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1 Introduction

From very simple principles, Quantum Field Theory (QFT) generates an astonishingly

diverse set of phenomena. Gaining a quantitative handle on these phenomena is often very

difficult, especially when non-perturbative effects become important. Given this state of

affairs, a crucial challenge is to devise robust and calculable observables that obey simple

and universal laws in order to constrain the possible behavior of large varieties of QFTs.

One particularly powerful set of constraints on QFT comes from studying observables

in the deep UV and the deep IR of the renormalization group (RG) flow. In these limits,

theories typically simplify and become conformal.1 As a simple example, one particularly

natural quantity to compute in a conformal field theory (CFT) is the free energy of the

theory compactified on a D-dimensional sphere, FSD . After appropriately regulating this

quantity, one is left with a logarithmically divergent piece if D is even and a finite piece

if D is odd. In four dimensions, the coefficient of the divergent piece is referred to as a,

and is known to be smaller in the IR than the UV [9, 10] (see also [11–19]–[20] for other

interesting theorems governing the RG flow).

1Throughout this note we only discuss UV-complete QFTs. We should also note that while general

principles dictate that the deep UV and the deep IR are scale invariant, it is an open question to find

the precise conditions under which they are also conformal. In two dimensions scale invariance implies

conformality under rather general assumptions [1]. In four dimensions, certain classes of scale-invariant

theories are also known to be conformal [2–4], and it appears possible that this may be more generally

true [4] (note that there are certain known caveats for theories that have scalars with a shift symmetry or

(dual) two-form fields; for a discussion of such cases in theories of the type we will discuss below, see [3]).

For some results in 4− ǫ dimensions, see [5–7], and for a holographic perspective on this question, see [8].
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When the RG flow is supersymmetric one can often compute the above quantities

much more easily and therefore enhance the power of the above theorems [21–25]–[26].

Furthermore, when a theory is R symmetric at all length scales (not just in the deep UV

and the deep IR), it has more canonical conserved degrees of freedom, and so it is natural

to imagine that there may be additional decreasing quantities along the RG flow.

Building on these ideas, we noted in [27] that since the RG-conserved R-current mul-

tiplet is often related to a local and gauge invariant long real multiplet, U ,2 (containing

the conformal anomaly) via [28]

D
α̇Rαα̇ = D

2
DαU , (1.1)

(where the R-current sits in the lowest component of Rαα̇; the stress tensor and supercur-

rent sit in higher components of the multiplet) it is natural to consider the RG evolution

of the two point function 〈Uµ(x)Uν(0)〉, where Uµ ≡ −U |θσµθ. Note, however, that if the

RG flow has conserved flavor (i.e., non-R) currents, Ĵa
µ ≡ −Ĵa|θσµθ (a = 1, · · ·, N),3 then

there is a family of R symmetries (and corresponding U operators) satisfying (1.1) since

Rt
αα̇ = Rαα̇ + ta

2
3

[
Dα, Dα̇

]
Ĵa is a conserved R current for any real vector ta (with an

associated operator U t = U + taĴ
a).4

Therefore, in order to say something universal about the RG properties of

〈Uµ(x)Uν(0)〉, we need a canonical way to define which U (and therefore which R symme-

try) we would like to study. In [27], we proposed studying the operator pair (Rµ,vis, Uvis)

defined by performing a-maximization [22] in the deformed UV theory (the label “vis”

stands for “visible” and is meant to remind us that the R symmetry is a visible symmetry

in the UV as opposed to an accidental one of the deep IR). More precisely, we imagine

deforming the UV theory by adding a set of relevant operators to the Lagrangian (and /

or turning on a set of vacuum expectation values (vevs)) that preserves an R symmetry,

R
(0),UV
µ . If the deformed theory also preserves a set of flavor currents, ĴUV

µ,a , then we fix

their mixing with Uµ by considering the most general preserved R current

Rt,UV
µ = R(0),UV

µ + t̂aĴUV
µ,a , (1.2)

and maximizing the anomaly functional

ãt,UV = 3Tr
(
Rt,UV

)3 − TrRt,UV , (1.3)

i.e., we find the set of t̂a = t̂a∗ such that

∂t̂a ã
t,UV |t̂a=t̂a∗

= 0, ∂2
t̂a,t̂b

ãt,UV |
t̂a,b=t̂

a,b
∗

< 0 . (1.4)

2This relation occurs [28] whenever the theory also has a Ferrara-Zumino multiplet [29]. Most theories

of phenomenological interest have such multiplets with the exception of those that have field-independent

Fayet-Iliopoulos terms [30] (sigma models with non-trivial target space topology also lack FZ multiplets [28]).
3Conserved flavor currents sit in the θθ components of real scalar superfields of dimension two, Ĵa, that

satisfy D
2
Ĵa = D2Ĵa = 0. We can pick out the conserved current component by acting on Ĵa with

[
Dα, Dα̇

]

and taking the bottom component. When a perturbative description in terms of chiral superfields exists, Ĵa

is just a real bilinear in products of the chiral superfields with their conjugates weighted by the corresponding

charges. For example, the baryon number current superfield in SQCD is of the form JB = QQ− Q̃Q̃.
4The component stress tensor and supercurrent shift by improvement terms [28].
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The resulting R current and U operator descend from conserved currents (Rµ,vis, Uvis) of

the UV SCFT.5 These currents then flow to conserved currents (RIR
µ,vis, U

IR
vis) of the IR

SCFT (although Uvis is not conserved in the bulk of the RG flow — its non-conservation

measures the superconformal anomaly6). In particular, the conserved vector, UUV,IR
µ,vis =

3
2

(
RUV,IR

µ,vis − R̃UV,IR
µ

)
, measures the difference between the UV and IR limits of the RG-

preserved R symmetry current and the UV and IR superconformal R currents, R̃UV,IR
µ ,

respectively.7

As a simple example of the above discussion, consider the case of SQCD (with Nf <

3Nc); the above procedure yields charges

q
RUV

vis
(Q) = q

RUV
vis

(Q̃) = 1− Nc

Nf
, qUUV

vis
(Q) = qUUV

vis
(Q̃) =

1

2
− 3Nc

2Nf
. (1.5)

The IR limits of these expressions can also be easily computed [27].

