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1 Introduction

Understanding the nonperturbative physics of Quantum Chromodynamics (QCD) is one

of the central challenges in theoretical physics. QCD in the vacuum is strongly coupled,

giving rise to a variety of emergent phenomena such as chiral symmetry breaking, quark

confinement, formation of nuclei, and mass gap generation of gluons. Since the seminal

work by Banks and Casher [1] it is known that chiral symmetry breaking is associated with

the condensation of near-zero eigenvalues of the Dirac operator. The correlations of Dirac

eigenvalues on the scale ∼ 1/V4Σ, also known as the microscopic domain, strictly obey the

predictions of chiral random matrix theory (ChRMT), which corresponds to the leading

order of the ε-expansion of chiral perturbation theory (ChPT) [2, 3] (see [4, 5] for reviews).

Here, V4 and Σ stand for the volume of Euclidean space-time and the chiral condensate

in the chiral limit, respectively. The equivalence between a rather simple Gaussian matrix

model with no space-time structure and QCD in a certain limit is truly surprising, but

it has been confirmed explicitly again and again through lattice QCD simulations. Not
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only theoretically intriguing, the equivalence also provides us with a means of extract-

ing low-energy constants in ChPT from lattice QCD data, where Dirac eigenvalues are

easily computable.

The dynamics of QCD at nonzero temperature T and/or chemical potential µ is rel-

evant for the physics of the early Universe, relativistic heavy-ion collisions, and compact

stars [6–8]. At high baryon density, the physics is entirely different from that of the vac-

uum: the celebrated BCS mechanism leads to the condensation of quark pairs, which breaks

gauge and chiral symmetries in three-color QCD, a phenomenon referred to as color super-

conductivity [9, 10]. However, conventional Monte Carlo simulations based on importance

sampling are hindered by the infamous sign problem, which originates from the complex

phase of the fermion determinant at nonzero µ [11]. While several promising approaches to

overcome this obstacle have been proposed [11, 12], a feasible way to simulate dense QCD

is yet to be found. To gain insights into the physics of dense quark matter, a number of

QCD-like theories that have a nonnegative path-integral measure even at nonzero chemical

potential have been investigated intensively by many authors, with numerical methods as

well as in effective models. Such special theories include QCD with gauge group SU(2)

(called two-color QCD) [13], QCD with adjoint fermions [14], G2 gauge theory [15], and

QCD with isospin chemical potential [16, 17].1 Those theories share many features, such as

the existence of light bosons that condense at nonzero chemical potential, and the interested

reader is referred to [18, 19] for reviews.

In the absence of reliable numerical simulations, analytical first-principle studies are

highly valuable. The study of the Dirac spectrum in QCD with nonzero quark chemical

potential in the regime µ2
q � 1/

√
V4 was undertaken in [20–24] on the basis of low-energy

effective theories and ChRMT (see [21, 25] for reviews). It was found that the sign problem

is manifested in an extreme oscillation of the spectral density of the Dirac operator, and

that the latter is actually responsible for the fact that observables in QCD (e.g., the chiral

condensate) at T = 0 are independent of µq below roughly one third of the nucleon mass,

even though the fermion determinant itself depends on µq. This is informally called the

Silver Blaze phenomenon of QCD [26, 27]. The baryon-number Dirac spectrum was also

studied in [28].

The microscopic Dirac spectrum in QCD and QCD-like theories at high density was

investigated in [19, 29–32]. Through the extension of ChRMT to dense QCD it was shown

that the fluctuations of the complex Dirac eigenvalues of order 1/
√
V4∆2 (with ∆ the

BCS gap of quarks) are universal, i.e., independent of the microscopic details of the QCD

interaction and solely determined by global symmetries. The whole analysis was extended

to the singular values of the Dirac operator [33]. A Banks-Casher-type relation in dense

QCD-like theories was also established, which connects the Dirac spectral density at the

origin and ∆2 [34].

In this paper we consider QCD with an even number Nf of flavors at asymptotically

large isospin chemical potential µI � ΛQCD [17, 35]. For two flavors and zero quark

1In two-color QCD, the positivity of the measure is ensured for an even number of flavors and pairwise

equal masses. In QCD with adjoint fermions, no such restriction is necessary.
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Figure 1. A schematic phase diagram of Nf = 2 QCD with large isospin chemical potential µI
as a function of quark chemical potential µq at T = 0. The ε-regime will be defined in section 3

assuming that the system is placed in a four-dimensional Euclidean box of linear extent L.

chemical potential the partition function is given by2

Z
(Nf=2)
QCD (µI) =

〈
det[D(−µI + µq) +m] det[D(µI + µq) +m]

〉
YM

∣∣∣∣
µq=0

(1.1)

=
〈∣∣det[D(µI) +m]

∣∣2〉
YM

, (1.2)

where the Dirac operator D with the property D(µ)† = −D(−µ) is defined in section 2

and the subscript YM implies an average over the gauge fields. At low T , the ground

state is dominated by the Fermi sea of u and d quarks plus the condensate 〈uγ5d〉 that

originates from the attractive interaction between quarks near the Fermi surface.3 This

leads to a BCS gap ∆ for quarks. In [19] a low-energy effective theory at energy scale� ∆

was constructed for the generalization of (1.2) to Nf flavors. Furthermore, the ChRMT

describing the spectrum of D(µ) was identified and solved analytically [19].

Then a natural question to ask is what happens if the condition µq = 0 is loosened. This

is a long-standing subject, and a rough physical picture is known at least for asymptotically

large µI where the weak-coupling BCS mechanism is at work (see figure 1). Namely, for

small µq 6= 0, the pairing between u and d quarks is stressed by the mismatch of Fermi levels,

but the ground state at T = 0 is unchanged as long as µq is too small to compensate for

the energy cost of breaking the Cooper pairs. In this region, no quark number is generated

and the BCS gap is independent of µq [36]. (This property will be referred to as the high-

isospin-density Silver Blaze phenomenon in the rest of this paper, to distinguish it from the

original one at low baryon density.) When µq reaches a threshold µcq ≈ ∆/
√

2 (called the

Chandrasekhar-Clogston limit [37, 38]) the standard BCS pairing is no longer energetically

preferable and a phase transition occurs to an inhomogeneous phase (e.g., a Fulde-Ferrell-

Larkin-Ovchinnikov phase, where the pair carries a net nonzero momentum) [39]. As µq
grows further, the system is expected to undergo yet another phase transition to a state with

a single-flavor pairing (uu and dd) [40, 41]. On the other hand, for low and intermediate

µI the physics is less transparent because the system is strongly coupled; see, e.g., [42–68]

for studies on QCD-like theories and [69–71] for reviews on possible inhomogeneous phases

2In this work we define µI as −1/2 times the conventional isospin chemical potential so that µI > 0

leads to a finite density of u and d quarks. See also footnote 4.
3The latter is also supported by a QCD inequality [17].
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Figure 2. A typical situation considered in this paper is shown for Nf = 4. The chemical

potentials for u quarks (d quarks) are assumed to be slightly perturbed from −µI (+µI).

in the phase diagram. We also note that in recent years similar physics has been discussed

in the context of imbalanced ultracold atomic Fermi gases [72, 73].

The high-isospin-density Silver Blaze phenomenon for 0 < µq < µcq is puzzling at first

sight, since observables are independent of µq while the fermion determinant det[D(−µI +

µq)+m] det[D(µI +µq)+m] in the path-integral measure depends on µq. In this paper we

elucidate the mechanism behind this phenomenon by constructing the low-energy effective

theory and the corresponding ChRMT for QCD at large isospin and small quark chemical

potential, and by looking into the spectral properties of the Dirac operator. As an idealiza-

tion we will neglect beta decay and the charge neutrality condition, which would strongly

suppress the formation of a pionic condensate [51, 56, 74].

This paper is organized as follows. In section 2 we summarize basic properties of QCD

with isospin and quark chemical potential and fix the notation. In section 3 we construct

the corresponding low-energy effective theory in both p- and ε-expansion and study the

severity of the sign problem. In section 4 we construct the ChRMT corresponding to the

leading order of the ε-expansion. By mapping it to a known ChRMT that is applicable at

low baryon density we can gain a number of insights at high isospin density. We define

stressed singular values of the Dirac operator and relate them to the pionic condensate,

and also study the baryon-number Dirac spectrum. In section 5 we briefly comment on

two-color QCD and mention which parts of the arguments for QCD with Nc ≥ 3 have to

be modified for Nc = 2. We conclude in section 6. In appendix A we clarify a potential

ambiguity in the effective theory.

