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Abstract: We extend the hexagon function bootstrap to the next-to-maximally-helicity-

violating (NMHV) configuration for six-point scattering in planar N = 4 super-Yang-Mills

theory at three loops. Constraints from the Q̄ differential equation, from the operator

product expansion (OPE) for Wilson loops with operator insertions, and from multi-Regge

factorization, lead to a unique answer for the three-loop ratio function. The three-loop re-

sult also predicts additional terms in the OPE expansion, as well as the behavior of NMHV

amplitudes in the multi-Regge limit at one higher logarithmic accuracy (NNLL) than was

used as input. Both predictions are in agreement with recent results from the flux-tube

approach. We also study the multi-particle factorization of multi-loop amplitudes for the

first time. We find that the function controlling this factorization is purely logarithmic

through three loops. We show that a function U , which is closely related to the parity-even

part of the ratio function V , is remarkably simple; only five of the nine possible final entries

in its symbol are non-vanishing. We study the analytic and numerical behavior of both the

parity-even and parity-odd parts of the ratio function on simple lines traversing the space of

cross ratios (u, v, w), as well as on a few two-dimensional planes. Finally, we present an em-

pirical formula for V in terms of elements of the coproduct of the six-gluon MHV remainder

function R6 at one higher loop, which works through three loops for V (four loops for R6).
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1 Introduction

The maximally supersymmetric gauge theory in four dimensions, N = 4 super Yang-Mills

theory (SYM), has been a valuable proving ground for scattering amplitudes research,

especially in the planar limit of a large number of colors. Over the past two decades,

calculations in planar N = 4 SYM have pushed further, in terms of loops, legs, and general

understanding, than they have in other gauge theories [1–7]. In doing so, they have also

offered insight into efficient methods for handling other gauge theories, as well as into the

general properties of scattering amplitudes. In addition, empirical results have led to the

discovery of many hidden properties of planar N = 4 SYM, such as dual (super)conformal

invariance [8–12], and the amplitude-Wilson-loop duality [11, 13–16].

Many of the more powerful approaches toN = 4 supersymmetric scattering amplitudes

compute the loop integrand of the theory [1–3, 5, 9, 10, 17–20]. These approaches can
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produce the integrand at very high loop order [21–23], but the evaluation of the loop

integrals can be quite challenging, in part due to severe infrared divergences. Some of

the methods for producing the integrands are only valid exactly in four dimensions in the

massless theory, where the integrals are infinite. Even when the integrands can be computed

with a regulator in place, it is difficult to isolate the infrared divergences of high-loop order

integrals directly at the integrand level. Although there are exceptions, such as the energy-

energy correlation [24, 25], finite observables typically require the explicit cancellation of

infrared divergences across different loop orders.

In this paper we will follow an alternative approach, the hexagon function bootstrap [26–

30]. The philosophy of this program is to bypass integrands altogether and focus on

infrared-finite quantities from the very beginning. One such finite quantity is the re-

mainder function [31, 32], Rn, defined by dividing the maximally-helicity-violating (MHV)

scattering amplitude for n gluons by the BDS ansatz [3]. Another useful observable, start-

ing with the next-to-MHV (NMHV) helicity configuration, is the ratio function P [12], in

which super-amplitudes for other helicity configurations are divided by the MHV super-

amplitude. An on-shell superspace [12, 33–35] is used to organize the external states into

N = 4 supermultiplets, and the amplitudes into super-amplitudes.

Such finite observables can be constrained directly from their analytic properties, par-

ticularly their behavior in kinematical limits where amplitudes factorize and can be com-

puted by other methods. In the case of planar N = 4 super-Yang-Mills theory, we are

fortunate to have a rich abundance of such boundary data. Perhaps the most powerful infor-

mation comes in the near-collinear limit where two of the external states are almost parallel.

Thanks to the equivalence between amplitudes and polygonal Wilson loops, this limit cor-

responds to an operator product expansion (OPE) [36–39]. The relevant operators, whose

anomalous dimensions are known exactly [40], generate excitations of a one-dimensional

flux tube. These states have integrable 1 + 1 dimensional scattering matrices. In the

past year or so, Basso, Sever and Vieira (BSV) have shown that the OPE is governed by

“pentagon transitions”, which they argue can be expressed in terms of the integrable S ma-

trices [41] to all orders in the ’t Hooft coupling. BSV have worked out the consequences of

this picture in increasingly great detail [42–44]. The perturbative expansions of their results

provides valuable boundary data for the hexagon function bootstrap. Recently, aspects of

the flux-tube approach have been reformulated in terms of Baxter equations [45, 46].

Another important limit is the multi-Regge limit, when the outgoing gluons are well

separated in rapidity. In this limit, Lipatov and collaborators have described the factor-

ization of the N = 4 amplitudes in a Fourier-Mellin transformed space [47–54]. Further

perspectives on multi-Regge factorization have been provided by Caron-Huot [55]. The

factorization limit has a logarithmic ordering, which allows for the efficient recycling of

lower-loop information to higher loops [28, 29, 56, 57]. The recycling is aided by the recog-

nition [56] that in the six-point case the functions relevant for the multi-Regge limit are

single-valued harmonic polylogarithms (SVHPLs) [58].

Very recently, a proposal for the multi-Regge limit has been made [59] that predicts

all subleading logarithmic orders. This proposal is based on an analytic continuation from

the near-collinear limit, which is similar in spirit to earlier work [52, 60], but now provides

much more detailed information.
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The near-collinear, multi-Regge, and other physical constraints are most effective in

determining an amplitude when they are combined with a suitable ansatz for the space of

functions in which the solution lies. For the case of six-point amplitudes, dual conformal

invariance implies that the amplitudes depend essentially on only three variables, the dual

conformal cross ratios (u, v, w). The analytic solution for the two-loop remainder function

R
(2)
6 (u, v, w) [61, 62], after it was simplified dramatically using the symbol [4], provided

the inspiration for an ansatz for the symbol of the remainder function at higher loops [26].

The same ansatz could also be applied to the symbols of a pair of functions V (u, v, w) and

Ṽ (u, v, w) entering the NMHV ratio function [27]. Those symbols define a class of functions

of three variables, iterated integrals called hexagon functions [28]. The number of iterated

integrations defines the weight of the hexagon function, which should be 2L for the L-loop

contributions to R6, V and Ṽ . Given the hexagon-function ansatz, the near-collinear limit,

multi-Regge behavior, and a few other physical constraints uniquely determine the full

six-point remainder function at both three [28] and four loops [29]. The uniquenes of the

solution, despite the existence of around 6000 unknown parameters in the inital four-loop

ansatz, is a testament to the power of the boundary data.

The aim of this paper is to apply the hexagon function bootstrap to the six-gluon

NMHV amplitude. In particular, we will compute V and Ṽ through three loops, entirely

from physical constraints. A similar exercise was performed previously at two loops [27].

However, at that time fewer constraints were available, and so an explicit evaluation of

two-loop integrals for special kinematics had to be performed as well, in order to fix all the

unknown parameters. Now the bootstrap works unassisted at both two and three loops.

The increasing amount of powerful, higher-twist OPE data [43, 44] suggests that it can be

carried out to much higher loop order, with the main limiting factor likely to be computing

power.

At three loops, the weight (number of iterated integrations) of V and Ṽ is six. We

characterize the functions in terms of their weight-five {5, 1} coproduct components [63, 64],

which are essentially their first derivatives. This characterization makes use of a previous

classification of hexagon functions through weight five [28]. There are several hundred free

parameters (unknown rational numbers) in our initial ansatz. We then apply a series of

constraints to reduce the number of parameters. These constraints include fairly simple

and obvious ones, such as symmetry, spurious pole cancellations and vanishing collinear

limits. Other constraints incorporate more sophisticated information, such as:

• a final-entry condition (a characterization of the first derivative) which comes

from [65] the Q̄ differential equation in the super-Wilson loop approach [65, 66];

• the near-collinear limits, which are required to match the OPE results of refs. [39, 41–

44] in particular;

• the multi-Regge limits, where we match to a formula that is a natural generalization

of one proposed for the MHV amplitude [53, 55], and for the leading-logarithmic

terms in the NMHV amplitude [54].
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Together, these constraints are more than enough to fully determine V and Ṽ . Indeed, we

have powerful cross checks of the consistency of our assumptions, as well as those made by

other groups providing these constraints. With the parity-even and parity-odd functions

fully determined, we discuss some of their limiting behaviors, plot them, and showcase

their interesting features.

This article is organized as follows. In section 2 we explain our setup further, and

then apply the first constraints: (anti)symmetry in u ↔ w; vanishing of Ṽ under cyclic

permutations of u, v, w; the final-entry condition; and the vanishing of spurious poles.

These constraints reduce the number of parameters in the ansatz down to 142. In section 3

we apply constraints in the collinear limit, at leading order and at the first near-collinear

order, which together determine all but two parameters. In section 4 we inspect the multi-

Regge limits, which fix the remaining two parameters in V (u, v, w) and Ṽ (u, v, w). The

next term in the near-collinear limit is then determined uniquely and agrees precisely

with the OPE predictions of ref. [43]. We also extract the NMHV impact factor for the

multi-Regge limit through next-to-next-to-leading-logarithm (NNLL), and compare it to

the recent predictions of ref. [59]. In section 5, we inspect the multi-particle factorization

limit of the NMHV amplitude. We introduce a function U , closely related to V , that

plays an important role in this limit. We show that U collapses to a simple polynomial in

ln(uw/v) in the factorization limit. In section 6, we find that U has additional simplicity

across the entire space of cross ratios: it has a restricted set of only five final symbol entries,

which leads to a simple form for one of its three derivatives. In section 7 we derive formulae

for U and Ṽ on various lines through the space of cross ratios where they simplify. We also

investigate the numerical behavior of V and Ṽ on these lines and on some two-dimensional

planes. In section 8, we explore an intriguing empirical relation between V and coproduct

components of the remainder function R6 at one higher loop order. In section 9 we discuss

our conclusions and directions for future work. In appendix A, we give the {2L − 1, 1}
coproduct elements that characterize the weight 2L functions U (from which V can be

derived) and Ṽ through three loops.

We also provide ancillary files containing machine-readable expressions for the near-

collinear and multi-Regge limits of the ratio function.

2 Setup and first constraints

As in ref. [27], we introduce an on-shell superspace (see e.g. refs. [12, 33–35]). We arrange

the different on-shell states of the theory into an on-shell superfield Φ which depends on

Grassmann variables ηA transforming in the fundamental representation of su(4),

Φ = G+ + ηAΓA +
1

2!
ηAηBSAB +

1

3!
ηAηBηCεABCDΓ

D
+

1

4!
ηAηBηCηDεABCDG

−. (2.1)

Here G+, ΓA, SAB = 1
2εABCDS

CD
, Γ

A
, and G− are the positive-helicity gluon, gluino,

scalar, anti-gluino, and negative-helicity gluon states, respectively.

We then consider superamplitudes, A(Φ1,Φ2, . . . ,Φn), which are functions of the su-

perfields Φi. The ratio function is the ratio of the full superamplitude to the MHV super-
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amplitude, defined as follows [12],

A = AMHV × P . (2.2)

By expanding in the Grassmann degree, i.e. powers of η, we can select out different values

of k in the NkMHV expansion:

P = 1 + PNMHV + PN2MHV + . . .+ PMHV , (2.3)

where successive terms in the expansion carry four more powers of η. For the six-point

superamplitude, the only nontrivial term in this expansion is the NMHV one, because

N2MHV is MHV, which is related to MHV by parity (reversal of all helicities).

At tree level, the six-point NMHV ratio function is best described in terms of R-

invariants, which in turn are defined in terms of dual coordinates (xi, θi):

pαα̇i = λαi λ̃
α̇
i = xαα̇i − xαα̇i+1, qαAi = λαi η

A
i = θαAi − θαAi+1 . (2.4)

The usual dual conformal cross ratios are denoted by

u = u1 =
x213 x

2
46

x214 x
2
36

, v = u2 =
x224 x

2
51

x225 x
2
41

, w = u3 =
x235 x

2
62

x236 x
2
52

, (2.5)

where x2ij ≡ (xµi − x
µ
j )2.

Using the coordinates (xi, θi) we may define momentum (super)twistors [67, 68]

Zi = (Zi |χi), ZR=α,α̇
i = (λαi , x

βα̇
i λiβ), χAi = θαAi λiα . (2.6)

The momentum (super)twistors Zi transform linearly under dual (super)conformal sym-

metry, so that 〈abcd〉 = εRSTUZ
R
a Z

S
b Z

T
c Z

U
d is a dual conformal invariant. If we label our

six external lines as a, b, c, d, e, f , then the R-invariants can be written as

(f) ≡ [abcde] =
δ4
(
χa〈bcde〉+ cyclic

)
〈abcd〉〈bcde〉〈cdea〉〈deab〉〈eabc〉

. (2.7)

In general, R-invariants obey many identities; see for example refs. [12, 69]. At six

points, the only identity we need is [12]

(1)− (2) + (3)− (4) + (5)− (6) = 0. (2.8)

Using this identity, the NMHV tree amplitude may be written as

P(0)
NMHV = [12345] + [12356] + [13456] = (6) + (4) + (2) = (1) + (3) + (5). (2.9)

Beyond tree level, the R-invariants will be dressed with transcendental functions of the

dual conformal cross ratios (u, v, w), which we will assume are hexagon functions.

Hexagon functions are a particular class of iterated integrals [70] or multiple polylog-

arithms [71, 72], which we will also refer to as pure (transcendental) functions. When a

weight-n pure function f is differentiated, the result can be written as

df =
∑
sk∈S

fskd ln sk , (2.10)
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where S is a finite set of rational expressions, called the letters of the symbol of f , and fsk

are weight-(n − 1) pure functions. The functions fsk describe the {n − 1, 1} component

of a coproduct ∆ associated with a Hopf algebra for iterated integrals [73–76]. Similarly,

each fsk can be differentiated,

df sk =
∑
sj∈S

fsj skd ln sj , (2.11)

thereby defining the weight-(n − 2) functions fsj sk , which describe the {n − 2, 1, 1} com-

ponents of ∆. The maximal iteration of this procedure defines the symbol of f , an n-fold

tensor product of elements of S (each standing for a d ln).

Hexagon functions are functions whose symbols have letters drawn from a particular

nine-letter set:

S = {u, v, w, 1− u, 1− v, 1− w, yu, yv, yw} , (2.12)

where

yu =
u− z+
u− z−

, yv =
v − z+
v − z−

, yw =
w − z+
w − z−

, (2.13)

and

z± =
1

2

[
−1 + u+ v + w ±

√
∆
]
, ∆ = (1− u− v − w)2 − 4uvw . (2.14)

These nine letters are related to the 15 projectively invariant ratios of momentum-twistor

four-brackets 〈abcd〉, which can be factored into nine independent combinations.

Hexagon functions are defined by one additional property: their branch cuts should

only be at 0 or ∞ in the variables u, v, w, which means that the first entry of their symbol

is restricted to just these three letters [38].

We note that a cyclic permutation of the six external legs sends u→ v → w → u, while

the yi variables transform as yu → 1/yv → yw → 1/yu. A three-fold cyclic rotation amounts

to a space-time parity transformation, under which the cross ratios are invariant while

the yi variables invert. It is useful to classify hexagon functions by their transformation

properties under parity. Many additional properties of hexagon functions, and methods

for constructing them, are detailed in refs. [28, 30].

The six-point NMHV ratio function can be written in terms of two functions, a parity-

even function V (u, v, w) and a parity-odd function Ṽ (yu, yv, yw) as follows [12, 27]:

PNMHV =
1

2

[
[(1) + (4)]V (u, v, w) + [(2) + (5)]V (v, w, u) + [(3) + (6)]V (w, u, v) (2.15)

+ [(1)−(4)]Ṽ (yu, yv, yw)−[(2)−(5)]Ṽ (yv, yw, yu)+[(3)−(6)]Ṽ (yw, yu, yv)
]
.

It is better to think of the parity-odd function Ṽ as a function of the yi variables, because

its properties under cyclic permutations are then captured correctly. The loop expansions

of V and Ṽ are given by

V = 1 +

∞∑
L=1

aLV (L) , (2.16)
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Ṽ =
∞∑
L=1

aLṼ (L) , (2.17)

where a = g2YMNc/(8π
2) is our loop expansion parameter, in terms of the Yang-Mills cou-

pling constant gYM and the number of colors Nc. We remark that the expansion parameter

conventionally used for the Wilson loop, g2, is related to our parameter by g2 = a/2.

The fundamental assumption in this paper, which was also used at two loops [27], is

that V (L) and Ṽ (L) are weight 2L hexagon functions, with even and odd parity respectively.

The same basic assumption for the (parity-even) remainder function R
(L)
6 [26, 28] results

in a consistent solution through four loops [28, 29].

In this paper, we will work directly with hexagon functions, rather than their symbols.

Through three loops, we only need hexagon functions through weight six. According to

eq. (2.10), the {5, 1} coproduct elements of a weight-six function f completely specify the

function in terms of the weight-five functions fsk up to a single constant of integration,

which we can take to be the value of f at the point (u, v, w) = (1, 1, 1). In ref. [28],

all the hexagon functions were classified through weight five. We use this information to

construct the space of weight-six hexagon functions, by writing the most general {5, 1}
coproduct elements leading to consistent mixed partial derivatives, i.e. d2f = 0. Including

lower-weight functions multiplied by Riemann ζ values, there are a total of 639 parity-even

weight-six hexagon functions, and 122 parity-odd ones. Our initial ansatz for V (3) is the

most general linear combination of the parity-even functions with 639 unknown rational-

number coefficients. Similarly, the ansatz for Ṽ (3) is constructed from the 122 parity-odd

functions. We then impose constraints on V (3) and Ṽ (3), as described in the remainder of

this section and in the following two sections, until all 761 parameters are fixed.

Before carrying out this procedure at three loops, we recall what is known about the

functions V (L) and Ṽ (L) at lower loop orders. At one loop, the parity-odd function vanishes,

while the parity-even one is nontrivial [12]:

V (1)(u, v, w) =
1

2

[
Hu

2 +Hv
2 +Hw

2 + (lnu+ lnw) ln v − lnu lnw − 2ζ2

]
, (2.18)

Ṽ (1)(u, v, w) = 0. (2.19)

The vanishing of the weight-two parity-odd function Ṽ (1) can be understood simply from

the fact that there are no such hexagon functions. The first parity-odd hexagon function,

Φ̃6, is related to the one-loop massless hexagon integral in six dimensions [77, 78], and it

has weight three.

In ref. [27], the two-loop ratio function was determined up to ten symbol-level pa-

rameters and one beyond-the-symbol parameter, using general constraints, including the

leading-discontinuity part of the NMHV OPE [39]. These eleven parameters were then fixed

via an explicit evaluation of the relevant loop integrals on the line in which all three cross

ratios are equal, (u, u, u). This procedure led to the following expressions for V (2)(u, v, w)

– 7 –



J
H
E
P
1
0
(
2
0
1
4
)
0
6
5

and Ṽ (2)(u, v, w):

V (2) =−1

4

{
Ω(2)(u, v, w) + Ω(2)(v, w, u) + 2 Ω(2)(w, u, v) + 5 (Hu

4 +Hw
4 ) +Hu

3,1 +Hw
3,1

− 3 (Hu
2,1,1 +Hw

2,1,1)− 2
[
(Hu

2 )2 + (Hw
2 )2
]
− 4 (lnuHu

3 + lnwHw
3 )

+
1

2
(ln2uHu

2 +ln2wHw
2 )+4Hv

4−2Hv
3,1−

3

2
(Hv

2 )2−2 ln v(2Hv
3−Hv

2,1)+ln2 vHv
2

− 2
[
(Hu

2 +Hw
2 )Hv

2 +Hu
2 H

w
2

]
+ ln(u/v) (Hw

3 +Hw
2,1) + ln(w/v) (Hu

3 +Hu
2,1)

−
[
lnu ln(v/w) + 2 ln v lnw

]
Hu

2 −
[
lnw ln(v/u) + 2 ln v lnu

]
Hw

2

−
[

1

2
ln2(u/w) + ln(uw) ln v

]
Hv

2 −
1

2
ln(uw) ln v

[
ln(uw) ln v − lnu lnw

]
− 1

4
ln2 u ln2w + ζ2

[
4 (Hu

2 +Hw
2 ) + 2Hv

2 − ln2 u− ln2w − 2 ln2 v

+ 6 (ln(uw) ln v − lnu lnw)
]
− 12 ζ4

}
, (2.20)

Ṽ (2) =
1

8

[
−F1(u, v, w) + F1(w, u, v) + ln(u/w)Φ̃6(u, v, w)

]
. (2.21)

Here we have rewritten the results in terms of harmonic polylogarithms (HPLs) [79], as

well as the other functions constituting the basis of hexagon functions through weight four,

namely Ω(2), Φ̃6 and F1 [28].