Given this discussion, we can then write the following two point functions in the UV

and IR SCFTs

〈UUV
µ,vis(x)U

UV
ν,vis(0)〉 =

τUV
U

(2π)4
(
∂2ηµν − ∂µ∂ν

) 1

x4
,

〈U IR
µ,vis(x)U

IR
ν,vis(0)〉 =

τ IRU
(2π)4

(
∂2ηµν − ∂µ∂ν

) 1

x4
, (1.6)

where the tensor structure of these two point functions is fixed by the conservation of Uµ

up to two overall real coefficients, τUV
U 6= τ IRU .8 From unitarity it immediately follows that

τUV
U > 0. On the other hand, τ IRU ≥ 0, with τ IRU > 0 if and only if U IR

µ,vis mixes with

accidental symmetries of the IR fixed point. While it is then clear that τUV
U > τ IRU if Uvis

doesn’t mix with accidental symmetries, in [27] we conjectured that, more generally, any

mixing with accidental IR symmetries is bounded in the following way

τUV
U > τ IRU , (1.7)

in all R-symmetric theories with an FZ multiplet. We checked this conjecture in a wide

array of different theories with different dynamics and found no counterexamples [27].

5One caveat is that certain currents may have vanishing anomalies — the heuristic interpretation of such

currents is that they act only on massive degrees of freedom. In order to fix the mixing of Uµ,vis with such

currents, J̃UV
ν,I , our prescription in [27] was to impose the orthogonality condition 〈UUV

µ,vis(x)J̃
UV
ν,I (0)〉 = 0.

We will have more to say about such currents below. See [27] for discussions of additional subtleties.
6The crucial point is that even though Uvis is broken, it is related to the preserved Rµ,vis current via

an equation of the form (1.1), and so we can follow its RG evolution non-perturbatively. Typical long

multiplets cannot be followed from the deep UV to the deep IR.
7The superconformal R current multiplets satisfy D

α̇
R̃UV,IR

αα̇ = 0, and they contain the traceless SCFT

stress tensor and supercurrent in the higher components. The stress tensors and supercurrents in RUV,IR
µ,vis

are generally related to the traceless ones by improvement transformations.
8Note that since (1.1) is invariant under holomorphic plus anti-holomorphic deformations in U , we should

work modulo such deformations. One way to accomplish this is to simply study the piece in (1.6) that is

proportional to ηµν . Furthermore, in the deep IR, U often has a non-conserved holomorphic plus anti-

holomorphic piece arising because of the emergence of Goldstone bosons [31]. This non-conserved piece

reflects the fact that the theory separates into an IR SCFT and a free Goldstone boson theory that is in a

phase with a non-linearly realized shift symmetry.
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While the above discussion may seem a bit abstract and removed from real-world

particle physics, there are several reasons — some well-known and others not so well-known

— to believe that this may actually not be the case:

• First, the Large Hadron Collider (LHC) has observed a weakly-coupled Higgs at

around 125GeV. The most natural explanation for why such a state exists in the

spectrum is that the Higgs is a particle in some as yet undiscovered SUSY Standard

Model. Of course, if SUSY exists in nature, it is broken, and this breaking should

occur in a separate “hidden sector” module of particle physics [32]. On general

grounds this hidden sector may well have an underlying R symmetry (or at least an

approximate one) [33, 34]. Furthermore, if SUSY is to be natural, its breaking should

be dynamical (i.e., involving strong coupling), and so it is of great interest to derive

laws governing the non-perturbative RG behavior of R-symmetric theories.

• Second, it is often the case (and it is not unreasonable to conjecture that it is true more

generally) that dynamical SUSY breaking (DSB) is accompanied by the emergence

of accidental bosonic symmetries. One well-known example where this happens is

the metastable SUSY-breaking model of Intriligator, Seiberg, and Shih [35]. There,

the SUSY breaking occurs in the deep IR of mass-deformed SUSY QCD (SQCD) in

the free magnetic range. In this regime, various accidental symmetries appear that

rotate the IR magnetic degrees of freedom by phases. This observation leads one

to believe that understanding bounds on emergent bosonic symmetries could help

constrain theories of DSB. In fact, in [27] we showed how this idea could work in the

case of the SU(2) gauge theory of Intriligator, Seiberg, and Shenker [36].

• Third, the fact that SUSY hasn’t yet been observed has placed strong lower bounds on

first generation squark masses at around 1TeV [37, 38]. If SUSY is to remain natural,

we are forced to consider third generation squarks with lower relative masses, and

we are pushed in the direction of the types of models considered recently in [39–66]–

[67] (and early on in [68, 69]; see [59] for a list of references from this era). This

hierarchical squark flavor structure implies that the stop / top (broken) multiplet is

a sector of quasi-emergent SUSY.

The final comment above will be particularly interesting for us in what follows. Indeed,

as we will explain in the next section, we can translate — in a limited but precise sense —

(1.7) into a lower bound on the amount of accidental SUSY (and therefore, if a perturbative

description exists in the IR, an upper bound on certain leading order scalar masses) in a

large class of non-perturbative RG flows.9

Furthermore, by studying theories that satisfy the stronger inequality τUV
U > 0 = τ IRU

(i.e., those theories for which accidental symmetries do not mix with the IR superconformal

R current), we can make contact with the recently advocated approach in [58] for producing

light stop particles using a small SUSY-breaking deformation of SQCD at the boundary

9For previous work on formal aspects of accidental SUSY in various different contexts, see for exam-

ple [70–72]–[39, 73].
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of the conformal window (i.e., Nf = 3Nc/2). We will apply our results to study various

model-independent aspects and extensions of this idea. We should also note, however, that

there are at least two constraints on generating light scalar masses directly in SQCD with

Nf = 3Nc/2: the IR suppression of scalar masses is at most logarithmic (although it is

possible that one-loop factors may make this suppression sufficient when embedding this

construction in a phenomenological setting) and generic soft masses in the UV give rise

to unsuppressed (and tachyonic) soft masses in the IR (we discuss how to forbid such soft

terms at length).

The plan of this paper is as follows: after illustrating the connection between (1.7) and

non-perturbative lower bounds on emergent SUSY as well as making contact with [58] in

the next section, we step back and consider how universal emergent SUSY is within the

class of RG flows we study. To answer this question it turns out to be critical to understand

how RG-preserved flavor currents behave non-perturbatively. With this goal in mind, we

prove a simple, quantum mechanical theorem on the IR behavior of RG-preserved flavor

currents and comment on its implications. We then discuss a corollary for asymptotically

free theories (relegating the proof to the appendix). Finally, we conclude with a discussion

of constraints on emergent SUSY and light sparticles in QFT with an eye towards future

phenomenological applications.