2 QCD with large isospin chemical potential

Assuming even Nf , we consider QCD with Nf/2 pairs of u and d quarks. We will refer

to u quarks as uf and to d quarks as df with f = 1, . . . , Nf/2. We introduce chemical

potentials of the form µu,f = −µI + µ̌u,f for the u quarks and µd,f = µI + µ̌d,f for the d

quarks, respectively, where we assume |µ̌i,f | � µI for i = u, d and all f . In other words,

we consider QCD at large isospin chemical potential µI but allow for small quark chemical

potentials on top of µI . For convenience of notation we define

µu = −µI1Nf/2 + µ̌u with µ̌u = diag(µ̌u,1, . . . , µ̌u,Nf/2) , (2.1a)

µd = µI1Nf/2 + µ̌d with µ̌d = diag(µ̌d,1, . . . , µ̌d,Nf/2) . (2.1b)

An example of a chemical potential distribution for Nf = 4 is shown in figure 2.
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The partition function of the microscopic theory is given by

Z
(Nf )
QCD(µI ; {µ̌}, {m})

=
〈Nf/2∏
f=1

det
(
D(−µI + µ̌u,f ) +mu,f

)︸ ︷︷ ︸
u quarks

det
(
D(µI + µ̌d,f ) +md,f

)︸ ︷︷ ︸
d quarks

〉
YM

, (2.2)

where4 D(µ) ≡ γνDν − µγ4 is the Euclidean Dirac operator in the fundamental represen-

tation of SU(Nc) for Nc ≥ 3,5 which is an analytic continuation of the Minkowski Dirac

operator DM (µ) ≡ iγνDν+µγ0 with x0 = −ix4. In this paper we always work in Euclidean

space-time unless stated otherwise. We also assume sufficiently low temperature T � ∆

throughout. The special case (1.1) is recovered by setting Nf = 2, µ̌u,1 = µ̌d,1 = µq, and

mu,1 = md,1 = m in (2.2).

Note that shifting µ̌u → µ̌u− δµ̌1Nf/2 and µ̌d → µ̌d + δµ̌1Nf/2 simply corresponds to

a shift µI → µI + δµ̌, as is evident from (2.2). We are not interested in such a trivial shift

and therefore impose the condition

Tr[µ̌u − µ̌d] = 0 , (2.3)

which implies µI = Tr[µd − µu]/Nf . Not imposing this condition leads to an ambiguity

in the effective theory that is discussed in appendix A, which should best be read after

section 3.1.2.

3 Low-energy effective theory

3.1 p-expansion

The purpose of this subsection is to derive a low-energy effective theory of Nambu-

Goldstone (NG) bosons for the theory defined in section 2. We are interested in a regime

where the coincident Fermi surfaces of u and d quarks are slightly disrupted by nonzero

|µ̌i,f | � ∆. Before looking into this case we first consider the limit µ̌u = µ̌d = 0 [17, 35]

as a starting point.

3.1.1 Effective theory for zero stress

As noted in [17, 19, 35], the symmetry breaking for (2.2) at µI � ΛQCD (and µ̌u = µ̌d =

0) is driven by the condensate6 〈ufγ5df 〉 (f = 1, . . . , Nf/2), resulting in the breaking

pattern [19, Section 4.2]

U(Nf/2)uR ×U(Nf/2)uL ×U(Nf/2)dR ×U(Nf/2)dL

−→ U(Nf/2)uR+dL ×U(Nf/2)uL+dR , (3.1)

4In the literature one sometimes finds the definition D(µ) = γνDν+µγ4, which interchanges the meaning

of positive and negative µ. With our current definition, a positive µ favors quarks over anti-quarks. For

convenience of notation we choose µI > 0, i.e., assigning −µI (+µI) to u (d) quarks favors ud over du.
5The special case Nc = 2 will be discussed briefly in section 5.
6This pseudoscalar channel is favored over the scalar channel by positive quark masses and the instanton-

induced interactions [17].
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where the suppression of the axial anomaly by medium effects is taken into account. This

pattern of spontaneous symmetry breaking is consistent with QCD inequalities [19].7

The breaking pattern (3.1) gives rise to N2
f /2 NG bosons which we parameterize by U

and V and which reside in the coset spaces

U ∈ U(Nf/2)uR ×U(Nf/2)dL
U(Nf/2)uR+dL

∼= U(Nf/2) , V ∈ U(Nf/2)uL ×U(Nf/2)dR
U(Nf/2)uL+dR

∼= U(Nf/2) .

(3.2)

We can employ the spurion method to determine the form of the effective Lagrangian Leff.

Under flavor transformations of quarks, the NG bosons and the quark masses transform as

Mu → guLMu g
†
uR
, Md → gdLMd g

†
dR
, U → gdLU g

†
uR
, V → guLV g

†
dR
, (3.3)

where Mu and Md are the mass matrices for the u and d quarks8 and gi ∈ U(Nf/2)i for

i ∈ {uR, uL, dR, dL}.
For later use, let us also insert a source term

uf
[
(Ω1)fgPL + (Ω2)fgPR

]
dg + h.c. (3.4)

into the Lagrangian, where Ω1 and Ω2 are (Nf/2)×(Nf/2) matrices and PR/L = (1±γ5)/2

are the usual chiral projectors. This allows us to extract the pionic condensate 〈uγ5d〉+c.c.

by taking the derivative of logZ
(Nf )
QCD w.r.t. Ω1,2. The role of this source term is similar to

that of the diquark source in two-color QCD and adjoint QCD. This term enables us to

derive a Banks-Casher-type relation for the pionic condensate [33]. To leave (3.4) invariant

under flavor transformations, Ω1 and Ω2 should transform as

Ω1 → guRΩ1g
†
dL

and Ω2 → guLΩ2g
†
dR
. (3.5)

Next we consider the parity transformation P . Recalling U ∼ dLuR and V ∼ uLdR, we have

P : U → V †, V → U †, Mu,d →M †u,d , Ω1 → Ω2 , Ω2 → Ω1 . (3.6)

Assuming the “p-regime” counting of this theory to be9

∂ν ∼Mu,d ∼ O(p) and Ω1,2 ∼ O(p2) , (3.7)

7For general mass terms and nonzero µ̌u,d, the path-integral measure of QCD is not necessarily positive

definite and QCD inequalities do not apply. In that case more exotic pairing patterns are possible, but

only if the masses or µ̌u,d are large enough. Here we assume them to be small perturbations so that (3.1)

remains valid.
8Equation (2.2) has been expressed in a basis in which the mass matrices are diagonal, i.e., Mu →

diag(mu,1, . . . ,mu,Nf/2) and Md → diag(md,1, . . . ,md,Nf/2).
9We explain the reason for this counting after (3.8). Note that this counting only applies at high

isospin density and must not be confused with the usual p-expansion in the vacuum, where ∂ν ∼ O(p) and

Mu,d ∼ O(p2).
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the leading O(p2) effective Lagrangian invariant under (3.3), (3.5), and parity turns out to

be

Leff(U, V ) =
F 2

4

{
Tr[∂4U

†∂4U + v2∂iU
†∂iU ] + Tr[∂4V

†∂4V + v2∂iV
†∂iV ]

}
− f2

{
(Tr[U †∂4U ])2 + ṽ2(Tr[U †∂iU ])2 + (Tr[V †∂4V ])2 + ṽ2(Tr[V †∂iV ])2

}
+

3Nc

4π2
∆2
{

Tr[MuU
†MdV

†] + c.c.
}
− Φ

{
Tr[Ω1U + Ω2V

†] + c.c.
}
. (3.8)

To better understand this result we add a few comments:

1. The non-existence of O(Mu,d) terms in Leff(U, V ) points to the fact that the chiral

condensate vanishes in this theory owing to the huge energy gap of anti-quarks due

to the Fermi sea. It then follows from the first term on the third line of (3.8) that the

masses of the NG modes are m2
NG = O(M2

u,d). In contrast, the sources Ω1,2 appear

linearly, as they couple to the condensate in this theory. This implies for the masses

of the NG modes that m2
NG = O(Ω1,2). To perform a consistent low-energy expansion

based on a propagator 1/(p2 +m2
NG) it is natural to count Mu,d as O(p) and Ω1,2 as

O(p2), which explains (3.7).

2. Cross terms, i.e., Tr[U †∂4U ] Tr[V †∂4V ] and Tr[U †∂iU ] Tr[V †∂iV ], are suppressed at

high density [75] and have been dropped here. Terms with a single derivative, i.e.,

Tr[U †∂4U ] and Tr[V †∂4V ], are also allowed by symmetries, but these are total deriva-

tives that do not contribute to the action. We note in passing that the second

line in (3.8) only affects the U(1) part of U and V since Tr[Ũ †∂Ũ ] = 0 for any

Ũ ∈ SU(Nf/2).

3. The low-energy constants in (3.8) are defined in the limit Mu = Md = Ω1 = Ω2 =

0 and depend on µI and Nf . Φ is proportional to the magnitude of the pionic

condensate 〈uγ5d〉+c.c. ∆ is the BCS gap of quarks. F and f are the decay constants

of the NG modes, and v and ṽ are the corresponding velocities in the medium. At

asymptotically high density we have relations such as ΛQCD � ∆ � µI , v = 1/
√

3,

F ∼ µI , and Φ ∼ µ2
I∆/g [10],10 but precise knowledge of these quantities is not

needed in the rest of this paper.

