved spacetime in a self-consistent form.

To derive of the equation of motion for distributions of electric or scalar charges we use n

approach developed by Fock [29] for the electrically charged media. We assume the flow

lines of the media do not intersect, so that there are no caustics. In such a case the flow

lines determine a spacetime foliation by 1-dimensional lines, which can be parametrized as

follows

Xα = χα(λ, yb) . (A.1)

For fixed value of the parameters yb, eq. (A.1) defines a single flow line with λ as a ‘time’

parameter along it. We denote a partial derivative along the flow line with respect to λ by

a dot: (. . .). = ∂λ(. . .). The velocity of the motion of the element of the media along its

flow line is

uα = χ̇α/L , L =
√
−gµνχ̇µχ̇ν , uαu

α = −1 . (A.2)

We assume that the proper mass µ(X), as well as the electric and scalar charge ρ(X) and

J(X), within a given pencil of flow lines remain constant, so that the following continuity

equations are automatically satisfied [29].

∇α(µuα) = 0 , (A.3)

∇α(Juα) = 0 , (A.4)

∇α(ρuα) ≡ ∇α(Jα) = 0 . (A.5)

In the case of electric charges the conservation of the electric current Jµ also follows from

the Maxwell equations.

Variation of the flow lines, which is the variation of the function χα, is described by

displacement vector

ηα = δ̂Xα = δ̂χα(λ, yb) = ∂ybχ
α(λ, yb)δya . (A.6)

Consider the variation δ̃ due to the change in the form of the functions χα.

uµ(Xα + ηα) = uµ(Xα) + δ̃uµ , (A.7)

δ̂uµ = δ̃uµ − ∂uµ

∂Xα
ηα . (A.8)

Taking into account that

δ̃L = L−1

[
1

2

∂gD
µν

∂Xσ
ησ χ̇µχ̇ν + gµνχ̇

µη̇ν
]
, (A.9)

one can write

δ̃L = −Luσuε∇εησ . (A.10)
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Using these variation rules we obtain

δ̃uα = uε
∂ηα

∂Xε
+ uαuσu

ε∇εησ (A.11)

and, hence,

δ̂uα = uε∇εηα − ηε∇εuα + uαuσu
ε∇εησ . (A.12)

The variations of the mass µ(X) and scalar charge J(X) densities are

δ̃µ

µ
+∇σησ = −uσuε∇εησ , (A.13)

δ̃J

J
+∇σησ = −uσuε∇εησ , (A.14)

δ̃ρ

ρ
+∇σησ = −uσuε∇εησ . (A.15)

Finally the variation of the densities take a form

δ̂µ = −∇α(µηα)− µuσuε∇εησ , (A.16)

δ̂J = −∇α(Jηα)− Juσuε∇εησ , (A.17)

δ̂ρ = −∇α(ρηα)− ρuσuε∇εησ . (A.18)

Here are the other useful variations

δ̂(µuα) = ∇σ(µuσηα − µuαησ) , (A.19)

δ̂(Juα) = ∇σ(Juσηα − Juαησ) , (A.20)

δ̂(ρuα) = ∇σ(ρuσηα − ρuαησ) . (A.21)

A.2 Electrically charged media

A.2.1 Equations of motion

Let us consider the flow of electrically charged particles with the current density Jµ(X) =

ρ(X)uµ and mass density µ(X). The action for the Maxwell field including an interaction

term with the current of massive particles reads

I = − 1

16π

∫
dX

√
−gD FµνFµν +

∫
dX

√
−gDAµ ρ u

µ −
∫
dX

√
−gD µ . (A.22)

Using the variational rule eq. (A.21) derived in this appendix, the continuity equation, and

δ̂

∫
dX

√
−gD µ =

∫
dX

√
−gD δ̂µ−

∫
dX

√
−gD µwση

σ (A.23)

we get

δ̂I =− 1

4π

∫
dX

√
−gD δ̂Aµ (Fµσ ;σ − 4πρuµ)

−
∫
dX

√
−gDηα

[
µwα − ρuβ Fαβ

]
.

(A.24)
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Here wα is the acceleration vector

wα = uε∇εuα . (A.25)

Thus the equations of motion are

Fµσ ;σ = 4πJµ Jµ = ρuµ . (A.26)

µwα = fα fα = FαβJ
β . (A.27)

The vector fα defines the local force density acting on the element of an electrically charged

medium.