2 Implications of δτU > 0 on accidental SUSY

As we discussed in the introduction, UUV
vis is a unique and well-defined operator multiplet

that exists in every R-symmetric theory with an FZ multiplet (see [27] for detailed com-

putations involving this object in many examples). Its bottom component also provides a

canonical way to break SUSY in such RG flows. Indeed, consider deforming the UV SCFT

by turning on the following deformation

δSUV|SSB = −
∫

d4x λ · UUV
vis | . (2.1)

Here λ is a coupling of dimension two, and UUV
vis | is the bottom component of the UUV

vis

multiplet (the label “SSB” stands for “SUSY breaking”). In general, the UV theory may

be a strongly interacting SCFT with no Lagrangian description (see [74] for some tools

to analyze such theories). In this case, UUV
vis does not admit an interpretation in terms

of particles. Instead, it is simply a multiplet of dimension two, and adding the bottom

component to the action, as in (2.1), corresponds to (softly) breaking SUSY.

If the theory in question is asymptotically free and has matter superfields, Φi, we

find that10

UUV
vis = −

∑

i

qUUV
vis

(Φi) · ΦiΦ
i
, qUUV

vis
(Φi) =

3

2

(
q
RUV

vis
(Φi)−

2

3

)
, (2.2)

10We suppress factors of gauge superfields that are required for gauge invariance.
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where qUUV
vis

(Φi) and q
RUV

vis
(Φi) are the charges assigned to Φi under the corresponding

symmetries. Therefore, in this case, (2.1) can be interpreted as a soft mass for the scalars

δSUV|SSB = −
∫

d4x (mUV
i )2 · φi

φi, (mUV
i )2 ≡ m2 · qUUV

vis
(φi) , (2.3)

where φi ≡ Φi|.
In order to maintain control over our theory, we work in the probe SUSY breaking

approximation:11 the limit in which the SUSY-breaking term doesn’t back-react on the

strong dynamics of the RG flow. In other words, we deform the UV theory by

δSUV = −
∫

d4x

(∫
d2θ λO · O + h.c.+ λ · UUV

vis |
)

, (2.4)

where O is an R symmetry-preserving superconformal primary of dimension dO ≤ 3,12,13

and we assume the following parametric inequalities

|λO|
2

3−dO ≫ |λ|, dO < 3 ,Λ2 ≫ |λ|, dO = 3 , (2.5)

where Λ is the dynamical scale induced by turning on the marginally relevant O (in the

case of asymptotically free theories — as opposed to a generic interacting UV theory for

which we turn on an asymptotically free coupling — the second line in (2.5) corresponds

to turning on parametrically small soft masses, |m|2 ≪ Λ2 in (2.3)).14

Following the RG flow into the deep IR, we find that in our approximation the SUSY

breaking deformation flows to [31, 75, 76]

δSIR|SSB = −
∫

d4x λ · U IR
vis| . (2.6)

Let us now define δŜIR|SSB to be equal to (2.6) modulo chiral plus anti chiral terms (recall

from the discussion above that we define τU by following Uvis modulo holomorphic plus anti-

holomorphic terms; in addition, such terms often simply vanish on symmetry grounds [31]).

From the conjecture τUV
U > τ IRU , we see that the SUSY breaking operator appearing in

the IR has a smaller norm (i.e., two-point function) than the SUSY breaking operator

appearing in the UV. This inequality constitutes an upper bound on the amount of IR

11Various authors have studied fundamental aspects of such softly-broken RG flows (early and closely

related works include [75, 76] — see also [77] for the first results on soft terms in the conformal

window of SQCD; our approach follows the formalism in [31]; other works exploring related topics

include [39, 73, 78–80]).
12If dO = 3, we assume that λO is marginally relevant and therefore corresponds to turning on an

asymptotically free gauge coupling. Furthermore, in writing (2.4), we have used the fact that unitarity

bounds rule out relevant Kähler deformations.
13We could also imagine turning on a SUSY and R-symmetric vev, 〈Ô〉, for some lorentz scalar of

dimension d
Ô

> 1 (if d
Ô

= 1, Ô is a free field and turning on the vev does not initiate an RG flow). If

this vev is the dominant supersymmetric breaking of conformality, we should assume that |〈Ô〉|2/dÔ ≫ |λ|

parametrically in order to work in the probe approximation.
14In the case of multiple relevant SUSY deformations in the UV, δWUV = −λOi

·Oi, we assume that (2.5)

applies for each λOi
and Λi.
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versus UV SUSY breaking (we will from now on assume that any holomorphic plus anti-

holomorphic terms are absent; they will not affect our conclusions and can be appropriately

reincorporated if necessary).15

When the theory is free in the IR, we find that

U IR
vis = −

∑

a

qU IR
vis
(Φ̂a) · Φ̂aΦ̂

a

, qU IR
vis
(Φ̂a) =

3

2

(
q
RIR

vis
(Φ̂a)−

2

3

)
, (2.7)

where the Φ̂a are the emergent degrees of freedom. Therefore, we see in this case that

δSIR|SSB = −
∫

d4x (mIR
a )2 · φ̂

a

φ̂a, (mIR
a )2 ≡ m2 · U IR

vis(φ̂a) , (2.8)

where φ̂a = Φ̂a|. If the UV theory is asymptotically free (as in (2.3)), the bound on IR

SUSY breaking discussed above then amounts to an inequality on the sum of the fourth

power of the soft masses ∑

a

(mIR
a )4 <

∑

i

(mUV
i )4 , (2.9)

and so this clearly constitutes an upper bound on the amount of SUSY breaking in the

IR (and hence a lower bound on the degree to which SUSY emerges in the IR). Let us

stress again that this inequality does not apply for general UV and IR soft terms different

from Uvis|.16
At this point, several comments are in order:

• If U IR
vis = 0, this is in some sense the most extreme manifestation of τUV

U > τ IRU , and we

say that SUSY is emergent since the IR SUSY breaking is small. Note that U IR
vis = 0 if

and only if accidental symmetries do not mix with the IR superconformal R current.