4. The coefficient 3Nc∆
2/4π2 of the first term on the third line of (3.8) was determined

in [19, 34] through matching between high-density effective theory (HDET) [76–78]

and chiral effective theory (see [75, 78, 79] for the corresponding analysis in the

color-flavor-locked phase). The positive overall sign of this term fixes the parity of

the ground state: since the minimum of this term is attained at U = −V ∝ 1 for

Mu,d real and positive, the ground state is odd under parity [17]. If Ω1 = −Ω2 (a

source for the 0− condensate) the last term of (3.8) is also minimized by U = −V .

However, there will be a competition if Ω1 = Ω2.

10These relations were originally derived for quark chemical potential, but the same techniques can be

used to show that they are also valid for isospin chemical potential.
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5. The so-called Bedaque-Schäfer terms [80] are not included in (3.8) as they are sub-

leading in the present p-expansion.

6. Constant terms ∼ Tr[M †iMi] (i = u, d) are not explicitly shown in (3.8) because

they do not affect the dynamics of NG modes and because they are irrelevant for the

analysis of microscopic Dirac eigenvalues [34].

3.1.2 Effective theory for nonzero stress

We now incorporate the effects of µ̌u,d into (3.8), assuming that these chemical poten-

tials are much smaller than the gap ∆ and can thus be regarded as low-energy expansion

parameters in Leff. For this purpose we again employ the p-counting

∂ν ∼Mu,d ∼ µ̌u,d ∼ O(p) and Ω1,2 ∼ O(p2) . (3.9)

Let us begin with the d quarks. To use HDET we momentarily switch to Minkowski

space-time. The fermionic part of the microscopic Lagrangian is then given by

L = d
(
iγνDν + (µI + µ̌d)γ

0
)
d− dLMddR − dRM †ddL . (3.10)

In the regime µI � ΛQCD this theory can be treated in the framework of HDET, where we

expand in powers of µ̌d,f in a way analogous to [80] (where QCD at high baryon density,

rather than high isospin density, was considered). To second order in p the result is then

given by

LHDET =
∑
~vF

d†R+(~vF )

(
iv̌νDν + µ̌d −

1

2µI

(
( /D⊥)2 +M †dMd

))
dR+(~vF )

+
∑
~vF

d†L+(~vF )

(
iv̌νDν + µ̌d −

1

2µI

(
( /D⊥)2 +MdM

†
d

))
dL+(~vF ) + . . . , (3.11)

where v̌ν = (1, ~vF ) with Fermi velocity ~vF , D and /D⊥ are counted as O(p), and the dots

denote higher orders in p. The definitions of the projected modes di+ (i = R,L) and of

/D⊥ are given in [76, 77]. The first two terms in parentheses are O(p), while the next two

terms are O(p2/µI), i.e., the expansion parameter is p/µI .

In (3.10) both µ̌d and i∂0 come with γ0. Furthermore, in (3.11) the mass matrix and

µ̌d appear in the combination µ̌d−M †dMd/2µI for dR+ and µ̌d−MdM
†
d/2µI for dL+. This

implies that LHDET at this order would be invariant under a time-dependent U(Nf/2)dR ×
U(Nf/2)dL flavor transformation if both µ̌d−M †dMd/2µI and µ̌d−MdM

†
d/2µI transformed

as time components of local gauge fields coupled to U(Nf/2)dR × U(Nf/2)dL [80]. Since

according to (3.3) the NG fields U and V transform in the d-quark sector as

U → gdLU and V → V g†dR for gi ∈ U(Nf/2)i (3.12)

– 8 –
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the effective theory can also be made invariant under the spurious symmetry via

the replacements11

∂0U → ∂0U − i
(
µ̌d −

1

2µI
MdM

†
d

)
U , (3.13a)

∂0V
† → ∂0V

† − i
(
µ̌d −

1

2µI
M †dMd

)
V † . (3.13b)

Note that the second term in parentheses is suppressed by O(p/µI) with respect to the first

term. Therefore it can be dropped when we construct the effective Lagrangian to O(p2).

The u-quark sector can be treated in a similar manner. In the end, after analytic con-

tinuation to Euclidean space-time ∂0 → i∂4, we find the leading O(p2) effective Lagrangian

including the effects of µ̌u,d to be given by

Leff(U, V ) =
F 2

4

{
Tr[∇4U

†∇4U + v2∂iU
†∂iU ] + Tr[∇′4V †∇′4V + v2∂iV

†∂iV ]
}

− f2
{

(Tr[U †∇4U ])2 + ṽ2(Tr[U †∂iU ])2 + (Tr[V †∇′4V ])2 + ṽ2(Tr[V †∂iV ])2
}

+
3Nc

4π2
∆2
{

Tr[MuU
†MdV

†] + c.c.
}
− Φ

{
Tr[Ω1U + Ω2V

†] + c.c.
}
, (3.14)

where12

∇4U = ∂4U − µ̌dU + U µ̌u , (3.15a)

∇4U
† = ∂4U

† + U †µ̌d − µ̌uU † , (3.15b)

∇′4V = ∂4V − µ̌uV + V µ̌d , (3.15c)

∇′4V † = ∂4V
† + V †µ̌u − µ̌dV † . (3.15d)

This completes the derivation of the effective theory in the presence of µ̌u,d. The low-

energy constants in (3.14) are the same as those in (3.8). In particular, they are defined in

the limit µ̌u = µ̌d = 0. Equation (3.8) follows as a limit of (3.14) if we set µ̌u = µ̌d = 0.

Let us recall that, when Leff was constructed in (3.8), terms with a single derivative

such as Tr[U †∂4U ] were dropped as they are total derivatives. Retaining this term and

replacing ∂4U by ∇4U according to (3.15a) would result in a non-derivative term,

Tr[U †∇4U ] = Tr[U †∂4U ] + Tr[µ̌u − µ̌d] . (3.16)

The second term vanishes thanks to (2.3), so omission of the single-derivative terms in (3.8)

does not influence our current discussion. In appendix A we discuss an ambiguity that

appears if the condition (2.3) is not respected.

11That the specific combinations of Md and µ̌d occurring in (3.13) are reasonable can be inferred intu-

itively, i.e., from the Fermi level of a free d quark, pF . With an insertion of md 6= 0 and a small shift

µI → µI + µ̌d satisfying md, µ̌d � µI we obtain pF =
(
(µI + µ̌d)

2 −m2
d

)1/2 ' µI + µ̌d −m2
d/2µI , and thus

it is the combination µ̌d −m2
d/2µI that effectively parameterizes the shift of the Fermi level. For u quarks

we need to flip the sign of µI and obtain µ̌u +m2
u/2µI .

12Note that ∇4U
† 6= (∇4U)† and ∇′4V † 6= (∇′4V )†.
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If we set µ̌u = µ̌d = µq1Nf/2, representing a small common quark chemical potential

on top of a large isospin chemical potential, we find that µq disappears from the covariant

derivatives in (3.15), leaving no effect on Leff. This is the high-isospin-density analogue

of the Silver Blaze phenomenon we mentioned in the introduction. It could have been

anticipated from the fact that the NG modes ∼ ud in this theory carry no net baryon

number. We expect a nonzero baryon number to emerge only if µq is greater than µcq ∼
∆/
√

2, at which the isotropic BCS phase gives place to a new phase, but this is beyond

the domain of validity of our low-energy effective theory.

3.2 ε-expansion

We now move on to the ε-regime [29, 81, 82]. We consider the system to be confined in a

4-dimensional Euclidean box with linear extent L and volume V4 = L4 satisfying

1

∆
� L� 1

mNG
, (3.17)

where mNG is the mass scale of the NG fields. The first inequality ensures that the contri-

bution of non-NG modes to the partition function is negligible, while the second inequality

implies that the Compton wavelength of the NG fields is much larger than the size of the

box. In this limit the partition function is dominated by the zero-momentum modes of the

NG fields. This regime can be defined through the “ε-expansion” counting13

∂ν ∼ 1/L ∼ ξ(x) ∼ O(ε) , Mu,d ∼ µ̌u,d ∼ O(ε2) , and Ω1,2 ∼ O(ε4) . (3.18)

Here, ξ(x) represents the nonzero-momentum modes of U and V , which are given by

U(x) = U0 exp(i
√

2ξU(x)/F ) and V (x) = V0 exp(i
√

2ξV (x)/F ), where U0 and V0 denote

the zero-momentum modes.