The HPLs we need have weight vectors containing only 0 and 1. They can be defined

recursively by

H0, ~w(u) =

∫ u

0

dt

t
H~w(t), H1, ~w(u) =

∫ u

0

dt

1− t
H~w(t), (2.22)

except for H0n(u) which is defined by H0n(u) = 1
n! logn u. We choose a basis for the HPLs

in which the point u = 1 is regular, by letting the argument be 1 − u, and restricting to

weight vectors whose last entry is 1. We also use a compressed notation where (k − 1) 0’s

followed by a 1 is replaced by k in the weight vector, and the argument (1− u) is replaced

by the superscript u [28]. So, for example, Hu
3,1 = Hu

0,0,1,1 = H0,0,1,1(1 − u), and similarly

for when the argument is v or w.

In ref. [27], only the leading-discontinuity terms in the OPE were available [39]. Now,

thanks to the work of BSV [41–44], who have used integrability to determine the OPE

expansion exactly in the coupling, we have access to enough data to fix not only the

two-loop, but also the three-loop six-point NMHV ratio function, without resorting to

evaluating any loop integrals. The starting ansatz at two loops involves 50 parity-even

weight-four hexagon functions for V (2), and 2 parity-odd ones for Ṽ (2). (At one loop, there

are 7 parity-even weight-two hexagon functions for V (1), and no parity-odd ones for Ṽ (1).)

We now begin to determine the various unknown rational numbers by applying many

of the same constraints as in ref. [27]. Specifically, the constraints we inherit from that

paper are as follows:

• Symmetry: under the exchange of u and w, the function V is symmetric while Ṽ

is antisymmetric:

V (w, v, u) = V (u, v, w), Ṽ (yw, yv, yu) = −Ṽ (yu, yv, yw). (2.23)
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At three loops, this constraint reduces the 639 + 122 = 761 parameters to 363 + 49 =

412.

• Spurious Pole Constraints: Scattering amplitudes have poles corresponding to

sums of color-adjacent momenta, of the form (pi + pi+1 + . . . + pj−1)
2 ≡ x2ij . These

are produced by four-brackets of the form 〈i − 1, i, j − 1, j〉. Poles in other four-

brackets do not correspond to sums of color-adjacent momenta, and should not be

present in the full amplitude. While such poles never appear in hexagon functions,

they are present in the R-invariants. In order for such spurious poles to vanish in

the full function, the coefficients of the R-invariants must be such that these poles

cancel. The R-invariants (1) and (3) contain poles as 〈2456〉 → 0, with equal and

opposite residues. In order for them to cancel, we see from eq. (2.15) that

[V (u, v, w)− V (w, u, v) + Ṽ (yu, yv, yw)− Ṽ (yw, yu, yv)]〈2456〉→0 = 0. (2.24)

The 〈2456〉 → 0 limit can be implemented by taking

w → 1 , yu → (1− w)
u(1− v)

(u− v)2
, yv →

1

(1− w)

(u− v)2

v(1− u)
, yw →

1− u
1− v

. (2.25)

• Collinear Limit: As two external particles become collinear, the six-point NMHV

amplitude should reduce to either the five-point MHV or MHV amplitude times a

splitting function. The five-point ratio function is equal to its tree-level value due

to parity (NMHV/MHV is MHV/MHV at the five-point level). Therefore, at any

nonzero loop order the collinear limit of the six-point ratio function must vanish.

In particular, taking w → 0 and v → 1 − u gives a collinear limit in which all R-

invariants vanish except for (6) and (1), which become equal. Inserting this condition

into eq. (2.15), we find the collinear constraint,

[V (u, v, w) + V (w, u, v) + Ṽ (yu, yv, yw)− Ṽ (yw, yu, yv)]w→0, v→1−u = 0. (2.26)

Parity-odd functions always vanish in the collinear limit [27], so the constraint is

really just that V (u, v, w) + V (w, u, v) vanishes in the limit.

In addition to these constraints, we impose several new constraints, here in rough order

of simplicity:

• Cyclic Vanishing: It turns out that not all of the apparent freedom in Ṽ is phys-

ically meaningful. It is possible to add a cyclicly symmetric function to Ṽ that is

consistent with its other symmetries, but such a contribution f̃(u, v, w) vanishes in

the full ratio function (2.15):

1

2

[
[(1)− (4)]f̃(u, v, w)− [(2)− (5)]f̃(u, v, w) + [(3)− (6)]f̃(u, v, w)

]
=

1

2

[
[(1) + (3) + (5)]− [(2) + (4) + (6)]

]
f̃(u, v, w)

= 0,

(2.27)
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using eq. (2.9). A function f̃ of this sort cannot contribute to the ratio function, and

so it will never be constrained by any physical limits. Therefore, we might as well set

any such contribution to zero. This constraint did not appear at two loops, because

there are no cyclicly invariant parity-odd hexagon functions at weight four. However,

at weight six there are 10 such functions. We remove them using this constraint,

right after imposing the u↔ w symmetry constraints.

• Final-Entry Condition: Caron-Huot and He have observed that supersymmetry

constrains the possible final entries of the symbols of finite quantities in planar N = 4

SYM [65, 80]. Specifically, they express the action of certain dual superconformal

generators on the NkMHV amplitude in terms of lower-loop Nk+1MHV quantities.

For the MHV remainder function, these constraints imply a set of six possible final

entries. For the NMHV ratio function, expressed in our variables, the constraints

are that V (u, v, w) and Ṽ (u, v, w), the functions multiplying the R-invariant (1), can

only have final entries from the following seven-element set:{
u

1− u
,

v

1− v
,

w

1− w
, yu, yv, yw,

uw

v

}
. (2.28)

The other R-invariants multiply functions with final entries from sets related by the

appropriate cyclic permutations of the variables. (Technically, these constraints ap-

ply to the NMHV amplitude from which infrared divergences have been subtracted

using the BDS ansatz, rather than to the ratio function itself. However, these quan-

tities differ by the MHV remainder function, which has final entries in a subset of the

NMHV set (2.28) (uw/v is not present). Therefore, this final-entry condition can be

applied to the ratio function without modification.) We impose this constraint right

after the cyclic-vanishing constraint. It reduces the 363 + 39 free parameters down

to 166 + 16 = 182. Then we impose the vanishing of the spurious poles, which fixes

another 40 parameters, and mixes the parity-even and parity-odd sectors so that we

can no longer count their parameters separately.

• Near-Collinear Limits: BSV use integrability to evaluate the OPE for Wilson loops

nonperturbatively in the coupling. They proceed order by order in the number of

flux-tube excitations, which corresponds to powers of an expansion parameter T . This

parameter is proportional to the square root of a vanishing cross ratio (see section 3).

By inserting states on the boundaries of the Wilson loop they are able to replicate par-

ticular components of the NMHV amplitude. Constraining our results to agree with

their expansions at first order in T [42] constrains many parameters. Two parameters

that remain can be constrained using BSV’s more recent results at order T 2 [43, 81].

• Multi-Regge Kinematics: The multi-Regge limit is a generalization of the Regge

limit in which the outgoing particles of a 2→ n scattering process are strongly ordered

in rapidity. Lipatov, Prygarin, and Schnitzer [54] have investigated the multi-Regge

limit of NMHV amplitudes in N = 4 SYM, creating an ansatz for their behavior

at leading-logarithmic order that mirrors previous results for the MHV amplitude.
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Constraint L = 1 L = 2 L = 3

1. (Anti)symmetry in u and w 7 52 412

2. Cyclic vanishing of Ṽ 7 52 402

3. Final-entry condition 4 25 182

4. Spurious-pole vanishing 3 15 142

5. Collinear vanishing 1 8 92

6. O(T 1) OPE 0 0 2

7. O(T 2) OPE or multi-Regge kinematics 0 0 0

Table 1. Remaining parameters in the function-level ansätze for V (L) and Ṽ (L) after each constraint

is applied, at each loop order.

In this paper we generalize their results beyond leading-log order, along the lines

of refs. [53, 55]. These generalizations are fully consistent with the near-collinear

boundary conditions, and thereby serve as an independent check of them. Also,

we can derive the NMHV impact factor in the factorization we propose, through

NNLL. The NMHV and MHV impact factors are strikingly similar. Our results are

completely consistent with the recent all-orders multi-Regge proposal [59].

In practice it can be useful to constrain the symbol of the ratio function first, and then

constrain the full function, making use of the coproduct to characterize the beyond-the-

symbol terms. Indeed, this was our first approach to obtaining V (3) and Ṽ (3). However,

as mentioned earlier in this section, it is straightforward to dispense with the symbol

altogether, and begin with a function-level ansatz characterized by various coproduct com-

ponents. We then apply all constraints directly at function level, using the coproduct

information to compute the necessary limiting behavior. Because such an approach may

well scale better computationally to higher loops than a symbol-level approach, we describe

the results of using that approach here. After applying each set of constraints the number

of parameters in the ansatz is reduced, as shown in table 1. This table also includes the

corresponding numbers for lower loop orders, so that one can appreciate the growth in the

number of parameters with loop order.

As shown, after applying the constraints of u↔ w (anti)symmetry, cyclic vanishing of

Ṽ , the final entry condition, and the vanishing of spurious poles, we have 142 parameters

remaining in our ansatz. In the following sections, we use the collinear constraints, OPE,

and multi-Regge limits to fix these final parameters.

3 Collinear and near-collinear limits

In this section, we consider the w → 0 collinear limit. In general, this limit may be

expressed via a permutation of a map between the cross ratios (u, v, w) and the variables
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(F, S, T ) ≡ (eiφ, eσ, e−τ ) defined in ref. [41]:

u =
F

F + FS2 + ST + F 2ST + FT 2
,

v =
FS2

(1 + T 2)(F + FS2 + ST + F 2ST + FT 2)
,

w =
T 2

1 + T 2
,

yu =
F + ST + FT 2

F (1 + FST + T 2)
,

yv =
FS + T

F (S + FT )
,

yw =
(S + FT )(1 + FST + T 2)

(FS + T )(F + ST + FT 2)
.

(3.1)

As mentioned in section 2, the combination V (u, v, w) + V (w, u, v) should vanish in

this limit. This is a fairly powerful constraint, fixing 50 of the remaining 142 parameters,

and leaving 92. To determine the remaining parameters we will match to the OPE results

of Basso, Sever and Vieira.

Many features of BSV’s approach to the OPE of polygonal Wilson loops carry over to

the NMHV helicity configuration with only minor modifications [42]. In general, NMHV

scattering amplitudes are dual to Wilson loops dressed with insertions of states that depend

on the particular NMHV component being investigated [82, 83]. Two cases are explored

by BSV, that of two scalar insertions, one on the bottom cusp and one on the top, and

that of a gluonic insertion on the bottom cusp. We will consider each in turn.

BSV found that by inserting a scalar on the top and bottom cusps of the Wilson loop

they were able to probe the η6η1η3η4 (or “6134”) component of the NMHV amplitude. In

this configuration, the leading excitations are scalar ones. Inspecting eq. (2.7), we see that

all the R-invariants vanish for the η6η1η3η4 component except for (2) and (5). Furthermore,

the identity (2.8) collapses for this component to

(2) = (5) =
1

〈6134〉
=

e−τ

2 coshσ
, (3.2)

so that only the term multiplying V (v, w, u) survives. Thus this component of P has a

particularly simple representation in terms of a single pure function. Additionally, up to

the first order in T the Wilson loop ratio investigated by BSV is equal to the ratio function.

As such, we may simply write

W(6134) =
e−τ

2 coshσ

∞∑
L=0

(a
2

)L L∑
n=0

τnF (L)
n (σ) + O(e−2τ )

=
T

2 coshσ
× V (v, w, u)|O(T 0) + O(T 2) ,

(3.3)

where the F
(L)
n are given explicitly in appendix F of ref. [42]. Note that we only need

the T 0 term in V (v, w, u) as w → 0, because the dual superconformal invariant prefactor
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carries a power of T in this limit. Applying the constraint (3.3) at three loops, to the

92-parameter ansatz with vanishing collinear limits, leaves 14 parameters unfixed. In an

ancillary file, we give the near-collinear limit of P(6134) through one higher order, T 2 (after

all free parameters have been fixed).

Alternatively, one may insert a gluonic excitation at the bottom cusp of the Wilson

loop, probing the (η1)
4 (or “1111”) component. Up to first order in T , the R-invariants in

this component become

(1)→ 0, (2)→ FT

S(1+S2)
+O

(
T 2
)
, (3)→ 1−FST+O

(
T 2
)
,

(4)→ 1−FT
S

+O
(
T 2
)
, (5)→ FS3T

1 + S2
+O

(
T 2
)
, (6)→ 0 +O(T 4) .

(3.4)

The odd function Ṽ vanishes in the collinear limit; it is O(T 1) for any permutation. Also,

we can use eq. (2.26) to eliminate V (w, u, v) in favor of −V (u, v, w), up to terms sup-

pressed by a power of T . Using such relations, we find that the (η1)
4 component of the

ratio function becomes,

P(1111) =
1

2

{
V (u, v, w) + V (w, u, v)− Ṽ (u, v, w) + Ṽ (w, u, v)

+ FT

[
−1− S2

S
V (u, v, w) +

1 + S4

S(1 + S2)
V (v, w, u)

]}
+ O(T 2) .

(3.5)

We note that the terms without an explicit T are also O(T ) due to the collinear-vanishing

relations, except for the tree-level term, which is 1 +O(T ).

We match the near-collinear limit of eq. (3.5) to BSV’s computation [42] of the OPE,

in terms of a single gluonic excitation propagating across the Wilson loop. The result is

given as an integral over the excitation’s rapidity u, involving its anomalous dimension

(or energy) γ(u), its momentum p(u), a measure factor µ(u), and the NMHV dressing

functions h and h̄. The expansions of these quantities through O(a3) are given by,

γ(u) = a

[
ψ

(
1

2
− iu

)
+ ψ

(
1

2
+ iu

)
− 2ψ(1)

]
− a2

4

[
ψ′′
(

3

2
− iu

)
+ ψ′′

(
3

2
+ iu

)
+ 4ζ2

[
ψ

(
1

2
− iu

)
+ ψ

(
1

2
+ iu

)
− 2ψ(1)

]
+ 12ζ3

]
+
a3

8

[
1

6

[
ψ′′′′

(
3

2
− iu

)
+ ψ′′′′

(
3

2
+ iu

)]
+ 2ζ2

[
ψ′′
(

3

2
− iu

)
+ ψ′′

(
3

2
+ iu

)]
+ 44ζ4

[
ψ

(
1

2
− iu

)
+ ψ

(
1

2
+ iu

)
− 2ψ(1)

]
− 24ζ2ζ3 tanh2 πu+ 40(2ζ5 + ζ2ζ3)

]
+O(a4) , (3.6)

p(u) = 2u− aπ tanhπu+
a2

4
π3

[
8

3
tanhπu− 2 tanh3 πu

]
+
a3

8

[
π5

(
−172

45
tanhπu+

22

3
tanh3 πu−4 tanh5 πu

)
+4iζ3

[
ψ′
(

3

2
−iu

)
−ψ′

(
3

2
+iu

)]]
+O(a4) , (3.7)
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and

h(u) =
2x+(u)x−(u)

a
, h̄(u) =

1

h(u)
, (3.8)

where

x±(u) = x

(
u± i

2

)
(3.9)

is given in terms of the Zhukovsky variable

x(u) =
1

2

[
u+

√
u2 − 2a

]
. (3.10)

The perturbative expansion of the measure µ(u) can be found in ref. [41]. It is a bit more

complicated, but is still expressible in terms of the function ψ(x) = d ln Γ(x)/dx and its

derivatives, as well as tanhπu. The rapidity u should not be confused with the cross ratio u.

In terms of these functions, the formula for the gluonic flux-excitation contribution to

the OPE is,

P(1111) = 1 + TF

∫ ∞
−∞

du

2π
µ(u)(h(u)− 1)eip(u)σ−γ(u)τ

+
T

F

∫ ∞
−∞

du

2π
µ(u)(h̄(u)− 1)eip(u)σ−γ(u)τ +O(T 2) .

(3.11)

We can carry out the integrals over u by deforming the integral into the lower half-plane,

which converts it into a sum over residues at u = −im/2 for positive integers m. There

are methods for performing such sums exactly, see for example refs. [84, 85]. We take a

more mundane approach: we truncate the series in m at a suitably large finite value (of

order 100). The truncation yields a high-order Taylor expansion in S. Then we write

an ansatz for the exact result in terms of HPLs depending on S2, and match the Taylor

expansion of the ansatz against the actual Taylor expansion, in order to determine all of

the rational-number coefficients in the ansatz.

After we have expressed the order T term in eq. (3.11) in terms of HPLs, in order

to match it against our ansatz we have to expand eq. (3.5), with the ansatz for V and Ṽ

inserted into it. The ansatz has either 14 or 92 parameters in it (depending on whether or

not we have already imposed the order T constraint on P(6134)). We use the differential

equations method described in section 5 of ref. [28] to expand all the hexagon functions

in this ansatz. The resulting expressions for the expansion of eq. (3.11) are too lengthy

to display here, but we provide them in a computer-readable ancillary file attached to this

article. The file also includes the next order in the near-collinear expansion of P(1111),

namely order T 2, after all free parameters have been fixed.

After applying the constraints from the T 1 term in the OPE for the 1111 component,

eq. (3.5), just two undetermined parameters remain. These parameters multiply the func-

tions [Φ̃6]
2 and V (1)R

(2)
6 , where Φ̃6 is the pure function associated with the D = 6 one-loop

hexagon integral [77, 78], V (1) is the one-loop ratio function given in eq. (2.18), and R
(2)
6

is the two-loop remainder function. It is easy to see that the two parameters cannot be

fixed by any OPE information at O(T 1): because Φ̃6 is parity odd, it vanishes proportional
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to T , so its square vanishes like T 2. Similarly, V (1) obeys the collinear vanishing condi-

tion (2.26), giving one power of T ; and R
(2)
6 is totally symmetric and its vanishing provides

an additional power of T in all channels.

Sever, Vieira and Wang [39] have described the leading-discontinuity OPE behavior of

the ratio function. This behavior captures the leading lnL T behavior at L loops, irrespec-

tive of the number of powers of T multiplying it as T → 0. Hence the leading-discontinuity

OPE might contain complementary information to the full T 1 OPE. However, in the present

case the leading-discontinuity information cannot be used to fix the coefficients of either

[Φ̃6]
2 or V (1)R

(2)
6 . That is because the functions Φ̃6, V

(1) and R
(2)
6 each have only a single

discontinuity, so the two weight-6 functions in question have only double discontinuities,

not the triple discontinuity which is the leading one at three loops.