15Note that for generic UV soft terms we do not expect such behavior. Indeed, for generic UUV 6= UUV
vis

operators there is no decreasing behavior of the corresponding two-point function in the deep IR [27].
16We would also like to emphasize that we have derived the inequality in (2.9) from δτU > 0 based on the

assumption that the SUSY breaking deformation is parametrically smaller than the (marginally) relevant

SUSY deformations. Take SU(Nc) SQCD with Nc+2 < Nf ≤ 3Nc/2 flavors as an example. Let us consider

starting in the UV, turning on the SU(Nc) gauge coupling, and adding masses δWUV = miQiQ̃i for some

subset of the flavors (i = n, . . . , Nf , with n > Nc + 2). Whether the masses are small (compared to the

dynamical scale, Λ) or not, the deep IR theory is the free SU(n−1−Nc) magnetic SQCD with n−1 flavors,

and the flow satisfies δτU > 0, where, by definition, we include all the relevant deformations in the UV

in determining Uvis and hence τU . In this case, provided the SUSY breaking is parametrically small (i.e.,

mUV ≪ mi,Λ, where mUV is the characteristic UV soft SUSY-breaking scale), one can check that (2.9)

is indeed satisfied in the deep IR. Note, however, that if mi ≪ Λ, but mUV is not parametrically smaller

than the mi, it may happen that m̂i ≪ mIR ≪ Λ (here m̂i are the magnetic masses that are induced via

Higgsing by the dual of the mi deformations in the IR theory). In this case, at the scale mIR, Uvis is an

operator in SU(Nf −Nc) magnetic SQCD with Nf flavors, and it can happen that the inequality in (2.9)

does not hold. This discussion does not contradict the statement that δτU > 0 since this inequality is

defined in terms of quantities at the UV and IR endpoints of the flow. Indeed, in the SUSY theory, the m̂i

masses eventually drive the theory to the SU(n−1−Nc) magnetic SQCD endpoint, and δτU > 0. However,

if we are interested in the limit where m̂i ≪ mIR ≪ Λ, we can find a Uvis SUSY-breaking deformation

satisfying (2.9) at the scale mIR simply by treating δWUV = miQiQ̃i as a small perturbation and adding

the soft term proportional to the UUV
vis | operator of the massless theory.

– 7 –
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However, while U IR
vis = 0 has a precise meaning in the underlying theory, we should not

take this equation to mean that the SUSY breaking becomes unimportant in the IR.

Indeed, the degree to which SUSY is emergent depends on whether Uvis flows to zero

logarithmically or as a power law (our discussion here closely follows the discussion

in [31]). Note that Uvis flows to zero logarithmically only if the approach to the IR

fixed point is via a marginally irrelevant operator. From the general results of [81],

an operator is marginally irrelevant only if it breaks an (accidental) symmetry, J , of

the IR SCFT. Therefore, Uvis flows to zero logarithmically only if it mixes with an

accidental symmetry of the IR SCFT away from the fixed point.17 This is precisely

what happens in SQCD for Nf = 3Nc/2 with its plethora of accidental symmetries.

In this case, UUV
vis | = 1

2

(
QQ+ Q̃Q̃

)
and so (2.3) becomes

δSUV|SSB =

∫
d4x

m2

2

(
QQ+ Q̃Q̃

)
, (2.10)

This deformation results in emergent SUSY in the IR in the sense that QQ+ Q̃Q̃ →
0 [31, 75, 76]. However, since this flow is logarithmic, the SUSY breaking deformation

enters the dynamics suppressed only logarithmically.18 On the other hand, if the IR

has no accidental symmetries, then we see that Uvis flows to zero as a power law since

it must mix with some leading IR SCFT operator of dimension d > 2 and so the UV

deformation enters the IR dynamics suppressed by ∼ m2

Λd−2 (if d > 4, then the SUSY

breaking term is irrelevant and flows exactly to zero in the deep IR). This is precisely

the situation in the conformal window of SQCD (i.e., for 3Nc/2 < Nf < 3Nc). Let

us note that logarithmic behavior can also occur in the IR for an interacting SCFT

with accidental symmetries, and the power law behavior can occur in a theory that

flows to a free fixed point.19

• The authors in [58] considered embedding stops and Higgses as emergent degrees of

freedom in SQCD with Nf = 3Nc/2. They added precisely the deformation (2.10) to

17In other words, we have Uvis = γ · J , where J is an accidental symmetry of the fixed point and γ → 0

logarithmically in the deep IR. This mixing can be computed in conformal perturbation theory using the

general techniques in [81].
18In this case, we don’t need the general results of [81]. Let us consider a slightly simpler example that

illustrates the same point — generalizing to SQCD with Nf = 3Nc/2 is straightforward. Suppose our

underlying SUSY theory of the deep IR consists of a single chiral superfield, Φ, with L =
∫
d4θZ(µ) ·ΦΦ+(∫

d2θλΦ3 + h.c.
)
, where µ is the RG scale and Z is the scale-dependent wave-function factor. Working in

a holomorphic renormalization scheme, we can compute Uvis ∼
d

d log µ
K, where K is the Kähler potential.

Clearly Uvis ∼ |λ|2ΦΦ (up to one-loop factors), where the (physical) λ (and hence Uvis) flows to zero in the

deep IR logarithmically — note that at the IR fixed point ΦΦ is just the current superfield corresponding

to the accidental symmetry that rotates Φ by a phase. Now, if we add the SUSY breaking deformation

proportional to Uvis into the theory, we see that the resulting masses are only suppressed by the logarithmic

running of the coupling.
19For example, it may happen that the deep IR of the underlying SUSY theory looks like LIR =

∫
d4θ

(
Φ̂aΦ̂

a + κ
(
Φ̂aΦ̂

a
)2

)
, where appropriate symmetries keep there from being marginally irrelevant

operators constructed out of the weakly coupled emergent Φ̂a. If these symmetries are symmetries of the

full theory, then U IR
vis → 0 as a power law.
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the UV Lagrangian.20 Treating the first two generations of matter as SQCD singlet

spectators that receive UV soft masses comparable to those of the UV “ancestors”

of the third generation (and Higgs sector), the IR soft masses of the third generation

(and Higgs sector) are then suppressed (logarithmically) with respect to the masses

of the first two by the SQCD dynamics (one must also ensure that the transition

scale between the IR and UV dynamics is sufficiently low so that perturbative SSM

corrections to the Higgs and third generation scalar masses don’t destabilize the

pattern of soft masses arising from the strong dynamics). We can now describe

the basic idea the authors advocated in our language: assuming the existence of a

conformal window with no accidental symmetries (as in SQCD), a soft mass related

to UUV
vis flows to zero in the deep IR as a power law. Assuming there is a non-trivial

boundary to the conformal window where a calculable free theory emerges (as in

SQCD), it is natural to assume by continuity that UUV
vis flows to zero there. Thinking

along these lines, it might also be of interest to try to find such a boundary where the

power law suppression remains even in the free theory (although this is somewhat in

tension with the necessity of having non-trivial Yukawa couplings).

