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1 Introduction

The study of lepton-flavour violating (LFV) processes in the charged sector offers a pos-

sibility to probe the Standard Model (SM) to very high scales. Of particular importance

is the LFV decay µ → eγ. First, there are very impressive experimental limits on this

branching ratio. The current best limit BR(µ+ → e+γ) < 5.7× 10−13 [1] has been set by

the MEG collaboration at PSI and an upgrade of the experiment is underway to improve

the sensitivity further by an order of magnitude [2]. Second, in the SM with neutrino

masses mν this branching ratio is suppressed by the tiny ratio (mν/mW )4, where mW is

the mass of the W -boson. Thus, the SM branching ratio is well below any experimental

limit that is achievable in the foreseeable future and any positive signal for µ→ eγ would

be clear evidence for physics beyond the Standard Model (BSM). Conversely, improving

limits on this branching ratio would put even more serious constraints on many BSM mod-

els. Given its importance the decay µ→ eγ has been studied in a large number of explicit

BSM models. Here, a more model independent approach is taken.

The impact of a BSM model with new physics at a large energy scale Λ ≫ mW to

observables at much smaller scales can be described using an effective field theory (EFT)

approach. The SM is considered to be an EFT valid up to a scale Λ and the BSM effects

at lower energies are described by operators of dimension n > 4, suppressed by powers

of Λ. These operators are generated from the BSM physics by integrating out the heavy

non-SM degrees of freedom. In general, the dominant effects are expected to come from
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dimension 5 and dimension 6 operators. A minimal list of all possible such operators formed

from SM fields only and respecting the SU(3)× SU(2)×U(1) gauge invariance consists of

one dimension 5 operator [3] and 64 dimension 6 operators [4, 5], five of which are baryon

number violating. As many of these operators actually represent matrices in generation

space, the total number of coefficients needed to describe the most general case is rather

large. Nevertheless, this is a systematic approach to study the impact of BSM physics to

a large class of observables obtained from experiments at very different energy scales. It is

used in Higgs physics, B-physics and the study of electric dipole moments to mention just

a few of the applications.

Applying these ideas to the flavour changing decay µ → eγ we note that there is

a dimension 6 operator (Qeγ to be defined below) that induces such a decay directly at

tree level. It is clear that the MEG limit provides an extremely strong constraint on the

coefficient of this operator. However, such a decay can also be induced indirectly from

other operators that are not immediately linked to µ → eγ. Thus, even if a particular

BSM does not induce the operator Qeγ at the high scale Λ, it can lead to a non-vanishing

contribution to µ→ eγ. Broadly speaking, this can happen in two different ways.

First, some dimension 6 operators other than Qeγ can induce a decay µ→ eγ beyond

tree level. The contribution to µ→ eγ from dimension 6 operators at one loop has partially

been computed [6] and it has been found that several operators contribute. This can lead

to very serious independent constraints on the coefficients of these operators.

The second possibility is through mixing in the renormalisation-group (RG) evolution

of the Wilson coefficient Ceγ of the operator Qeγ . The Wilson coefficients Ci(Λ) of the

higher-dimensional operators are determined at the high scale Λ by integrating out the

heavy fields. If these coefficients then are to be used to study the impact of the higher-

dimensional operators to observables at a lower scale λ, say λ ∼ mW , the coefficients

Ci(mW ) have to be determined from Ci(Λ) through RG evolution. The one-loop RG

evolution of the dimension 6 operators has been studied [7–9] and, as expected, it has been

found that other operators mix with Qeγ under the evolution.

The aim of this paper is to present a complete analysis of µ → eγ in the context of

an EFT approach including dimension 6 operators. To this end, we repeat and extend

the one-loop calculation presented in [6] for this process with a RG analysis. The RG

running is done in two steps. We first evolve from the large scale Λ to the electroweak scale

mV ∼ mW ∼ mZ and then use a modified evolution suitable for the scales mµ . λ . mZ ,

where the mass of the muon, mµ, is the scale at which the coefficient Ceγ has to be evaluated

for the process µ→ eγ. We consider the subset of all dimension 6 operators that are most

directly linked to the LFV decay. The details of the Lagrangian and the setup for the

calculations are given in section 2. In section 3 the relation between the Lagrangian and

the branching ratio is discussed. Section 4 is the main part of the paper. Section 4.1 starts

with the one-loop result of the branching ratio computed in the EFT. The experimental

limit on the branching ratio can be translated directly into a limit for Ceγ(mµ). From the

explicit one-loop results, it is also possible to extract limits on other Wilson coefficients

evaluated at the small scale. In a second step, in section 4.2, the anomalous dimensions

of the operator Qeγ and those operators that mix with Qeγ are computed. These results
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are then used to obtain limits on the Wilson coefficients of these operators, evaluated

directly at the large scale Λ. Our conclusions are presented in section 5. The details of the

renormalisation needed for the one-loop result and the anomalous dimensions are given in

appendix A. In appendix B the result for the (unrenormalised) one-loop branching ratio is

listed. Finally, in appendix C we apply the same method to the LFV decays of the τ to

obtain limits on the corresponding Wilson coefficients.

2 Effective D-6 extension of the SM: leptonic interactions

In this paper we take the point of view that the SM is an EFT valid up to some large

scale Λ and BSM physics can be parametrised by operators of dimension 6 (D-6). Higher

dimensional operators are not considered. A complete list of gauge invariant D-6 operators

has been given, in [5]. In this section the subset of D-6 operators that are relevant for our

analysis of µ → eγ is presented and the implementation of these operators in automated

computational tools is also briefly discussed.

The Lagrangian considered in this paper is the SM Lagrangian LSM extended by D-6

operators

L = LSM +
1

Λ2

∑

i

CiQi, (2.1)

where the sum is over the D-6 operators listed in tables 1 and 2. These are the D-6 operators

that can cause LFV interactions. The dimension 5 operator is not included in eq. (2.1):

since the effect of this operator on µ→ eγ transitions has been studied before [10, 11] we

do not consider it in our analysis. The notation and conventions are taken from [5]. In

particular, {p, r, s, t} denote generation indices. In the Lagrangian the operators appear

multiplied by Cpr...
i /Λ2, where Cpr...

i are dimensionless coefficient matrices with two or four

generation indices. With regard to the Hermitian conjugation, it is worth to remark that

• in the operator class ψ2ϕ2D, it is self-realised by transposition of generation indices;

• in the operator classes (L̄L)(L̄L), (R̄R)(R̄R) and (L̄L)(R̄R), it is self-realised by

transposition of generation indices once the prescription Cprst = Crpts is assumed;

• for the other operator classes, adding the Hermitian conjugate (not listed explicitly

in tables 1 and 2) is understood.

Working in the physical basis rather than in the gauge basis, the two operators of the

ψ2Xϕ set are rewritten using

QeB → QeγcW −QeZsW , (2.2)

QeW → −QeγsW −QeZcW , (2.3)

where sW = sin(θW ) and cW = cos(θW ) are the sine and cosine of the weak mixing angle.