A.2.2 Stress-energy tensor

We denote the variations over the metric using the symbol δ

δ(µ
√
−g)

µ
√
−g

=
(∂χµ/∂p)(∂χν/∂p)

2gαβ(∂χα/∂p)(∂χβ/∂p)
δgµν = −1

2
uµuνδgµν . (A.28)

The stress-energy tensor Tµν = 2√
−g

δI
δgµν

reads

Tµν =
1

4π

(
FµσF νσ −

1

4
gµνFαβFαβ

)
+ uµuν µ . (A.29)

Note that metric variations of the interaction term vanishes. The divergence of the stress-

energy tensor

Tαβ
;β = µwα − FαβJβ (A.30)

must vanish for a closed system. It does vanish on the equations of motion eq. (A.27).

A.3 Motion of the media with the scalar charge

A.3.1 Equations of motion

Let us consider the flow of scalar particles with charge distribution J(X) and mass density

µ(X) in a curved spacetime. A minimally coupled massless scalar field Φ(X) with is

described by an action

I = − 1

8π

∫
dX

√
−gD Φ;µΦ;µ +

∫
dX

√
−gD JΦ−

∫
dX

√
−gD µ . (A.31)

Using the variational rules derived in this appendix and the continuity equations we get

δ̂

∫
dX

√
−gD µ =

∫
dX

√
−gD δ̂µ =

∫
dX

√
−gD µwση

σ , (A.32)

δ̂

∫
dX

√
−gD JΦ =

∫
dX

√
−gD Φδ̂J

=

∫
dX

√
−gD Jησ (Φwσ +∇σΦ+ uσu

ε∇εΦ) , (A.33)

where wα is the acceleration vector

wα = uε∇εuα . (A.34)
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The variation of the action then reads

δ̂I =
1

4π

∫
dX

√
−gD δ̂Φ

(
Φ;µ

;µ + 4πJ
)

−
∫
dX

√
−gDησ [(µ− ΦJ) wσ − J(∇σΦ+ uσu

ε∇εΦ)] .

(A.35)

Thus the equation of motion are

�Φ = −4πJ . (A.36)

µwα = fα , fα = J(δβα + uαu
β)∇βΦ+ wα ΦJ . (A.37)

The vector fα defines the local force density acting on the element of a charged medium.

A.3.2 Stress-energy tensor

We denote the variations over the metric using the symbol δ.

δ(µ
√
−g)

µ
√
−g

=
(∂χµ/∂p)(∂χν/∂p)

2gαβ(∂χα/∂p)(∂χβ/∂p)
δgµν = −1

2
uµuνδgµν . (A.38)

The stress-energy tensor Tµν = 2√
−g

δI
δgµν

is given by the expression

Tµν =
1

4π

(
Φ;µΦ;ν − 1

2
gµνΦ;αΦ;α

)
+ uµuν(µ− ΦJ) . (A.39)

Note that, in contrast to the Maxwell field, it contains the term uµuνΦJ explicitly depend-

ing on the charge density J . The divergence of the stress-energy tensor

Tαβ
;β = (µ− ΦJ)wα − J(δβα + uαu

β)∇βΦ (A.40)

must vanish for a closed system. Thus, we re-derive by a different method the motion

equations eq. (A.37) for the medium.

B Green Functions

The regularized static Green functions, both for scalar and electromagnetic fields, are

given by

Gε =

√
zz′

2πβ
Iβν , β =

D

2
− 1 . (B.1)

The parameter ν = 0 for the scalar field and ν = 1 for the Maxwell field.

Iην =

∫ ∞
0

uη−1 e−puIν(cu) du

= p−η−ν
( c

2

)ν Γ(ν + η)

Γ(ν + 1)
F

(
η + ν

2
,
η + ν + 1

2
; ν + 1;

c2

p2

)
= e−πνi/2Γ(η + ν)(p2 − c2)−η/2 P−νη−1

(
p√

p2 − c2

)
,

(B.2)
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where

u =
1

4s
, p = z2 + z′2 + x2

⊥ + ε2 , c = 2zz′ , (B.3)

and

<(η) > 0 , <(p) > |<(c)| . (B.4)

For particular dimensions the integrals Iην can be written in terms of elliptic functions.

Let

k =

√
2c

p+ c
, (B.5)

then

I
1/2
0 = k

√
2

πc
K(k) , (B.6)

I1
0 =

1

(p2 − c2)1/2
, (B.7)

I
3/2
0 =

k3

2(1− k2)
√

2πc3
E(k) , (B.8)

I2
0 =

p

(p2 − c2)3/2
, (B.9)

I
5/2
0 =

k5

8(1− k2)2
√

2πc5
[2(2− k2)E(k)− (1− k2)K(k)] , (B.10)

I3
0 =

2p2 + c2

(p2 − c2)5/2
, (B.11)

I
1/2
1 =

1

k

√
2

πc

[
(2− k2)K(k)− 2E(k)

]
, (B.12)

I1
1 =

c

(p2 − c2)1/2(p+ (p2 − c2)1/2)
, (B.13)