• The term in (2.1) is not the most general explicit SUSY-breaking deformation we can

add. For example, the UV SCFT may contain a whole set of global (non-R) currents,

and we can then consider adding their bottom components to the UV theory as well.

Let us label these currents as follows: ĴUV
a , JUV

A , and UUV
vis . The index a runs over

the currents that are preserved along the full RG flow, while UUV
vis is the operator

we’ve introduced above, and the index A runs over the remaining flavor currents that

are broken away from the UV SCFT. Given this set of operators, we can consider

deforming the UV theory as follows

δSUV|SSB = −
∫

d4x
(
λU · UUV

vis |+ λa · ĴUV
a |+ λA · JUV

A |
)

. (2.11)

In general we can turn on many additional types of relevant SUSY breaking deforma-

tions, but we will limit ourselves in what follows to studying general R-symmetric RG

flows deformed as in (2.11). The heuristic reason for this is just that such operators

include scalar soft terms (and their non-perturbative generalizations), and the more

limited scope of such theories will allow us to make more general statements.21

20In their phenomenological construction, the authors of [58] also considered adding various relevant

deformations (and Yukawa terms which become relevant at finite gauge coupling) to the UV theory in

order to eliminate exotics and generate the symmetry-breaking required for phenomenology. By applying

the results of [31, 75, 76], these deformations are implicitly considered as perturbations of the underlying

strong dynamics.
21Another important SUSY-breaking deformation of phenomenological interest is the gaugino mass. Pro-

vided this deformation is parametrically small, we can follow it at linear order [31, 75, 76] even for strongly

coupled gauge groups. We should note that masses for SSM gauginos (these fields often arise from weakly

gauging a global symmetry of the underlying strongly-coupled theory) may furnish important perturbative

corrections to the emergent third generation scalar and Higgs sector masses. We will neglect all such con-

tributions below, because we will assume a low crossover scale from the IR to UV dynamics. However, it is

straightforward to add gaugino masses into our theories and analyze their effects.
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• Given the set of deformations in (2.11), we would like to understand how universal

emergent SUSY is in the IR — that is, what conditions we should impose upon

δSUV|SSB so that δSIR|SSB → 0 at leading order. As we will see in the next section,

we can place particularly strong constraints on the behavior of RG-preserved global

symmetry currents, Ĵa, and hence soft terms proportional to their lowest components.

To understand the importance of these terms, we can again consider SQCD with

Nf ≤ 3Nc/2. Adding a more general soft term in the UV of the form

δSUV|SSB =

∫
d4x

(
m2

2

(
QQ+ Q̃Q̃

)
+m′2

(
QQ− Q̃Q̃

))
, (2.12)

results in unsuppressed (and tachyonic) masses in the IR at leading order in m′

since [31] (see also the discussion in [76, 82])

δSIR|SSB =

∫
d4x m′2

(
Nc

Nf −Nc

)(
qq − q̃q̃

)
+ · · · . (2.13)

Here the q and q̃ are the magnetic squarks. This result follows from the SUSY

mapping [83] of the bottom component of the baryon current superfield, JUV
B | =

QQ − Q̃Q̃ → Nc
Nf−Nc

(
qq − q̃q̃

)
= J IR

B | (similar results apply for more general linear

combinations of UV soft terms that include terms related to the bottom components

of the global SU(Nf )L × SU(Nf )R current superfields). The fact that the baryon

current does not decouple and that therefore the soft term propotional to its bottom

component remains at leading order in the IR is a simple example of a more general

behavior we will find in the next section (similar points have been raised in [39, 80];

however, our approach will apply to all the theories we will study, and it will follow

simply from unitarity and ’t Hooft anomaly matching).

3 A theorem on the IR behavior of RG-preserved currents

In this section we will prove a theorem concerning the IR behavior of RG-preserved flavor

current superfielields, Ĵa, with a view toward understanding the RG evolution of soft term

deformations proportional to the bottom components of these operators.

Since we would like to get a handle on the broader question of when the soft terms

in (2.11) flow to zero at leading order in the IR, we should study theories in which U IR
vis = 0.

As discussed in the previous section, this assumption amounts to studying the theories for

which the infrared superconformal R current, R̃IR
µ , descends from a preserved R-current,

Rµ,vis, of the full RG flow, i.e.

R̃IR
µ = lim

E→0
Rµ,vis , (3.1)

where E is the RG scale.

Before proceeding to the theorem, let us note that the proof does not depend on the

existence of an FZ multiplet or therefore a well-defined (Rµ,vis, Uvis) operator pair. As a

result, we will prove the theorem under the weaker assumption that

R̃IR
µ = lim

E→0
Rµ , (3.2)
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for some general RG-preserved R current satisfying D
α̇Rαα̇ = χα with Dα̇χα = Dαχα −

Dα̇χ
α̇ = 0. However, when we apply this theorem to theories with SUSY-breaking, we will

continue to assume the existence of an FZ multiplet and an (Rµ,vis, Uvis) operator pair so

that we can make contact with soft masses.

Under such conditions we can state a simple theorem:

Theorem. A necessary and sufficient condition for the RG-preserved non-R currents, Ĵa,

to flow to zero in the deep IR is that all the ’t Hooft anomalies involving these currents

vanish, i.e.

TrĴaĴbĴc = 0, TrRĴaĴb = 0, TrR2Ĵa = 0, TrĴa = 0 . (3.3)

Proof. Necessity is trivial and follows from the following observation: if one of these anoma-

lies is non-zero, ’t Hooft anomaly matching forces there to be light fields charged under the

corresponding symmetries. Sufficiency follows from the following reasoning. First, recall

from (3.2) that Rµ flows to the IR superconformal R current, R̃IR
µ . Let us then suppose

that Ĵa → Ĵ IR
a 6= 0. In this case, TrR̃IRĴaĴa < 0 (by unitarity) and so we must have

TrRĴaĴa < 0. This inequality conflicts with the second equation in (3.3), and so it must

be the case that Ĵa → 0 in the IR.