We also remark that at O(T 1), the 1111 component of the OPE is more powerful than

the 6134 component: we imposed the 1111 constraint directly on the 92-parameter ansatz

with vanishing collinear limits, and found that it still fixed all but two of the parameters,

even without any assistance from the 6134 component. Recall that the 6134 component

imposed on the same 92-parameter ansatz still left 14 parameters unfixed.

Basso, Sever and Vieira have evaluated the two flux-excitation contributions to the

OPE for the ratio function [43] and they have provided us with the small S expansion of

the resulting O(T 2) terms in the OPE [81]. We can use these terms to fix the two remaining

parameters in our ansatz. Alternatively, we can use factorization in the multi-Regge limit,

as described in the next section. Either approach leads to the same values for the two

parameters, providing a very nice consistency check.

4 Multi-Regge limits

In this section we propose a factorization of the NMHV amplitude in the limit of multi-

Regge kinematics (MRK), which is a natural extension of previous work by Fadin and

Lipatov [53] in the MHV case, and by Lipatov, Prygarin and Schnitzer [54] for the leading-

logarithmic behavior of the NMHV amplitude. We use this factorization as one method for

fixing the remaining two parameters in our ansatz. We are then able to extract from the

fully-fixed ansatz the NMHV impact factor, which we compare to the previously-known

MHV impact factor, through next-to-next-to-leading-logarithmic accuracy.

We remind the reader that the multi-Regge limit of a 2→ (n− 2) process is the limit

in which the (n − 2) outgoing particles are strongly ordered in rapidity. For 2 → 4 gluon

scattering, this means that two of the gluons are emitted at high energy almost parallel to

the incoming gluons, while the other two, while still emitted at small angles to the path

of the incoming gluons, have smaller energy. Due to helicity conservation on the highest

energy lines, the MHV 6-gluon amplitude in the MRK limit can be viewed as having two

positive incoming helicities scattering into four positive outgoing ones. The appropriate

color-ordering for the 2 → 4 process is to take two diagonally opposite legs to be the

incoming legs. So we may consider the MHV helicity configuration to be

3+6+ → 2+4+5+1+ , (4.1)
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where legs 1 and 2 are the highest-energy outgoing gluons. For an NMHV amplitude, one

of the two lower-energy outgoing gluons has its helicity reversed, say

3+6+ → 2+4−5+1+ . (4.2)

In eqs. (4.1) and (4.2) we are not using the all-outgoing helicity convention, in order to

emphasize helicity conservation on the high-energy lines.

In this MRK limit, the cross ratios u1, u2 and u3 approach the values

u1 → 1 , u2, u3 → 0 , (4.3)

with the ratios

u2
1− u1

≡ 1

(1 + w) (1 + w∗)
and

u3
1− u1

≡ ww∗

(1 + w) (1 + w∗)
(4.4)

held fixed. In this section, we use (u1, u2, u3) to denote the three cross ratios (2.5), instead

of (u, v, w), in order to minimize confusion between the cross-ratio w and the variable w

used to parametrize the multi-Regge kinematics.

Fadin and Lipatov [53] proposed a precise factorization relation for the MRK limit

of the six-point MHV remainder function, through at least next-to-leading-logarithmic

(NLL) accuracy. Caron-Huot [55] suggested that, subject to some reasonable assumptions,

the same formula should hold in the planar limit to all subleading logarithms. Some

additional evidence for factorization beyond NLL was provided in ref. [29], where the four-

loop remainder function was computed and found to be consistent with the proposed MRK

limit through at least next-to-next-to-leading-logarithmic (NNLL) accuracy.

The proposal of Fadin and Lipatov is that the remainder function R6 obeys [53]:

eR6+iπδ|MRK = cosπωab + i
a

2

∞∑
n=−∞

(−1)n
( w
w∗

)n
2

∫ +∞

−∞

dν

ν2 + n2

4

|w|2iν ΦMHV
Reg (ν, n)

×
(
− 1

1− u1
|1 + w|2

|w|

)ω(ν,n)
,

(4.5)

where

ωab =
1

8
γK(a) log |w|2 ,

δ =
1

8
γK(a) log

|w|2

|1 + w|4
,

(4.6)

and γK(a) is the cusp anomalous dimension.

The BFKL eigenvalue ω(ν, n) and the MHV impact factor ΦMHV
Reg (ν, n) = ΦReg(ν, n)

may both be expanded perturbatively in a:

ω(ν, n) = −a
(
Eν,n + aE(1)

ν,n + a2E(2)
ν,n +O(a3)

)
,

ΦReg(ν, n) = 1 + aΦ
(1)
Reg(ν, n) + a2 Φ

(2)
Reg(ν, n) + a3 Φ

(3)
Reg(ν, n) +O(a4) .

(4.7)
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Because ω(ν, n) starts at order a, while the impact factor ΦReg(ν, n) is unity at leading

order, the highest power of ln(1 − u1) that appears at loop order L is lnL−1(1 − u1).

This property allows the MRK limit to be organized in successive orders of ln(1 − u1),

beginning with the leading-log approximation, or LLA. At this order, only the leading

BFKL eigenvalue Eν,n contributes nontrivially to the remainder function. The next order

in the logarithmic expansion, the term of order lnL−2(1−u1), is called the next-to-leading-

log approximation, or NLLA. It is determined by E
(1)
ν,n and Φ

(1)
Reg, which were computed in

ref. [53]. Computations of the remainder function at three and four loops have provided

the BFKL eigenvalue through NNLLA (E
(2)
ν,n), and the MHV impact factor through N3LLA

(Φ
(2)
Reg and Φ

(3)
Reg) [28, 29, 56].

The BFKL eigenvalue ω(ν, n) is a property of the Reggeized gluon ladder being ex-

changed in the t-channel. It does not depend on the external states attached to the end

of the ladder. For the six-point amplitude, no states should be emitted from the middle of

the ladder [47]. At seven and higher points, there can be such emission vertices [86].

Using the independence of the BFKL eigenvalue from the external states, Lipatov,

Prygarin, and Schnitzer proposed modifying the LLA version of eq. (4.5) for the NMHV

case [54], obtaining:

RLLA
NMHV = − ia

2

∞∑
n=−∞

(−1)n
∫ +∞

−∞

dν wiν+n/2w∗iν−n/2

(iν + n
2 )2

[
(1− u1)aEν,n − 1

]
. (4.8)

Here RNMHV is the NMHV remainder function, a quantity which is particularly convenient

to work with in the MRK limit. It can be defined as the product of the NMHV ratio

function and the (exponentiated) MHV remainder function:

RNMHV =
ANMHV

ABDS
=

ANMHV

AMHV
× AMHV

ABDS
= PNMHV × exp(R6) . (4.9)

Clearly, the LLA NMHV formula (4.8) is the same as the LLA version of eq. (4.5) for the

MHV case, but with the substitution,

1

−iν + n
2

→ − 1

iν + n
2

. (4.10)

We wish to extend this relation beyond the LLA. The same BFKL eigenvalue will

enter the NMHV formula, but in general the NMHV impact factor will receive different

loop corrections than in the MHV case. We therefore propose the following ansatz:

PNMHV×eR6+iπδ|MRK=cosπωab−i
a

2

∞∑
n=−∞

(−1)n
( w
w∗

)n
2

∫ +∞

−∞

dν

(iν+ n
2 )2
|w|2iν ΦNMHV

Reg (ν, n)

×
(
− 1

1− u1
|1 + w|2

|w|

)ω(ν,n)
.

(4.11)

To investigate the validity of this ansatz, we expand PNMHV perturbatively in a, and then

decompose the L-loop coefficient in successive orders of ln(1−u1), starting with the leading

(LLA) behavior proportional to lnL−1(1− u1).
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First we recall the analogous decomposition of the MHV remainder function used in

ref. [56]:

R
(L)
6 (1−u1, w, w∗) = 2πi

L−1∑
r=0

lnr(1−u1)
[
g(L)r (w,w∗) + 2πih(L)r (w,w∗)

]
+O(1−u1) . (4.12)

Here g
(L)
r (w,w∗) corresponds to the leading-log approximation (LLA) for r = L− 1, next-

to-LLA (NLLA) for r = L−2, and so on. Both g
(L)
r and h

(L)
r are pure functions, with weight

2L−r−1 and 2L−r−2 respectively. In fact, they are single-valued harmonic polylogarithms

(SVHPLs) [56, 58], particular linear combinations of harmonic polylogarithms [79] in w and

in w∗ that are single-valued, or real-analytic, in the (w,w∗) plane.

We take the multi-Regge limit of the (η4)
4 component of the ratio function. This

corresponds to flipping the helicity of outgoing gluon 4 from plus to minus, as we go from

MHV to NMHV in the processes 3+6+ → 2+4±5+1+ displayed in eqs. (4.1) and (4.2). In

this limit, the R-invariants become rational functions of w∗. In particular, we have

(1)→ 1

1 + w∗
, (5)→ w∗

1 + w∗
, (6)→ 1, (4.13)

and all of the other R-invariants vanish.

Due to parity symmetry, the ratio function in the MRK limit, PMRK, should be invari-

ant under (w,w∗)→ (1/w, 1/w∗). This leads us to divide up PMRK as follows:

P(L)
MRK = 2πi

L−1∑
r=0

lnr(1− u1)
{

1

1 + w∗

[
p(L)r (w,w∗) + 2πi q(L)r (w,w∗)

]
+

w∗

1+w∗

[
p(L)r (w,w∗)+2πi q(L)r (w,w∗)

]∣∣∣
(w,w∗)→(1/w,1/w∗)

}
+O(1− u1) . (4.14)

The functions p
(L)
r and q

(L)
r turn out to be pure functions, in fact they are SVHPLs, just

like g
(L)
r and h

(L)
r .

In order to extract p
(L)
r and q

(L)
r from the ratio function (2.15), we use eq. (4.13) to take

the MRK limit of the R-invariants, and then we compare with eq. (4.14). We find that,

2πi
[
p(L)r (w,w∗) + 2πi q(L)r (w,w∗)

]
(4.15)

=
1

2

[
V (L)(u1, u2, u3) + V (L)(u3, u1, u2) + Ṽ (L)(u1, u2, u3)− Ṽ (L)(u3, u1, u2)

]
MRK, lnr(1−u1) term

.

These equations relate the pure functions p
(L)
r and q

(L)
r to the MRK limits of V (L) and Ṽ (L).

We can take the MRK limits of these functions (or ansätze for them) using their {2L−1, 1}
coproduct components as input to the differential equation method established in ref. [28].

On the other hand, p
(L)
r and q

(L)
r , together with the MHV coefficients g

(L)
r and h

(L)
r , can

also be related to the BFKL eigenvalue ω(ν, n) and the NMHV impact factor ΦNMHV
Reg (ν, n)

through the NMHV master formula (4.11). In general, to determine p
(L)
r and q

(L)
r , we

have to evaluate the sum over n and the integral over ν in eq. (4.11), for a given loop
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order, a given power of ln(1 − u1), and either the real or imaginary part. We will not

give the details of how we perform the sum and integral, because the general method

was described in ref. [56]: we deform the ν integral into a sum over an integer m, and

truncate the sum over n and m at some large value. Then we match the truncated sum

against the truncated Taylor expansion for a generic linear combination of SVHPLs with the

correct transcendental weight for the relevant p
(L)
r or q

(L)
r coefficient in eq. (4.14), and the

appropriate rational prefactors of 1/(1+w∗) and w∗/(1+w∗). The matching determines the

rational number coefficients in the linear combination. Once these coefficients are all fixed,

we can check them using higher-order terms in the truncated sum and Taylor expansion.

At LLA, for which ω(ν, n) = −aEν,n and ΦNMHV
Reg (ν, n) = 1, the functions p

(L)
L−1 were

predicted in ref. [54] through three loops. We find complete agreement with those predic-

tions. In our notation, which follows that of ref. [56], we have for the LLA coefficients at

one loop,

p
(1)
0 =

1

2

[
1

2
L−0 − L

+
1

]
,

q
(1)
0 = 0 ,

(4.16)

at two loops,

p
(2)
1 =

1

4

[
L−2 +

1

2
L−0 L

+
1 − (L+

1 )2
]
,

q
(2)
1 = 0 ,

(4.17)

and at three loops,

p
(3)
2 =

1

4

[
L+
3 + L−2,1 +

1

2
L+
1 L
−
2 −

1

16
(L−0 )3 − 1

8
(L−0 )2 L+

1 −
1

3
(L+

1 )3 + ζ3

]
,

q
(3)
2 = 0 .

(4.18)

In principle, these LLA results for p
(3)
2 and q

(3)
2 could be used to fix parameters in

our three-loop ansatz. However, once we have imposed all the previously-mentioned con-

straints, through the O(T 1) terms in the OPE, we find that the two remaining parameters

cannot be fixed by the LLA information. To see this, let’s consider the MRK behavior of

the two functions multiplying these parameters. These functions were [Φ̃6]
2 and V (1)R

(2)
6 .

From ref. [28], we know that the function Φ̃6 is totally symmetric, vanishes in the MRK

limit before the analytic continuation, and has a single discontinuity, with no logarithmic

(ln(1−u1)) enhancement [28]: Φ6|MRK = −4πiL−2 . Hence the square of this function has

a double discontinuity, and no logarithmic enhancement:

[Φ̃6]
2|MRK = (2πi)2 × 4 (L−2 )2 . (4.19)

Comparing to eq. (4.15), we see that this function only contributes to q
(3)
0 , that is, to the

NNLLA real part.
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The other function with an undetermined coefficient is V (1)R
(2)
6 . Recalling that Ṽ (1)

vanishes, and inspecting eqs. (4.12) and (4.15), we see that its behavior in the MRK limit is

V (1) ×R(2)
6 |MRK ∝ 2πi p

(1)
0 × 2πi

[
ln(1− u1) g(2)1 + g

(2)
0

]
. (4.20)

Hence this function contributes to both q
(3)
1 and q

(3)
0 , which means that we can fix its

coefficient using the NLLA real part.

In general, if one knows the Nk−1LLA imaginary part, one can also predict the NkLLA

real part from the master formula (4.11). That is because iπ and ln(1 − u1) enter the

formula in the same way, through −(1− u1). Thus the LLA information also predicts the

NLLA real part, as pointed out also in ref. [54]. The NLLA real part vanishes at one loop,

but it is given at two loops by,

q
(2)
0 =

1

8

[
L−2 −

1

2
L−0 L

+
1 + (L+

1 )2
]
, (4.21)

and at three loops by,

q
(3)
1 =

1

4

[
L+
3 + L−2,1 −

1

4
(L−0 )2 L+

1 −
1

2
L−0 (L+

1 )2 +
2

3
(L+

1 )3 + ζ3

]
. (4.22)

Matching the MRK behavior of our ansatz to the NLLA real part q
(3)
1 fixes the coefficient

of V (1)R
(2)
6 . It only remains to fix the coefficient of [Φ̃6]

2,using the NNLLA real part q
(3)
0 .

In order to predict both the NLLA imaginary part and the NNLLA real part, we

first need to determine the NLL NMHV impact factor Φ
NMHV,(1)
Reg (ν, n) entering the master

formula (4.11). This impact factor first contributes to the MRK behavior of the ratio

function at two loops, where it determines p
(2)
0 . We take the MRK limits of V (2) and Ṽ (2)

from ref. [27], and use eq. (4.15) to find

p
(2)
0 =

1

8

[
11L+

3 − 2L−2,1 +

(
3

2
L−0 + L+

1

)
L−2 −

1

12
(L−0 )3 − 3

2
(L−0 )2 L+

1 + L−0 (L+
1 )2 − 4

3
(L+

1 )3

− 2 ζ2 (L−0 − 2L+
1 )− 2 ζ3

]
. (4.23)

Then we ask what NLL NMHV impact factor Φ
NMHV,(1)
Reg (ν, n) generates this expression for

p
(2)
0 , via the NMHV master formula (4.11) evaluated at two loops.

The answer can be expressed quite simply in terms of the corresponding MHV impact

factor, plus a simple rational function1 of ν and n:

Φ
NMHV,(1)
Reg (ν, n) = Φ

MHV,(1)
Reg (ν, n) +

inν

2
(
−n

2 + iν
)2 (n

2 + iν
)2 , (4.24)

where Φ
MHV,(1)
Reg (ν, n) is the MHV NLL impact factor, and is equal to [53]

Φ
MHV,(1)
Reg (ν, n) = −1

2
E2
ν,n −

3

8

n2

(ν2 + n2

4 )2
− ζ2 , (4.25)

1We thank Benjamin Basso for suggesting that we try an ansatz of this form.
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where

Eν,n = −1

2

|n|
ν2 + n2

4

+ ψ

(
1 + iν +

|n|
2

)
+ ψ

(
1− iν +

|n|
2

)
− 2ψ(1) (4.26)

is the leading-order BFKL eigenvalue.

In order to work out the NLL approximation at three loops, we also need the NLL

BFKL eigenvalue [53],

E(1)
ν,n = −1

4
D2
νEν,n +

1

2
V DνEν,n − ζ2Eν,n − 3 ζ3 , (4.27)

where

V ≡ −1

2

[
1

iν + |n|
2

− 1

−iν + |n|
2

]
=

iν

ν2 + |n|2
4

, (4.28)

and Dν ≡ −i∂/∂ν.

Using these functions in the master formula (4.11) at three loops, we obtain both p
(3)
1

and q
(3)
0 :

p
(3)
1 =

1

16

[
−4L−4 + 2L+

3,1 − 12L−2,1,1 +

(
−1

2
L−0 + 15L+

1

)
L+
3 +

(
L−0 + 2L+

1

)
L−2,1

+
(

(L−0 )2 + L−0 L
+
1 + 4 (L+

1 )2
)
L−2 −

1

24
(L−0 )4 − 5

24
(L−0 )3 L+

1 −
9

4
(L−0 )2 (L+

1 )2

+
1

2
L−0 (L+

1 )3 − 5

3
(L+

1 )4 − 8 ζ2

(
L−2 +

1

2
L−0 L

+
1 − (L+

1 )2
)

+ ζ3
(
L−0 + 2L+

1

)]
, (4.29)

q
(3)
0 =

1

16

[
−2L−4 + L+

3,1 − 6L−2,1,1 +

(
15

4
L−0 −

23

2
L+
1

)
L+
3 +

(
1

2
L−0 + 3L+

1

)
L−2,1

+

(
1

2
(L−0 )2−L−0 L

+
1 +(L+

1 )2
)
L−2 −

1

48
(L−0 )4− 25

48
(L−0 )3 L+

1 +
11

8
(L−0 )2 (L+

1 )2

− 17

12
L−0 (L+

1 )3 +
11

6
(L+

1 )4 − 4 ζ2

(
L−2 −

1

2
L−0 L

+
1 + (L+

1 )2
)

+ ζ3

(
1

2
L−0 + 3L+

1

)]
. (4.30)

The MRK limit of our ansatz for V (3) and Ṽ (3), inserted into eq. (4.15), yields complete

agreement with these expressions. The agreement with q
(3)
0 fixes the one remaining param-

eter in the ansatz, namely the coefficient of [Φ̃6]
2.

