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Abstract: The Teukolsky master equation and its associated spin-weighted spheroidal

harmonic decomposition simplify considerably the study of linear gravitational perturba-

tions of the Kerr(-AdS) black hole. However, the formulation of the problem is not complete

before we assign the physically relevant boundary conditions. We find a set of two Robin

boundary conditions (BCs) that must be imposed on the Teukolsky master variables to

get perturbations that are asymptotically global AdS, i.e. that asymptotes to the Einstein

Static Universe. In the context of the AdS/CFT correspondence, these BCs allow a non-

zero expectation value for the CFT stress-energy tensor while keeping fixed the boundary

metric. When the rotation vanishes, we also find the gauge invariant differential map be-

tween the Teukolsky and the Kodama-Ishisbashi (Regge-Wheeler-Zerilli) formalisms. One

of our Robin BCs maps to the scalar sector and the other to the vector sector of the

Kodama-Ishisbashi decomposition. The Robin BCs on the Teukolsky variables will allow

for a quantitative study of instability timescales and quasinormal mode spectrum of the

Kerr-AdS black hole. As a warm-up for this programme, we use the Teukolsky formalism

to recover the quasinormal mode spectrum of global AdS-Schwarzschild, complementing

previous analysis in the literature.
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1 Introduction and summary

It is unquestionable that few systems are isolated in Nature and we can learn a lot from

studying their interactions. Black holes are no exception and the study of their perturba-

tions and interactions reveals their properties (see e.g. the recent roadmap [1] and review [2]

on the subject). The simplest deformation we can introduce in a background is a linear

perturbation, which often encodes interesting physics such as linear stability of the system

and its quasinormal mode spectrum. Moreover, it also anticipates some non-linear level

properties. For example, in the collision of two black holes, such as in the coalescence of

a binary system, after the inspiral and merger phase, the system undergoes a ring down

phase where gravitational wave emission is dictated by the quasinormal mode frequen-

cies. The linear perturbation fingerprints are therefore valuable from a theoretical and

gravitational-wave detection perspective [1, 2]. Perhaps more surprisingly, linear analysis

of black holes in AdS can be used to infer properties about their nonlinear stability [3–

5]. Linear analysis can also infer some properties of (nonlinear) black hole collisions and

associated gravitational wave emission in the close-limit approximation [6].
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To study linear gravitational perturbations of a black hole we need to solve the lin-

earized Einstein equation. À priori this is a remarkable task involving a coupled system of

PDEs. Fortunately, for the Kerr(-AdS) black holes (which are Petrov type D backgrounds),

Teukolsky employed the Newman-Penrose formalism to prove that all the gravitational per-

turbation information is encoded in two decoupled complex Weyl scalars [7, 8]. These are

gauge invariant quantities with the same number of degrees of freedom as the metric per-

turbation. Moreover, there is a single pair of decoupled master equations governing the

perturbations of these Weyl scalars (one element of the pair describes spin s = 2 and the

other s = −2 modes). In a mode by mode analysis, each master equation further separates

into a radial and angular equation which makes the analysis technically tractable [8–11].

(In the absence of rotation, and only in this case, we can instead use a similar pair of

decoupled master equations for a distinct pair of gauge invariant variables proposed by

Regge and Wheeler [12] and Zerilli [13], and later recovered and extended by Kodama

and Ishibashi [14]).

Solving these master equations is not our only task. Like in any PDE system, it is

also important to assign physically relevant boundary conditions. Without the later, the

formulation of the problem is not complete.

In this paper we are interested in linear gravitational perturbations of the Kerr-AdS

black hole, with a focus on its boundary conditions (BCs). The (extra) motivation to put

into a firmer basis the linear perturbation problem of the Kerr-AdS system is two-folded.

First, the Kerr-AdS black hole is known to have linear gravitational instabilities sourced by

superradiance [15]–[18] and by extremality [19]. Second, in the AdS/CFT duality context,

perturbing a (Kerr-AdS) black hole in the bulk is dual to perturbing the associated CFT

thermal state (with a chemical potential) living in bulk boundary. The time evolution of

the perturbed black hole maps into the time evolution of the thermal state fluctuations and

the quasinormal mode spectrum of the black hole is dual to the thermalization timescale

in the CFT (see e.g [20]–[23], [2]).