This theorem holds for RG flows with and without Lagrangian descriptions in the

UV and the IR. Note that the necessary part of the above theorem is always true (and

somewhat trivial), while the sufficient part is special to the above class of theories. Also

note that the flavor currents and the R current are on a very different footing as far as

their IR behavior is concerned. Indeed, if it were the case that R → 0, then the IR theory

would be trivial (it would not have a stress tensor; heuristically this corresponds to giving

mass to all the degrees of freedom in the QFT; in our class of theories this happens if and

only if TrR = TrR3 = 0). On the other hand, Ĵa → 0 does not imply that the IR theory

is trivial.22 However, we will now see that the above theorem implies that the Ĵa currents

cannot flow to zero in a broad class of theories.

3.1 Asymptotically free theories

In this section we specialize to asymptotically free theories and study some of the conse-

quences of the theorem (we emphasize once more, however, that the theorem applies to

interacting UV theories as well). Let us first state a corollary:

Corollary. Consider the set of asymptotically free theories with simple gauge group and

vanishing superpotential such that (3.2) holds. If such a theory has a set of non-anomalous

global symmetry currents, Ĵa, then it follows that some of these currents do not flow to

zero in the IR.

22Indeed, we can often make the sub-sector on which a given current, Ĵa, acts massive without rendering

the full theory trivial. Consider for example SQCD with Nf = 3Nc − 1. Adding a large mass, m ≫ Λ, for

one flavor, δWUV = mQ1Q̃1, does not render the IR theory trivial, but it does render the current Ĵ11 for

the symmetry that acts on Q1 and Q̃1 with opposite phases (leaving the other quarks invariant) massive;

in particular, Ĵ11 → 0.
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Sketch of proof. We prove by contradiction. Using the theorem we should try to impose

that the ’t Hooft anomalies in (3.3) all vanish. A simple exercise in linear algebra reveals

that this is inconsistent with the fact that our theory has a non-anomalous R symmetry.

For the interested reader, we relegate the full proof to the appendix.

Note that this proof applies whether the theory is IR free or not. For example, SQCD

with 3Nc/2 ≤ Nf < 3Nc is covered by the above corollary. Indeed, as noted in the

previous section, the baryon current does not decouple in the IR (in fact neither do the

SU(Nf )L × SU(Nf )R currents).

It is also clear that if we turn on a superpotential, δW , that renders some of the

currents massive (or breaks them explicitly) or if we consider gauging some of the flavor

symmetries, the above corollary guarantees that, as long as the deformations are small

enough, the corresponding currents remain important in the IR. More generally, however,

even when we turn on large deformations, the theorem provides powerful constraints on

the decoupling of any global symmetries that remain (we will return to this point in the

next section when we discuss the RG flow of the corresponding soft terms).

4 Comments on the universality of accidental SUSY

In this section we would like to use the results from the previous sections to analyze the

universality of emergent leading-order SUSY in the class of RG flows we have defined

above. We conclude by describing some criteria that one might use to try to engineer

natural theories of light sparticles.

To that end, consider again the UV SUSY breaking deformation in (2.11), which we

reproduce below for ease of reference

δSUV|SSB = −
∫

d4x
(
λU · UUV

vis |+ λa · ĴUV
a |+ λA · JUV

A |
)

. (4.1)

In the deep IR, at leading order in SUSY breaking, this deformation flows according to the

operator mappings in the underlying SUSY theory [31, 75, 76]

δSIR|SSB = −
∫

d4x
(
λU · U IR

vis|+ λa · Ĵ IR
a |+ λA · J IR

A |
)

. (4.2)

Note, however, that the mappings for the JA operators (recall these currents are broken

away from the UV SCFT and are not directly related to the unbroken R current) are

generally unknown even at leading order [31]. The basic reason for this incalculability is

that unlike U , such broken currents are not related to a manifestly preserved RG quantity.

This incalculability will play a role in our engineering strategy.

Combining this discussion with the theorem and the corollary we conclude:

• In general theories of the type we are interested in (i.e., with U IR
vis = 0), soft masses

proportional to the bottom components of RG-preserved currents, Ĵa|, flow to zero at

leading order if and only if the corresponding current has vanishing ’t Hooft anoma-

lies. This requirement is highly restrictive. Furthermore, such soft terms can grow
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in the IR since the central functions of unbroken currents often get larger at long

distances (consider, for example, the central values of the baryon current in SQCD

in the free magnetic phase).

• Asymptotically free theories with vanishing superpotentials and simple gauge groups

will have leading-order soft terms in the IR unless we restrict the set of UV soft

terms to a subset of measure zero. The potential loophole is theories with a single

representation of multiplicity one. To understand this statement, suppose U IR
vis =

0, and recall that asymptotically free theories of the type we have described are

specified by the following data: a (simple) gauge group, G, and representations, ri,

of multiplicities, ni (i = 1, . . . , s). The resulting anomaly-free global symmetry group

is then

S = U(1)R ×U(1)s−1 ×
s∏

i=1

SU(ni) . (4.3)

Clearly there will be flavor symmetry unless s = n1 = 1. If this is not the case, the

corresponding coefficients for the preserved currents in (4.1) should be set to zero in

order to ensure suppressed IR soft terms.

• Small deformations of such theories do not change these conclusions since we can

expand in the deformation parameters.

4.1 Consequences for models of light sparticles: UV aspects

The basic idea for making contact with phenomenology proceeds along the lines of [58].

We imagine that we want to produce light emergent states of phenomenological interest.

The “ancestors” of these states receive UV soft masses that should be written in terms of

the UUV
vis multiplet (in order for the emergent masses to be suppressed in the IR) of some

strongly coupled RG flow (let us emphasize again that we will assume that the transition

scale from the UV to the IR dynamics is sufficiently low so that perturbative corrections

from SSM fields will not destabilize any hierarchy we obtain from the strongly coupled

flow). The remaining matter fields receive comparable UV soft masses but are singlets

under the strong dynamics.

The above discussion suggests that in order to engineer a natural, UV-insensitive,

model of emergent SUSY, we would like to consider theories in which we are forbidden

from adding UV soft terms proportional to unbroken currents (related comments have

been made by many other authors including, but not limited to, those in [39, 80], and [82])

and in which, for calculability, we limit the number of UV SCFT symmetries that we break

along the RG flow. Clearly, we would also like to consider theories in which U IR
vis = 0.