Finally, having fixed the ansatz, we turn to NNLLA. Three loops is the first order in

which a truly NNLLA quantity appears, namely p
(3)
0 . Thus p

(3)
0 cannot be predicted using

lower-loop information. Extracting it from our function gives novel data. We find that

p
(3)
0 =

1

16

[
−87L+

5 + 4L−4,1 − 14L+
3,1,1 + 12L−2,1,1,1 −

(
7L−0 + 2L+

1

)
L−4 +

(
1

2
L−0 + L+

1

)
L+
3,1

− 3
(
L−0 + 2L+

1

)
L−2,1,1 +

(
45

4
(L−0 )2 − 1

2
L−0 L

+
1 + 11 (L+

1 )2
)
L+
3
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+
(
−(L−0 )2 + 4L−0 L

+
1 − 2 (L+

1 )2
)
L−2,1

+

(
17

16
(L−0 )3 +

3

8
(L−0 )2 L+

1 +
5

4
L−0 (L+

1 )2 +
3

2
(L+

1 )3
)
L−2 +

3

80
(L−0 )5 − 5

4
(L−0 )4 L+

1

+
1

24
(L−0 )3 (L+

1 )2 − 13

6
(L−0 )2 (L+

1 )3 +
1

2
L−0 (L+

1 )4 − 8

15
(L+

1 )5

+ ζ2

(
−32L+

3 − 16L−2,1 − 4 (L−0 − 2L+
1 )L−2 +

5

6
(L−0 )3 + 5 (L−0 )2 L+

1 − 4L−0 (L+
1 )2

+
40

3
(L+

1 )3
)

+ ζ3

(
5

2
(L−0 )2 + 3L−0 L

+
1 − 6 (L+

1 )2
)

+ 22 ζ4 (L−0 − 2L+
1 )

+ 30 ζ5 − 16 ζ2 ζ3

]
. (4.31)

In an ancillary file, we provide computer-readable expressions for all the p
(L)
r and q

(L)
r

functions for L = 1, 2, 3.

Knowledge of p
(3)
0 allows us to fix the NNLL impact factor Φ

NMHV,(2)
Reg (ν, n), in the same

way that we used p
(2)
0 to determine the NMHV impact factor at NLL. Again we find that

the NMHV impact factor can be expressed simply in terms of the MHV impact factor and

rational functions of ν and n:

Φ
NMHV,(2)
Reg (ν, n) = Φ

MHV,(2)
Reg (ν, n) +

(
Φ
MHV,(1)
Reg (ν, n) + ζ2

) inν

2
(
−n

2 + iν
)2 (n

2 + iν
)2

−
inν

(
n2 − inν − 2ν2

)
8
(
−n

2 + iν
)4 (n

2 + iν
)4 . (4.32)

This formula has recently been reproduced, and extended to all orders, using a kind of

analytic continuation from the near-collinear limit [59].

The all-orders formula is expressed in terms of the Zhukovsky variable x(u) defined in

eq. (3.10). It reads,2 in our definition of Φ,

ΦNMHV
Reg (ν, n) = ΦMHV

Reg (ν, n)×
ν − in

2

ν + in
2

x(u+ in
2 )

x(u− in
2 )

. (4.33)

The rapidity u in this expression is related to the variable ν by an integral expression [59].

(Our ν is defined to be precisely 1/2 of the ν defined in ref. [59], while our n is just their

m.) The integrals can be performed in the weak coupling expansion, and the equation for

ν(u, n) can be inverted to solve for u(ν, n), order-by-order in the coupling. The first three

orders are enough for us here,

u = ν − i

2
a V +

i

8
a2 V (N2 + 4 ζ2) +O(a3), (4.34)

where V = iν/(ν2 + n2/4) is defined in eq. (4.28) and N = n/(ν2 + n2/4). Through this

order, the relation between u and ν only involves rational functions of ν and n. Inserting the

expansion (4.34) into eq. (4.33) yields both eq. (4.24) for Φ
NMHV,(1)
Reg (ν, n) and eq. (4.32) for

Φ
NMHV,(2)
Reg (ν, n). At the next loop order, the relation (4.34) begins to contain ψ functions,

2We thank Benjamin Basso for discussions on these points prior to the appearance of ref. [59].
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(a) (b)
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+1i
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K
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5345
s 0

A4 A4

− 1j

+1j

− 1i

Figure 1. (a) Multi-particle factorization of a six-point amplitude into two four-point amplitudes,

in the limit s345 → 0. (b) The most general multi-particle factorization of an n-point amplitude

into a (j − i + 1)-point amplitude and an (n − j + i + 1)-point amplitude, in the limit that K2 =

si,i+1,...,j−1 → 0.

which should then enter the formula for Φ
NMHV,(3)
Reg (ν, n) in terms of ΦMHV

Reg (ν, n). It would

be interesting to check this statement once the four-loop ratio function is determined.

The ratio in eq. (4.33) might appear to be upside-down with respect to ref. [59].

However, we defined ΦNMHV for the (η4)
4 Grassmann component of the NMHV super-

amplitude, while it was defined for the (η1)
4 component in ref. [59]. The two components

are related by the cyclic permutation that inverts all the yi variables, which exchanges

w ↔ w∗ and therefore takes n↔ −n.

Using eq. (4.32) and the known BFKL NNLL eigenvalue, we have the information

necessary to find the NNLLA imaginary part and N3LLA real part to all loop orders. (Of

course, the very recent all-orders formulae [59] could be used to go well beyond this.) While

we do not pursue this exercise here, such fixed-order data in the (w,w∗) space will prove

quite useful during the construction of the ratio function at four loops and beyond.

5 Multi-particle factorization

A six-point amplitude can factorize onto a product of four-point amplitudes in the limit

that a three-particle momentum invariant goes on shell, si,i+1,i+2 ≡ (ki+ki+1+ki+2)
2 → 0.

This limit is called a multi-particle factorization limit, in order to distinguish it from the

two-particle factorization limits, or collinear limits. The multi-particle factorization limit

of the six-gluon amplitude, in which the invariant s345 → 0, is shown in figure 1(a). We

will discuss this limit first, and later consider the most general multi-particle factorization

of an n-point amplitude, shown in figure 1(b).

In supersymmetric theories, all multi-particle poles of MHV amplitudes have zero

residue, because of the same helicity counting rules that apply at tree level [87]: each four-

point amplitude needs to have two negative and two positive external helicities. One nega-

tive and one positive helicity must be assigned to the virtual gluon crossing the pole, leaving

three negative- and three positive-helicity external gluons, i.e. the NMHV helicity configura-

tion. Using the three-loop ratio function, we can extract the multi-particle factorization be-

havior of six-point amplitudes in planar N = 4 SYM through three loops. We will find that
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it is remarkably simple, containing no function more complicated than the logarithm. The

simplicity of the six-point factorization leads to a natural conjecture for the n-point case.

First we review the general factorization behavior and what is known at one loop from

the work of Bern and Chalmers [88]. For definiteness, we will factorize the amplitude in

the limit that s345 = K2 → 0, where K = k3 + k4 + k5. The only two dual superconformal

invariants “(i)” that contain a pole in the s345 channel are (1) and (4). They become equal

in this limit. Furthermore the dual conformal cross ratios u and w contain s345 in the

denominator, while v does not contain it. Therefore the factorization limit of the ratio

function P in the s345 channel will be obtained by letting u,w → ∞ in V (u, v, w), with

u/w and v held fixed. The odd part Ṽ (u, v, w) will not contribute at any loop order in this

limit, because it multiplies (1)− (4), which is power-suppressed in the limit.

We also assume that the component of the NMHV amplitude has been chosen so that

there are two negative helicities on one side of the pole, and one negative-helicity on the

other side, so that the multi-particle factorization is non-trivial at tree-level. Then we can

define an all loop order factorization function F6 by,

ANMHV
6 (ki)

s345→0−→ A4(k6, k1, k2,K)
F6(K

2, si,i+1)

K2
A4(−K, k3, k4, k5) , (5.1)

where A6 and A4 are all-orders amplitudes. For the given choice of external helicities, there

is only one nontrivial assignment of the intermediate gluon helicity.

When we expand eq. (5.1) out to one loop, we obtain [88]

A
NMHV (1)
6 (ki)

s345→0−→ A
(1)
4 (k6, k1, k2,K)

1

K2
A

(0)
4 (−K, k3, k4, k5)

+A
(0)
4 (k6, k1, k2,K)

1

K2
A

(1)
4 (−K, k3, k4, k5)

+A
(0)
4 (k6, k1, k2,K)

F
(1)
6

K2
A

(0)
4 (−K, k3, k4, k5) , (5.2)

which defines the one-loop factorization function, F
(1)
6 . This function was computed in

N = 4 SYM in ref. [88]. Setting µ = 1, multiplying by (4π)2/2 to account for a difference

in expansion parameters, and permuting the indices appropriately for the s345 channel, the

function is,

F
(1)
6 = − 1

ε2

[
(−s23)−ε − (−s61)−ε − (−s45)−ε

]
− 1

2ε2
(−s61)−ε(−s45)−ε

(−s23)−ε

+
1

2
ln2
( −s23
−s345

)
− 1

2
ln2
( −s45
−s345

)
− 1

2
ln2
( −s61
−s345

)
− 2ζ2

+ {k3 ↔ k6, k4 ↔ k1, k5 ↔ k2} (5.3)

=
1

2

{
1

ε2

[(
(−s12)(−s34)

(−s56)

)−ε
+

(
(−s45)(−s61)

(−s23)

)−ε]
− 1

2

[
ln

(
(−s12)(−s34)

(−s56)

)
−ln

(
(−s45)(−s61)

(−s23)

)]2
− 1

2
ln2(uw/v)− 8 ζ2

}
. (5.4)

Using this function, together with the one-loop MHV four-point and six-point amplitudes

(which also enter the BDS ansatz), we will be able to predict the behavior of the ratio
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function in the factorization limit at one loop. Later we will turn the argument around, and

use the factorization behavior of the two- and three-loop NMHV amplitudes to determine

the higher-loop factorization functions F
(L)
6 .

First we record the required one-loop amplitudes, after dividing by their respective

tree amplitudes, which can be factored out of eq. (5.2). Ref. [1] gives the sum of the two

required four-point amplitudes, in terms of functions called V4 there,

1

2

[
V4 + V ′4

]
=

1

2

{
− 2

ε2

[
(−s34)−ε + (−s45)−ε + (−s61)−ε + (−s12)−ε

]
+ ln2

(−s34
−s45

)
+ ln2

(−s61
−s12

)
+ 12 ζ2

}
. (5.5)

The six-point amplitude is also given in terms of the function V6,

1

2
V6 =

1

2

{
6∑
i=1

[
− 1

ε2
(−si,i+1)−ε − ln

( −si,i+1

−si,i+1,i+2

)
ln
( −si+1,i+2

−si,i+1,i+2

)
+

1

4
ln2
( −si,i+1,i+2

−si+1,i+2,i+3

)]

− Li2(1− u)− Li2(1− v)− Li2(1− w) + 6 ζ2

}
(5.6)

=
1

2

{
6∑
i=1

[
− 1

ε2

(
1− ε ln(−si,i+1)

)
− ln(−si,i+1) ln(−si+1,i+2) +

1

2
ln(−si,i+1) ln(−si+3,i+4)

]

− Y (u, v, w) + 6 ζ2

}
, (5.7)

where

Y (u, v, w) ≡ Hu
2 +Hv

2 +Hw
2 +

1

2

(
ln2 u+ ln2 v + ln2w

)
. (5.8)

We will be interested in the combination,

1

2

[
V4 + V ′4 − V6

]
=

1

2

{
− 1

ε2

[(
(−s12)(−s34)

(−s56)

)−ε
+

(
(−s45)(−s61)

(−s23)

)−ε]
+

1

2

[
ln

(
(−s12)(−s34)

(−s56)

)
− ln

(
(−s45)(−s61)

(−s23)

)]2
+ Y (u, v, w) + 6 ζ2

}
. (5.9)

We note that the sum of this quantity with F
(1)
6 is dual conformal invariant, even before

we enter the factorization limit:

F
(1)
6 +

1

2

[
V4 + V ′4 − V6

]
=

1

2
Y (u, v, w)− 1

4
ln2(uw/v)− ζ2 . (5.10)

At one loop, when we divide the left-hand side of eq. (5.1) by AMHV
6 , and expand out

to first order, the tree factors correspond to the superconformal invariant (1). The limiting

behavior of V (1)(u, v, w) is then given by, using also eq. (5.10),

V (1)(u, v, w)
∣∣
u,w→∞ = F

(1)
6 +

1

2

[
V4 + V ′4 − V6

∣∣
u,w→∞

]
= −1

4
ln2(uw/v)− 2 ζ2 +

1

2

(
Li2(1− v) +

1

2
ln2 v

)
. (5.11)
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The result is manifestly finite and dual conformally invariant. It also matches perfectly

against the limit u,w → ∞ of the known one-loop expression, in the form (2.18) given in

ref. [27]. In fact, we note from eqs. (2.18) and (5.10) that

V (1)(u, v, w) = F
(1)
6 +

1

2

[
V4 + V ′4 − V6

]
(5.12)

even outside of the factorization limit.

Now we proceed to higher loops. At this point we should be careful to consider the

actual NMHV amplitude, not the ratio function. The ratio function does not have a

simple factorization limit because it treats the MHV amplitude on the same footing as

the NMHV amplitude. However, there is no tree-level pole for the MHV amplitude, so

there is no reason for the transcendental function multiplying the tree amplitude to have a

simple form in the factorization limit. In order to do this, and still deal with a finite, dual

conformally invariant quantity for a while longer, we multiply the ratio function by the

(exponentiated) remainder function. It is also convenient to take the logarithm. Whereas

the remainder function R = R6 is defined by

AMHV

ABDS
= exp(R), (5.13)

here we define

ANMHV

ABDS
=
ANMHV

AMHV
× AMHV

ABDS
= P × exp(R) ≡ (1)× exp(Û). (5.14)

We call the function Û because it will be useful to adjust it slightly later. In the factor-

ization limit, the tree-(super)amplitude prefactor in P collapses to (1) and we can identify

V eR = eÛ , or

Û(u, v, w) = lnV (u, v, w) +R6(u, v, w), (5.15)

so that the perturbative expansion of Û is,

Û (1) = V (1) , (5.16)

Û (2) = V (2) − 1

2
[V (1)]2 +R

(2)
6 , (5.17)

Û (3) = V (3) +
1

3
[V (1)]3 − V (1)V (2) +R

(3)
6 , (5.18)

where we used the fact that the remainder function only becomes nonvanishing starting at

two loops.

We also need to evaluate the BDS ansatz [3],

lnABDS
n =

∞∑
L=1

aL
(
f (L)(ε)

1

2
Vn(Lε) + C(L)

)
, (5.19)

where

f (L)(ε) ≡ f (L)0 + ε f
(L)
1 + ε2 f

(L)
2 . (5.20)
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Two of the constants,

f
(L)
0 =

1

4
γ
(L)
K , f

(L)
1 =

L

2
G(L)0 , (5.21)

are given in terms of the planar cusp anomalous dimension γK (see eq. (8.4) below) and the

“collinear” anomalous dimension G0, while f
(L)
2 and C(L) are other (zeta-valued) constants.

The L-loop coefficient of the combination we need, ln(ABDS
4 ×ABDS′

4 /ABDS
6 ), where ABDS(′)

4

are the ansätze for the two four-point subprocesses, is closely related to eq. (5.9):

ln

(
ABDS

4 ABDS′

4

ABDS
6

)(L)

= −
γ
(L)
K

8ε2L2

(
1 + 2 ε L

G(L)0

γ
(L)
K

)[(
(−s12)(−s34)

(−s56)

)−Lε
+

(
(−s45)(−s61)

(−s23)

)−Lε]

+
γ
(L)
K

8

[
1

2
ln2

(
(−s12)(−s34)

(−s56)

/
(−s45)(−s61)

(−s23)

)
+ Y (u, v, w) + 6 ζ2

]
− f

(L)
2

L2
− C(L) . (5.22)

Because of the appearance of the function Y (u, v, w) in ABDS
6 and in eq. (5.22), it is

useful to define a function U(u, v, w) that absorbs this function:

U(u, v, w) = Û(u, v, w)− γK
8
Y (u, v, w) . (5.23)

We will see that U has simpler analytic properties than Û , even outside of the factorization

limit. At one loop, we have

U (1)(u, v, w) = −1

4
ln2(uw/v)− ζ2 , (5.24)

so the polylogarithms have cancelled from U (1).

In ref. [27], V (2)(u, v, w) was given in terms of one-dimensional HPLs, plus the three

independent permutations of the function Ω(2)(u, v, w). The two-loop remainder function

R
(2)
6 was also given, in a similar form. In the sum of V (2) and R

(2)
6 entering U (2), two of

the permutations cancel, and only the permutation Ω(2)(w, u, v) survives. In total, before

taking the factorization limit, U (2) as defined by eqs. (5.17) and (5.23) is given by,

U (2)(u, v, w) =
1

4

{
−Ω(2)(w, u, v)−Hu

4 −Hw
4 − 3

(
Hu

3,1 +Hw
3,1 −Hu

2,1,1 −Hw
2,1,1

)
+

1

2

[
(Hu

2 )2 + (Hw
2 )2
]

+ 2
(

lnuHu
2,1 + lnwHw

2,1

)
− ln(w/v) (Hu

3 +Hu
2,1)

− ln(u/v) (Hw
3 +Hw

2,1) +
1

2
ln(uw/v)

(
ln(uv/w)Hu

2 + ln(wv/u)Hw
2

)
− 1

2

(
lnu lnw − 8 ζ2

)(
lnu lnw − ln v ln(uw)

)
− 1

4

(
ln2 u+ ln2 w

)
ln2 v

− ζ2
[
2 (Hu

2 +Hw
2 )− ln2 u− ln2 w − 2 ln2 v

]
+ 15 ζ4

}
. (5.25)

Note that the dependence on v is particularly simple; aside from Ω(2)(w, u, v), the only

function of v that appears is ln v.

We wish to use the coproduct formalism to extract the behavior of Ω(2)(w, u, v) in the

factorization limit. This exercise will be a useful warmup for obtaining the limit of the
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NMHV amplitude at three loops. First we recall [28] the formula for the u-derivative of a

generic hexagon function F , holding v and w fixed:

∂F

∂u

∣∣∣∣
v,w

=
F u

u
− F 1−u

1− u
+

1− u− v − w
u
√

∆
F yu +

1− u− v + w

(1− u)
√

∆
F yv +

1− u+ v − w
(1− u)

√
∆

F yw .

(5.26)

We can permute this relation cyclicly in order to obtain the v- and w-derivatives. Now we

take the limit of eq. (5.26) as u,w →∞, finding

∂uF =
1

u

[
F u + F 1−u − 1

r
(F yu − F yw) +

u− w
(u+ w)r

F yv
]
, (5.27)

∂vF =
1

v

[
F v − 1

r
F yv

]
− 1

1− v

[
F 1−v +

u− w
(u+ w)r

(F yu − F yw)

]
, (5.28)

where

r =

√
1− 4uvw

(u+ w)2
. (5.29)

The w-derivative is obtained from the u-derivative simply by exchanging u and w labels

everywhere.

We see from eqs. (5.27) and (5.28) that the factorization limit of a hexagon function

is likely to be simple, with all the occurrences of r dropping out, if two conditions on the

{n− 1, 1} coproduct elements are met:

F yu = F yw and F yv = 0. (5.30)

We will see that this condition is satisfied by the specific combinations of nontrivial hexagon

functions that we need for taking the limits of U , through three loops.

First consider the function Ω(2)(w, u, v). By permuting eqs. (B.10) and (B.11) of

ref. [28], we see that

[Ω(2)(w, u, v)]yu = [Ω(2)(w, u, v)]yw and [Ω(2)(w, u, v)]yv = 0, (5.31)

so Ω(2)(w, u, v) should have a simple limit. However, we see further that

[Ω(2)(w, u, v)]v = [Ω(2)(w, u, v)]1−v = 0, (5.32)

[Ω(2)(w, u, v)]u + [Ω(2)(w, u, v)]1−u = [Ω(2)(w, u, v)]w + [Ω(2)(w, u, v)]1−w = 0, (5.33)

which means that all the derivatives of Ω(2)(w, u, v) vanish in the factorization limit. There-

fore Ω(2)(w, u, v) can at most be a constant in this limit.