Extracting the leading terms up to O(ε4) from (3.14) and discarding higher-order terms

we obtain

Leff

∣∣
ε4

=
1

2
Tr
[
(∂4ξU )2 + v2(∂iξU )2 + (∂4ξV )2 + v2(∂iξV )2

]
+ 2

f2

F 2

[
(Tr ∂4ξU )2 + ṽ2(Tr ∂iξU )2 + (Tr ∂4ξV )2 + ṽ2(Tr ∂iξV )2

]
+
F 2

4
Tr
[
(U †0 µ̌d − µ̌uU †0)(−µ̌dU0 + U0µ̌u) + (V †0 µ̌u − µ̌dV †0 )(−µ̌uV0 + V0µ̌d)

]
+

3Nc

4π2
∆2
{

Tr[MuU
†
0MdV

†
0 ] + c.c.

}
− Φ

{
Tr[Ω1U0 + Ω2V

†
0 ] + c.c.

}
. (3.19)

In deriving (3.19) we omitted several terms at O(ε4) either because they are total deriva-

tives or because they are proportional to Tr(µ̌u − µ̌d), which vanishes according to condi-

tion (2.3).

In the ε-regime, the zero-momentum modes are no longer suppressed as V4 →∞, and

one has to sum up their contributions nonperturbatively [81]. This is in contrast to the

p-regime (3.9), where they are counted as O(p) like nonzero-momentum modes and can

13This should not be confused with the conventional ε-regime at zero density, where Mu,d ∼ O(ε4).
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be treated perturbatively. The kinetic terms for ξU(x) and ξV (x) in (3.19) only affect the

multiplicative normalization of the partition function and are irrelevant for the dependence

of the partition function on µ̌u,d, Mu,d, and Ω1,2.

We thus find that the finite-volume partition function of QCD for µI � ΛQCD at

leading order of the new ε-expansion (3.18) is given by

Z
(Nf )
QCD(µI ; µ̌u,d,Mu,d,Ω1,2) =

∫
U(Nf/2)

dU0

∫
U(Nf/2)

dV0 exp
(

A + B + C
)

(3.20)

with

A = −1

2
V4F

2 Tr
[
µ̌uU

†
0 µ̌dU0 + µ̌dV

†
0 µ̌uV0 − µ̌2

u − µ̌2
d

]
, (3.21a)

B = −3Nc

4π2
V4∆2

{
Tr[MuU

†
0MdV

†
0 ] + c.c.

}
, (3.21b)

C = V4Φ
{

Tr[Ω1U0 + Ω2V
†

0 ] + c.c.
}
. (3.21c)

This completes the derivation of the effective partition function in the ε-regime. In section 4

we will show that the expression (3.20) can be reproduced by a certain zero-dimensional

random matrix theory. Note that for Ω1 = Ω2 = 0, (3.20) can be computed analytically in

two limits: if at least one of µ̌u or µ̌d is zero we obtain the Berezin-Karpelevich integral [83,

84]. If at least one of Mu or Md is zero we obtain the Harish-Chandra-Itzykson-Zuber

integral [85, 86].

3.3 Sign problem

Consider Nf = 4 QCD with µ̌u = µ̌d = µq12, Ω1 = Ω2 = 0, and equal mass m, i.e.,

Z
(4)
QCD(µI ;µq,m) =

〈
det2

(
D(−µI + µq) +m

)
det2

(
D(µI + µq) +m

)〉
YM

. (3.22)

This theory suffers from a sign problem at µq 6= 0. Let us denote the complex phase of the

fermion determinants inside 〈. . . 〉 by eiθ. To estimate the severity of the sign problem it is

useful to compare the partition function (3.22) with the phase-quenched (phq) theory,

Z
(4)
phqQCD(µI ;µq,m) =

〈 ∣∣det
(
D(−µI + µq) +m

)∣∣2 ∣∣det
(
D(µI + µq) +m

)∣∣2 〉
YM

=
〈

det
(
D(−µI + µq) +m

)
det
(
D(µI − µq) +m

)
× det

(
D(µI + µq) +m

)
det
(
D(−µI − µq) +m

)〉
YM

. (3.23)

The change due to the phase quenching is shown schematically in figure 3. Then

〈eiθ〉phq =
Z

(4)
QCD(µI ;µq,m)

Z
(4)
phqQCD(µI ;µq,m)

=
Z

(4)
QCD(µI ; µ̌u = µ̌d = µq12,m)

Z
(4)
QCD(µI ; µ̌u = µ̌d = µqτ3,m)

. (3.24)
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µ
0−µI µI

u1u2 d1d2

µ
0−µI µI

d2 u1 u2 d1

Figure 3. Chemical potentials of u and d quarks before and after phase quenching. The top figure

corresponds to Z
(4)
QCD(µI ;µq,m) in (3.22) and the bottom figure to Z

(4)
phqQCD(µI ;µq,m) in (3.23).

For a rough estimate it suffices to apply the mean-field approximation by dropping deriva-

tive terms in (3.14), which leads us to the microscopic limit (3.20). The result, to leading

order in the thermodynamic limit (V4∆2m2 � 1 and V4F
2µ2

q � 1), is given by14

Z
(4)
QCD(µI ; µ̌u = µ̌d = µq12,m) '

∫
U(2)

dU

∫
U(2)

dV exp

(
−3Nc

2π2
V4∆2m2Re Tr[UV ]

)

∼ exp

(
3Nc

π2
V4∆2m2

)
, (3.25)

Z
(4)
QCD(µI ; µ̌u = µ̌d = µqτ3,m) '

∫
U(2)

dU

∫
U(2)

dV exp

(
−3Nc

2π2
V4∆2m2Re Tr[UV ] + 2V4F

2µ2
q

−1

2
V4F

2µ2
q Tr[Uτ3U

†τ3 + V τ3V
†τ3]

)
∼ exp

(
3Nc

π2
V4∆2m2 + 4V4F

2µ2
q

)
, (3.26)

where in the last step we have evaluated the integral for the configuration

U = eiϕ(cos θ τ1 + sin θ τ2) and V = − e−iϕ(cos θ τ1 + sin θ τ2) (3.27)

for arbitrary θ and ϕ to maximize the exponent in the integrand. Consequently, the sign

problem is exponentially hard at any nonzero µq,

〈eiθ〉phq ∼ e−4V4F 2µ2q . (3.28)

This is in marked contrast to QCD without isospin chemical potential, where the sign

problem becomes severe only for µq & mπ/2 [90, 91]. The difference stems from the fact that

Z
(4)
phqQCD(µI ;µq,m) contains strictly massless NG modes that couple to µq. Let us recall

that at µq = m = 0 there were eight NG modes in total. At m 6= 0, four of them acquire

masses while the other four remain massless.15 Because two of the four massless modes are
14The integral in (3.25) is known exactly [87–89] and given by I0(a)2−I1(a)2, where a = 3NcV4m

2∆2/π2

and I0 and I1 are modified Bessel functions. It would be interesting to derive an exact result for the integral

in (3.26), but this is beyond the scope of the present paper.
15This can be understood by looking at the exponent of (3.25). The term Tr[UV ] gives mass to the NG

modes. Only the diagonal subgroups of the two coset fields U and V remain massless, which can be seen

explicitly by substituting U = exp(iπaτa) (and likewise for V ) and expanding the Lagrangian to second

order in the fields.
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charged under the U(1) symmetry to which µq couples in Z
(4)
QCD(µI ; µ̌u = µ̌d = µqτ3,m),

they Bose-condense as soon as a nonzero µq is turned on. This leads to the exponentially

severe sign problem (3.28). By contrast, in QCD without isospin chemical potential, all

pions are gapped for m 6= 0. This postpones the onset of the sign problem until µq = mπ/2.

The analysis of this subsection can straightforwardly be generalized to any Nf divisible

by 4 since in this case we can flip half of the chemical potentials and combine the Dirac

determinants pairwise to obtain the absolute value. However, this is no longer possible for

Nf ≡ 2 mod 4.

4 Random matrix theory and spectral properties

4.1 Random matrix model for nonzero stress

A random matrix model that exactly reproduces part B of (3.20) has been constructed

in [19]. Here we present an extension of this model to incorporate the effects of µ̌u,d
and Ω1,2,

Z
(Nf )
RMT(µ̂u,d, M̂u,d, Ω̂1,2) =

∫
CN×N

dP

∫
CN×N

dQ e−N Tr(PP †+QQ†) det


M̂ †u P − µ̂u Ω̂1 0

−Q† − µ̂u M̂u 0 Ω̂2

Ω̂†2 0 M̂ †d Q− µ̂d
0 Ω̂†1 −P † − µ̂d M̂d

 , (4.1)

where P and Q are N×N complex matrices while µ̂u, µ̂d, M̂u, and M̂d are (Nf/2)×(Nf/2)

matrices acting on flavor indices (i.e., we write P − µ̂u instead of P ⊗ 1Nf/2 − 1N ⊗ µ̂u
etc. for brevity). All dimensionless parameters carry a hat to distinguish them from phys-

ical variables.16 The inclusion of the chemical potentials in this form was motivated by

Stephanov’s model [92], which was devised for QCD at low baryon density. There is another

well-known way of incorporating the chemical potential into RMT devised by Osborn [20]

where the chemical potential is multiplied by another Gaussian random matrix. We expect

such a formulation to belong to the same large-N universality class as (4.1).