From the mathematical perspective, the boundary condition choice is arbitrary. We

need physical input to fix it. Not always but quite often, this leads to a unique choice. We

establish what are the BCs we need to impose in the Teukolsky master solutions to get

perturbations that are asymptotically global AdS. To make this statement precise, recall

that once we have the solution of the Teukolsky pair of master variables (s = ±2), we

can reconstruct the metric perturbations using the Hertz map [24]–[29]. We get a pair of

metric perturbations, one in the ingoing radiation gauge (IRG; s = −2) and the other in

the outgoing radiation gauge (ORG; s = 2). By asymptotically global AdS perturbations

we mean that we want the BCs in the Teukolsky scalars that yield metric perturbations

that decay at asymptotic infinity according to the power law found by Henneaux and

Teiltelboim [31, 32] (see e.g [33, 34] for a more recent discussion of AdS BCs). Our task

is thus very well defined. We have to work out the inverse Hertz map and find how the

Henneaux-Teiltelboim metric BCs translate into the Teukolsky scalars.

Before arguing further that this choice should be the physically relevant option, it is

illuminating to recall what is the situation in an asymptotically flat system. In this case,

the BC choice in the Teukolsky scalars amounts to choosing the purely outgoing traveling
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mode. Intuitively, this is because we are not interested in scattering experiments (where

an ingoing mode component would be present). Formally, this is because this is the choice

that yields a metric perturbation preserving the asymptotic flatness of the original Kerr

black hole, i.e. conserving asymptotically the Poincaré group of the Minkowski spacetime.

A similarly reasoning justifies why the Henneaux-Teiltelboim BCs should be the phys-

ically relevant boundary condition to be imposed in the Kerr-AdS system [32]. These are

the BCs that preserve asymptotically the global AdS symmetry group O(3, 2) and yield

finite surface integral charges associated with the O(3, 2) generators. Yet an additional

reason to single out this BC is justified by the AdS/CFT duality. The Kerr-AdS is asymp-

totically global AdS and the CFT lives on the boundary of this bulk spacetime. As desired

in this context, the Henneaux-Teiltelboim BCs are such that they allow for a non-zero ex-

pectation value for the CFT stress-energy tensor while keeping fixed the boundary metric.

This criterion to select the BCs of gauge invariant variables was first emphasized in the

context of the Kodama-Ishibashi (KI) formalism [14] by Michalogiorgakis and Pufu [35].

They pointed out that previous analysis of quasinormal modes of the 4-dimensional global

AdS-Schwarzschild black hole using the KI master equations were preserving the boundary

metric only in the KI vector sector, but not in the KI scalar sector of perturbations (here,

vector/sector refer to the standard KI classification of perturbations). Indeed, previous

studies in the literature had been imposing Dirichlet BCs on the KI gauge invariant vari-

ables. It turns out that in the KI scalar sector keeping the boundary metric fixed requires a

Robin BC (which relates the field with its derivate) [35]. Still in the context of AdS/CFT on

a sphere, other boundary conditions that might be called asymptotically globally AdS (and

that promote the boundary graviton to a dynamical field) were proposed in [36]. However,

they turn out to lead to ghosts (modes with negative kinetic energy) and thus make the

energy unbounded below [37]. So, the Henneaux-Teiltelboim BCs are also the physically

relevant BCs for the AdS/CFT where the CFT lives in the Einstein Static Universe.

So, a global AdS geometry with Henneaux-Teitelboim BCs does not deform the bound-

ary metric. This is the mathematical statement materializing the pictoric idea that a global

AdS background behaves like a confining box with a reflecting wall. An interesting obser-

vation that emerges from our study is that these BCs require that we consider a particular

linear combination of the Teukolsky IRG and ORG metric contributions. We can interpret

this property as being a manifestation of the common lore that only a standing wave with

a node at the AdS boundary can fit inside the confining box. This pictorial notion of a

standing wave and node is very appealing but, what is the formal definition of a node in the

present context? Does it mean that we have to impose a Dirichlet BC on the Teukolsky

scalars? No. Instead we will find the Robin BC (3.9)–(3.12), much like what happens

in the scalar sector of the aforementioned 4-dimensional KI system. An inspection of this

Robin BC (pair) immediately convinces us that we hardly could guess it without the actual

computation. Robin boundary conditions have recently been shown to lead to a well posed

problem for general linear equations in arbitrary asymptotically AdS backgrounds [38, 39].