We can address this problem in several ways. For example, we can consider imposing

discrete symmetries on the UV soft terms, turning on gauge couplings, deforming the

theory by additional relevant superpotential terms in order to break some of the symmetries

(note that this helps with limiting the number of RG-preserved currents, but, as discussed

above, it can make our model less calculable), or simply trying to specify an SCFT with

the minimal symmetry content required for phenomenology. Let us consider each of these

options in turn (of course, we are free to use combinations of the methods below):
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• Discrete symmetries: imposing discrete symmetries can be a successful strategy in

some theories (related comments have appeared in [39]). However, since the UV

SCFT is supersymmetric and the soft terms manifestly break SUSY, this amounts to

an assumption about the properties of the sector that mediates SUSY breaking. For

example, consider SQCD. We can easily forbid UV soft terms as in (2.12) that are

proportional to the bottom component of the baryon current superfield by imposing

the Z2 symmetry under which Q ↔ Q̃ (and the vector fields transform appropriately).

In this case there is a simple mediation mechanism that respects this parity symmetry:

gauge mediation using a weakly gauged diagonal subgroup of the SU(Nf )L×SU(Nf )R
flavor symmetry. The price we pay for this is having to assume more about other

sectors of particle physics.

• Gauging symmetries: turning on a gauge coupling for some of the global symmetries

of the UV theory is useful if we would like to produce an emergent SUSY sector of

the Standard Model (SM)—e.g., a sector with light stops — since we need to make

contact with the SM gauge group. Turning on such couplings for a non-abelian group

has the added advantage of forbidding (by gauge invariance) soft terms proportional

to the bottom components of the corresponding current superfields (this fact has also

been commented on in [39]). However, it leaves intact the possibility of soft term

deformations proportional to the bottom components of abelian current superfields

(these objects are gauge invariant under the abelian symmetry).

• Additional relevant deformations: we can consider breaking some of the UV SCFT

symmetries by turning on additional relevant (or dangerously irrelevant) superpoten-

tial deformations. This possibility often leads down a rabbit hole: if the deformations

are small, we do not improve matters since we can simply expand in the deformation

parameter. If the deformations are large, however, the soft terms corresponding to

the currents that are broken by these deformations generally undergo incalculable

RG evolution [31] (this can also happen for strong additional gauging).

• Engineered UV SCFT with minimal symmetry content: ideally we would find a UV

SCFT with a global symmetry group, GUV, that contains a minimal embedding of

the SM gauge group, GSM = SU(3)× SU(2)× U(1)Y , and an additional global U(1)

symmetry

GUV ⊇ U(1)×GSM . (4.4)

The additional U(1) factor is broken by the (marginally) relevant deformation that

starts the RG flow, and the corresponding current mixes with the Uvis operator. One

way to obtain a particularly restrictive UV setup is to find a theory with GUV =

U(1)× SU(5) and turn on a gauge coupling for the SU(5). In this case, the universal

soft term (of UV dimension two) is the canonical one given by

δSUV|SSB = −
∫

d4xλ · UUV
vis . (4.5)

Such a setup may even be engineered in an asymptotically free gauge theory with a

single representation of sufficient multiplicity (see (4.3); the missing U(1) factor is the
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broken — in this case by anomaly — U(1) factor we have just discussed). We could

then perhaps imagine the states of phenomenological interest appearing as magnetic

degrees of freedom in the IR of the resulting theory with suppressed soft masses.

This scenario is potentially interesting since it requires us to make contact with GUT

physics and duality (see [84] for an exploration of this subject). Of course, we can

apply these lessons to other types of constructions as well: it may be possible to

embed U(1)Y in a (weakly gauged) non-abelian symmetry without assuming a GUT

structure in such a way that (4.5) is still the universal soft deformation (of dimension

two) allowed in the UV. We should also remark that it may not be possible to avoid

introducing additional global symmetries in a working model. In this case, we can

try to use discrete symmetries, as discussed above, in order to forbid some of the

corresponding soft terms. Note, however, that these global symmetries may often be

broken by the additional relevant deformations that generate the IR states we want

for phenomenology (e.g. light stops) and eliminate exotics. As we have outlined

above, breaking additional UV global symmetries (beyond the U(1) that mixes with

Uvis) may lead to incalculable RG evolution for the corresponding soft terms. In order

to help avoid this situation, it would be of interest to find a theory in which we can

encode the particle physics into the exactly marginal deformations of the UV SCFT

(more precisely, into the subset of such deformations that do not break any of the

global symmetries of the UV SCFT).23 In this case, it may be possible to engineer

phenomenologically viable theories in which only the U(1) ⊂ GUV factor in (4.4)

would be broken away from the UV fixed point. This might lead to a calculable

(since we avoid troublesome additional broken currents) and UV-insensitive RG flow

with light stops in the IR.

4.2 Consequences for models of light sparticles: IR aspects

Thus far we have emphasized aspects of the UV problem of engineering models of light

sparticles. In the IR there are additional subtleties. One important issue we have briefly

discussed in previous sections is the fact that U IR
vis = 0 does not mean that SUSY breaking

decouples in the IR. Indeed, if the flow of Uvis → 0 is logarithmic, the suppression of IR

masses is only logarithmic. This happens whenever there are accidental bosonic symmetries

in the IR that mix with Uvis away from the IR fixed point. In free theories like SQCD

in the free magnetic range (Nc + 1 < Nf ≤ 3Nc/2) we typically have such mixing since

the approach to the free theory is controlled by marginally irrelevant operators (note that

away from Nf = 3Nc/2 the situation is worse because there is non-zero mixing of Uvis

with accidental symmetries at the IR fixed point). Bearing this in mind, we consider two

possible IR scenarios

23Exactly marginal deformations move us along the conformal manifold. In the language of [81], these

deformations consist of the marginal deformations modulo the action of the complexified global symmetry

group, GC

UV (this result can be appropriately generalized if there are also free gauge fields in the the-

ory [81]). A natural (although sometimes trivial) subset of these deformations does not break any of the

UV SCFT symmetries. We would like to encode the particle physics into the sub-manifold spanned by

these deformations.
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• IR free theories: such theories have the advantage of being calculable. However,

they typically come with marginally irrelevant interactions (some of which naturally

play the role of Yukawa couplings) and so the IR SUSY breaking proportional to

Uvis is typically suppressed at most only logarithmically (one should check numerical

factors to ensure that this suppression suffices). In order to have more robust power-

law suppression we need theories that behave like LIR =
∫
d4θ

(
Φ̂aΦ̂

a+κ
(
Φ̂aΦ̂

a
)2 )

in the deep IR. There should be some underlying symmetry principle at work that

ensures this behavior. However, as we have described above, if this symmetry is a

symmetry of the full theory (beyond just the two derivative theory), we are led to

expect large SUSY-breaking masses corresponding to those symmetries.