The term

Leγ ≡
Ceγ

Λ2
Qeγ + h.c. =

Cpr
eγ

Λ2
(l̄pσ

µνer)ϕFµν + h.c., (2.4)
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ψ2Xϕ ψ2ϕ2D ψ2ϕ3

QeW (l̄pσ
µνer)τ

IϕW I
µν Q

(1)
ϕl (ϕ†i

↔

Dµ ϕ)(l̄pγ
µlr) Qeϕ (ϕ†ϕ)(l̄perϕ)

QeB (l̄pσ
µνer)ϕBµν Q

(3)
ϕl (ϕ†i

↔

D I
µ ϕ)(l̄pτ

Iγµlr)

Qϕe (ϕ†i
↔

Dµ ϕ)(ēpγ
µer)

Table 1. D-6 operators consisting of fermions and bosons, according to [5].

(L̄L)(L̄L) (R̄R)(R̄R) (L̄L)(R̄R) (L̄R)(R̄L) and (L̄R)(L̄R)

Qll (l̄pγµlr)(l̄sγ
µlt) Qee (ēpγµer)(ēsγ

µet) Qle (l̄pγµlr)(ēsγ
µet) Qledq (l̄jper)(d̄sq

j
t )

Q
(1)
lq (l̄pγµlr)(q̄sγ

µqt) Qeu (ēpγµer)(ūsγ
µut) Qlu (l̄pγµlr)(ūsγ

µut) Q
(1)
lequ (l̄jper)εjk(q̄

k
sut)

Q
(3)
lq (l̄pγµτ

I lr)(q̄sγ
µτ Iqt) Qed (ēpγµer)(d̄sγ

µdt) Qld (l̄pγµlr)(d̄sγ
µdt) Q

(3)
lequ (l̄jpσµνer)εjk(q̄

k
sσ

µνut)

Qqe (q̄pγµqr)(ēsγ
µet)

Table 2. D-6 operators consisting of four fermions, according to [5].

where Fµν is the electromagnetic field-strength tensor, is then the only term in the D-6

Lagrangian that induces a µ→ eγ transition at tree level. However, at one loop (and even

higher order) the other operators listed in tables 1 and 2 also potentially contribute.

Finally, special attention is devoted to the operator Qeϕ: in Feynman gauge, the

presence of such an operator produces Lagrangian terms of the form

Leϕ =
v3

2
√
2Λ2

Cpr
eϕēper +

3v2

2
√
2Λ2

Cpr
eϕēperh

+ i
v2

2
√
2Λ2

Cpr
eϕēperẐ + i

v2

2Λ2
Cpr
eϕēpνrŴ

+ + [. . . ] . (2.5)

Apparently, this operator introduces Goldstone-boson (Ẑ, Ŵ±) interactions which are not

compensated by any analogous vectorial term. However, the combination of eq. (2.5) with

the D-4 SM Yukawa terms gives

LYukawa + Leϕ =
v√
2

(
−ypr +

v2

2Λ2
Cpr
eϕ

)
ēper (2.6)

+
1√
2

(
−ypr +

v2

2Λ2
Cpr
eϕ

)
ēperh+

v2√
2Λ2

Cpr
eϕēperh

+
i√
2

(
−ypr +

v2

2Λ2
Cpr
eϕ

)
ēperẐ + i

(
−ypr +

v2

2Λ2
Cpr
eϕ

)
ēpνrŴ

+ + [. . . ] .

From eq. (2.6), it is understood that any 3-point off-diagonal interaction involving Gold-

stone bosons is not physical, i.e. it can be removed by an orthogonal transformation.

However, this procedure results in

• a residual term with a physical Higgs supporting LFV currents;
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• a redefinition of the relation between leptonic Yukawa couplings and leptonic masses:

ypp →
√
2mp

v
+

v2

2Λ2
Cpp
eϕ. (2.7)

In the framework of LFV processes at tree level and one loop, the prescription of eq. (2.7)

is never relevant. However, it is of fundamental importance in the case of flavour diagonal

interactions and related analyses such as the study of the anomalous magnetic moment of

the muon (g − 2)µ.

In the following sections, one-loop calculations in the theory given by the Lagrangian

eq. (2.1) will be presented. In order to perform such calculations in an automated way,

several openly available tools were used:

• in order to obtain consistent Feynman rules, the described model was implemented

both in LanHEP v3.1.9 [12] and in FeynRules v2.0 [13], and the agreement among

the two packages was checked;

• in order to produce a model file for the FeynArts v3.9 [14] and FormCalc

v8.3 [15, 16] packages, the FeynArts interface of FeynRules was exploited;

• the combined packages FeynArts/FormCalc were employed to generate non-

integrated amplitudes to be elaborated afterwards with the symbolic manipulation

system Form v4.0 [17].

The list of resulting tree-level Feynman rules from the Lagrangian eq. (2.1) is too long

to be given explicitly in this paper. It will be provided after the publication of this work:

it will appear in the FeynRules model database1 (in the format of a FeynRules model file).

However, the Feynman rule for the µ−e−γ interaction (consisting of the effective tree-level

interaction plus the one-loop wave-function renormalisation (WFR) of the relevant objects)

is presented (see appendix A).

3 µ → eγ: branching ratio and constraints

It is well known that in the limit mµ ≫ me the partial width of the process µ → eγ is

given by

Γµ→eγ =
1

16πmµ
|M|2 , (3.1)

where M is the transition amplitude, which contains the model-dependent information.

ComputingM in the theory given by eq. (2.1) and confronting the corresponding branching

ratio BR(µ+ → e+γ) with the experimental limit [1] allows to put constraints on the Wilson

coefficients Ci of some of the D-6 operators in eq. (2.1).

To make this connection more explicit we note that the Lagrangian eq. (2.1) induces

flavour-violating interactions µ→ eγ that can be written as

V µ =
1

Λ2
iσµν (CTL ωL + CTR ωR) (p2)ν , (3.2)

1http://feynrules.irmp.ucl.ac.be/wiki/ModelDatabaseMainPage.
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where the conventions described in appendix A are used and ωL/R = 1∓ γ5. Note that no

term ∼ γµ appears in eq. (3.2) since such a term is forbidden by gauge invariance. CTL

and CTR are coefficients of dimension one that depend on the Wilson coefficients of the

D-6 operators and on the parameters of the SM. The unpolarised squared matrix element

is expressed in terms of them as

|M|2 =
4
(
|CTL|2 + |CTR|2

)
m4

µ

Λ4
, (3.3)

and the branching ratio is

BR(µ→ eγ) =
Γµ→eγ

Γµ
=

m3
µ

4πΛ4Γµ

(
|CTL|2 + |CTR|2

)
=

48π2

G2
Fm

2
µ

(
|CTL|2 + |CTR|2

)

Λ4
, (3.4)

where Γµ =
(
G2

Fm
5
µ

)
/
(
192π3

)
is the SM total decay width of the muon. The result

eq. (3.4) is well known in the literature, see e.g. [18] and references therein. Confronting

this result with the experimental upper limit [1] established by the MEG collaboration on

the µ+ → e+γ transition

BR(µ+ → e+γ) ≤ 5.7 · 10−13, (3.5)

the limit

√
|CTL|2 + |CTR|2

Λ2
≤ 4.3 · 10−14 [GeV]−1 (3.6)

can be obtained.