At first sight the fact the asymptotically global AdS BC requires a sum of the Teukol-

sky IRG and ORG metric components is rather surprising and, even worrying. Surprising

because in the asymptotically flat case we just need to use the outgoing contribution. Even-
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tually worrying because it is known that in Petrov type D backgrounds the two Teukol-

sky families of perturbations (s = ±2) encode the same information, once we use the

Starobinsky-Teukolsky identities [9, 10, 40–42] that fix the relative normalization between

the s = ±2 Weyl scalars perturbations. Our result is however not in contradiction with

this property. Indeed, the previous statement implies that the most general solution of the

s = ±2 master equations contain the same information but says nothing about the BCs.

This just highlights that the differential equations and the BCs are two distinct aspects of

the problem, which is not a surprise. Once we find our BCs, in practical applications, we

just need to study the s = 2 (say) Teukolsky sector of perturbations. We believe that an

infinitesimal rotation of the tetrad basis should allow to derive our results using only the

outgoing gauge (say), although at the cost of loosing contact with the standing wave picture.

We have already mentioned that perturbations for static backgrounds (with global

AdS and global AdS-Schwarzschild being the relevant geometries here) can be studied

using the Kodama-Ishibashi (KI) gauge invariant formalism [14] (i.e. the Regge-Wheeler-

Zerilli formalism [12, 13]). On the other hand, the Teukolsky formalism also describes these

cases when rotation is absent. Therefore, the two formalisms must be related in spite of

their differences, although this one-to-one map has not been worked out to date. We fill

this gap in the literature. The difference that stands out the most is that the KI formalism

decomposes the gravitational perturbations in scalar and vector spherical harmonics while

the Teukolsky formalism uses instead a harmonic decomposition with respect to the spin-

weighted spherical harmonics. These harmonics are distinct and ultimately responsible

for the different routes taken by the two formalisms. However, both the KI spherical

harmonics and the spin-weighted spherical harmonics can be expressed in terms of the

standard scalar spherical harmonic (associated Legendre polynomials) and their derivatives.

These two maps establish the necessary bridge between the angular decomposition of the

two formalisms. We then need to work out the radial map, which follows from the fact

that the metric perturbations of the two formalisms must be the same modulo gauge

transformations. This gauge invariant differential map expresses the KI master variables

(for the KI scalar and vector sector) in terms of the s = 2 (say) Teukolsky master field

and its first radial derivative and is given in (4.15)–(4.16). To have the complete map

between the KI and Teukolsky (a = 0) formalisms we also need to discuss the relation

between the asymptotically global AdS KI BCs and the global AdS Teukolsky BCs. This

is done in (4.18)–(4.22). The fact that our BCs for the Teukolsky variables match the

Michalogiorgakis-Pufu BCs for the KI variables is a non-trivial check of our computation

in the limit a → 0. Yet this exercise reveals to be more profitable. Indeed, an interesting

outcome is that there is a Teukolsky solution/BC that maps to a KI scalar mode/BC and a

second one that maps to a KI vector mode/BC. This is the simplest possible map between

the two formalisms that could have been predicted, yet still a surprise.

With our asymptotically global AdS boundary conditions, the Kerr-AdS linear pertur-

bation problem is completely formulated and ready to be applied to problems of physical

interest. These include finding the quasinormal mode spectrum of Kerr-AdS and the dual

CFT thermalization timescales and studying quantitatively the superradiant instability

timescale of the solution. This programme is already undergoing and will be presented
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elsewhere [45]. Neverthless, as a first application, we can recover the quasinormal mode

spectrum of the global AdS-Schwarzschild this time using the Teukolsky approach. As it

could not be otherwise, we recover the previous results in the literature both for the KI

vector sector (firstly studied in [43, 44, 46]) and for the KI scalar sector first obtained

in [35].1 Our results and presentation contribute to complement these analysis by plotting

the spectrum as a function of the horizon radius, and not just a few points of the spectrum.