To fix the constant, we consider the line (u, 1, u) as u→∞. On this line, all hexagon

functions collapse to one-dimensional HPLs, so it is easy to take the large u limit. Here

we need,

Ω(2)(u, u, 1) = −2Hu
4 − 2Hu

3,1 + 6Hu
2,1,1 + 2 (Hu

2 )2 + 2 lnu (Hu
3 +Hu

2,1)

+ ln2 uHu
2 +

1

4
ln4 u− 6 ζ4 . (5.34)
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Using standard identities for inverting the arguments of the HPLs, we find that this func-

tion vanishes as u→∞. Therefore

Ω(2)(w, u, v)
∣∣
u,w→∞ = 0. (5.35)

Aside from Ω(2)(w, u, v), the remaining terms in eq. (5.25) for U (2) are one-dimensional

HPLs with arguments u, v and w. The same HPL argument-inversion identities allow us

to extract the limiting behavior of the HPLs in u and w terms. The final result has the

simple form,

U (2)(u, v, w)
∣∣
u,w→∞ =

3

4
ζ2 ln2(uw/v)− 1

2
ζ3 ln(uw/v) +

71

8
ζ4 . (5.36)

Remarkably, the limit of U (2) is simply a polynomial in ln(uw/v) with zeta-valued coeffi-

cients.

Turning now to three loops, we find that the {5, 1} coproducts of U (3) obey the rela-

tions (5.30) required for a simple factorization limit. For example,

[U (3)]yu =
1

32

[
3H1(u, v, w) +H1(v, w, u) +H1(w, u, v)

]
− 1

128

[
11 J1(u, v, w) + J1(v, w, u) + J1(w, u, v)

]
+

1

32
Φ̃6(u, v, w)

[
ln2 u+ln2w+ln2 v+2

(
lnu lnw−ln(uw) ln v

)
−22ζ2

]
. (5.37)

Because the functions H1 and J1 are symmetric under exchange of their first and third

argument [28], and Φ̃6 is totally symmetric, we see that eq. (5.37) is symmetric under

u↔ w. But U (3)(u, v, w) is symmetric under the exchange of u↔ w. Together, these two

properties imply that

[U (3)]yu = [U (3)]yw , (5.38)

as desired by eq. (5.30). Note that this “bonus” relation holds even outside of the factor-

ization limit, a property to which we will return in the following section.

We also find that the yv coproduct element of U (3) is proportional to the weight-5

parity odd function H1(u, v, w):

[U (3)]yv =
1

8
H1(u, v, w) . (5.39)

One can check that H1 obeys all the same coproduct relations that Ω(2)(w, u, v) does [28],

so that all of its derivatives vanish in the factorization limit. (Its yv coproduct element is

in fact proportional to Ω(2)(w, u, v).) In the case of H1, the vanishing of the constant of

integration, i.e. the fact that

H1(u, v, w)
∣∣
u,w→∞ = 0, (5.40)

follows simply because all parity-odd functions vanish on the surface ∆(u, v, w) = 0, which

contains the line (u, 1, u).
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The F u+F 1−u, F v and F 1−v coproduct elements contributing to eqs. (5.27) and (5.28)

also simplify dramatically for F = U (3) as u,w → ∞; the only functions they contain are

logarithms of u, v and w. We find that in the factorization limit,

[U (3)]u + [U (3)]1−u = ζ3 ln2(uw/v)− 75

4
ζ4 ln(uw/v) + 7 ζ5 + 8 ζ2 ζ3 = −[U (3)]v , (5.41)

[U (3)]1−v = 0 . (5.42)

It is quite fascinating that eq. (5.42) actually holds for any (u, v, w). We will explore the

consequences of this second bonus relation in the next section.

Unlike eq. (5.42), the first relation does not hold for arbitrary (u, v, w), but it does

hold in the factorization limit. Using eqs. (5.38), (5.41), and (5.42), as well as the vanishing

of [U (3)]yv in the factorization limit, it is trivial to solve the differential equations (5.27)

and (5.28) for F = U (3) in this limit. The result is,

U (3)(u, v, w)
∣∣
u,w→∞ =

1

3
ζ3 ln3(uw/v)− 75

8
ζ4 ln2(uw/v) + (7 ζ5 + 8 ζ2 ζ3) ln(uw/v)

− 161

2
ζ6 − 3 (ζ3)

2 . (5.43)

Again we fixed the constant of integration using the limiting behavior on the line (u, 1, u)

as u→∞. Remarkably, at all three loop orders studied so far, the quantity U approaches

a simple polynomial in ln(uw/v) in the factorization limit.

Now we go back to construct the factorization function F6 for the NMHV six-point

amplitude in terms of U . To do this, we observe from eq. (5.1) that (apart from the trivial

tree-level term), the log of the factorization function is, using eq. (5.14),

lnF6 = ln

(
ANMHV

6

ABDS
4 ABDS′

4

)
= ln

(
ANMHV

6

ABDS
6

ABDS
6

ABDS
4 ABDS′

4

)
= Û(u, v, w)− ln

(
ABDS

4 ABDS′
4

ABDS
6

)
,

(5.44)

or, using eqs. (5.22) and (5.23),

[lnF6]
(L) =

γ
(L)
K

8ε2L2

(
1 + 2 ε L

G(L)0

γ
(L)
K

)[(
(−s12)(−s34)

(−s56)

)−Lε
+

(
(−s45)(−s61)

(−s23)

)−Lε]

−
γ
(L)
K

8

[
1

2
ln2

(
(−s12)(−s34)

(−s56)

/
(−s45)(−s61)

(−s23)

)
+ 6 ζ2

]
+ U (L)(u, v, w)

∣∣
u,w→∞ +

f
(L)
2

L2
+ C(L) . (5.45)

From the explicit formulae for U (1) (eq. (5.24)), U (2) (eq. (5.36)) and U (3) (eq. (5.43))

in the factorization limit, we see that the dependence of the factorization function F6 on

the vanishing three-particle invariant s345 only appears through the logarithm of the ratio,

uw

v
=
s12s34
s56

· s45s61
s23

· 1

s2345
. (5.46)

We note that the same ratios that we have assembled into the divergent factors in eq. (5.45)

also appear in eq. (5.46).
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Consider now the more general multi-particle factorization of an n-point amplitude in

planar N = 4 SYM, in which si,i+1,...,j−1 → 0 as shown in figure 1(b). The corresponding

factorization formula is,

ANMHV
n (ki) −→ Aj−i+1(ki, ki+1, . . . , kj−1,K)

Fn(K2, sl,l+1)

K2
An−(j−i)+1(−K, kj , kj+1, . . . , ki−1) ,

(5.47)

where K = kj + kj+1 + · · ·+ ki−1 and all indices are mod n. We conjecture that lnFn can

be extracted from formula (5.45) for lnF6 by the simple replacements,

s12s34
s56

→
si,K si−1,−K

si−1,i
, (5.48)

s45s61
s23

→
sj,−K sj−1,K

sj−1,j
, (5.49)

uw

v
→

si,K si−1,−K · sj,−K sj−1,K
si−1,i · sj−1,j · (K2)2

=
x2i+1,j x

2
j,i−1 x

2
j+1,i x

2
i,j−1

x2i−1,i+1 x
2
j−1,j+1 (x2i,j)

2
. (5.50)

Note that uw/v gets replaced by a dual conformal cross ratio for the n-point amplitude. The

other two ratios involve the invariants near the factorization channel, and their appearance

in the singular terms in ε is dictated by the general structure of the infrared divergences.

6 Coproduct relations for U and Ṽ

In the course of inspecting the coproducts of U (3), even before taking the factorization

limit, we found the following three relations,

Uu + U1−u = Uw + U1−w = −(Uv + U1−v), (6.1)

U1−v = 0 , (6.2)

Uyu = Uyw , (6.3)

which hold for any (u, v, w), at least through three loops.

The first relation is not unexpected. It also holds for the parity-even part of the ratio

function V , and it corresponds to the existence of the seventh final entry uw/v in eq. (2.28).

Suppose such an entry were not present. Then the final entry u/(1−u) would correspond to

the coproduct condition V u+V 1−u = 0, and similarly V v +V 1−v = 0 and V w +V 1−w = 0.

With the seventh final entry, these conditions are violated, but they have to be violated in

the particular form shown in eq. (6.1), namely

V u + V 1−u = V w + V 1−w = −(V v + V 1−v). (6.4)

Taking the logarithm of V does not spoil eq. (6.4), and neither does adding R6, since it

obeys Rui6 +R1−ui
6 = 0 for all three ui. Finally, the function Y also obeys Y ui +Y 1−ui = 0.

Because eq. (6.4) follows from the analysis of Caron-Huot and He [65], so does eq. (6.1).

However, the other two relations, (6.2) and (6.3), are rather unexpected. One virtue

of these relations is that they simplify the derivative of U with respect to yu/yw.
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Recall [28] the formula for this derivative,

√
∆

∂U

∂ ln(yu/yw)
=(1−u)(1−v)Uu−(u−w)(1−v)Uv−(1−v)(1−w)Uw−u(1−v)U1−u

+ (u− w)v U1−v + w(1− v)U1−w +
√

∆Uyu −
√

∆Uyw . (6.5)

Using eqs. (6.3), (6.1) and (6.2), the differential equation (6.5) can be simplified dramati-

cally to,
√

∆
∂U

∂ ln(yu/yw)
= (1− v)(Uu − Uw) . (6.6)

Only a single nontrivial coproduct combination, Uu−Uw, enters this equation, at any loop

order!

We can find these coproduct combinations using the results in appendix A. The com-

bination Uu−Uw is generally simpler than either Uu or its u↔ w image Uw. At one loop,

we have trivially,

[U (1)]u − [U (1)]w = 0. (6.7)

At two loops, the combination is,

[U (2)]u − [U (2)]w = Hu
2,1 +

1

2
lnuHu

2 −Hw
2,1 −

1

2
lnwHw

2 −
1

4

(
ln(v/w)Hu

2 − ln(v/u)Hw
2

)
+

1

8
ln(u/w)

(
2Hv

2 − ln(uvw) ln v + 3 lnu lnw − 8 ζ2

)
. (6.8)

At three loops, it is,

[U (3)]u − [U (3)]w = Au−w(u, v, w)−Au−w(w, v, u), (6.9)

where

Au−w(u, v, w) =
1

16

{
−M1(w, u, v) +

128

3
Qep(v, u, w)

− 1

2
ln(u/w)

(
2 Ω(2)(u, v, w)− Ω(2)(w, u, v)

)
+ 12Hu

4,1 + 10Hu
3,2 − 72Hu

3,1,1 − 26Hu
2,2,1

− 40Hu
2,1,1,1 − 2Hu

2 (3Hu
3 − 7Hu

2,1)− 2Hu
2 (2Hv

2,1 + ln v Hv
2 )− 2 (lnu+ 2 ln v − 3 lnw)Hu

3,1

− 1

2
lnu

(
4Hv

4 + 40Hv
3,1 + 4Hv

2,1,1 − 11 (Hv
2 )2 − 4 ln v (Hv

3 −Hv
2,1)
)
− 12 ln(uw/v)Hu

4

− 2 (13 lnu− 6 ln(v/w))Hu
2,1,1 +

(
8 lnu ln(uw/v)− 2 ln2 v + 4 ln v lnw

)
Hu

3

+
1

2
(11 lnu− lnw) (Hu

2 )2 −
(

8 (ln2 u+ ln2 v)− 2 lnu (ln v − lnw)− 14 ln v lnw
)
Hu

2,1

− 11

3
ln2 w (Hu

3 +Hu
2,1)− 2

3
Hw

2

(
5 (Hu

3 − lnuHu
2 )− 7Hu

2,1

)
− 1

6

(
8 ln3 u+ 4 ln3 v − 3 ln3 w − 7 lnu ln2 w + 3 ln(u/w) ln v (3 ln v − 4 lnw)

)
Hu

2

− 1

2
ln(u/w)

(
ln2 u+ 4 lnu ln v − 5 lnw lnu

)
Hv

2

+
1

12

(
ln3 u (11 ln2 v − 28 ln v lnw + 35 ln2 w) + ln2 u ln2 v (8 ln v − 27 lnw)

)
− ζ2

[
Hu

3 + 36Hu
2,1 + 13 lnuHu

2 −
5

3
ln3 u+ 2 lnu (9Hv

2 − 4 ln2 v) + 2 lnw (Hu
2 + 12 ln2 u)

− 4 ln v (Hu
2 + 2 ln2 u)

]
− 2 ζ3 (3 ln2 u+ 4Hu

2 ) + 122 ζ4 lnu

}
. (6.10)
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The yu/yw differential equation (6.6) is relatively simple analytically. In ref. [28] it

was discussed how this differential equation has natural boundary conditions at (u, v, w) =

(1, 0, 0) and (0, 0, 1). They are natural from the point of view that they correspond to

surfaces in the coordinates (yu, yv, yw); therefore only a boundary condition at one point

is needed to integrate up to any (u, v, w). However, it was also mentioned in ref. [28]

that there could be issues of regularization for an even function like U near the endpoints.

Indeed, for U (2) or U (3) there are such issues, which would have to be cured by subtracting

a suitable function in order for the endpoints (1, 0, 0) and (0, 0, 1) to be usable.

Another strategy is to use the yu/yw differential equation to integrate not off a single

point, but off a surface. For example, since it is odd in u↔ w, one could use this differential

equation to move off the surface u = w, once one has determined the function on the surface

using a different strategy.

Independently of the best numerical approach, the coproduct relations for U indicate

a simplified analytic structure for this function. In terms of a final-entry condition, the

coproduct relations U1−v = 0 and Uyu = Uyw reduce the seven member set (2.28) to only

five entries: {
u

1− u
,

w

1− w
, yuyw, yv,

uw

v

}
. (6.11)

It would be very interesting to try to find an explanation for this property, which at the

moment has only been observed empirically through three loops. In the next section we

will see that the function U is in many ways simpler than V , and even simpler than the

remainder function R6.

Before doing that, we close this section by remarking that the potential seventh final

entry uw/v, which we also allowed for the parity-odd function Ṽ (u, v, w), does not actually

appear. In other words, at least through three loops, Ṽ obeys the coproduct relations,

Ṽ u + Ṽ 1−u = Ṽ v + Ṽ 1−v = Ṽ w + Ṽ 1−w = 0 . (6.12)

The corresponding set of final entries for Ṽ is{
u

1− u
,

v

1− v
,

w

1− w
, yu, yv, yw

}
, (6.13)

which is the same set as for the remainder function. It would be interesting to understand

this property better as well.

7 Quantitative behavior

In this section we examine the analytical behavior of the components of the ratio function

on special lines through the three-dimensional space of cross ratios. On some of these lines,

V and Ṽ collapse to simpler functions, such as HPLs of a single argument. Some of the

analytic formulas, for the function U in particular, exhibit intriguing simplicity. We also

plot V and Ṽ , or various ratios, on these special lines and on some two-dimensional surfaces,

such as the plane u+ v + w = 1, and as a function of u and w for particular values of v.
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After the imposition of the MRK constraints, the coproducts of V (3) and Ṽ (3) are fully

fixed. Of course, given the remainder function R6 and the function Y defined in eq. (5.8),

we can go back and forth between V and U , using the relations

U(u, v, w) = lnV (u, v, w) +R6(u, v, w)− γK
8
Y (u, v, w) , (7.1)

V (u, v, w) = exp

[
U(u, v, w)−R6(u, v, w) +

γK
8
Y (u, v, w)

]
. (7.2)

The {n − 1, 1} coproduct elements for U through three loops are given in appendix A.1.

This information completely specifies the first derivatives of U (L) and Ṽ (L).

We should also fix the functions by giving their values at one point, say (u, v, w) =

(1, 1, 1). This point is on the surface ∆ = 0, on which all parity-odd hexagon functions

vanish. Hence

Ṽ (L)(1, 1, 1) = 0 for all L. (7.3)

On the other hand, parity-even functions such as V have nontrivial values at this point. The

constant term in V (3)(1, 1, 1) is fixed when the collinear vanishing constraints are applied.

It is actually fixed in the vicinity of the collinear limit lines, such as v = 0, u + w = 1.

We can use the simple analytic behavior of hexagon functions on the lines (u, u, 1) and

(u, 1, u) (see the next subsection) to carry the information about the constant out to the

point (1, 1, 1). We find that

V (3)(1, 1, 1) = −243

4
ζ6 . (7.4)

This value can be compared to the corresponding values for the one- and two-loop ratio

functions,

V (1)(1, 1, 1) = −ζ2 ,

V (2)(1, 1, 1) = 9 ζ4 .
(7.5)

We also quote the values of U at this point:

U (1)(1, 1, 1) = −ζ2 ,

U (2)(1, 1, 1) =
21

4
ζ4 ,

U (3)(1, 1, 1) = −117

4
ζ6 + (ζ3)

2 ,

(7.6)

where the (ζ3)
2 term in U (3)(1, 1, 1) comes entirely from R

(3)
6 (1, 1, 1) [28].

With V and Ṽ now completely fixed at three loops, we can investigate their analytic

and numerical behavior. In the remainder of this section, we describe lines on which the

analytic behavior simplifies, and then we plot the functions V and Ṽ on these lines and on

various planes in the space of cross ratios (u, v, w).

7.1 The lines (u, u, 1) and (u, 1, u)

When one of the cross ratios is equal to unity and the other two are equal to each other, the

hexagon functions collapse to pure HPLs. Because ∆(u, u, 1) = 0, all parity-odd functions
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vanish on this line, including Ṽ . On the other hand, V is nontrivial but relatively simple.

The simplest way to present V is to give U , and then V can be obtained using eq. (7.2).

We also use the “linearized” representation for the HPLs discussed in ref. [29], in which we

expand all products of HPLs in terms of a linear combination of HPLs of maximum weight

using the shuffle algebra. In that reference a compressed notation for the HPLs was also

introduced. Here we will not need that notation, because the formulas are not too lengthy

through three loops, and because it obscures some of the patterns in which HPL weight

vectors occur.

In the linearized representation, we have,

U (1)(u, u, 1) = −ζ2 , (7.7)

U (2)(u, u, 1) =
1

2
(Hu

0,1,0,1 +Hu
1,1,0,1)− 3

2
(Hu

0,1,1,1 +Hu
1,1,1,1)− ζ2 (Hu

0,1 +Hu
1,1) +

21

4
ζ4 , (7.8)

U (3)(u, u, 1) = Hu
0,1,0,1,0,1 +Hu

1,1,0,1,0,1 − 4 (Hu
0,1,0,1,1,1 +Hu

1,1,0,1,1,1)− 5 (Hu
0,1,1,0,1,1 +Hu

1,1,1,0,1,1)

− 4 (Hu
0,1,1,1,0,1 +Hu

1,1,1,1,0,1) + 10 (Hu
0,1,1,1,1,1 +Hu

1,1,1,1,1,1)

− 2 ζ2

[
Hu

0,1,0,1 +Hu
1,1,0,1 − 4 (Hu

0,1,1,1 +Hu
1,1,1,1)

]
+ 8 ζ4 (Hu

0,1 +Hu
1,1)

− 117

4
ζ6 + (ζ3)2 . (7.9)

For reference, we also give

Y (u, u, 1) = 2 (Hu
0,1 +Hu

1,1) , (7.10)

and the remainder function in the same notation is,

R
(2)
6 (u, u, 1) = Hu

0,0,0,1 +Hu
1,0,0,1 −Hu

0,0,1,1 −Hu
1,0,1,1 −

5

2
ζ4 , (7.11)

R
(3)
6 (u, u, 1) = −1

2

[
Hu

0,0,1,0,0,1 +Hu
1,0,1,0,0,1 +Hu

0,1,0,1,0,1 +Hu
1,1,0,1,0,1 + 2 (Hu

0,0,1,1,0,1 +Hu
1,0,1,1,0,1)

+ 3 (Hu
0,0,1,0,1,1 +Hu

1,0,1,0,1,1 +Hu
0,1,0,0,0,1 +Hu

1,1,0,0,0,1 +Hu
0,1,0,1,1,1 +Hu

1,1,0,1,1,1

−Hu
0,0,0,1,0,1 −Hu

1,0,0,1,0,1 −Hu
0,1,0,0,1,1 −Hu

1,1,0,0,1,1) + 6 (Hu
0,0,0,0,0,1 +Hu

1,0,0,0,0,1)

+ 9 (Hu
0,0,0,1,1,1 +Hu

1,0,0,1,1,1)− 10 (Hu
0,0,0,0,1,1 +Hu

1,0,0,0,1,1)
]

− ζ2
[
Hu

0,0,0,1 +Hu
1,0,0,1 − 3 (Hu

0,0,1,1 +Hu
1,0,1,1)− 2 (Hu

0,1,0,1 +Hu
1,1,0,1)

]
− 2 ζ4 (Hu

0,1 +Hu
1,1) +

413

24
ζ6 + (ζ3)2 . (7.12)

Although U (2) is slightly lengthier than R
(2)
6 in this representation, U (3) is considerably

shorter than R
(3)
6 .