At tree level, for the process µ+ → e+γ the coefficients appearing in eq. (3.6) are

given by C
(0)
TR = −v Cµe

eγ /
√
2 and C

(0)
TL = −v (Ceµ

eγ )∗/
√
2. In what follows, we will instead

compute the coefficients for the process µ− → e−γ where the tree-level results are given

by C
(0)
TR = −v Ceµ

eγ /
√
2 and C

(0)
TL = −v (Cµe

eγ )∗/
√
2. From now on the generation indices will

often be dropped and the simplified notation Ceγ will be used for either Cµe
eγ or Ceµ

eγ . Similar

remarks apply to CeZ and Ceϕ.
2 Applying the constraint eq. (3.6) then immediately results

in a constraint on Ceγ .

It is clear that if the BSM physics is such that the matching at the scale Λ produces

a sizable coefficient Ceγ(Λ) this will be the dominant effect for BR(µ → eγ). On the

other hand it is perfectly possible that the coefficient Ceγ(Λ) is zero or strongly suppressed

compared to Wilson coefficients of other D-6 operators. In this case effects of operators

that enter CTL and CTR only at one loop can be important.

The result of CTL (or CTR) computed at one loop can schematically be written as

C
(1)
TL = −

√
2v


Ceγ

(
1 + e2c(1)eγ

)
+
∑

i 6=eγ

e2c
(1)
i Ci


 , (3.7)

2However, for the sake of completeness, generation indices are retained in the results provided in appen-

dices A and B.
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where the electromagnetic coupling e stands for a generic coupling and the coefficients

c
(1)
eγ and c

(1)
i depend on SM parameters such as mZ ,ml etc. To compute the branching

ratio at one loop, apart from wave-function renormalisation also the vacuum expectation

value (VEV) v has to be renormalised. Even after this renormalisation, the coefficients

c
(1)
eγ and c

(1)
i in general contain ultraviolet singularities. These singularities have to be

absorbed by a renormalisation of the coefficient Ceγ . By choosing a particular scheme for

this subtraction, a precise definition of the Wilson coefficient is given. In what follows, the

MS scheme is used.

In passing, it should be mentioned that for the coefficient c
(1)
eγ also infrared singularities

have to be taken into consideration. However, the primary interest of considering one-loop

corrections is in the contribution of operators other than Qeγ to CTL and CTR. The

corrections ∼ e2c
(1)
eγ Ceγ only result in a small modification of the limit on Ceγ . Hence these

corrections will not be considered in this paper.

The renormalised Wilson coefficients and, therefore, the coefficients CTL and CTR are

scale dependent quantities. Hence, eq. (3.6) should be interpreted as a phenomenological

constraint on the Wilson coefficients at the relevant energy scale. While λ ∼ mµ is the

typical energy scale probed by the MEG experiment, the explicit results presented in the

next section will show, that for some of the operators the relevant scale is the electroweak

scale λ ∼ mV . In any case, these scales are much lower than Λ, the natural scale for the

Wilson coefficients after integrating out the heavy non-SM fields. To stress this subtlety

eq. (3.6) is rewritten as

√
|CTL(λ)|2 + |CTR(λ)|2

Λ2

∣∣∣∣∣
λ≪Λ

≤ 4.3 · 10−14 [GeV]−1 . (3.8)

In the next section, the explicit result for the coefficients CTL and CTR of eq. (3.2)

computed in the context of the Lagrangian eq. (2.1) at the tree level and one-loop level is

given. Furthermore, various contributions coming from different operators are separately

shown. Afterwards, the RG running of the Wilson coefficients is studied and eq. (3.8) is

applied to obtain bounds on each relevant coefficient at the scale Λ. These limits provide

the most direct link between the low-energy observable BR(µ → eγ) and BSM scenarios

within an EFT framework.

4 Results

In this section, analytical results and phenomenological studies concerning the impact

of eq. (3.8) on the Wilson coefficients of D-6 operators in the Lagrangian eq. (2.1) are

presented. The study is split into two parts:

1: The complete result for the decay µ → eγ in the EFT up to the one-loop level is

calculated. These results are then used to obtain bounds on the Wilson coefficients

of D-6 operators at the fixed scale λ = mµ or λ = mV , applying the experimental

constraint on the branching ratio BR(µ→ eγ).

– 7 –
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2: The mixing of a subset of D-6 operators with Qeγ under RG evolution is computed.

Translating the experimental constraint on BR(µ → eγ) to a limit on Ceγ(mZ),

bounds on Wilson coefficients Ci(Λ) of operators Qi that mix with Qeγ are then

obtained. The dependence on Λ of these bounds is discussed.

Due to the high level of automation, a certain number of cross checks was strongly

required. Unless specified otherwise, every result of this paper was tested under the fol-

lowing aspects:

• with no exceptions, all the calculations were performed in a general Rξ-gauge and it

was verified that any physical result is independent of the gauge parameters ξγ , ξW ,

ξZ and ξG;

• intermediate expansions or truncations were never applied, i.e. only the complete and

final result was expanded, to verify both the gauge invariance up to any order of 1/Λ2

and the numerical consistency of expansions with respect to the full result;

• if possible, some quantities were computed in different ways (e.g. the anomalous di-

mension of the operatorsQeγ andQeZ were computed both with an Higgs boson in the

final state and its VEV), further checking the complete agreement between(among)

the two(many) results;

• if possible, any non-original outcome was compared with previous literature: in par-

ticular, SM results against [19, 20], fixed order calculations against [6], anomalous

dimensions of the SM parameters against [21–23] and anomalous dimensions of D-6

operators against [7–9].3

In the following subsections, analytical results and phenomenological constraints

are given.

4.1 Branching ratio: results and constraints

In this subsection, the explicit results of the one-loop calculations for the coefficients CTL

and CTR, i.e. the coefficients c
(1)
i as defined in eq. (3.7) are given. We use diagonal Yukawa

matrices throughout.

First of all, it was verified that no term∼ γµ is generated by the Lagrangian eq. (2.1) for

the LFV interaction V µ, as dictated by gauge invariance. Then, the tree-level and one-loop

results were calculated using standard techniques as described in section 3. Subsequently,

the outcome was expanded around ml ≪ mV , i.e. considering the leptonic masses to be

much smaller than the bosonic ones. In this limit, the contribution from the operator Qeϕ

to CTL reads

CTL =Cµe
eϕ

mW sW

48
√
2m2

Hπ2

(
4m2

e + 4m2
µ + 3m2

e log

[
m2

e

m2
H

]
+ 3m2

µ log

[
m2

µ

m2
H

])

+ Ceµ
eϕ

mW sW

48
√
2m2

Hπ2
(−memµ) + . . . , (4.1)

3We thank the authors of [6–9] for help in clarifying any source of disagreement by private communica-

tion.
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Operator CTL or CTR(µ←→ e)

Qeγ −Ceγ

√
2mW sW

e

QeZ −CeZ
emZ

16
√
2π2

(
3− 6c2W + 4c2W log

[
m2

W

m2
Z

]
+ (12c2W − 6) log

[
m2

Z

λ2

])

Q
(1)
ϕl −C(1)

ϕl

eme

(
1 + s2W

)