As we will show shortly, our model (4.1) describes QCD at large isospin chemical poten-

tial. Models with a similar structure were investigated in [21, 93] with the aim of describing

QCD at small isospin chemical potential (called phase-quenched QCD by those authors).

These models must not be confused with ours. It is worthwhile to note that refs. [21, 93]

confirmed through explicit calculation that the two formulations of incorporating µ into

RMT lead to an identical quenched microscopic spectral density. This is strong evidence

that these two formulations are indeed equivalent in the large-N microscopic limit.

Let us return to the model (4.1). Using standard techniques (see, e.g., [2, 19, 94]) of

fermionization and Hubbard-Stratonovich transformation, we find that in the large-N limit

with the scaling

M̂u,d ∼ µ̂u,d ∼ O(1/
√
N) and Ω̂1,2 ∼ O(1/N) , (4.2)

16Note that the RMT quantity µ̂ corresponds to the physical quantity µ̌ and not to µ.
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(4.1) reduces to a nonlinear sigma model,

Z
(Nf )
RMT(µ̂u,d, M̂u,d, Ω̂1,2) =

∫
U(Nf/2)

dU

∫
U(Nf/2)

dV exp
(
N Tr

[
− µ̂uU †µ̂dU − µ̂dV †µ̂uV

+ (−M̂uU
†M̂dV

† + c.c.) + (Ω̂1U + Ω̂2V
† + c.c.)

])
. (4.3)

Comparing (4.3) with (3.20) we find the correspondence

Z
(Nf )
QCD(µI ; µ̌u,d,Mu,d,Ω1,2) = eN Tr(µ̂2

u+µ̂2
d) Z

(Nf )
RMT(µ̂u,d, M̂u,d, Ω̂1,2) (4.4)

with the identifications √
V4F 2

2
µ̌u,d ⇐⇒

√
N µ̂u,d , (4.5a)√

3Nc

4π2
V4∆2Mu,d ⇐⇒

√
NM̂u,d , (4.5b)

V4ΦΩ1,2 ⇐⇒ N Ω̂1,2 . (4.5c)

This proves the equivalence of the partition function for low-energy QCD in the ε-regime

and chiral RMT, both at large µI . Let us add a few comments.

1. Just as the quark mass couples to the Dirac eigenvalues, the pionic source (3.4)

couples to the singular values of the Dirac operator [33]. Therefore the above corre-

spondence, including the Ω̂1,2 terms, shows not only the equivalence between QCD

and RMT for the Dirac eigenvalue distribution, but also for the singular-value dis-

tribution of the Dirac operator. While a complete proof would necessitate partially

quenched ChPT [95, 96], in this paper we shall be satisfied with the equivalence at

the level of the fermionic partition function.

2. Within RMT there is no parameter corresponding to µI . The effect of µI is included

implicitly in ∆, F , and Φ in (4.5). This is true in RMT for two-color QCD at high

baryon density as well [30, 32].

3. The two partition functions in (4.4) differ by a factor eN Tr(µ̂2
u+µ̂2

d). This factor

does not affect expectation values in both theories and is irrelevant, unless one is

interested in the partition function itself, or in its derivative w.r.t. µ̂u,d. Actually such

a discrepancy generally arises when matching QCD and chiral RMT with chemical

potential [28, 97].

4. It was shown in [19] that Z
(Nf )
RMT(M̂u,d) for µ̂u,d = Ω̂1,2 = 0 may be cast into the form

of the determinant of a certain matrix of dimension Nf/2. Using this result one can

derive the microscopic spectral density of the Dirac matrix
( 0 P
−Q† 0

)
analytically for

arbitrary masses [19]. However, such a simple formula is not known for the current

extension to nonzero µ̂u,d.

– 14 –



J
H
E
P
1
0
(
2
0
1
4
)
0
5
5

In order to study the spectral properties of the Dirac matrices(
0 P − µ̂u

−Q† − µ̂u 0

)
and

(
0 Q− µ̂d

−P † − µ̂d 0

)
(4.6)

the first step would be to derive the eigenvalue representation of the partition function (4.1).

However, this is a difficult task even in the limit M̂u,d = Ω̂1,2 = 0, and we postpone this

to future work. In the next section we turn to the singular values of these matrices to

discuss the Silver Blaze phenomenon of QCD at high isospin density, where we will find

that a number of insights can be gained without any additional calculation of spectral

correlations.

4.2 Mapping high isospin to low baryon density

In the following we set µ̂u = µ̂d = µ̂q1Nf/2 for simplicity, which satisfies condition (2.3).

From the mapping between RMT and QCD in the ε-regime found in the previous subsection

we have the exact correspondence

QCD (µI � ΛQCD) RMT

D(−µI + µq) ⇐⇒
(

0 P − µ̂q
−Q† − µ̂q 0

)

D(µI + µq) ⇐⇒
(

0 Q− µ̂q
−P † − µ̂q 0

) (4.7)

As remarked above, it is technically difficult to compute the eigenvalue correlations of these

matrices. However, as will be shown below, one can analytically compute the eigenvalue

correlations for the product of these matrices,

−D(−µI + µq)D(µI + µq)⇐⇒
(

(P − µ̂q)(P † + µ̂q) 0

0 (Q† + µ̂q)(Q− µ̂q)

)
. (4.8)

Note that for µq = 0 the operator on the l.h.s. equals D(µI)
†D(µI),

17 whose eigenvalues

{ξ2
n} are real and nonnegative. Their positive square roots {ξn} (with ξn ≥ 0 for all n)

are called the singular values of D(µI). As a generalization, we will refer to the positive

and negative square roots of the eigenvalues of the operator in (4.8) as the “stressed

singular values”. They are no longer real for µq 6= 0. In the limit µq → 0 they reduce

to {+ξn} ∪ {−ξn}, i.e., the singular values of D(µI) and their negatives. We will show in

section 4.4 that the stressed-singular-value spectrum encodes essential information on the

pionic condensate 〈uγ5d〉.
In the remainder of this section we concentrate on the influence of nonzero µ̂q by setting

M̂u,d = 0.18 Furthermore we assume Ω̂1 = ω̂11Nf/2 and Ω̂2 = ω̂21Nf/2 from now on. Then

17This follows from D(−µ) = −D(µ)†.
18The quark-mass dependence of the Dirac spectrum at high isospin density was investigated in [19].
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the partition function (4.1) reads

Z
(Nf )
RMT(µ̂q, 0, Ω̂1,2)

=

∫∫
dP dQ e−N Tr(PP †+QQ†)×

× detNf/2

(
ω̂1 P − µ̂q

−P † − µ̂q ω̂∗1

)
detNf/2

(
ω̂∗2 Q− µ̂q

−Q† − µ̂q ω̂2

)

=

∫
dP e−N TrPP †

N∏
k=1

(
ω̂1ω̂

∗
1 + p2

k

)Nf/2 ∫ dQ e−N TrQQ†
N∏
`=1

(
ω̂2ω̂

∗
2 + q2

`

)Nf/2 , (4.9)

where the {±ipk} and {±iq`} are the eigenvalues (2N each) of(
0 P − µ̂q

−P † − µ̂q 0

)
and

(
0 Q− µ̂q

−Q† − µ̂q 0

)
, (4.10)

respectively. Since µ̂q enters the Dirac matrices as an anti-Hermiticity-breaking parameter,

the spectra {±ipk} and {±iq`} spread from the imaginary axis to the entire complex plane,

marking the emergence of the sign problem for the weight (4.9). Note that by definition

the set {±pk} ∪ {±qk} constitutes the stressed singular values of the Dirac operator.

We now notice an interesting fact: the measure in (4.9) consists of two components,

each of which is mathematically identical to the massive partition function of RMT for

QCD with Nf/2 flavors at small quark chemical potential and vanishing isospin chemical

potential [20, 92],

Z
(Nf/2)
RMT (µ̂q, m̂)ν=0 =

∫
CN×N

dP e−N TrPP † detNf/2

(
m̂∗ P − µ̂q

−P † − µ̂q m̂

)
(4.11)

=

∫
CN×N

dP e−N TrPP †
N∏
k=1

(
m̂m̂∗ + p2

k

)Nf/2 ,
where the subscript ν = 0 implies the restriction to the topologically trivial sector. Ac-

cording to this exact correspondence, the universal microscopic correlation functions for

the stressed singular values {±pk} and {±q`} with weight (4.9) are precisely given by those

of the well-known matrix model (4.11), provided that the pionic sources ω̂1 and ω̂2 in (4.9)

are identified with the quark masses m̂ in (4.11). The microscopic correlation functions

in the model (4.11) have been computed exactly in [20] using orthogonal polynomials and

in [21, 93] from the replica limit of the Toda lattice equation.

In the following three subsections we present insights that can be gained from earlier

works through the mapping from (4.9) to (4.11).