Note that in the formulas for both U and R6, the HPL weight vectors always end in

1. This restriction simply guarantees that there are no branch cuts developing at u = 1.

Also, for both U and R6, there is a pairing of terms of the form H0, ~m + H1, ~m, where ~m

is a sequence of 0’s and 1’s. This pairing is a consequence of the final-entry condition, as

discussed in ref. [29] for R6. It also holds for U on the line (u, u, 1), basically because the

extra entry uw/v reduces to 1 on this line.

On the other hand, the function U exhibits two patterns not found in R6. First of all,

the second weight-vector entry m2 in Hm1m2...mn is always 1 for U . Second of all, U has a

symmetry on reversing the order of m3 . . .mn−1; the coefficients of the two HPLs with the
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weight-vectors swapped in this way are always equal. It will be interesting to see if these

patterns are accidents of the first three orders, or hold up in further orders in perturbation

theory; and if the latter, what they signify.

Next we turn to the line (u, 1, u). On this line, R6, which is cyclically symmetric, is

still given by eqs. (7.11) and (7.12), but the formulas for U are different:

U (1)(u, 1, u) = −2Hu
1,1 − ζ2 , (7.13)

U (2)(u, 1, u) =
1

2
Hu

0,1,0,1 −
3

2
Hu

0,1,1,1 +Hu
1,0,0,1 −Hu

1,0,1,1 −
1

2
Hu

1,1,0,1 −
9

2
Hu

1,1,1,1

− ζ2 (Hu
0,1 − 3Hu

1,1) +
21

4
ζ4 , (7.14)

U (3)(u, 1, u) = Hu
0,1,0,1,0,1 −Hu

0,1,0,1,1,1 −Hu
0,1,1,1,0,1 −Hu

0,1,1,0,1,1 − 20Hu
0,1,1,1,1,1 − 2 (Hu

1,0,0,0,1,1

+Hu
1,0,0,1,0,1 +Hu

1,0,1,0,0,1 +Hu
1,0,1,0,1,1 +Hu

1,1,0,0,0,1 +Hu
1,1,0,1,0,1 +Hu

1,1,1,1,0,1)

− 3 (Hu
1,0,0,0,0,1 −Hu

1,0,0,1,1,1 −Hu
1,1,1,0,0,1)− 4 (Hu

1,0,1,1,0,1 +Hu
1,1,1,0,1,1)

+ 5Hu
1,1,0,0,1,1 − 9Hu

1,1,0,1,1,1 − 16Hu
1,0,1,1,1,1 − 55Hu

1,1,1,1,1,1

− 2 ζ2 (Hu
0,1,0,1 −Hu

0,1,1,1 − 3Hu
1,0,1,1 − 3Hu

1,1,0,1 − 8Hu
1,1,1,1)

+ ζ4 (8Hu
0,1 − 21Hu

1,1)− 117

4
ζ6 + (ζ3)2 . (7.15)

On this line, U is not as simple as it is on (u, u, 1).

In figure 2 and figure 3 we plot V (1), V (2) and V (3) on the lines (u, u, 1) and (u, 1, u),

respectively. We normalize the functions by dividing by their values at (1, 1, 1). Note that

for small u, the functions’ values on (u, 1, u) are approximately the negative of those on

(u, u, 1). This approximate relation becomes exact if we drop power-suppressed terms as

u→ 0. Then we find,

V (1)(u, u, 1) ∼ 1

2
ln2 u , (7.16)

V (2)(u, u, 1) ∼ 1

16
ln4 u− 3

4
ζ2 ln2 u+ ζ3 lnu+

5

8
ζ4 , (7.17)

V (3)(u, u, 1) ∼ 1

288
ln6 u− 5

24
ζ2 ln4 u+

71

16
ζ4 ln2 u− 2 (2 ζ5 + ζ2 ζ3) lnu

− 77

16
ζ6 +

1

2
(ζ3)

2 , (7.18)

V (1)(u, 1, u) ∼ −V (1)(u, u, 1) , (7.19)

V (2)(u, 1, u) ∼ −V (2)(u, u, 1) , (7.20)

V (3)(u, 1, u) ∼ −V (3)(u, u, 1) . (7.21)

The small value of the coefficient of ln6 u in V (3)(u, u, 1), relative to that of ln4 u, causes

the blue curve in figure 2 to oscillate as u→ 0: it reaches a maximum around u = 0.0005

and then goes negative for even smaller u.

7.2 The lines (u, 1, 1) and (1, v, 1)

With two of the cross ratios equal to unity, the hexagon functions also collapse to pure

HPLs. On these lines, ∆ is nonzero, and so the function Ṽ (u, 1, 1) is nonvanishing. The
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0.2 0.4 0.6 0.8 1.0
u

-1

1

2

VHu,u,1L

Figure 2. V (1)(u, u, 1), V (2)(u, u, 1) and V (3)(u, u, 1), normalized to unity at (1, 1, 1). One loop is

in green, two loops is in purple, and three loops is in blue.

0.0 0.2 0.4 0.6 0.8 1.0
u

0.6

0.7

0.8

0.9

1.0

1.1

1.2

VHu,1,uL

Figure 3. V (1)(u, 1, u), V (2)(u, 1, u) and V (3)(u, 1, u), normalized to unity at (1, 1, 1). One loop is

in green, two loops is in purple, and three loops is in blue.

function Ṽ (1, v, 1) vanishes, though, due to u↔ w antisymmetry. Again we give U rather

than V , and use the linearized HPL representation.

On (u, 1, 1), the function Ṽ becomes,

Ṽ (2)(u, 1, 1) =
1

4
(Hu

1,0,0,1 +Hu
1,0,1,1 +Hu

1,1,0,1)− 1

2
ζ2H

u
1,1 , (7.22)

Ṽ (3)(u, 1, 1) =
1

8

[
Hu

0,1,0,1,0,1 −Hu
1,0,1,1,0,1 −Hu

1,1,0,1,0,1 + 2 (Hu
0,1,0,0,1,1 +Hu

0,1,1,0,0,1 +Hu
1,0,1,0,1,1

+Hu
1,1,0,0,1,1−Hu

1,0,0,1,0,1)+3 (Hu
0,1,0,1,1,1 +Hu

0,1,1,1,0,1+Hu
1,0,0,1,1,1 +Hu

1,1,0,1,1,1
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+Hu
1,1,1,0,1,1 −Hu

1,1,1,0,0,1) + 4 (Hu
0,1,1,0,1,1 −Hu

1,0,1,0,0,1)

− 6 (Hu
1,0,0,0,0,1 +Hu

1,1,0,0,0,1)
]

− 1

4
ζ2

[
3 (Hu

0,1,1,1 +Hu
1,0,1,1) +Hu

1,0,0,1 + 2Hu
1,1,0,1

]
+

21

4
ζ4H

u
1,1 . (7.23)

The function U becomes,

U (1)(u, 1, 1) = −1

2
Hu

1,1 − ζ2 , (7.24)

U (2)(u, 1, 1) =
1

4
(Hu

0,1,0,1 +Hu
1,0,0,1 +Hu

1,0,1,1 +Hu
1,1,0,1)− 1

2
ζ2 (Hu

0,1 −Hu
1,1) +

21

4
ζ4 , (7.25)

U (3)(u, 1, 1) = −1

8

[
Hu

1,0,1,0,1,1 − 2 (Hu
0,1,0,1,1,1 +Hu

0,1,1,1,0,1 −Hu
1,0,1,1,0,1 −Hu

1,1,0,0,1,1)

+ 3 (Hu
1,0,0,1,1,1 +Hu

1,1,0,1,0,1 +Hu
1,1,1,0,0,1 −Hu

1,1,0,1,1,1 −Hu
1,1,1,0,1,1)

− 4 (Hu
0,1,0,1,0,1 +Hu

0,1,1,0,1,1) + 5 (Hu
1,0,0,1,0,1 +Hu

1,0,1,0,0,1)

+ 6 (Hu
1,0,0,0,0,1 +Hu

1,0,0,0,1,1 +Hu
1,1,0,0,0,1)

]
− 1

2
ζ2 (2Hu

0,1,0,1 +Hu
0,1,1,1 +Hu

1,0,1,1) + 4 ζ4 (Hu
0,1 −Hu

1,1)

− 117

4
ζ6 + (ζ3)2 , (7.26)

and

U (1)(1, u, 1) = −1

2
Hu

1,1 − ζ2 , (7.27)

U (2)(1, u, 1) =
1

4
Hu

0,1,0,1 −
1

2
ζ2 (Hu

0,1 − 2Hu
1,1) +

21

4
ζ4 , (7.28)

U (3)(1, u, 1) =
1

2
(Hu

0,1,0,1,0,1 +Hu
0,1,1,0,1,1) +

1

4
(Hu

0,1,0,1,1,1 +Hu
0,1,1,1,0,1 +Hu

1,0,1,0,1,1 +Hu
1,0,1,1,0,1)

− 1

2
ζ2 (2Hu

0,1,0,1 +Hu
0,1,1,1 +Hu

1,0,1,1) + 4 ζ4 (Hu
0,1 − 2Hu

1,1)

− 117

4
ζ6 + (ζ3)2 . (7.29)

We see that U is simpler on the line (1, u, 1) than on the line (u, 1, 1).

A combination that seems exceptionally simple, at least through three loops, is the

difference between U on the line (u, 1, 1) and on the line (1, u, 1). Defining

∆U ≡ U(u, 1, 1)− U(1, u, 1) , (7.30)

we find

∆U (1) = 0 , (7.31)

∆U (2) =
1

4
(Hu

1,0,0,1 +Hu
1,0,1,1 +Hu

1,1,0,1)−
1

2
ζ2H

u
1,1 , (7.32)

∆U (3) = −1

8

[
2Hu

1,1,0,0,1,1 + 3 (Hu
1,0,0,1,1,1 +Hu

1,1,1,0,0,1 +Hu
1,0,1,0,1,1 +Hu

1,1,0,1,0,1

−Hu
1,1,0,1,1,1 −Hu

1,1,1,0,1,1) + 4Hu
1,0,1,1,0,1 + 5 (Hu

1,0,0,1,0,1 +Hu
1,0,1,0,0,1)

+ 6 (Hu
1,0,0,0,0,1 +Hu

1,0,0,0,1,1 +Hu
1,1,0,0,0,1)

]
+ 4 ζ4H

u
1,1 . (7.33)

We observe a similar pattern to that for U(u, u, 1), with the role of the second weight vector

entry in U(u, u, 1) played by the first weight vector entry in ∆U . In other words, the first
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entry as well as the last entry in ∆U is always 1. Also, ∆U is a palindrome: reversing the

ordering of the letters (weight vector entries) leaves it invariant.

In figures 4, 5, and 6 we plot the functions V and Ṽ through three loops. The even

functions are normalized so that they are all equal to one at (1, 1, 1). The parity-odd

functions vanish at (1, 1, 1), so we can’t normalize them there. However, Ṽ (2)(u, 1, 1) and

Ṽ (3)(u, 1, 1) are both proportional to ln2 u as u goes to zero. Hence we instead normalize by

the coefficient of that divergence: −1
8ζ2 for Ṽ (2) and 47

32ζ4 for Ṽ (3). Remarkably, with this

choice of normalization, the odd functions are almost indistinguishable on the line (u, 1, 1).

The small u behavior of the parity-even V functions on the lines (u, 1, 1) and (1, u, 1)

is milder than that on (u, u, 1) and (u, 1, u), having at most ln2 u behavior:

V (1)(u, 1, 1) ∼ −1

2
ζ2 , (7.34)

V (2)(u, 1, 1) ∼ 1

8
ζ2 ln2 u− 1

2
ζ3 lnu+

31

8
ζ4 , (7.35)

V (3)(u, 1, 1) ∼ −27

16
ζ4 ln2 u+

1

4
(11 ζ5 + 5 ζ2 ζ3) lnu− 97

4
ζ6 , (7.36)

V (1)(1, u, 1) ∼ −1

2
ζ2 , (7.37)

V (2)(1, u, 1) ∼ 1

4
ζ2 ln2 u− 1

2
ζ3 lnu+

67

16
ζ4 , (7.38)

V (3)(1, u, 1) ∼ −101

32
ζ4 ln2 u+

1

4
(11 ζ5 + 5 ζ2 ζ3) lnu− 3447

128
ζ6 +

1

4
(ζ3)

2 . (7.39)

As mentioned above, the small u behavior of the parity-odd V functions on the line (u, 1, 1)

is of the same order,

Ṽ (2)(u, 1, 1) ∼ −1

8
ζ2 ln2 u− 5

16
ζ4 , (7.40)

Ṽ (3)(u, 1, 1) ∼ 47

32
ζ4 ln2 u+

343

128
ζ6 −

1

4
(ζ3)

2 . (7.41)

The ratio of the ln2 u coefficient for Ṽ (3) to that for Ṽ (2) is about−7.7, while for the constant

term it is about −7. This numerical similarity accounts for some of the indistinguishability

of the two curves in figure 6, but only at small u.

7.3 The line (u, u, u)

When all three cross ratios are equal, the parity-odd function vanishes by u↔ w symmetry,

Ṽ (u, u, u) = 0. In contrast to the behavior on the previous lines, on the line (u, u, u) the

ratio function V does not collapse to ordinary HPLs. We can still study its asymptotic

behavior analytically, and we can evaluate it numerically in order to inspect how zero

crossings of the ratio function change with loop order. (For the remainder function, these

zero crossings, at each loop order and at strong coupling, are all very close to u = 1
3 [29].)

Like all hexagon functions, the ratio function on the line (u, u, u) can be expressed [29]

in terms of the cyclotomic HPLs defined in ref. [89]. At the level of the symbol, this

correspondence is easy to see because on the line (u, u, u) we have u = y/(1 + y)2 and

1 − u = (1 + y + y2)/(1 + y)2, where y ≡ yu. Therefore the symbol entries are all drawn
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Figure 4. V (1)(u, 1, 1), V (2)(u, 1, 1) and V (3)(u, 1, 1), normalized to unity at (1, 1, 1). One loop is

in green, two loops is in purple, and three loops is in blue.

0.2 0.4 0.6 0.8 1.0
v
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0.9

1.0

1.1

VH1,v,1L

Figure 5. V (1)(1, v, 1), V (2)(1, v, 1) and V (3)(1, v, 1), normalized to unity at (1, 1, 1). One loop is

in green, two loops is in purple, and three loops is in blue.

from the set {y, 1 + y, 1 + y + y2}. The latter two elements of this set are the second and

third cyclotomic polynomials in y, with roots eiπ and e±2πi/3.

Here we do not make explicit use of the cyclotomic polylogarithm correspondence.

In order to obtain a numerical representation, we simply series expand to high orders (of

order 100 terms) about u = 0, 1,∞. Such series representations have overlapping domains

of convergence. In figure 7 we plot V (u, u, u) for each loop order, normalized to unity at

(1, 1, 1). The point at which V (u, u, u) crosses the zero line, in the neighborhood of u = 1
3 ,
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Figure 6. Ṽ (2)(u, 1, 1) and Ṽ (3)(u, 1, 1), normalized so their u → 0 limit is ln2 u with unit coeffi-

cient. Two loops is in purple and three loops is in blue. At this scale, the lines are indistinguishable.

decreases gradually with increasing loop order. We define the crossing values u
(L)
0 by the

condition V (L)(u
(L)
0 , u

(L)
0 , u

(L)
0 ) = 0. They are given by

u
(1)
0 = 0.372098 . . . , u

(2)
0 = 0.352838 . . . , u

(3)
0 = 0.347814 . . . . (7.42)

As in the case of the line (u, u, 1), there are oscillations and additional zero crossings at

higher loop order. The two-loop result has a zero crossing near 0.0015. The three-loop

function crosses near 0.007 and again near 1.3× 10−6.

These zero crossings are again dictated by the small u asymptotic behavior,

V (1)(u, u, u) ∼ 1

2
ln2 u+

1

2
ζ2 , (7.43)

V (2)(u, u, u) ∼ 1

16
ln4 u− 3

2
ζ2 ln2 u+

1

2
ζ3 lnu− 53

16
ζ4 , (7.44)

V (3)(u, u, u) ∼ 1

288
ln6 u− 41

96
ζ2 ln4 u+

1

8
ζ3 ln3 u+

419

32
ζ4 ln2 u−

(
2 ζ5 +

3

4
ζ2 ζ3

)
lnu

+
2589

128
ζ6 −

1

4
(ζ3)

2 . (7.45)

The leading-log behavior at each order has exactly the same coefficients as did the small-u

expansion on the line (u, u, 1). The subleading-log coefficients are different, however.

7.4 The plane u + v + w = 1

The plane u+v+w = 1 intersects the positive octant in an equilateral triangle. This triangle

is bounded by the lines corresponding to the collinear limits: v = 0, u+ w = 1, and cyclic

permutations of this line. The remainder function R
(3)
6 comes very close to vanishing on
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Figure 7. V (1)(u, u, u), V (2)(u, u, u) and V (3)(u, u, u), normalized to unity at (1, 1, 1). One loop is

in green, two loops is in purple, and three loops is in blue.

this equilateral triangle [28], which may not be so surprising, given that the remainder

function is identically zero on all three edges of the triangle. In contrast, the collinear

limits of the ratio function involve two different permutations of V . For this reason, the

behavior of the ratio function on the plane u + v + w = 1 can be much less uniform than

is the remainder function. Both V and Ṽ show an interesting range of behavior, and their

zero-crossing surfaces slice through this plane.

Figure 8 plots V (3)(u, v, w) on the equilateral triangle. In this region, the function

reaches its highest values near the triangle’s vertices at u = 1 and w = 1, and its lowest

values near the vertex at v = 1. The function crosses zero on a curve in between; the

vanishing curve is not far from the circle of radius 1
2 centered at (0, 1, 0). From eq. (3.3),

we can see that V (L)(v, w, u) diverges like lnL T in the collinear limit with w ≈ T 2 → 0. In

fact, all permutations of V (L) diverge like lnL T in the near-collinear limit. Therefore V (3)

actually becomes infinite on each edge of the equilateral triangle in figure 8. However, it

diverges extremely slowly, so that the divergence is not apparent at all in the plot.

What is visible in the plot is the symmetry of V (3) under u↔ w, which exchanges the

lower-left and top corners of the triangle. It is also clear from the plot that on the lower

edge of the triangle V (3) is odd under reflection about the edge’s midpoint. By symmetry,

the same reflection-odd property holds along the upper-right edge of the triangle. Using

the u ↔ w symmetry of V (u, v, w), this property is just a consequence of the collinear

vanishing constraint (2.26),

V (u, v, w) + V (v, u, w) → 0, as w → 0, v → 1− u. (7.46)

So the fact that the vanishing surface intersects two of the edges of the equilateral triangle

at their midpoints is no surprise.
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Figure 8. V (3)(u, v, w) evaluated on the plane where u+ v +w = 1. The corners are labeled with

their (u, v, w) values.