24π2

Q
(3)
ϕl C

(3)
ϕl

eme

(
3− 2s2W

)

48π2

Qϕe Cϕe
emµ

(
3− 2s2W

)

48π2

Qeϕ Ceϕ
mW sW

48
√
2m2

Hπ2

(
4m2

e + 4m2
µ + 3m2

e log

[
m2

e

m2
H

]
+ 3m2

µ log

[
m2

µ

m2
H

])

Q
(3)
lequ

− e

2π2

∑

u

mu

(
C

(3)
lequ

)µeuu
log

[
m2

u

λ2

]

Operator CTL CTR

Qle
e

16π2

(
meC

µeee
le +mµC

µµµe
le +mτC

µττe
le

) e

16π2
(meC

eeeµ
le +mµC

eµµµ
le +mτC

eττµ
le )

Table 3. Complete set of results (up to one-loop) for the LO contributions of the various D-6

operators to the µ→ eγ decay. For CTL (CTR) the generation indices µe (eµ) are understood.

where the ellipses stand for contributions from other operators. Since me ≪ mµ we can

drop the term proportional to Ceµ
eϕ. Keeping the term ∼ m2

eC
µe
eϕ in eq. (4.1) ensures that

the result for CTR can be obtained by (µ←→ e).

Finally, the complete set of LO contributions of D-6 operators in eq. (2.1) (up to

one-loop in SM couplings) was obtained (see table 3). The full result without expansion

around ml ≪ mV is lengthy and not suitable for a phenomenological analysis, but is given

(truncated at the order 1/Λ2) in appendix B , including the complete information about

the generation indices for the Qeγ , QeZ and Qeϕ operators.

The one-loop calculation leads to several UV-divergent terms in connection with three

operators: Qeγ , QeZ and Q
(3)
lequ. After MS renormalisation the remnants of these UV

singularities are logarithms with an electroweak scale, log(m2
V /λ

2), in the term proportional

to CeZ and logarithms with the various quark mass scales, log(m2
u/λ

2) in the coefficient

proportional to C
(3)
µeuu ≡ (C

(3)
lequ)

µeuu. The one-loop corrections proportional to Ceγ (not

shown) also contain scale-dependent logarithms. Thus, as expected the coefficients CTL

and CTR are scale dependent.

The impact on the phenomenology of the scale evolution from the large scale Λ to the

electroweak scale is studied in section 4.2. Here the coefficients are evaluated at the small

scale λ ≪ Λ, in particular, λ = mZ for CeZ . Thus, the result of table 3 can be combined
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3-P Coefficient At fixed scale 4-P Coefficient At fixed scale

Cµe
eγ 2.5 · 10−16 Λ2

[GeV]2
Cµeee
le 4.4 · 10−8 Λ2

[GeV]2

Cµe
eZ(mZ) 1.4 · 10−13 Λ2

[GeV]2
Cµµµe
le 2.1 · 10−10 Λ2

[GeV]2

C
(1)
ϕl 2.6 · 10−10 Λ2

[GeV]2
Cµττe
le 1.2 · 10−11 Λ2

[GeV]2

C
(3)
ϕl 2.5 · 10−10 Λ2

[GeV]2

Cϕe 2.5 · 10−10 Λ2

[GeV]2

Cµe
eϕ 2.8 · 10−8 Λ2

[GeV]2

Table 4. Limits on the Wilson coefficients contributing to the µ→ eγ transition up to the one-loop

level.

directly with eq. (3.8) to put a limit on a set of coefficients coming from 7 operators (out

of the ensemble of 19, see tables 1 and 2). The other operators do not contribute to the

tree-level or one-loop fixed scale result.

Under the assumption that only one Wilson coefficient at a time is non-vanishing,

the numerical limits of table 4 are obtained. They are given for the Wilson coefficients

with generation indices µe. Since we consider the unpolarised decay, the corresponding

limits with the generation indices eµ are of course the same. The numerical values of the

input parameters have been taken from the Particle Data Group review [24]. Note that

no limit on C
(3)
lequ is given since its contribution vanishes if evaluated at the natural scale

λ = mu. It is of course possible that an interplay among the various coefficients leads to

cancellations that invalidate the limits given in table 4. A possibility to pin down more

specific limits concerns the study of the correlation among various experimental bounds

(e.g., BR(Z → eµ), BR(µ→ 3e), etc.), but this is outside the scope of this work. Similarly,

the study of specific underlying theories that can lead to such cancellations is outside the

strict EFT framework we are using.

The results of tables 3 and 4 were partially shown in the work of Crivellin, Najjari

and Rosiek [6]; in addition to their results, here a complete treatment of the operators

QeZ and Qeϕ is shown. Regarding the latter, a comment is required: the coefficient Ceϕ

is connected to a two-loop Barr-Zee effect [25], and it is well known [26–30] that such a

two-loop contribution could be of the same order or even larger than the one-loop term of

table 3. Even though such feature could surely be relevant, its analysis is not a purpose of

this paper.

4.2 Anomalous dimensions: results and constraints

In the previous section, limits on the Wilson coefficients Ci(mV ) or Ci(ml) have been

obtained by a strict one-loop calculation. However, the most direct information on the

underlying BSM theory can be obtained by information on the Wilson coefficients at the

matching scale, Ci(Λ). Thus, the anomalous dimensions of the D-6 operators that are

relevant for the (tree-level) µ→ eγ transition have to be studied.
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The anomalous dimensions of D-6 operators have been calculated in [7–9]. We have

repeated the computations of those that are relevant to our case and extended the treatment

to include the running of the coefficient Ceγ(λ) to scales λ < mV .

By direct computation, one finds that the running of the Cµe
eγ coefficient for λ > mV

is governed by

16π2 ∂Cµe
eγ

∂ log λ

=

(
e2
(
47

3
+

1

4c2W
− 9

4s2W

)
+ 2Y 2

e +

(
1

2
+ 2c2W

)
Y 2
µ +

∑

l

Y 2
l + 3

∑

q

Y 2
q

)
Cµe
eγ

+

(
6e2
(
cW
sW
− sW

cW

)
− 2cW sWY 2

µ

)
Cµe
eZ + 16e

∑

u

YuC
(3)
µeuu, (4.2)

and the related quantity Ceµ
eγ can be obtained by interchanging the generation indices, i.e.

Yµ ←→ Ye and C
(3)
µeuu ←→ C

(3)
eµuu. Retaining only the dominant terms, eq. (4.2) becomes

16π2 ∂Cµe
eγ

∂ log λ

≃
(
47e2

3
+

e2

4c2W
− 9e2

4s2W
+ 3Y 2

t

)
Cµe
eγ + 6e2

(
cW
sW
− sW

cW

)
Cµe
eZ + 16e

∑

u

YuC
(3)
µeuu. (4.3)

From eq. (4.3), it follows that direct contributions to the evolution of Ceγ come from the

operator Qeγ itself, plus the orthogonal operator QeZ and the four-fermion operator Q
(3)
lequ.

Of course, the corresponding coefficients are precisely the UV singularities that appear in

the renormalisation of Ceγ , discussed in section 4.1.