4.3 Microscopic stressed-singular-value spectrum

It is well known that the microscopic spectral density of the Dirac operator in QCD with

µ2
q � 1/

√
V4 and µI = 0 changes its behavior qualitatively as a function of µq [21, 22, 24].
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Reλ

Imλ

Re ξ

Im ξ

Figure 4. Left: sketch of the Dirac spectral density ρD(µq;λ) defined in (4.15) for QCD at small

quark chemical potential µq > mπ/2. It is roughly constant in the yellow region and strongly

oscillating in the blue elliptical regions (whose boundaries have been computed in [24]). Right:

sketch of the stressed-singular-value density ρsv(µI , µq; ξ) defined in (4.18) for µI � ΛQCD and

µq >
√

ΦΩ1,2/F . It behaves just like ρD(µq;λ), except that the real and imaginary parts are

interchanged.

At µq = 0 the spectral density is supported only on the imaginary axis, and its value

at the origin is proportional to Σ0 in the chiral limit, as known from the Banks-Casher

relation [1]. (Here, Σ0, F0, etc. denote low-energy constants of ChPT in the QCD vacuum.)

For 0 < µq < mπ/2 the spectral density is roughly constant on a two-dimensional straight

band along the imaginary axis, with19

width ∼
F 2

0 µ
2
q

Σ0
and height ∼ Σ2

0

F 2
0 µ

2
q

(µI = 0) . (4.12)

As µq exceedsmπ/2, the spectral density develops an elliptical domain of strong oscillations,

with an amplitude that scales exponentially with V4 and a period that shrinks as 1/V4 (see

figure 4 left). The spectral density is no longer real and positive, signaling the onset of a

severe sign problem for µq > mπ/2.

Through the mapping explained in section 4.2, these mathematical results carry over to

the regime with µI � ΛQCD and µq 6= 0. For a physical interpretation of the mathematical

formulas we need to (i) trade the quark masses for the pionic sources Ω1,2, (ii) set the

number of flavors to Nf/2, and (iii) replace the low-energy constants in the QCD vacuum

by those in the high-isospin-density chiral effective theory (3.14). In particular, the chiral

condensate is mapped to the pionic condensate.

Instead of quoting complicated mathematical formulas from earlier works, we would

like to discuss the overall structure of the stressed-singular-value spectrum. For µI � ΛQCD

and µq = 0, the square roots of the eigenvalues of the operator −D(−µI + µq)D(µI +

µq)
µq=0
= D(µI)

†D(µI) are the singular values of the Dirac operator D(µI), as explained

after (4.8). The associated Banks-Casher-type and Smilga-Stern-type relations have been

19We include 1/V4 in the definition of the spectral density, see (4.15) below.
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derived in [33, 34]. For 0 < µq .
√

ΦΩ1,2/F ∼
√

Ω1,2∆/g ,20 the (positive and negative)

square roots of the eigenvalues of −D(−µI + µq)D(µI + µq), i.e., the stressed singular

values, extend to the two-dimensional complex plane and have a density that is roughly

constant over a straight band along the real axis, with

width ∼
F 2µ2

q

Φ
∼
gµ2

q

∆
and height ∼ Φ2

F 2µ2
q

∼ µ2
I∆

2

g2µ2
q

(µI � ΛQCD) . (4.13)

For µq &
√

Ω1,2∆/g a severe sign problem sets in: the flat stressed-singular-value density

is invaded by an elliptical domain of strong oscillations that amplify with V4 as described

above (see figure 4 right). In particular, for Ω1 = Ω2 = 0 the sign problem sets in as soon

as a nonzero µq is turned on, as we have seen in section 3.3.

In this manner one can attain a quantitative picture of the microscopic domain of the

operator −D(−µI + µq)D(µI + µq) by simply translating known formulas for D(µq) with

µI = 0 and Nf/2 flavors to the high-isospin-density regime µI → ∞ with Nf flavors. It

may seem surprising that the same formulas apply to the description of two seemingly

unrelated operators, in two radically distinct situations. We can interpret this finding as a

notable manifestation of the universal applicability of RMT.

In the present treatment we have neglected nonzero quark masses. Understanding

their effect on the stressed-singular-value spectrum is an intriguing problem that is left for

future work.

4.4 Pionic condensate and stressed singular values

Let us begin with µI = 0. For µq 6= 0, the Dirac eigenvalues spread over the complex plane

and the Banks-Casher relation ceases to be valid, but the Dirac spectral density is still

related to the chiral condensate through the relation

〈ψψ〉 = lim
m→0

lim
V4→∞

Nf

∫
C
dλ

2m

−λ2 +m2
ρD(µq;λ) (4.14)

with the Dirac eigenvalue density21

ρD(µq;λ) ≡ 1

V4

〈
Tr δ

(
λ−D(µq)

)〉
Nf
, (4.15)

where Tr δ(λ − A) is shorthand for
∑

i δ(λ − ai) with ai the eigenvalues of A. At zero

temperature, a general thermodynamic argument suggests that observables must be inde-

pendent of µq for µq < µCq 'MN/Nc, where MN is the nucleon mass. This is referred to as

the Silver Blaze phenomenon of dense QCD [26, 27]. Therefore the chiral condensate (4.14)

must also be independent of µq, despite the fact that ρD(µq;λ) strongly varies as a function

of µq, as illustrated in the last subsection and in figure 4 left. This puzzling situation was

investigated mathematically in the microscopic limit [22, 23]. The authors found that the

explanation for the µq-independent chiral condensate may be attained through properties

20Here we used the relations F ∼ µI and Φ ∼ µ2
I∆/g valid at asymptotically high density [10].

21The delta function in the complex plane is defined as δ(λ) ≡ δ(Reλ)δ(Imλ).
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of suitable orthogonal polynomials in the complex plane, which lead to nontrivial cancel-

lations of oscillating contributions in the integral (4.14). They also realized that it is the

whole spectral density, including the flat strip as well as the strongly oscillating domain,

that is responsible for the correct behavior of 〈ψψ〉 as a function of m.

Let us see how these findings add to our understanding of high-isospin-density

QCD. For µI 6= 0, the partition function in the chiral limit for Ω1 = ω1Nf/2 and

Ω2 = −ω1Nf/2 reads

Z
(Nf )
QCD(µI ;µq, ω) =

〈
detNf/2

[
−D(−µI + µq)D(µI + µq) + ω2

]〉
YM

. (4.16)

It follows from (3.4) that the condensate is

〈uγ5d− dγ5u〉 = lim
ω→0

lim
V4→∞

Nf

V4

〈
Tr

ω

−D(−µI + µq)D(µI + µq) + ω2

〉
Nf

= lim
ω→0

lim
V4→∞

Nf

∫
C
dξ

ω

ξ2 + ω2
ρsv(µI , µq; ξ) (4.17)

with the stressed-singular-value density

ρsv(µI , µq; ξ) ≡
1

V4

〈∑
n

δ(ξ − ξn)
〉
Nf
, (4.18)

where the ξ2
n are the eigenvalues of −D(−µI + µq)D(µI + µq). A sketch of ρsv is given in

figure 4 right.

As is clear from (4.17) and (4.14), the relation between the stressed-singular-value

density ρsv(µI , µq; ξ) and the pionic condensate is the same as the relation between the

spectral density ρD(µq;λ) and the chiral condensate. In the microscopic domain, the

two densities are given by the same functions, as noted in the previous subsection, so all

findings for the Dirac spectral density at µq 6= 0 apply to the high-isospin-density regime.

The µq-independence of the pionic condensate (i.e., the high-isospin-density Silver Blaze

phenomenon) at zero temperature and its discontinuity as ω crosses zero can be accounted

for by the same mathematical mechanism as found for the chiral condensate in [22, 23]. The

puzzle that the µq-dependent function ρsv(µI , µq; ξ) leads to a constant pionic condensate

is resolved in this way.

It must be emphasized, though, that the mechanism behind the Silver Blaze phenomena

at low baryon and high isospin density is not the same. On the one hand, the QCD vacuum

does not respond to small µq > 0 since it cannot excite a nucleon. On the other hand,

dense isospin matter is insensitive to small µq > 0 because it is not energetically preferable

to break the Cooper pairs of u and d quarks. It is intriguing that the same mathematical

resolution applies to those two radically different situations.

4.5 Baryon-number Dirac spectrum

In this section we discuss the quark-number density nq(µq), which is obtained from the

partition function as

nq(µq) =
1

V4

d

dµq
logZQCD(µq) . (4.19)
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We again begin with the low-density regime with µI = 0. Expressing the partition

function in terms of the Dirac operator D(0) at zero chemical potential, we find

nq(µq) =
1

V4

d

dµq
log
〈

detNf
(
D(0) +m− µqγ4

)〉
YM

=
1

V4

d

dµq
log
〈

detNf
(
µq − γ4[D(0) +m]

)〉
YM

=
Nf

V4

〈
Tr

1

µq − γ4[D(0) +m]

〉
Nf

= Nf

∫
C
dz

ρq(µq,m; z)

µq − z
(4.20)

with

ρq(µq,m; z) ≡ 1

V4

〈
Tr δ

(
z − γ4[D(0) +m]

)〉
Nf
. (4.21)

Physically one expects nq(µq) at T = 0 to vanish for 0 ≤ µq . MN/Nc. This property of

QCD was discussed in connection with the spectral properties of γ4[D(0) +m] in [26, 27].