The parity-odd function Ṽ (3)(u, v, w) is plotted on the same equilateral triangle in

figure 9. Parity-odd pure functions are pure imaginary when ∆ < 0, as in this region, so we

divide Ṽ (3) by i before plotting it. This function is antisymmetric under the exchange u↔
w and therefore it vanishes on the line u = w. It is positive for large w and negative for large

u. Like any parity-odd function, Ṽ (3)(u, v, w) vanishes in the collinear limits, on the edges

of the triangle. However, this vanishing happens so slowly that it is not evident in the plot.

The sign of Ṽ (3)/i depends on the value of (yu, yv, yw), not just (u, v, w). For each point

(u, v, w), there are two points (yu, yv, yw), related by flipping the sign of
√

∆ in eq. (2.13).

This sign flip inverts the three yi. On the plane u + v + w = 1,
√

∆ is imaginary, and

the yi are pure phases, satisfying yuyvyw = −1. The sign flip conjugates the three phases.

The branch of Ṽ (3)/i plotted in figure 9 is for positive
√

∆/i, corresponding to negative

imaginary parts for all three yi.

7.5 Planes in v

In order to get a complete view of the ratio function’s behavior, it is useful to plot it as a

function of u and w for successive values of v.

In figure 10, we plot V (3)(u, v, w) on the planes v = 3
4 , v = 1

2 , and v = 1
4 . A similar plot

has been made for the remainder function R
(3)
6 , as figure 8 of ref. [28]. (The roles of v and
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Figure 9. Ṽ (3)(u, v, w)/i evaluated on the plane where u + v + w = 1. The corners are labeled

with their (u, v, w) values.

w are reversed in that plot, but of course that is irrelevant for the remainder function, since

it is totally symmetric.) Much as in the case of the remainder function R
(3)
6 , the function

V (3)(u, v, w) looks monotonic in v, but actually the v = 1
2 and v = 1

4 planes intersect near

u = w = 1.

The functions V (3)(u, v, w) and V (2)(u, v, w) cross zero on different surfaces. The differ-

ence in zero-crossing locations means that plotting the ratio of V (3)(u, v, w) to V (2)(u, v, w)

is relatively uninformative. Instead, in figure 11 we plot V (2)(u, v, w) on the same planes

in v for comparison.

In contrast, Ṽ (3)(u, v, w) and Ṽ (2)(u, v, w) are constrained to cross zero at the ex-

act same place, on the plane u = w. Parity-odd functions are either real or imaginary

based on the sign of ∆(u, v, w), and they vanish on the surface ∆ = 0. For these reasons,

it is simpler to plot the ratio between two odd functions than to plot one odd function

alone. Omitting points for which u = w, and for which ∆ vanishes, we plot the ratio

Ṽ (3)(u, v, w)/Ṽ (2)(u, v, w) in figure 12. Given the vanishings of both numerator and de-

nominator within the region of the plot, it is remarkable that the ratio Ṽ (3)/Ṽ (2) stays

within a fairly limited range and has no dramatic behavior. On the other hand, it is clear

that it is not totally constant in u, v, or w.

– 44 –



J
H
E
P
1
0
(
2
0
1
4
)
0
6
5

Figure 10. V (3)(u, v, w) evaluated on successive planes in v.

8 Relation between V and coproduct elements of R6

In section 6, we observed that the function U had surprising simplicity, possessing only five

independent {n − 1, 1} coproduct components. In this section, we will describe another

interesting empirical observation. This one relates the even-parity NMHV function at

L loops, V (L), to the elements of the {2L, 1, 1} coproduct component of the remainder

function at one higher loop, R
(L+1)
6 . The relation was originally noticed while inspecting

the behavior of both functions on the diagonal line (u, u, u), for the purpose of making the

plot in section 7.3. However, it can be extended to a relation that holds throughout the

(u, v, w) space.

We denote the {2L, 1, 1} component of the coproduct of R
(L+1)
6 by ∆2L,1,1(R

(L+1)
6 ).

Its elements can be represented as,

∆2L,1,1(R
(L+1)
6 ) =

∑
si,sj∈Su

[R
(L+1)
6 ]si,sj ⊗ ln si ⊗ ln sj , (8.1)

and they each have weight 2L. We found the following relation:

V (L)(u, v, w) = [R
(L+1)
6 ]Z,Z + E(L+1) +

1

8
γ
(L+1)
K , (8.2)
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Figure 11. V (2)(u, v, w) evaluated on successive planes in v.

where we define the “Z,Z” linear combination of coproduct elements of a hexagon function

X to be,

XZ,Z ≡ −Xv,v−X1−v,v+Xyu,yu+Xyw,yw−3Xyv ,yv+2
(
Xyw,yv+Xyu,yv

)
−Xyu,yw−Xyw,yu .

(8.3)

Recall that the cusp anomalous dimension is given through four loops by,

γK(a) =
∞∑
L=1

aL γ
(L)
K = 4a− 4ζ2 a

2 + 22ζ4 a
3 − 4

(
219

8
ζ6 + (ζ3)

2

)
a4 +O(a5) . (8.4)

The extra term E is only needed so far at zero loops (which is definitely a special case), and

at four loops, where it is proportional to the square of the P -odd D = 6 hexagon integral:

E(1) =
1

2
, E(2) = E(3) = 0 , E(4) =

1

16
[Φ̃6]

2 . (8.5)

For L = 0, the relation (8.2) is simply 1 = 0 + 1
2 + 1

2 .

For L = 1, it is straightforward to compute the {2, 1, 1} coproduct component of R
(2)
6

from the form given in ref. [27] in terms of classical polylogarithms and the function Ω(2),

whose {3, 1} coproduct component is given in ref. [28]. We find,

−[R
(2)
6 ]v,v−[R

(2)
6 ]1−v,v = [R

(2)
6 ]yv ,yv+

ζ2
2

= [R
(2)
6 ]yv ,yu+

ζ2
2

=
1

4

[
Hu

2 +Hv
2 +Hw

2 +lnu lnw
]
.

(8.6)
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Figure 12. The ratio Ṽ (3)(u, v, w)/Ṽ (2)(u, v, w) evaluated on successive planes in v.

Because R
(2)
6 (u, v, w) is totally symmetric in u, v, w, we can obtain all the other coproduct

elements entering [R
(2)
6 ]Z,Z by permuting the ones given in eq. (8.6). It is then easy to check

that the right-hand side of eq. (8.2) for L = 1 adds up to yield V (1) as given in eq. (2.18).

To check the relation (8.2) for L = 2, we use the formulae for the elements R
(3),u
6

and R
(3),yu
6 of the {5, 1} coproduct component of R

(3)
6 given in ref. [28], as well as the

final-entry relation R
(3),1−u
6 = −R(3),u

6 . These formulae are given in terms of the basis of

weight-five hexagon functions, whose {4, 1} coproducts are also tabulated in ref. [28]. This

information makes it straightforward to extract the {4, 1, 1} coproduct component of R
(3)
6

from the {5, 1} coproduct component:

[R
(3)
6 ]v,v =

1

32

[
3
(

Ω(2)(u, v, w) + Ω(2)(v, w, u)
)

+ 2 Ω(2)(w, u, v) + HPLs + 16 ζ4

]
, (8.7)

[R
(3)
6 ]1−v,v =

1

32

[
Ω(2)(u, v, w) + Ω(2)(v, w, u) + 2 Ω(2)(w, u, v) + HPLs + 24 ζ4

]
, (8.8)

[R
(3)
6 ]yv ,yv = − 1

32

[
9
(

Ω(2)(u, v, w)+Ω(2)(v, w, u)
)

+6 Ω(2)(w, u, v)+HPLs−24 ζ4

]
, (8.9)

[R
(3)
6 ]yv ,yu = − 1

32

[
8 Ω(2)(u, v, w)+7

(
Ω(2)(v, w, u) + Ω(2)(w, u, v)

)
+HPLs−36 ζ4

]
.(8.10)

The portions of the expressions containing harmonic polylogarithms are fairly lengthy, so we

do not present them here. Using these results and their various permutations, we can assem-

ble the right-hand side of eq. (8.2) and verify that it agrees with V (2) as given in eq. (2.20).
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For L = 3, we first check the first derivative of eq. (8.2) with respect to u, v and w. We

do this using the fact that the derivatives of each of the elements of the {6, 1, 1} coproduct

component of R
(4)
6 can be expressed in terms of the {5, 1, 1, 1} coproduct elements, using

the general eq. (5.26). The {5, 1, 1, 1} coproduct elements of R
(4)
6 can in turn be written in

terms of the weight-five basis of hexagon functions [29]. On the left-hand side of eq. (8.2),

we compute the derivative of V (3)(u, v, w) using the {5, 1} coproduct component for U (3)

presented in appendix A.1, together with the relation between V (3) and U (3) given in

eq. (7.2) or eq. (5.18). Expanding both sides of the derivative of eq. (8.2) in terms of the

basis of weight-five functions, they agree perfectly. Having checked the first derivative, we

should check the relation at one point in order to establish that the constant of integration is

also correct. It is convenient to choose the point (u, v, w) = (1, 1, 1). At this point, we have

[R
(4)
6 ]v,v(1, 1, 1) =

73

8
ζ6 −

1

2
(ζ3)

2 , (8.11)

[R
(4)
6 ]1−v,v(1, 1, 1) = 0 , (8.12)

[R
(4)
6 ]yv ,yv(1, 1, 1) = −607

16
ζ6 , (8.13)

[R
(4)
6 ]yv ,yu(1, 1, 1) = −607

16
ζ6 . (8.14)

Using these relations, plus eq. (7.4) for V (3)(1, 1, 1) and eq. (8.4) for the four-loop cusp

anomalous dimension, as well as the fact that Φ̃6(1, 1, 1) = 0, it is easy to verify that

eq. (8.2) holds for L = 3 at (u, v, w) = (1, 1, 1).

There are a number of linear relations among the {2L, 1, 1} coproduct elements, which

follow from integrability, i.e. from the consistency of mixed partial derivatives of the original

weight-2(L + 1) function R
(L+1)
6 . These integrability relations make it possible to rewrite

eq. (8.2) in various ways. In eq. (8.2), we used these relations to eliminate the “off-diagonal”

even-even coproduct elements, [R
(L+1)
6 ]v,u, [R

(L+1)
6 ]1−v,u, and permutations thereof. It is

possible that using the integrability relations in a different way might lead to a version of

eq. (8.2) that is more revealing of its origin. No matter how it is rewritten, though, the

appearance of the cusp anomalous dimension in an equation that holds throughout the full

(u, v, w) space of cross ratios is very interesting.

The appearance of the extra [Φ̃6]
2 term at four loops is presumably related to the

fact that we are using a logarithmic definition of the remainder function, eq. (5.13). The

ratio function is not defined by taking any logarithms. Let’s define a modified remainder

function R̄6 by

AMHV

ABDS
= R̄6 = exp(R6) . (8.15)

Then R̄6 and V are on the same footing. The zero-loop value of R̄6 differs from that of

R6: R̄
(0)
6 = 1, while R

(0)
6 = 0. (This shift does not affect eq. (8.2), of course.) Otherwise,

R6 and R̄6 are identical until four loops, at which point they are related by,

R̄
(4)
6 = [exp(R6)]

(4) = R
(4)
6 +

1

2

[
R

(2)
6

]2
. (8.16)
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We can rewrite eq. (8.2) in terms of coproducts of R̄6 instead of R6. In order to do that,

according to eq. (8.16) we need to compute the Z,Z coproduct of [R
(2)
6 ]2. We find that{[

R
(2)
6

]2}Z,Z
=

1

8
[Φ̃6]

2 + 2 [R
(2)
6 ]Z,Z R

(2)
6 (8.17)

=
1

8
[Φ̃6]

2 + 2

(
V (1) − 1

8
γ
(2)
K

)
R

(2)
6 . (8.18)

This relation implies that we can rewrite eq. (8.2) in terms of R̄6 as,

V (L)(u, v, w) = [R̄
(L+1)
6 ]Z,Z + Ē(L+1) +

1

8
γ
(L+1)
K , (8.19)

where

Ē(1) =
1

2
, Ē(2) = Ē(3) = 0 , Ē(4) = −[R̄

(2)
6 ]Z,Z R̄

(2)
6 . (8.20)

Next, we further “improve” eq. (8.19) by removing the Ē term. We do this by con-

sidering not V but V R̄6 = V exp(R6), much as we did in section 5 when studying the

multi-particle factorization properties. As discussed in section 5, V R̄6 is a pure NMHV

quantity, as the finite part of the MHV amplitude has been cleared out of the denominator.

First, let’s multiply eq. (8.19) by aL+1 and sum over L to obtain,

a

(
V − 1

2

)
− 1

8
γK = R̄Z,Z6 +

(
Ē − a

2

)
, (8.21)

where Ē − a/2 vanishes until four loops. Now multiply by R̄6:[
a

(
V − 1

2

)
− 1

8
γK

]
R̄6 = R̄Z,Z6 R̄6 +

(
Ē − a

2

)
R̄6 . (8.22)

Through four loops, using eq. (8.20), we have,

R̄Z,Z6 R̄6 = R̄Z,Z6 + a4[R̄
(2)
6 ]Z,Z R̄

(2)
6 +O(a5), (8.23)(

Ē − a

2

)
R̄6 = −a4[R̄(2)

6 ]Z,Z R̄
(2)
6 +O(a5), (8.24)

so the explicit a4 terms cancel in the sum.

We are left with, [
a

(
V − 1

2

)
− 1

8
γK

]
R̄6 = R̄Z,Z6 , (8.25)

which is valid at least through order a4. Except for the factor of 1/2, this equation is

a relation for the difference between the NMHV and MHV amplitudes, V R̄6 − R̄6. The

right-hand side looks naively like a second-order differential operator, but of course the

coproduct operation is not the same as taking a derivative. Nevertheless, it might be

useful to try to prove eq. (8.25) using the Q̄ differential equation found in the super-Wilson

loop approach [65, 66].

Given this interesting relation for the P -even function V , we investigated whether it

was possible to write the P -odd part of the ratio function, Ṽ , as a linear combination of the
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P -odd {6, 1, 1} coproduct elements of R6 at one higher loop. At one loop, or weight two,

both sides of such a relation vanish trivially, because there are no P -odd weight-2 hexagon

functions. For Ṽ (2), we found multiple solutions; however, the space of P -odd weight-

4 hexagon functions is quite small, so most of the solutions are presumably accidental.

Because Ṽ is not itself totally physical, it is better to consider the difference of two cyclic

permutations, Ṽ (u, v, w)− Ṽ (w, u, v). Note that this combination is symmetric under the

exchange u↔ v.

At three loops, we tried to write Ṽ (3) as a generic linear combination of the odd

elements of the {6, 1, 1} coproduct component of R
(4)
6 , imposing u ↔ v symmetry and

taking into account the integrability relations among the elements. We could not find a

solution for Ṽ (3) without also introducing the odd coproducts of R
(3)
6 , multiplied by a single

logarithm. Allowing for this, we found:

Ṽ (3)(u, v, w)− Ṽ (3)(w, u, v) = 4
[
2R

(4) yw,w
6 +R

(4) 1−w,yw
6 −R(4) yu,w

6 −R(4) yv ,w
6

]
− 2Hw

1

[
R

(3) yu
6 +R

(3) yv
6 −R(3) yw

6

]
+ Φ̃6

[
1

4
Hw

1 Ω(1) − 1

2

(
Hw

3 −Hw
2,1 +Hw

1 H
w
2

)]
, (8.26)

where Φ̃6 = −4R
(2) yw
6 . Again integrability relations allow one to rewrite this linear com-

bination in different ways.

This solution is nice in that it descends smoothly to one loop lower, in which the final

term is absent:

Ṽ (2)(u, v, w)− Ṽ (2)(w, u, v) = 4
[
2R

(3) yw,w
6 +R

(3) 1−w,yw
6 −R(3) yu,w

6 −R(3) yv ,w
6

]
− 2Hw

1

[
R

(2) yu
6 +R

(2) yv
6 −R(2) yw

6

]
. (8.27)

However, the structure of this relation does not yet seem as simple as the one for the

parity-even part V .

At the moment, the ultimate significance of these relations is still quite unclear. It

would be interesting to investigate their meaning in the near-collinear and multi-Regge

limits, where the OPE approach of Basso, Sever and Vieira, and the recent work of Basso,

Caron-Huot and Sever, respectively, provide information at much higher loop order,

Recently, BSV have investigated a double-scaling limit in which T → 0 but TF is

held fixed. In this limit, only gluonic flux-tube excitations contribute [44]. This limit

corresponds to taking v → 0 with u and w held fixed. In this limit, the letters of the

symbols for hexagon functions (after extracting powers of ln v) can be shown to collapse

to a simple five parameter set, {u,w, 1 − u, 1 − w, 1 − u − w}. This means that hexagon

functions approach a subset of the 2dHPL function space introduced by Gehrmann and

Remiddi [90] in order to solve for the master integrals for the process γ∗ → qgq̄ at two

loops. (The 2dHPLs also allow for the letter (u + w), which does not appear here.) BSV

have a simple rule for an insertion factor ha(u) (where u is the rapidity) that relates NMHV

to MHV Wilson loops. At leading order, the insertion factor leads to a relation for the

1111 component of the NMHV Wilson loop in terms of a second-order Laplacian operator
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acting on the MHV Wilson loop. This relation looks superficially similar to eq. (8.25),

although the NMHV side of the relation involves two permutations each of V and Ṽ , and

it is clear that the relation will have to be modified at higher loop orders.

In general, there might be other, cleaner ways to rewrite the parity-even and parity-

odd coproduct relations found in this section, which might better reveal their origin. We

shall leave such investigations for future work.

9 Conclusions and outlook

In this paper we successfully extended the bootstrap program, initiated in ref. [26], to

calculate the three-loop six-point NMHV ratio function in planar N = 4 super Yang-Mills

theory. We began with an ansatz for the coproduct of the desired functions, built out

of the hexagon functions introduced in ref. [28]. By constraining this ansatz with the

known behavior of the ratio function in various kinematic limits, we were able to uniquely

determine the NMHV coefficient functions V and Ṽ through three loops.

At three loops, we began with a 412-parameter ansatz. After applying several con-

straints, including the vanishing of the cyclicly symmetric part of Ṽ (3), a final-entry condi-

tion drawn from the Q̄ differential equation from ref. [65], the vanishing of spurious poles,

and vanishing in the collinear limit, we had 92 parameters remaining.

We were then able to fix those parameters with near-collinear data obtained from the

work of Basso, Sever and Vieira [41]. The first-order T 1 correction in the near-collinear

limit, from single flux excitations [42], was sufficient to fix all but two parameters in our

ansatz. Those two parameters can be fixed if we also incorporate BSV’s recently published

results for the contributions of two flux excitations, at order T 2 [43]. The rest of the order

T 2 results then serves as an extensive check on BSV’s results.

Alternatively, the remaining two parameters can be fixed by examining the multi-Regge

limits of the amplitude. By generalizing the predictions of ref. [54] beyond the leading-

logarithmic limit, we were able to fix the form of V (3) and Ṽ (3) independently of BSV’s T 2

data, letting the T 2 comparison serve as an entirely independent check. Using the NLLA

and NNLLA functions derived from the two- and three-loop NMHV ratio functions we are

able to find all contributions to the MRK limit at any loop order, up to NNLLA in the

imaginary part and N3LLA in the real part. These results will serve as important input

for the calculation of the ratio function at higher loops.

With access to an NMHV amplitude at this loop order, we are uniquely positioned to

investigate multi-particle factorization behavior at three loops. In constructing the multi-

particle factorization function we find remarkable simplicity. We conjecture that our results

should be straightforwardly generalizable beyond six points.