In the same way, a similar structure for the RG running of the Cµe
eZ coefficient is found:

16π2 ∂Cµe
eZ

∂ log λ

=

(
e2
(
−47

3
+

151

12c2W
− 11

12s2W

)
+ 2Y 2

e +

(
1

2
+ 2s2W

)
Y 2
µ +

∑

l

Y 2
l + 3

∑

q

Y 2
q

)
Cµe
eZ

−
(
2e2

3

(
2cW
sW

+
31sW
cW

)
+ 2cW sWY 2

µ

)
Cµe
eγ + 2e

(
3cW
sW
− 5sW

cW

)∑

u

YuC
(3)
µeuu

≃ −2e2

3

(
2cW
sW

+
31sW
cW

)
Cµe
eγ +

(
−47e2

3
+

151e2

12c2W
− 11e2

12s2W
+ 3Y 2

t

)
Cµe
eZ

+ 2e

(
3cW
sW
− 5sW

cW

)∑

u

YuC
(3)
µeuu. (4.4)

From eqs. (4.3) and (4.4), it is understood that there is an interplay in the evolution

of Ceγ and CeZ . Moreover their running is directly connected to C
(3)
µeuu. Hence, if the

underlying theory produces non-vanishing matching coefficients C
(3)
eµuu(Λ) they will induce

an non-vanishing Ceγ(mV ), even if Ceγ(Λ) happens to vanish. In fact, there are even

further operators that contribute indirectly to Ceγ(mV ), namely those operators that mix
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with Q
(3)
lequ under RG evolution. To include these in the analysis, the contribution of

operators listed in tables 1 and 2 to the anomalous dimension of Q
(3)
lequ and Q

(1)
lequ have been

evaluated. The corresponding coefficients run according to

16π2
∂C

(3)
µett

∂ log λ
≃ 7eYt

3
Cµe
eγ +

eYt
2

(
3cW
sW
− 5sW

3cW

)
Cµe
eZ+

+

(
2e2

9c2W
− 3e2

s2W
+

3Y 2
t

2
+

8g2S
3

)
C

(3)
µett +

e2

8

(
5

c2W
+

3

s2W

)
C

(1)
µett, (4.5)

16π2
∂C

(1)
µett

∂ log λ
≃
(
30e2

c2W
+

18e2

s2W

)
C

(3)
µett +

(
−11e2

3c2W
+

15Y 2
t

2
− 8g2S

)
C

(1)
µett. (4.6)

Supposing that the coefficients C
(3)
µeuu, C

(3)
µecc and C

(3)
µett are of the same order, any sub-

leading term can be dropped by retaining only the top-Yukawa and gauge couplings in

the above equations. Combining eqs. (4.3) and (4.4) with eqs. (4.5) and (4.6), a relatively

simple system of ordinary differential equations (SoODE) can be built and used to study

the impact of the operators in tables 1 and 2 to µ→ eγ.

It should be noted that our analysis is restricted to the operators listed in tables 1 and 2

even though there are additional D-6 operators that also contribute directly or indirectly

to the running of Ceγ and CeZ [7–9]. In principle, a complete analysis including all D-6

operators should be performed, extending the SoODE presented above. However, the case

of the operator Q
(1)
lequ presented in this analysis is the most relevant one and serves as an

illustration on how to obtain limits on a large class of Wilson coefficients of operators that

are not directly related to the process under consideration.

Now that the SoODE is established, we can obtain limits on the various Wilson co-

efficients. The main idea is as follows: an effective theory is defined through its Wilson

coefficients at some large scale Λ. We will consider the relevant coefficients one-by-one, i.e.

setting Ci(Λ) 6= 0 and all the other Cj(Λ) = 0; j 6= i. Then we let the system evolve from

λ = Λ to the electroweak scale λ = mV . At this scale, we confront Ceγ(λ = mV ) with

the experimental limit according to table 4. This will result in a constraint on Ci(Λ). The

same procedure could of course also be carried out using CeZ(mV ) rather than Ceγ(mV ).

However, the corresponding limits on the various Ci(Λ) would always be less stringent.

It should also be mentioned that a rigorous application of EFT ideas requires to prop-

erly evolve the fixed order coefficient Ceγ from the scale λ = mµ to λ = mV . Obviously, the

RG equations given above are only applicable for the scales λ > mV . At the electroweak

scale, another matching of the theory to a second EFT should be made by integrating out

the heavy SM fields, i.e. the fields of mass ∼ mV , very similar to what is done in the context

of B decays (see e.g. [31]). The new EFT, valid for scales λ < mV then consists of operators

with only (light)quark- and lepton fields as well as gluons and the photon. The anomalous

dimensions of these operators then have to be computed in order to determine the com-

plete running of the Wilson coefficient Ceγ for scales mµ < λ < mV . As the numerical

effects of this procedure are rather modest, a somewhat simplified analysis is performed.

As previously investigated in [32], for the running of Ceγ(λ) below the electroweak scale
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Figure 1. Constraints on Cµe
eγ (yellow), Cµe

eZ (green), C
(3)
µett (red) and C

(1)
µett (blue) plotted against

the scale Λ at which they are defined. A log10-scale is adopted. The filled area represents the

excluded regions.

only the QED contributions are taken into account. The corresponding RG equation reads

16π2 ∂Ceγ

∂ log λ
≃ e2

(
10 +

4

3

∑

q

e2q(λ)

)
Ceγ , (4.7)

where the contribution of four-fermion operators has been omitted and eq(λ) denotes the

electric charge of the fermion fields that are dynamical at the scale λ. Applying eq. (4.7)

to the value of Cµe
eγ (mµ) (and Ceµ

eγ (mµ)) given in table 4 we obtain the limit
√
|Cµe

eγ (mZ)|2 + |Ceµ
eγ (mZ)|2

2
< 1.8 · 10−16 Λ2

[GeV]2
. (4.8)

This is the limit that will be used to determine the constraints on the remaining Wilson

coefficients at the scale Λ.

In the RG evolution only the Yukawa coupling of the top is kept and for all SM

couplings one-loop running is implemented. Then the limits on the Wilson coefficients Ceγ ,

CeZ , C
(3)
µett and C

(1)
µett are obtained as a function of the scale Λ. The results are displayed

in figure 1. Not surprisingly, the most severe constraint is on Ceγ itself. But also for CeZ

and C
(3)
µett which affect the running of Ceγ directly, rather strong limits can be obtained.

As expected, the limits on C
(1)
µett are weaker, as it affects Ceγ only indirectly through C

(3)
µett.

The dependence on Λ of the limits on Ceγ is close to the canonical Λ2 dependence,

only slightly modified by the running of the Wilson coefficients. For the other Wilson
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3-P Coefficient at Λ = 103GeV at Λ = 105GeV at Λ = 107GeV

Cµe
eγ 2.7 · 10−10 2.9 · 10−6 3.1 · 10−2

Cµe
eZ 2.5 · 10−8 1.0 · 10−4 7.1 · 10−1

C
(3)
µett 3.6 · 10−9 1.4 · 10−5 9.8 · 10−2

C
(1)
µett 1.9 · 10−6 2.5 · 10−3 n/a

C
(3)
µecc 4.8 · 10−7 1.9 · 10−3 n/a

C
(1)
µecc 2.6 · 10−4 3.3 · 10−1 n/a

Table 5. Limits on the Wilson coefficients defined at the scale λ = Λ for three choices of Λ =

103, 105, 107 GeV.

coefficients, the effect of the running is somewhat larger. For illustrative purposes, in

table 5, the numerical values for the Wilson coefficients for some choices of Λ are given.