Recently this issue was revisited in [28], where ρq(µq,m; z) was computed explicitly for

m = 0 in the microscopic limit, i.e., for λ ∼ µq ∼ O(1/
√
V4F0).

Next we proceed to the regime µI � ΛQCD. Since the condensate 〈uγ5d〉 does not

carry net baryon charge, the quark-number density must vanish identically for µq below

a threshold ∼ ∆/
√

2 at which a phase transition occurs (as reviewed in section 1). For

simplicity we will only consider degenerate masses, ignore Ω1,2, and set µ̌u = µ̌d = µq1Nf/2.

From (2.2) we then obtain

Z
(Nf )
QCD(µI , µq,m) =

〈
detNf/2

(
µq −Dq

)〉
YM

(4.22)

with

Dq ≡
(
γ4[D(−µI) +m] 0

0 γ4[D(µI) +m]

)
. (4.23)

Therefore the quark-number density is given by

nq(µq) =
Nf

2

∫
C
dz

Rq(µI , µq; z)

µq − z
(4.24)

with

Rq(µI , µq; z) ≡
1

V4

〈
Tr δ(z −Dq)

〉
Nf
. (4.25)

The spectral density Rq can be computed in the microscopic domain λ ∼ µq ∼ O(1/
√
V4F )

using RMT. From (4.1) the corresponding random matrix can be read off as

QCD (µI � ΛQCD) RMT

γ4[D(−µI) +m] ⇐⇒
(
−Q† m̂
m̂ P

)

γ4[D(µI) +m] ⇐⇒
(
−P † m̂
m̂ Q

) (4.26)
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It is a challenging task to compute the spectral density of these random matrices. However,

the problem simplifies considerably if we take the chiral limit m̂ = 0, as P and Q are then

decoupled. The spectral density of the simplified matrices was worked out analytically

in [28] in an effort to find ρq(µq,m; z) at µI = 0, cf. (4.21). The mathematical equivalence

between [28] and this work enables us to extract information for Rq(µI , µq; z) with no

additional calculation. Adapting the findings of [28] to our context, we can conclude

the following.

1. At µq = 0, the sign problem is absent and the density Rq(µI , 0; z) is positive definite.

In the macroscopic regime it varies smoothly, and in the microscopic regime it is

actually constant: Rq(µI , 0; z) ∼ F 2 ∼ µ2
I . As µq increases from zero, a circular

domain of radius µq appears around the origin in which Rq(µI , µq; z) shows extremely

rapid oscillations with amplitude growing exponentially with V4, similarly to what is

observed in the Dirac spectral density at µq 6= 0.

2. The quark-number density nq(µq) follows from Rq(µI , µq; z) via (4.24). If the integral

is computed using only the constant part of Rq, the resulting nq increases monotoni-

cally with µq, in apparent contradiction with the expected Silver Blaze phenomenon

of dense isospin matter. However, inclusion of the oscillating part of the spectrum

cures this problem, and the resulting nq shows the correct µq-independence.22

5 Comment on two-color QCD

While the main body of this paper concentrates on QCD with Nc ≥ 3, it seems worthwhile

to comment on possible extensions of this work to two-color QCD, because the finite-density

dynamics of the latter has been actively explored in lattice simulations (see, e.g., [13, 98,

99]). To avoid complications we will only consider the case µ̌u = µ̌d = µq1Nf/2. First and

foremost, the Dirac operator for SU(2) gauge group possesses an anti-unitary symmetry

Cτ2γ5D(µ)Cτ2γ5 = D(µ)∗, with τ2 the second generator of SU(2) [82]. As a consequence,

the partition function of two-color QCD is invariant under the exchange of quark chemical

potential and isospin chemical potential [42]:

Z
(Nf )
Nc=2(µI ; {µ̌},m) =

〈
detNf/2

(
D(−µI + µq) +m

)
detNf/2

(
D(µI + µq) +m

)〉
YM

=
〈

detNf/2
(
D(µI − µq) +m

)
detNf/2

(
D(µI + µq) +m

)〉
YM

. (5.1)

The patterns of symmetry breaking with or without chemical potentials are summarized

in table 1. It is notable that, unlike in QCD with Nc ≥ 3, the quark chemical potential µq
in two-color QCD enters as a symmetry-breaking external field.

The unique symmetries of two-color QCD can readily be incorporated into RMT by

simply replacing the complex random matrices in (4.1) with real random matrices. This

prescription was introduced in chiral RMT at zero density in [100] and later generalized to

chiral RMT for two-color QCD at high density [19, 30, 33]. After applying this prescription,

22To prove this, the numerical factor eN Tr(µ̂2
u+µ̂2

d) in (4.4) must be taken into account.
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Nc = 2 Nc ≥ 3

µI = µq = 0 SU(2Nf )→ Sp(2Nf ) SU(Nf )R × SU(Nf )L → SU(Nf )V

µI 6= 0, µq = 0
U(Nf )R ×U(Nf )L

→ Sp(Nf )R × Sp(Nf )L

U(Nf/2)uR ×U(Nf/2)uL

×U(Nf/2)dR ×U(Nf/2)dL

→ U(Nf/2)uR+dL ×U(Nf/2)uL+dR

µI 6= 0, µq 6= 0

U(Nf/2)uR ×U(Nf/2)uL

×U(Nf/2)dR ×U(Nf/2)dL

→H (see table 2)

same as µI 6= 0, µq = 0

Table 1. Comparison of the patterns of spontaneous symmetry breaking in two-color QCD and

in QCD with Nc ≥ 3 with quark and isospin chemical potential in the chiral limit (m = 0). Nf is

assumed to be even. In the lower two rows the axial anomaly is ignored, as it is irrelevant at high

density. In the bottom row, µq is assumed to be much smaller than the other scales (e.g., µI and

∆) so that µq 6= 0 does not disrupt the condensate at µq = 0.

Residual symmetry (H) Sign problem

Nf = 4, 8, . . . [Sp(Nf/2)]4 absent

Nf = 2, 6, . . .
[
Sp
(Nf−2

2

)]4 × [U(1)]2 present

Table 2. Global symmetries that remain intact after spontaneous symmetry breaking in two-color

QCD with µI 6= 0 and µq 6= 0 in the chiral limit (m = 0). Again, µq is assumed to be much smaller

than the other scales.

the mapping of section 4.2 from high isospin to low baryon density is still valid, and

the ensuing analysis for the stressed-singular-value density and the baryon-number Dirac

spectrum parallels the Nc ≥ 3 case, although the actual calculations are technically more

difficult [32].

We now briefly highlight some physically distinctive features of two-color QCD. As we

will see shortly, the symmetry-breaking pattern essentially depends on whetherNf/2 is even

or odd.23 As an example for even Nf/2, let us take Nf = 4 with quarks {u1, u2, d1, d2}.
For nonzero µq, the Cooper pairing between u and d becomes energetically costly, so

the dominant pairing channels are 〈u1iu2i〉 and 〈d1id2i〉 with i = R,L. (Note that these

condensates are color singlets for Nc = 2.) Thus in this case the unbroken global symmetry

that leaves these condensates unchanged is [Sp(2)]4. It generalizes to [Sp(Nf/2)]4 for

general even Nf/2, as given in table 2. We note in passing that the high-isospin-density

Silver Blaze phenomenon does not occur in this case, as the NG modes respond to any

small µq 6= 0 right away — the pionic condensate transmutes into the diquark condensates,

in a way analogous to two-color QCD at low baryon density where the chiral condensate

transmutes into the diquark condensate [101].

23A related discussion may be found in [42, Section VII].
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Next we move on to odd Nf/2, focusing on Nf = 2 and Nf = 6 for illustration.

For Nf = 2 and at large µI , the condensate 〈uγ5d〉 forms and persists until µq reaches a

threshold µcq ∼ ∆/
√

2 (see [55, 58] for detailed model analyses of this transition), while

at the same time the quark-number density remains zero at T = 0, exhibiting the high-

isospin-density Silver Blaze phenomenon. This theory shows essentially the same behavior

as QCD for Nc ≥ 3. The unbroken symmetry is [U(1)]2, one of which is the quark-number

symmetry and the other is a rotation generated by γ5I3, with I3 the third isospin generator.