In investigating multi-particle factorization, we found remarkable relations in the co-

product entries of the ratio function, relations that go beyond those predicted by Caron-

Huot and He [65, 80]. While we do not yet understand the source of these relations, if

they continue to higher loops they might serve as useful constraints on further bootstraps.

Similarly, the simplicity of the function U along certain kinematic lines (and in particular

the status of ∆U as a palindrome) suggest deeper properties.

– 51 –



J
H
E
P
1
0
(
2
0
1
4
)
0
6
5

By plotting V and Ṽ on a variety of lines and planes, we have observed how its

quantitative behavior changes with loop order. While the overall behavior is not nearly

as consistent between loop orders as it was for the remainder function in ref. [28], we do

find that the ratio between three loops and two loops at least stays in a confined range

over much of the space, being particularly tightly constrained for Ṽ . Time will tell if this

behavior becomes more regular at higher loop orders.

In general, the success of the hexagon function program for the four-loop remainder

function [29] indicates that the same program should be viable for the four-loop NMHV

ratio function. Deriving the NMHV ratio function at four loops would allow us to confirm

the trends observed at three loops, with an eye towards understanding their origins.

More generally, we have conjectured that the relative constant ratios of successive

loop orders for the remainder function and the ratio function (in suitable regimes) are a

byproduct of the convergence of perturbation theory in the planar N = 4 theory. This

possibility, discussed in ref. [29], could be investigated in more detail using BSV’s approach

to the OPE. Since the quantities they calculate are fully non-perturbative, it may be

possible to look at their behavior at higher orders and thereby gain an understanding of

why quantities like the remainder function and Ṽ have such clean inter-loop ratios even at

comparatively low loop order. Such an understanding could lead to a merging of the two

approaches, with the goal of understanding amplitudes in planar N = 4 super Yang-Mills

for any value of the coupling and any kinematics.
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A Coproduct elements of U and Ṽ

Because of the coproduct relations for U and Ṽ , and their (anti)symmetry under u ↔ w,

only four independent {n− 1, 1} coproduct elements need to be specified in each case. We

take these four components to be u, v, yu and yv. (In the case of the even function U ,

we should also specify the constant of integration by giving the value of the function at a

particular point, say (u, v, w) = (1, 1, 1), which we do elsewhere in this article.)
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A.1 U

For the function U , the other {n− 1, 1} coproduct elements are given in terms of Uu, Uv,

Uyu and Uyv as follows:

Uw(u, v, w) = Uu(w, v, u) , (A.1)

U1−u(u, v, w) = − Uu(u, v, w)− Uv(u, v, w) , (A.2)

U1−v(u, v, w) = 0 , (A.3)

U1−w(u, v, w) = U1−u(w, v, u) , (A.4)

Uyw(u, v, w) = Uyu(u, v, w) . (A.5)

In the rest of this subsection, we give the four independent coproduct elements for U

through three loops.

The one-loop independent coproduct elements are trivial, given eq. (5.24) for U (1):

[U (1)]u = −1

2
ln(uw/v) , (A.6)

[U (1)]v =
1

2
ln(uw/v) , (A.7)

[U (1)]yu = 0 , (A.8)

[U (1)]yv = 0 . (A.9)

The two-loop independent coproduct elements can be computed from eq. (5.25) for

U (2), but we list them here for convenience:

[U (2)]u =
1

8

[
−2Hu

3 + 4Hu
2,1 + 2Hv

2,1 − 2Hw
3 − 4Hw

2,1 + (3 lnu+ ln(v/w))Hu
2

+ ln(uv/w)Hv
2 − (3 ln(u/v) + lnw)Hw

2 − ln2 v lnu

− ln2w (3 lnu−ln v)+3 lnu ln v lnw+2 ζ2 (lnu−5 ln(v/w))
]
, (A.10)

[U (2)]v =
1

4

[
Hu

3 +Hu
2,1 +Hw

3 +Hw
2,1 − ln(v/w)

(
Hu

2 +
1

2
ln2 u

)
− ln(v/u)

(
Hw

2 +
1

2
ln2w

)
− 4 ζ2 ln(uw/v)

]
, (A.11)

[U (2)]yu =
1

8
Φ̃6(u, v, w) , (A.12)

[U (2)]yv = 0 . (A.13)

The independent parity-even {5, 1} coproduct elements of U (3) are

[U (3)]u =
1

32

{
−M1(w, u, v) +M1(u,w, v)− 128

3
(Qep(v, w, u)−Qep(v, u, w))

− ln(u/w) (Ω(2)(u, v, w) + Ω(2)(v, w, u))− (3 lnu− 4 ln v + 5 lnw) Ω(2)(w, u, v)

+ 24Hu
5 − 4Hu

4,1 + 10Hu
3,2 + 96Hu

3,1,1 + 22Hu
2,2,1 − 72Hu

2,1,1,1 − 2Hu
2 (3Hu

3 + 5Hu
2,1)

− 3

2
lnu

(
24Hu

4 − 20Hu
3,1 + 28Hu

2,1,1 − (Hu
2 )2
)

+ 4 ln2 u (4Hu
3 − 3Hu

2,1)− 2 ln3 uHu
2

− 96Hv
3,1,1 − 32Hv

2,2,1 − 16Hv
2,1,1,1 + 16Hv

2 H
v
2,1 − 4 ln v

(
4Hv

3,1 + 2Hv
2,1,1 − (Hv

2 )2
)
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+
2

3
ln3 v Hv

2 + 24Hw
5 − 28Hw

4,1 − 10Hw
3,2 + 240Hw

3,1,1 + 74Hw
2,2,1 + 8Hw

2,1,1,1

+ 2Hw
2 (3Hw

3 − 19Hw
2,1)− 1

2
lnw

(
24Hw

4 − 68Hw
3,1 − 20Hw

2,1,1 + 19 (Hw
2 )2
)

+ 4 ln2 wHw
2,1

+
2

3
ln3 wHw

2 − 4 (Hu
2 −Hw

2 + 2 (ln2 u+ ln2 w))Hv
2,1 −

1

2
ln(u/w)

(
4Hv

4 + 40Hv
3,1 + 4Hv

2,1,1

− 11 (Hv
2 )2
)
− 1

2
(ln3 u− ln3 w)Hv

2 + 2 ln v

(
6 (Hu

4 −Hw
4 )− 18Hu

3,1 − 14Hw
3,1 − 2Hu

2,1,1

− 14Hw
2,1,1 + 4

(
(Hu

2 )2 + (Hw
2 )2
)
− (Hu

2 −Hw
2 )Hv

2 − lnu (Hu
2,1 −Hv

3 + 3Hv
2,1)

− ln2 u (Hu
2 + 3Hv

2 ) + lnw (8Hw
3 − 3Hw

2,1 −Hv
3 −Hv

2,1)− ln2 w (Hw
2 +Hv

2 )

)
− 1

4
ln2 v

(
24Hu

3 + 2 lnu (3Hu
2 + 4Hv

2 )− ln3 u+ 8Hw
3 − 64Hw

2,1 − 2 lnw (3Hw
2 − 4Hv

2 )

+
19

3
ln3 w

)
− 2

3
ln3 v(Hu

2 −Hw
2 − 2 ln2 u)− 10

3
(Hw

2 H
u
3 −Hu

2 H
w
3 ) +

14

3
(Hw

2 H
u
2,1 −Hu

2 H
w
2,1)

+
1

6
lnu

(
72Hw

4 + 156Hw
3,1 + 168Hw

2,1,1 − 45 (Hw
2 )2 + 20Hu

2 H
w
2 − 12 lnw (8Hw

3 − 3Hw
2,1

−Hu
2,1) + ln2 w (12Hw

2 + 7Hu
2 )
)
− 1

6
lnw

(
72Hu

4 − 228Hu
3,1 − 24Hu

2,1,1 + 51 (Hu
2 )2

+ 20Hu
2 H

w
2 + ln2 u (7Hw

2 − 12Hu
2 )
)
− 1

4
ln3 u (2Hw

2 − ln2 w) +
1

12
ln3 w (6Hu

2 − 67 ln2 u)

− 1

3
ln2 w (23Hu

3 − 13Hu
2,1)− 1

3
ln2 u (Hw

3 − 35Hw
2,1) +

1

6
lnu lnw

(
144Hv

2,1 + 33 ln(u/w)Hv
2

)
+ ln v

(
2 lnu (2Hw

3 − 15Hw
2,1) + 2 lnw (6Hu

3 −Hu
2,1) + 2 lnu lnw (Hu

2 + 6Hv
2 −Hw

2 )

+ 2 (ln2 uHw
2 − ln2 wHu

2 )− ln3 u lnw + 10 ln2 u ln2 w +
11

3
lnu ln3 w

)
− 1

4
ln2 v

(
6 (lnuHw

2 − lnwHu
2 ) + 25 ln2 u lnw + 7 lnu ln2 w

)
+

2

3
ln3 v lnu lnw

− ζ2
[
Hu

3 − 12Hu
2,1 − 3 lnuHu

2 − 3 ln3 u+ 32Hv
2,1 + 16 ln v Hv

2 +
4

3
ln3 v −Hw

3 − 84Hw
2,1

− 29 lnwHw
2 +

1

3
ln3 w + 2 (14 ln v − 15 lnw)Hu

2 − 4 ln2 u (ln v − lnw)

− lnu (34Hw
2 + 44 ln2 w − 18Hv

2 + 20 ln2 v − 56 ln v lnw) + 12 ln v (3Hw
2 + ln2 w)

− 2 lnw (9Hv
2 + 2 ln2 v)

]
− 2 ζ3

[
4 (Hu

2 −Hw
2 ) + 3 (ln2 u− ln2 w)

]
− 2 ζ4

[
35 lnu− 160 ln v + 157 lnw

]}
, (A.14)

and

[U (3)]v = Av(u, v, w) +Av(w, v, u), (A.15)

where

Av(u, v, w) = −1

8

{(
1

2
ln v − lnu

)
Ω(2)(w, u, v) + 6Hu

5 − 4Hu
4,1 + 66Hu

3,1,1 + 20Hu
2,2,1

− 4Hu
2,1,1,1−10Hu

2 H
u
2,1−lnu

(
6Hu

4 −12Hu
3,1+2Hu

2,1,1+2 (Hu
2 )2
)

+ ln2 u (2Hu
3 −Hu

2,1)−
1

3
ln3 uHu

2

− ln(v/w)
(

8Hu
3,1 + 4Hu

2,1,1 − 2 lnuHu
3 − 2 (Hu

2 )2
)
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+ ln2(v/w)

(
−Hu

3 + 4Hu
2,1 + lnuHu

2 −
1

3
ln3 u

)
+ ζ2

[
20Hu

2,1 + 8 lnuHu
2 +

2

3
ln3 u− 8 ln(v/w)

(
Hu

2 +
1

2
ln2 u

)]
− 32 ζ4 (2 lnu− ln v)

}
. (A.16)

The parity-odd coproducts of U (3) are given by,

[U (3)]yu =
1

32

{
3H1(u, v, w) +H1(v, w, u) +H1(w, u, v)− 11

4
J1(u, v, w)

− 1

4

(
J1(v, w, u) + J1(w, u, v)

)
+ Φ̃6(u, v, w)

[
ln2 u+ ln2w + ln2 v

+ 2
(

lnu lnw − ln(uw) ln v
)
− 22ζ2

]}
, (A.17)

[U (3)]yv =
1

8
H1(u, v, w) . (A.18)

A.2 Ṽ

For the function Ṽ , the other {n− 1, 1} coproduct elements are given in terms of Ṽ u, Ṽ v,

Ṽ yu and Ṽ yv as follows:

Ṽ w(u, v, w) = −Ṽ u(w, v, u) , (A.19)

Ṽ 1−u(u, v, w) = − Ṽ u(u, v, w) , (A.20)

Ṽ 1−v(u, v, w) = −Ṽ v(u, v, w) , (A.21)

Ṽ 1−w(u, v, w) = −Ṽ 1−u(w, v, u) , (A.22)

Ṽ yw(u, v, w) = −Ṽ yu(w, v, u) . (A.23)

In the rest of this subsection, we give the four independent coproduct elements for Ṽ

through three loops.

The one-loop function Ṽ (1) vanishes. The two-loop function Ṽ (2) is given in eq. (2.21).

Its {3, 1} coproduct elements are,

[Ṽ (2)]u =
1

8
Φ̃6(u, v, w) , (A.24)

[Ṽ (2)]v = 0 , (A.25)

[Ṽ (2)]yu =
1

4

[
Hu

3 −Hv
2,1 −Hw

3 −
1

2
ln(u/w)

(
Hu

2 +Hv
2 +Hw

2 + ln v lnw
)

− 1

2
ln v (Hu

2 +Hv
2 −Hw

2 ) + ζ2 ln(uv/w)

]
, (A.26)

[Ṽ (2)]yv =
1

4

[
Hu

3 −Hu
2,1 − lnuHu

2 −Hw
3 +Hw

2,1 + lnwHw
2

− ln(u/w)

(
Hv

2 +
1

2
lnu lnw − 2 ζ2

)]
. (A.27)
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The independent parity-odd {5, 1} coproduct elements of Ṽ (3) are given by,

[Ṽ (3)]u =
1

96

{
−H1(u, v, w) +H1(v, w, u) + 3H1(w, u, v)− 23

4
J1(u, v, w)

− 13

4
J1(v, w, u)− 3

4
J1(w, u, v)− 6 lnu

(
F1(u, v, w)− F1(w, u, v)

)
+ 3 Φ̃6(u, v, w)

[
3 ln2 u+ ln2 v + ln2w

+ 2 (Hu
2 +Hv

2 +Hw
2 − lnu lnw)− 26 ζ2

]}
, (A.28)

[Ṽ (3)]v =
1

96

{
2
(
H1(v, w, u)−H1(w, u, v)

)
+

5

2

(
J1(v, w, u)− J1(w, u, v)

)
− 6 ln v

(
F1(u, v, w)− F1(w, u, v)− ln(u/w) Φ̃6(u, v, w)

)}
. (A.29)

The independent parity-even coproducts of Ṽ (3) are given by,

[Ṽ (3)]yu =
1

96

{
M1(w, v, u)−M1(v, w, u) + 3 (M1(w, u, v)−M1(u,w, v))

− 64

3

(
2 (Qep(w, v, u)−Qep(w, u, v)) + 7 (Qep(v, w, u)−Qep(v, u, w))

)
+ (3 lnu+ ln v − 4 lnw) Ω(2)(u, v, w)− (3 lnu− ln v − 2 lnw) (Ω(2)(w, u, v)− Ω(2)(v, w, u))

− 72Hu
5 + 72Hu

4,1 + 15Hu
3,2 + 36Hu

3,1,1 + 27Hu
2,2,1 − 9Hu

2 H
u
2,1 + 3 lnu

(
12Hu

4 − 4Hu
3,1

+ 3Hu
2,1,1 − (Hu

2 )2
)
− 3 ln2 uHu

3 −
3

2
ln3 uHu

2 − 12Hv
4,1 − 10Hv

3,2 + 168Hv
3,1,1 + 58Hv

2,2,1

+ 56Hv
2,1,1,1 + 6Hv

2 (Hv
3 − 7Hv

2,1) +
1

2
ln v

(
24Hv

4 + 36Hv
3,1 + 68Hv

2,1,1 − 31 (Hv
2 )2
)

− 8 ln2 v (Hv
3 −Hv

2,1) +
2

3
ln3 v Hv

2 + 72Hw
5 − 60Hw

4,1 − 5Hw
3,2 + 84Hw

3,1,1 + 11Hw
2,2,1

− 8Hw
2,1,1,1 − 3Hw

2 (2Hw
3 + 3Hw

2,1)− 1

2
lnw

(
96Hw

4 − 84Hw
3,1 + 38Hw

2,1,1 − (Hw
2 )2
)

+ ln2 w (11Hw
3 − 8Hw

2,1)− 7

6
ln3 wHw

2 −
1

4
ln3 u (5 ln2 v − 2Hv

2 )

+
1

12
ln2 u

(
3 ln3 v + 2 ln v (35Hv

2 + 24Hu
2 ) + 44Hv

3 + 164Hv
2,1

)
+ lnu

(
ln2 v

(
4Hv

2 +
1

6
Hu

2

)
+ ln v

(
−18 (Hu

3 +Hv
3 ) + 16Hu

2,1 + 12Hv
2,1

)
+ 18Hv

4

+ 32Hv
3,1 + 10Hv

2,1,1 −
37

2
(Hv

2 )2 − 20

3
Hv

2 H
u
2

)
+

1

6
ln3 v Hu

2 +
1

3
ln2 v (13Hu

3 + 7Hu
2,1)

+ ln v
(

14Hu
4 + 16Hu

3,1 + 22Hu
2,1,1 −

31

2
(Hu

2 )2 − 28

3
Hv

2 H
u
2

)
+

2

3
Hu

2 (5Hv
3 − 7Hv

2,1)

+
26

3
Hv

2 (Hu
3 +Hu

2,1)− ln3 u (ln2 w −Hw
2 ) +

1

12
ln2 u

(
15 ln3 w + 2 lnw (19Hw

2 − 24Hu
2 )

− 26Hw
3 + 70Hw

2,1

)
+

1

3
lnu

(
4 ln2 w (Hu

2 + 6Hw
2 ) + 6 lnw

(
9Hu

3 − 8Hu
2,1 − 12 (Hw

3 −Hw
2,1)
)

+ 72Hw
4 − 6Hw

3,1 + 96Hw
2,1,1 −

69

2
(Hw

2 )2 − 7Hu
2 H

w
2

)
− 13

6
ln3 wHu

2 +
1

6
ln2 w (Hu

3 + 13Hu
2,1)

− 1

3
lnw

(
42Hu

4 + 66 (Hu
3,1 +Hu

2,1,1)− 51 (Hu
2 )2 −Hu

2 H
w
2

)
− 1

3
Hu

2 (Hw
3 + 49Hw

2,1)
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+
1

3
Hw

2 (Hu
3 + 37Hu

2,1) +
1

12
ln3 v (7 ln2 w + 10Hw

2 ) +
1

6
ln2 v

(
13 ln3 w + 6 lnw (7Hw

2 − 4Hv
2 )

− 48Hw
3 + 60Hw

2,1

)
− 1

2
ln v

(
ln2 w (4Hw

2 − 25Hv
2 ) + 12 lnw

(
2Hv

2,1 − 3Hv
3 − 4 (Hw

3 −Hw
2,1)
)

+ 48Hw
4 − 20Hw

3,1 + 64Hw
2,1,1 − 19 (Hw

2 )2 + 12Hv
2 H

w
2

)
− 1

3
ln3 wHv

2 + 2 ln2 w (Hv
3 + 7Hv

2,1)

+ lnw
(
−18Hv

4 − 34Hv
3,1 − 10Hv

2,1,1 + 19 (Hv
2 )2 + 12Hv

2 H
w
2

)
− 24Hw

2 H
v
2,1 − 12Hv

2 H
w
3

+ 3 ln3 u ln v lnw − 1
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, (A.30)

and

[Ṽ (3)]yv = Byv(u, v, w)−Byv(w, v, u), (A.31)

where

Byv (u, v, w)

=
1
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{
−3
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Ω(2)(u, v, w) + lnuΩ(2)(w, u, v)− 72Hu

5 + 48Hu
4,1 − 5Hu

3,2

+ 84Hu
3,1,1 + 47Hu

2,2,1 + 64Hu
2,1,1,1 + 3Hu

2

(
4Hu

3 − 11Hu
2,1

)
+ lnu

(
60Hu

4 − 24Hu
3,1

+ 53Hu
2,1,1 − 16 (Hu

2 )2
)
− ln2 u (19Hu

3 − 16Hu
2,1) +

11

6
ln3 uHu

2 − ln3 u ln2 v

+
1

6
ln2 u (25Hv

3 +Hv
2,1 − 7 ln v Hv
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. (A.32)
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