Relaxing the previous setup of only considering the top Yukawa coupling, the analysis can

also be extended to include C
(3)
µecc and C

(1)
µecc. Setting to zero all other Wilson coefficients at

Λ, in particular, C
(3)
µett(Λ) = 0 and C

(1)
µett(Λ) = 0, it is then also possible to obtain limits on

C
(3)
µecc(Λ) and C

(1)
µecc(Λ). It is clear that these limits get weaker with increasing Λ, ultimately

reaching the limit of perturbativity ∼ 4π.

Besides this, other assumptions can be made less strict: while eqs. (4.3) and (4.4)

are complete, sub-leading terms can be gradually included in eqs. (4.5) and (4.6). As an

example, reintroducing the bottom-Yukawa coupling and the CKM matrix off-diagonal

terms, the following leading contributions arise:

16π2
∂C

(3)
µett

∂ log λ
≃ [eq. (4.5)] + Y 2

b V
†
33

(
C

(3)
µeutV13 + C

(3)
µectV23

)
+ [. . . ] , (4.9)

16π2
∂C

(1)
µett

∂ log λ
≃ [eq. (4.6)] + 2YbYtCµebb + [. . . ] , (4.10)

where Cµebb is a coefficient related to the Qledq operator, previously unconstrained. How-

ever, as soon as one includes other Yukawa couplings, the SoODE have to be enlarged

to the point that many other computations are required. Nevertheless, in principle the

method can be systematised and generalised to including each coefficient that could pro-

duce a (tree-level) Ceγ transition at the muonic mass scale, even if the contribution to the

evolution is not direct (as in the case of C
(1)
µett).

To conclude this section, some limitations in our treatment are mentioned (again).

First, this analysis has been done in a strict one-loop approximation, neglecting the possi-

bility that for some operators two-loop contributions could be more important. This can

happen in particular when through a two-loop effect a (small) Yukawa coupling is replaced

by gauge couplings, as is the case in the Barr-Zee effect.

A second limitation regarding the limits presented in tables 4 and 5 is that they have

been obtained assuming that only one coefficient at the time is non-zero. It is clear that

such an assumption is rather unrealistic. A generic BSM model will usually introduce a
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Figure 2. Correlations between Cµe
eZ and C

(3)
µett (left) and C

(3)
µett and C

(1)
µett (right) at Λ = 105 GeV.

The green area represents the allowed regions if both coefficients are allowed to deviate from zero.

large set of D-6 operators when heavy fields are integrated out. Allowing for more than

one Wilson coefficient to be non zero, will introduce correlations that can lead to allowed

regions that clearly violate the limits given in tables 4 and 5. As an example we consider the

case when simultaneously CeZ(Λ) and C
(3)
µett(Λ) are non-vanishing (left panel of figure 2) as

well as the case when simultaneously C
(3)
µett(Λ) and C

(1)
µett(Λ) are non-vanishing (right panel

of figure 2). The allowed region (green) is clearly much larger than the allowed regions

if only one non-vanishing coupling at the time is allowed (indicated by the yellow dotted

lines). In principle, arbitrarily large values for C
(3)
µett(Λ) are allowed, as long as CeZ(Λ) or

C
(1)
µett(Λ) are tuned to provide an almost perfect cancellation. Such a fine-tuned choice of

couplings is of course very unnatural and at some point is in conflict with the fixed-order

constraint of CeZ . Nevertheless, it has to be mentioned that the limits presented in this

analysis are to be taken more as guidelines rather than strict limits. A more complete

analysis with several observables would be required to disentangle the correlations and get

strict limits on the various Wilson coefficients.

Finally, we recall that for λ < mV we have considered only the running of Ceγ induced

by the pure QED contributions. The effect of the running of Ceγ from λ = mµ to λ = mV

is below 10% and we have checked that the impact of the terms with Yukawa couplings is

completely negligible. Hence, the use of this approximation will affect the limits presented

here by a few percent at most. The only possible exception to this is the limit on C
(3)
µecc.

As can be seen from eq. (4.2), if C
(3)
µecc is much larger than Ceγ the running of Ceγ for

mc < λ < mV is modified noticeably. Such a situation can occur when considering the

case C
(3)
µecc(Λ) 6= 0 and all other Ci(Λ) = 0, as done in obtaining the limit on C

(3)
µecc. In

particular, if Λ is rather small, a very large C
(3)
µecc(Λ) is required to induce a sizable Ceγ(mV ).

We have checked that, depending on the choice of Λ, the naive limits obtained by having
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only C
(3)
µecc(Λ) 6= 0 can be modified by up to a factor two when taking into account its

contribution to the RG evolution for λ < mV . The effect will be much smaller for a more

realistic scenario with several non-vanishing coefficients at the large scale Λ.

5 Conclusions

In this paper a complete one-loop analysis of the LFV decay µ → eγ in the context of

an EFT with D-6 operators has been presented. The main results are the limits on the

(scale-dependent) Wilson coefficients at the large matching scale. These limits provide the

most direct information on possible BSM models that can be obtained from the µ → eγ

decay in an EFT framework.

It is not surprising that the limit on BR(µ+ → e+γ) results in a constraint on Ceγ , the

Wilson coefficient of the operator Qeγ that induces a tree-level µ → eγ transition. What

is more remarkable is that constraints can be obtained also for a rather large number

of further Wilson coefficients. These belong to operators that indirectly induce a LFV

transition, either at one loop or through mixing under RG evolution. In this context it

is important to note that the Wilson coefficients are scale dependent quantities and that

in general operators mix under RG evolution. Thus, the presence at the large matching

scale of any non-vanishing Wilson coefficient for an operator that mixes with Qeγ under

RG evolution will induce a LFV transition µ→ eγ at the low scale.

It is clear that such an analysis can be applied to other processes as well. In particular,

other LFV decays such as τ → eγ or τ → µγ lead immediately to similar constraints for

the D-6 operators with other generation indices, as detailed in appendix C. But in prin-

ciple, any observable for which there are strong experimental constraints can be used. A

combined analysis with many observables will also potentially allow to disentangle correla-

tions between Wilson coefficients. Such correlations in the RG running result in unnatural

allowed regions which are governed by large cancellations.

Depending on the process under consideration the inclusion of all D-6 operators, not

only those listed in tables 1 and 2 might be required. While this results in a more com-

plicated system, such an analysis allows to combine consistently experimental results that

have been obtained at completely different energy scales. In the absence of clear evidence

for BSM physics at collider experiments, an extended EFT analysis providing constraints

on many Wilson coefficients directly at the large scale can give useful clues in the search for

a realistic BSM scenario and we consider this to be a very promising and useful strategy.
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A D-6 effective µ − e − γ interaction at one-loop: the Feynman rule

In this appendix, the Feynman rule for the µ−e−γ interaction in the context of a D-6 ET

is presented together with a complete treatment of the LFV wave-function renormalisation.