Our analysis focus on the parameter space region of r+/L (the horizon radius in AdS units)

where the spectrum meets the normal modes of AdS and where it varies the most. We

will not discuss the asymptotic (for large overtone [46]–[49] and for large harmonic [5])

behaviour of the QN mode spectrum.

The plan of this paper is the following. Section 2 discusses the Kerr-AdS black hole

in the Chambers-Moss coordinate frame [51] (instead of the original Carter frame [50])

that simplifies considerably our future discussion of the results. We discuss the Teukol-

sky formalism, the associated Starobinsky-Teukolsky identities and the Hertz map in

a self-contained exposition because they will be fundamental to derive our results.

In section 3 we find the BCs on the Teukolsky variables that yields asymptotically

global AdS perturbations. Section 4 constructs the gauge invariant differential map

between the Teukolsky and Kodama-Ishibashi (Regge-Wheeler-Zerilli) gauge invariant

formalisms. Finally, in section 5 we study the QNM spectrum/CFT timescales of the

global AdS(-Schwarzschild) background.

2 Gravitational perturbations of the Kerr-AdS black hole

2.1 Kerr-AdS black hole

The Kerr-AdS geometry was originally written by Carter in the Boyer-Lindquist coordinate

system {T, r, θ, φ} [50]. Here, following Chambers and Moss [51], we introduce the new time

and polar coordinates {t, χ} related to the Boyer-Lindquist coordinates {T, θ} by

t = ΞT , χ = a cos θ , (2.1)

where Ξ is to be defined in (2.3). In this coordinate system the Kerr-AdS black hole line

element reads [51]

ds2 = − ∆r

(r2 + χ2) Ξ2

(
dt− a2 − χ2

a
dφ

)2

+
∆χ

(r2 + χ2) Ξ2

(
dt− a2 + r2

a
dφ

)2

+

(
r2 + χ2

)
∆r

dr2 +

(
r2 + χ2

)
∆χ

dχ2 (2.2)

where

∆r =
(
a2 + r2

)(
1 +

r2

L2

)
−2Mr , ∆χ =

(
a2 − χ2

)(
1− χ2

L2

)
, Ξ = 1− a

2

L2
. (2.3)

1As noticed in [35] the analysis done in [43]–[49] in the KI scalar case does not impose asymptotically

global AdS BCs and thus we will not discuss further the scalar results of these studies.
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The Chambers-Moss coordinate system {t, r, χ, φ} has the nice property that the line el-

ement treats the radial r and polar χ coordinates at an almost similar footing. One

anticipates that this property will naturally extend to the radial and angular equations

that describe gravitational perturbations in the Kerr-AdS background. In this frame, the

horizon angular velocity and temperature are given by

ΩH =
a

r2
+ + a2

, TH =
1

Ξ

[
r+

2π

(
1 +

r2
+

L2

)
1

r2
+ + a2

− 1

4πr+

(
1−

r2
+

L2

)]
. (2.4)

The Kerr-AdS black hole obeys Rµν = −3L−2gµν , and asymptotically approaches

global AdS space with radius of curvature L. This asymptotic structure is not manifest

in (2.2), one of the reasons being that the coordinate frame {t, r, χ, φ} rotates at infinity

with angular velocity Ω∞ = −a/(L2Ξ). However, if we introduce the coordinate change

T =
t

Ξ
, Φ = φ+

a

L2

t

Ξ
,

R =

√
L2 (a2 + r2)− (L2 + r2)χ2

L
√

Ξ
, cos Θ =

L
√

Ξ r χ

a
√
L2 (a2 + r2)− (L2 + r2)χ2

, (2.5)

we find that as r →∞ (i.e. R→∞), the Kerr-AdS geometry (2.2) reduces to

ds2
AdS = −

(
1 +

R2

L2

)
dT 2 +

dR2

1 + R2

L2

+R2
(
dΘ2 + sin2 Θ dΦ2

)
, (2.6)

that we recognize as the line element of global AdS. In other words, the conformal boundary

of the bulk spacetime is the static Einstein universe Rt×S2: ds2
bdry = limR→∞

L2

R2 ds
2
AdS =

−dT 2 + dΘ2 + sin2 Θ dΦ2. This is the boundary metric where the CFT lives in the context

of the AdS4/CFT3 correspondence.