I
3/2
1 =

k

2(1− k2)
√

2πc3

[
(2− k2)E(k)− 2(1− k2)K(k)

]
, (B.14)

I2
1 =

c

(p2 − c2)3/2
, (B.15)

I
5/2
1 =

k3

8(1− k2)2
√

2πc5
[2(1− k2 + k4)E(k)− (1− k2)(2− k2)K(k)] , (B.16)

I3
1 =

3pc

(p2 − c2)5/2
. (B.17)

C Divergences and finite parts of the Green functions

C.1 Maxwell field

In three dimensions we get

G(3)
ε = − 1

2π

[
ln
( ε

8z

)
+ 2
]

+O(ε2) , (C.1)

G(3)div = − 1

2π
[ln(ελ)− ln 2 + γ] , (C.2)

G(3)ren =
1

2π
[ln(λz) + 2 ln 2 + γ − 2] . (C.3)
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In four dimensions

G(4)
ε =

1

4πε
− 1

4πz
+O(ε) , (C.4)

G(4)div =
1

4π

1

ε
, (C.5)

G(4)ren = − 1

4πz
. (C.6)

In five dimensions

G(5)
ε =

1

4π2

[
1

ε2
+

3

8z2

(
ln
( ε

8z

)
+

5

6

)]
+O(ε2) , (C.7)

G(5)div =
1

4π2

[
1

ε2
+

3

8z2
(ln(ελ)− ln 2 + γ)

]
, (C.8)

G(5)ren = − 3

32π2z2
[ln(λz) + 2 ln 2 + γ − 5/6] . (C.9)

In six dimensions

G(6)
ε =

1

8π2ε3
− 3

64π2z2ε
+O(ε) , (C.10)

G(6)div =
1

8π2ε3
− 3

64π2z2ε
, (C.11)

G(6)ren = 0 . (C.12)

In seven dimensions

G(7)
ε =

1

4π3

[
1

ε4
− 3

16z2ε2
+

15

256z4

(
ln
( ε

8z

)
+

107

60

)]
+O(ε2) , (C.13)

G(7)div =
1

4π3

[
1

ε4
− 3

16z2ε2
+

15

256z4
(ln(ελ)− ln 2 + γ)

]
, (C.14)

G(7)ren = − 15

1024π3z4
[ln(λz) + 2 ln 2 + γ − 107/60] . (C.15)

In eight dimensions

G(8)
ε =

3

16π3

[
1

ε5
− 1

8z2ε3
− 5

128z4ε

]
+O(ε) , (C.16)

G(8)div =
3

16π3

[
1

ε5
− 1

8z2ε3
− 5

128z4ε

]
, (C.17)

G(8)ren = 0 . (C.18)

C.2 Scalar field

In three dimensions we get

G(3)
ε = − 1

2π
ln
( ε

8z

)
+O(ε2) , (C.19)

G(3)div = − 1

2π
[ln(ελ)− ln 2 + γ] , (C.20)

G(3)ren =
1

2π
[ln(λz) + 2 ln 2 + γ] . (C.21)
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In four dimensions

G(4)
ε =

1

4πε
+O(ε) , (C.22)

G(4)div =
1

4πε
, (C.23)

G(4)ren = 0 . (C.24)

In five dimensions

G(5)
ε =

1

4π2

[
1

ε2
− 1

8z2

(
ln
( ε

8z

)
+

3

2

)]
+O(ε2) , (C.25)

G(5)div =
1

4π2

[
1

ε2
− 1

8z2
(ln(ελ)− ln 2 + γ)

]
, (C.26)

G(5)ren =
1

32π2z2
[ln(λz) + 2 ln 2 + γ − 3/2] . (C.27)

In six dimensions

G(6)
ε =

1

8π2

[
1

ε3
+

1

8z2ε

]
+O(ε) , (C.28)

G(6)div =
1

8π2

[
1

ε3
+

1

8z2ε

]
, (C.29)

G(6)ren = 0 . (C.30)

In seven dimensions

G(7)
ε =

1

4π3

[
1

ε4
+

1

16z2ε2
− 9

256z4

(
ln
( ε

8z

)
+

23

12

)]
+O(ε2) , (C.31)

G(7)div =
1

4π3

[
1

ε4
+

1

16z2ε2
− 9

256z4
(ln(ελ)− ln 2 + γ)

]
, (C.32)

G(7)ren =
9

1024π3z4
[ln(λz) + 2 ln 2 + γ − 23/12] . (C.33)

In eight dimensions

G(8)
ε =

3

16π3ε5
+

1

128π3z2ε3
+

9

2048π3z4ε
+O(ε) , (C.34)

G(8)div =
3

16π3ε5
+

1

128π3z2ε3
+

9

2048π3z4ε
, (C.35)

G(8)ren = 0 . (C.36)
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