• IR interacting theories: if such theories have no accidental symmetries, they may

provide robust power-law suppression of soft terms proportional to Uvis. However,

these theories tend to be less calculable. In addition, we should include a rele-

vant deformation that eventually takes us out of the conformal phase [80]. It may

also be interesting to incorporate the operator dimension bounds of [85–90] in such

an analysis.

The final point is that it is imperative to develop technology to compute the next-

order corrections in the small SUSY-breaking parameter. This need is especially acute in

theories of emergent SUSY at leading order, since we may find unwanted tachyons (see,

however, [31], for a use of tachyons in SQCD with a weakly gauged baryon number).

5 Conclusion and discussion

In this brief note we have highlighted how simple first principles of QFT — including

unitarity and ’t Hooft anomaly matching — (and a conjectured principle about the RG

flow) can constrain theories of emergent SUSY. We hope that these constraints lead to

robust model building for theories of light stops and Higgses. In particular, it would be of

great interest to see whether one can construct a theory that is insensitive to UV physics

(e.g., the mediating sector), robust in suppressing IR masses, and also calculable. In order

to find such a theory, it may be crucial to find the physical principles that allow us to

follow more general SUSY breaking terms non-perturbatively.
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A Proof of corollary for asymptotically free theories

Let us now complete the proof of the corollary mentioned in the text. We reproduce the

main statement below for ease of reference:

Corollary. Consider the set of asymptotically free theories with simple gauge group and

vanishing superpotential such that (3.2) holds. If such a theory has a set of non-anomalous

global symmetries, Ĵa, then it follows that a non-trivial subgroup of this symmetry will not

decouple in the IR.

Proof. First note that any UV theory of this type can be described as follows: it has a

gauge group, G, and representations, ri, of multiplicities, ni (i = 1, . . . , s). The dimensions

of the representations are di > 0, and the Dynkin indices are Ti > 0. The global symmetry

group is

S = U(1)R ×U(1)s−1 ×
s∏

i=1

SU(ni) . (A.1)

In this case, U(1)R anomaly freedom implies that

s∑

i=1

ni (R(ri)− 1)Ti + Tadj = 0 . (A.2)

Note that Tadj > 0 since G must be non-abelian.

Let us now suppose that the unbroken currents have vanishing ’t Hooft anomalies as

in (3.3). We will then find a contradiction with (A.2). To arrive at this contradiction,

first consider the case of a single type of representation (i.e., s = 1). In this case, if the

representation of the gauge group has multiplicity one (i.e., n1 = 1), there is no global

symmetry. Therefore, consider the case n1 > 1. Let Ĵ = SU(n1) and impose the vanishing

of the TrRĴĴ anomaly, i.e.

n1(qR(r1)− 1) · 1
2
· d1 = 0 . (A.3)

It follows that qR(r1) = 1. Plugging this result back into (A.2) (with s = 1), we find a

contradiction since Tadj > 0. Therefore, it cannot be that Ĵ → 0 in the deep IR.

Next, consider the case that s > 1 with ni = 1 for all i = 1, . . . , s and let Ĵa = U(1)a
for all a = 1, . . . , s− 1. Let us impose that the TrR2Ĵa and TrĴ2

b Ĵa anomalies vanish

s∑

i=1

(qR(ri)− 1)2 · di · qi,a = 0,

s∑

i=1

q2i,b · di · qi,a = 0 , (A.4)

where qi,a is the charge of representation ri with respect to Ĵa. The qi,a’s form a basis

for an s − 1 dimensional subspace of Rs. Therefore, the vectors (qR(ri) − 1)2 · di and

q2i,b ·di must sit in the one dimensional space orthogonal to the qi,a’s. Vanishing of the TrĴa
anomalies imposes

s∑

i=1

di · qi,a = 0 , (A.5)
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and so it follows that (qR(ri) − 1)2 = c2 and q2i,b = c2b for some constants, c2 and c2b ,

that are independent of the representation, ri. The gauge anomaly freedom of the U(1)a
symmetries implies

s∑

i=1

Ti · qi,a = 0 . (A.6)

Therefore, we can conclude that Ti = b · di for some constant b > 0 that is independent of

the representation.

Now, consider imposing TrRU(1)2a anomaly freedom

s∑

i=1

(qR(ri)− 1) · di · q2i,a = 0 . (A.7)

From this equation, it follows that

s∑

i=1

(qR(ri)− 1) · di = 0 , (A.8)

and using the fact that Ti = b · di we then find a contradiction with (A.2) since Tadj > 0.

Finally, consider the more generic case with s > 1 and at least one ni > 1. Imposing

the vanishing of the non-abelian anomalies TrRSU(ni)SU(ni) results in

ni(qR(ri)− 1) · 1
2
· di = 0 , (A.9)

for any ri with ni > 1. In particular, we see that such representations necessarily have R

charge +1 and therefore do not contribute to (A.2). Therefore, we are left to compute the

contributions from the representations having ni = 1. To that end, let us impose the s− 1

equations coming from the vanishing of the TrRU(1)2a anomalies

s∑

i=1

(qR(ri)− 1)2 · ni · di · qi,a = 0 , (A.10)

As before, the qi,a form a basis for an s − 1 dimensional subspace of Rs. Therefore, the

vector (qR(ri)− 1)2 · ni · di must sit in the one dimensional space orthogonal to the qi,a’s.

Further imposing the vanishing of the TrU(1)a anomalies

s∑

i=1

ni · di · qi,a = 0 , (A.11)

tells us that (qR(ri) − 1)2 = c2 for some constant c2. However, from the vanishing of the

non-abelian anomalies we know that c2 = 0. Therefore, we again find a contradiction

with (A.2), and the currents cannot flow to zero.
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