Here and in appendix B we keep the generation indices of the Wilson coefficients Ceγ , CeZ

and Ceϕ, but for notational simplicity drop the complex conjugate sign, i.e (Cµe
eγ )∗ → Cµe

eγ .

In eq. (A.1), the structure of the interaction is introduced in terms of the new scale Λ

and four effective coefficients related to the four possible contributions: vectorial left/right

(KV L/KV R) and tensorial left/right (KTL/KTR). All momenta are considered to be

incoming.

µ(p1)

e(p2 − p1)

γ(−p2)

=
1

Λ2
[γµ (KV L ωL +KV R ωR)+ iσµν (KTL ωL +KTR ωR) (p2)ν ] . (A.1)

The coefficients of eq. (A.1) are connected to the one-loop wave-function renormalisation

factors through

KV L

Λ2
= −e

2

(
1

2
δZL

eµ +
1

2

(
δZL

eµ

)†
)
− ev2

4cW sWΛ2

(
C

(1)
ϕl + C

(3)
ϕl

) 1

2
δZZA, (A.2)

KV R

Λ2
= −e

2

(
1

2
δZR

eµ +
1

2

(
δZR

eµ

)†
)
− ev2

4cW sWΛ2
Cϕe

1

2
δZZA, (A.3)

KTL

Λ2
= − v√

2Λ2
Cµe
eγ

(
1+

1

2
δZL

µµ +
1

2

(
δZR

ee

)†
+

1

2
δZAA +

δv

v

)
− v√

2Λ2
Cµe
eZ

1

2
δZZA, (A.4)

KTR

Λ2
= − v√

2Λ2
Ceµ
eγ

(
1+

1

2
δZR

µµ +
1

2

(
δZL

ee

)†
+

1

2
δZAA +

δv

v

)
− v√

2Λ2
Ceµ
eZ

1

2
δZZA. (A.5)

Several elements of eqs. (A.2)–(A.5) do not belong to the SM framework: the effective

coefficients Ceγ , CeZ , C
(1)
ϕl , C

(3)
ϕl and Cϕe, plus the off-diagonal leptonic wave-function

renormalisation. For further information, a complete treatment of LFV wave-function

renormalisation in the on-shell scheme is given.
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Figure 3. Conventions used for the one-particle irreducible two-point functions.

Making use of standard techniques (e.g., see [19]), the off-diagonal leptonic self-energy

(for conventions used see figure 3) was calculated. Then, the renormalisation conditions

in the on-shell scheme have been applied to obtain the various contributions to the off-

diagonal wave-function renormalisation. The tensorial structure that corresponds to such

transition consists of four possible coefficients:

Γf
ij(p) = iδij(/p−mi)+i

[
/pωLΣf,L

ij (p2) + /pωR Σf,R
ij (p2) + ωLΣf,l

ij (p
2) + ωR Σf,r

ij (p2)
]
. (A.6)

By applying the standard on-shell renormalisation conditions

Re
[
Γf
ij(p)

]
uj(p)

∣∣∣
p2=m2

j

= 0, (A.7)

ūi(p)Re
[
Γf
ij(p)

]
p2=m2

i

= 0, (A.8)

one finds the off-diagonal wave-function renormalisation that is required in eqs. (A.2)

and (A.3) to determine the coefficients KV L and KV R of eq. (A.1):

δZL
ij =

4

m2
i −m2

j

(
m2

jΣ
f,L
ij (m2

j ) +mimjΣ
f,R
ij (m2

j ) +mjΣ
f,r
ij (m2

j ) +miΣ
f,l
ij (m

2
j )
)
, (A.9)

δZR
ij =

4

m2
i −m2

j

(
m2

jΣ
f,R
ij (m2

j ) +mimjΣ
f,L
ij (m2

j ) +mjΣ
f,l
ij (m

2
j ) +miΣ

f,r
ij (m2

j )
)
. (A.10)

The explicit result for the four coefficients of eq. (A.6) are as follows:

Σf,L
eµ (p2)Λ2

=A0

[
m2

e

](
− me

64π2
C

(1)
ϕl −

me

64π2
C

(3)
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3mZ(2sW cW )
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√
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√
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√
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)
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√
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√
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µ

]
(
−3mµm

2
Z(c

2
W − s2W )

32π2
Cϕe +
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√
2π2

Cµe
eZ

)

+B0

[
p2, ξZm
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√
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(
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(
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−
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(
2m2
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)
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8
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2π2
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eγ . (A.11)

Σf,R
eµ (p2) = Σf,L

eµ (p2)
∣∣
µ↔e

(A.12)

Σf,l
eµ(p

2)Λ2

=A0

[
m2

e

]
(
−
(
m2

e + 2m2
Z(c

2
W − s2W )
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(3)
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√
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µ
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√
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)
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)
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√
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√
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e
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e
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√
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µ
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µ
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(
−m2

Z

(
2m4

W −m2
W p2 − p4

)
c2W

16m2
W p2π2

C
(3)
ϕl

)

+B0

[
p2, ξWm2

W , 0
]
(
m2

Z

(
ξWm2

W − p2
)
c2W

16m2
Wπ2

C
(3)
ϕl

)

+B0

[
p2,m2

H ,m2
e

]
(
−memZ

(
m2

e −m2
H + p2

)
(2sW cW )

64
√
2ep2π2

Cµe
eϕ

)

– 20 –



J
H
E
P
1
0
(
2
0
1
4
)
0
1
4

+B0

[
p2,m2

H ,m2
µ

]
(
−
mµmZ

(
−m2

H +m2
µ + p2

)
(2sW cW )

64
√
2ep2π2

Ceµ
eϕ

)

+B0

[
p2, 0,m2

e

]
(
−3memZ

(
m2

e − p2
)
(2sW cW )

32
√
2p2π2

Cµe
eγ

)

+B0

[
p2, 0,m2

µ

]
(
−
3mµmZ

(
m2

µ − p2
)
(2sW cW )

32
√
2p2π2

Ceµ
eγ

)

− m2
Z(c

2
W − s2W )

16π2
C

(1)
ϕl −
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The explicit results for the four coefficients of the off-diagonal one-particle irreducible

two-point function for leptons are sufficient to obtain the wave-function renormalisation

factors eqs. (A.9) and (A.10).

Finally, for completeness we list the required SM expressions for the renormalisation.

The expression

δZZA =

(
cW e2

(
2
(
−1 + ξ2W

)
m2

W − (−9 + ξW )A0

[
m2

W

]
− (5 + 3ξW )A0

[
ξWm2

W

]))
(
48(−1 + ξW )m2

Wπ2sW
) (A.15)

is needed in eqs. (A.2)–(A.5) and the following expressions in the MS scheme are required

for the computation of the anomalous dimensions analysed in section 4.2:

∆̂−1δZAA = −e2(20 + 3ξW )

48π2
, (A.16)

∆̂−1δZZZ = −e2
(
−1 + 2s2W + 40s4W + 6c4W ξW

)

96π2c2W s2W
, (A.17)

∆̂−1δZe = −
1

2
δZAA +

sW
cW

1

2
δZZA =
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96π2
, (A.18)
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2s2W c2W
− e2

36π2
ξγ −

e2s2W
36π2c2W

ξZ −
g2S

12π2
ξG, (A.24)
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2
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, (A.27)

where

∆̂ =

[
2

4−D
− γE + log 4π

]
, (A.28)

with D being the dimensional-regularisation parameter and γE the Euler-Mascheroni con-

stant. All the above equations have been cross checked against [19]4 and [20].