For Nf = 6, µq 6= 0 tries to split the coincident Fermi levels of {u1,2,3, d1,2,3} to two

levels, one each for {u1,2,3} and {d1,2,3}. However, {u1,2,3} or {d1,2,3} alone involve an odd

number of flavors and cannot support an isotropic BCS pairing by themselves. Then it

would be energetically more preferable to pair as 〈u1u2〉, 〈d1d2〉, and 〈u3d3〉 (up to trivial

permutations). The last pairing is stressed by µq. The residual symmetry in this phase

is the product of [Sp(2)]4, which leaves 〈u1iu2i〉 and 〈d1id2i〉 (i = R,L) unchanged, and

[U(1)]2, which acts on u3 and d3 in the same way as in the Nf = 2 case. The symmetry

for general odd Nf/2 is given in table 2.

The emergence of the sign problem at µq 6= 0 also depends on whether Nf/2 is even

or odd. Since the fermion determinant in two-color QCD is real, the path-integral measure

in (5.1) for even Nf/2 is nonnegative definite, and therefore no sign problem arises.24 The

stressed-singular-value density is a smooth function over the complex plane, unlike for

Nc ≥ 3 where µq 6= 0 inevitably causes strong oscillations (recall figure 4). In contrast,

for odd Nf/2, the sign fluctuation of the determinant in (5.1) is not completely canceled

at µq 6= 0. Combining the mapping from high isospin to low baryon density in section 4.2

with the exact spectral densities in two-color QCD at low baryon density [32] we learn

that the stressed-singular-value spectrum at high isospin density should exhibit a domain

of strong oscillations just as depicted in figure 4. A quantitative study of this phenomenon

in two-color QCD is an interesting future direction.

6 Concluding remarks

In this paper we have studied QCD with large isospin chemical potential µI for an arbitrary

even number of flavors, allowing for a small mismatch of chemical potentials for different

flavors. In section 3 we have systematically constructed the low-energy effective theory

of Nambu-Goldstone modes which emerge from the symmetry breaking due to the BCS

pairing of u and d quarks. After formulating the p-expansion for coincident Fermi surfaces,

we have extended the scheme to the case where the BCS pairing is stressed by small µq 6= 0,

by utilizing the invariance of the high-isospin-density effective theory under a spurious

temporal gauge transformation involving µq. We also established counting rules for the

ε-expansion at high isospin density and constructed the low-energy effective theory in the

leading order of this expansion. Using this effective theory we have estimated the severity

of the sign problem showing that, with nonzero stress, the average sign factor becomes

exponentially small for large space-time volume. In section 4 we provided a new random

matrix theory that reproduces the finite-volume partition function in the ε-regime. We

introduced “stressed singular values” of the Dirac operator for nonzero stress and showed

24The sign problem returns if µ̌ or the quark masses are made flavor asymmetric [32].
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that the pionic condensate at large µI is linked to the near-zero spectrum of the stressed

singular values. Moreover, we found that the microscopic correlation functions of the

stressed singular values in the chiral limit at large µI are exactly described by those of

the Dirac eigenvalues at µI = 0 and small µq, which is a consequence of an interesting

equivalence between our RMT at large µI and the conventional one at µI = 0 and small

µq. This equivalence also enabled us to elucidate the microscopic mechanism of the high-

isospin-density Silver Blaze phenomenon: the partition function at T = 0 is independent

of µq although the quark determinant depends on µq. We found that this is due to a

rapidly oscillating part of the stressed-singular-value spectrum. Intriguingly, this feature

is mathematically the same as for the Silver Blaze phenomenon at µI = 0 and µq 6= 0.

Furthermore, we pointed out that the baryon-number Dirac spectrum, i.e., the spectrum

of the operator γ4(D(µI) +m), can be computed analytically from our new RMT at least

in the chiral limit. The extension of the present work to two-color QCD was also discussed.

There are many possible future directions. First, the Dirac eigenvalues with nonzero

stress have not been considered in this work. It is an important but challenging task to

compute their microscopic correlation functions explicitly in the framework of our new

RMT. Second, it would be intriguing to analytically compute the group integrals of the

ε-regime partition function (3.20) for the general case of nonzero mass and nonzero stress.

Third, we pointed out that it is possible to obtain the stressed-singular-value spectrum and

the baryon-number Dirac spectrum in the chiral limit by way of the mapping to low baryon

density. However, this mapping does not work for nonzero quark masses, and it deserves

further study to understand those spectra in the massive case. Fourth, the meson mass

spectrum for nonzero stress can be determined from the effective theory constructed in this

paper. Fifth, it would be interesting to look into two-color QCD more thoroughly on the

basis of our brief account in section 5. Sixth, the extension of this work to the regime with

strong stress (µq ∼ ∆) is quite important, but for us to formulate a low-energy expansion

we must first pin down the correct pattern of symmetry breaking as well as the condensates

that form. This is not yet fully resolved in dense QCD, and a lot of elaborate work would

be necessary before one can discuss anything about the spectral properties of the Dirac

operator. Seventh, the generalization of the RMT in this paper to QCD at large baryon

chemical potential is an important open problem. A salient feature of QCD at high baryon

density is that the Cooper pairing of quarks leads to gauge symmetry breaking, which does

not occur in QCD at high isospin density. Despite the fact that the low-energy effective

theory of Nambu-Goldstone modes at high baryon density is already well known [10], it is

unclear to us how to incorporate a colored condensate into RMT, and this obstacle makes

it difficult to extend the Dirac eigenvalue analysis of the present paper to QCD at high

baryon density. Last but not least, the results of this paper should be checked in future

lattice simulations.25 Our analytical predictions are not only of physical relevance, but also

offer a nontrivial benchmark test for any computational technique that aims to overcome

the sign problem.

25We mention that numerical simulations of QCD with isospin density have already been performed

in [102–109], although the BCS regime of high isospin density seems unexplored yet.
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A A potential ambiguity in the effective theory

Let us investigate what happens if we do not the impose the condition (2.3). In the

following we denote the effective Lagrangian in (3.14) by Leff(µI ; µ̌u, µ̌d). As a simple

example, consider the choice

µ̌u = −δµ̌ and µd = δµ̌ with δµ̌ = δµ̌1Nf/2 , (A.1)

where δµ̌ � µI . This is equivalent to shifting µI → µI + δµ̌ as noted in section 2.

We now encounter an ambiguity since the effective Lagrangian could be written as L1 =

Leff(µI + δµ̌; 0, 0) or L2 = Leff(µI ;−δµ̌, δµ̌). In the former case all low-energy constants

are evaluated at µI + δµ and the correction terms in (3.15) are absent, while in the latter

case all low-energy constants are evaluated at µI and the correction terms in (3.15) are

present. Although the underlying microscopic theory is the same, it is not obvious that L1

and L2 are identical. Indeed, they need not be identical but can differ by terms that are

of higher order in the p-expansion.

To understand this ambiguity in a simpler setting, let us turn to the effective theory

for relativistic U(1) superfluids [110]. At high density, where the interaction is weak, the

leading-order effective Lagrangian in Minkowski space for the U(1) NG mode ϕ is given by

L(2)
eff (ϕ) =

NcNf

2π2
µ2

[
(∂0ϕ)2 − 1

3
(∂iϕ)2

]
. (A.2)

If µ is increased to µ+µ′ with µ′ � µ, the factor µ2 in (A.2) is merely replaced by (µ+µ′)2

to give a new L(2)
eff (ϕ). On the other hand, according to the same kind of spurion analysis

as in section 3, L(2)
eff (ϕ) should be invariant under a time-dependent U(1) symmetry, under

which ϕ → ϕ + α and µ′ → µ′ + ∂0α. Thus the effect of µ′ can be incorporated via the

prescription ∂0ϕ→ ∂0ϕ− µ′, which yields

L(2)
eff (ϕ) =

NcNf

2π2
µ2

[
(∂0ϕ− µ′)2 − 1

3
(∂iϕ)2

]
6= NcNf

2π2
(µ+ µ′)2

[
(∂0ϕ)2 − 1

3
(∂iϕ)2

]
. (A.3)

This discrepancy stems from the fact that higher-order terms in the full Lagrangian Leff

were discarded. If we look at the full effective theory derived by Son [110],

Leff(ϕ) =
NcNf

12π2

[
(∂0ϕ− µ)2 − (∂iϕ)2

]2
, (A.4)

we can easily see that the two prescriptions µ → µ + µ′ and ∂0ϕ → ∂0ϕ − µ′ do give an

identical expression. However, if the effective theory is truncated at some order, one in

general ends up with two expressions that differ by higher-order terms. We stress that this
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poses no problem at all as long as µ′ is so small that its higher-order terms can be safely

neglected. However, if µ′ is not a small parameter, the prescription ∂0ϕ → ∂0ϕ − µ′ can

no longer be applied because the Taylor expansion of Leff in µ′ would not be convergent.

Then one is forced to start from an effective theory defined at µ+ µ′.

The lesson from this simpler example also applies to our effective theory

Leff(µI ; µ̌u, µ̌d). In our case the ambiguity can be avoided if we make sure that µI is

not shifted, which is guaranteed if we impose the condition (2.3).

Open Access. This article is distributed under the terms of the Creative Commons
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