B Explicit one-loop result for µ − e − γ

In this appendix, the complete result for the unrenormalised coefficients C̄TL and C̄TR

of the µ− → e−γ decay in the EFT is given. After renormalisation, the formulae were

further expanded around ml ≪ mV to obtain the results in table 3; then the public pack-

age LoopTools 2.10 [15] was used to check the numerical stability of the aforementioned

expansion. The result is presented in terms of Passarino-Veltman functions [33], following

the convention described in [19]. Writing the coefficients as

C̄TL = C
(A0)
TL + C

(B0)
TL + C

(C0)
TL + C

(c)
TL, (B.1)

C̄TR = C̄TL

∣∣
e↔µ

, (B.2)

4In the Feynman Gauge, i.e. ξ → 1.
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Note that eq. (B.2) applied to eq. (B.6) also implies that the generation indices in the

operators Cle have to be swapped.

C Lepton-flavour violating τ decays and effective coefficient constraints

In this appendix, the strategy adopted in the main text is extended to the case of lepton-

flavour violating tauonic transitions. By combining (see [24]) the experimental values

obtained at the LEP collider (see [34–38]), the τ -lepton total width is inferred to be

Γτ = 2.3 · 10−12 GeV. (C.1)

Recently, the BaBar Collaboration established [39] the following limits on the tauonic

lepton-flavour violating decay rates:5

BR(τ− → e−γ) ≤ 3.3 · 10−8, (C.2)

BR(τ− → µ−γ) ≤ 4.4 · 10−8. (C.3)

5Somewhat weaker limits have been obtained by the Belle collaboration [40].
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1
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τ → eγ

3-P Coefficient At fixed scale 4-P Coefficient At fixed scale

Cτe
eγ 2.4 · 10−12 Λ2

[GeV]2
Cτeee
le 4.2 · 10−4 Λ2

[GeV]2

Cτe
eZ(mZ) 1.3 · 10−9 Λ2

[GeV]2
Cτµµe
le 2.0 · 10−6 Λ2

[GeV]2

C
(1)
ϕl 1.5 · 10−7 Λ2

[GeV]2
Cτττe
le 1.2 · 10−7 Λ2

[GeV]2

C
(3)
ϕl 1.4 · 10−7 Λ2

[GeV]2

Cϕe 1.4 · 10−7 Λ2

[GeV]2

Cτe
eϕ 1.7 · 10−6 Λ2

[GeV]2

Table 6. Limits on the Wilson coefficients contributing to the τ → eγ transition up to the one-loop

level.

τ → eγ

3-P Coefficient at Λ = 103 GeV at Λ = 104 GeV at Λ = 105 GeV

Cτe
eγ 2.5 · 10−6 2.6 · 10−4 2.8 · 10−2

Cτe
eZ 2.3 · 10−4 1.3 · 10−2 9.5 · 10−1

C
(3)
τett 3.4 · 10−5 1.9 · 10−3 1.4 · 10−1

C
(1)
τett 1.8 · 10−2 5.0 · 10−1 n/a

C
(3)
τecc 4.6 · 10−3 2.5 · 10−1 n/a

C
(1)
τecc ∼ 2.4 n/a n/a

Table 7. Limits on the Wilson coefficients defined at the scale λ = Λ for three choices of Λ =

103, 104, 105 GeV.

Putting together the information in eqs. (C.1) and (C.3) and adapting eq. (3.4) of

section 3 to the tauonic case, the following limits are obtained:

τ → eγ =⇒
√
|CTL(λ)|2 + |CTR(λ)|2

Λ2

∣∣∣∣∣
λ≪Λ

≤ 4.1 · 10−10[GeV]−1 , (C.4)

τ → µγ =⇒
√
|CTL(λ)|2 + |CTR(λ)|2

Λ2

∣∣∣∣∣
λ≪Λ

≤ 4.7 · 10−10[GeV]−1 . (C.5)

The functional form of the coefficients CTL and CTL is not different from the result of

table 3, apart from suitable changes of the mass parameters and generation indices (e.g.

for the τ → eγ case one should replace mµ with mτ except for the contribution from Qle).

Hence, exploiting the strategy that was presented in section 4, a set of both fixed-scale and

Λ-dependent limits can be obtained for new coefficients involving a LFV connected to the

third generation. Similarly to what has been done already, such results are summarised in

tables 6–9. A final remark is required: as in eq. (4.8) the limits on Ceγ at the mZ scale
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τ → µγ

3-P Coefficient At fixed scale 4-P Coefficient At fixed scale

Cτµ
eγ 2.7 · 10−12 Λ2

[GeV]2
Cτeeµ
le 4.8 · 10−4 Λ2

[GeV]2

Cτµ
eZ (mZ) 1.5 · 10−9 Λ2

[GeV]2
Cτµµµ
le 2.3 · 10−6 Λ2

[GeV]2

C
(1)
ϕl 1.7 · 10−7 Λ2

[GeV]2
Cτττµ
le 1.4 · 10−7 Λ2

[GeV]2

C
(3)
ϕl 1.6 · 10−7 Λ2

[GeV]2

Cϕe 1.6 · 10−7 Λ2

[GeV]2

Cτµ
eϕ 1.9 · 10−6 Λ2

[GeV]2

Table 8. Limits on the Wilson coefficients contributing to the τ → µγ transition up to the one-loop

level.

τ → µγ

3-P Coefficient at Λ = 103 GeV at Λ = 104 GeV at Λ = 105 GeV

Cτµ
eγ 3.0 · 10−6 3.1 · 10−4 3.2 · 10−2

Cτµ
eZ 2.8 · 10−4 1.5 · 10−2 ∼ 1.1

C
(3)
τµtt 4.0 · 10−5 2.2 · 10−3 1.6 · 10−1

C
(1)
τµtt 2.1 · 10−2 5.9 · 10−1 n/a

C
(3)
τµcc 5.4 · 10−3 3.0 · 10−1 n/a

C
(1)
τµcc ∼ 2.8 n/a n/a

Table 9. Limits on the Wilson coefficients defined at the scale λ = Λ for three choices of Λ =

103, 104, 105 GeV.

are slightly different from the ones at the mτ scale presented in tables 6 and 8. In fact, the

limits evaluated at the electroweak scale read

√
|Cτe

eγ (mZ)|2 + |Ceτ
eγ (mZ)|2

2
≤ 1.7 · 10−12 Λ2

[GeV]2
, (C.6)

√
|Cτµ

eγ (mZ)|2 + |Cµτ
eγ (mZ)|2

2
≤ 2.0 · 10−12 Λ2

[GeV]2
. (C.7)

Applying the RG evolution and using eqs. (C.6) and (C.7), one can extract the values of

tables 7 and 9.
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