The ADM mass and angular momentum of the black hole are related to the massM and

rotation a parameters through MADM = M/Ξ2 and JADM = Ma/Ξ2, respectively [53, 54].

The horizon angular velocity and temperature that are relevant for the thermodynamic

analysis are the ones measured with respect to the non-rotating frame at infinity [53, 54]

and given in terms of (2.4) by Th = ΞTH and Ωh = Ξ ΩH + a
L2 . The event horizon is

located at r = r+ (the largest real root of ∆r), and it is a Killing horizon generated by the

Killing vector K = ∂T +Ωh∂Φ. Further properties of the Kerr-AdS spacetime are discussed

in appendix A of [52].

2.2 Teukolsky master equations

The Kerr-AdS geometry is a Petrov type D background and therefore perturbations of this

geometry can be studied using the Teukolsky formalism, which uses the Newman-Penrose

(NP) framework [7, 8, 11].

The building blocks of this formalism are:

• the NP null tetrad ea = {`,n,m,m} (the bar demotes complex conjugation) obeying

the normalization conditions ` · n=−1, m ·m=1;

• the NP spin connection γcab = e µ
b e

ν
c ∇µea ν (with γcab =−γacb );

– 6 –
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• the associated NP spin coeficients defined in terms of γcab as

κ =−γ311, λ = γ424, ν = γ422, σ =− γ313, α = 1
2(γ124−γ344), β = 1

2(γ433−γ213),

µ = γ423, ρ =− γ314, π = γ421, τ =−γ312, γ = 1
2(γ122−γ342), ε = 1

2(γ431−γ211);

(2.7)

• the five complex Weyl scalars (Cabcd are the Weyl tensor components in the NP

null basis)

Ψ0 = C1313 , Ψ1 = C1213 , Ψ2 = C1342 , Ψ3 = C1242 , Ψ4 = C2424 ; (2.8)

• and the NP directional derivative operators D = `µ∂µ, ∆ = nµ∂µ, δ = mµ∂µ, δ̄ =

mµ∂µ . The complex conjugate of any complex NP quantity can be obtain through

the replacement 3↔ 4.

The Kerr-AdS background is a Petrov type D spacetime since all Weyl scalars, except

Ψ2, vanish: Ψ0 = Ψ1 = Ψ3 = Ψ4 = 0 and Ψ2 = −M(r− iχ)−3. Due to the Goldberg-Sachs

theorem this further implies that κ = λ = ν = σ = 0 . In addition, we might want to set

ε = 0 by choosing ` to be tangent to an affinely parametrized null geodesic `µ∇µ`ν = 0.

This was the original choice of Teukolsky and Press (when studing perturbations of the

Kerr black hole) who used the the outgoing (ingoing) Kinnersly tetrad that is regular in the

past (future) horizon [42]. In the Kerr-AdS case we can work with the natural extension of

Kinnersly’s tetrad to AdS, and this was the choice made in [55]. However, here we choose

to work with the Chambers-Moss null tetrad defined as [51],

`µ∂µ =
1

√
2
√
r2 + χ2

(
Ξ
a2 + r2

√
∆r

∂t +
√

∆r ∂r +
aΞ√
∆r

∂φ

)
,

nµ∂µ =
1

√
2
√
r2 + χ2

(
Ξ
a2 + r2

√
∆r

∂t −
√

∆r ∂r +
aΞ√
∆r

∂φ

)
,

mµ∂µ = − i
√

2
√
r2 + χ2

(
Ξ
a2 − χ2√

∆χ

∂t + i
√

∆χ ∂χ +
aΞ√
∆χ

∂φ

)
, (2.9)

which is not affinely parametrized (ε 6= 0). The motivation for this choice is two-folded.

First, the technical analysis of the angular part of the perturbation equations and solutions

will be much simpler because this Chambers-Moss tetrad explores the almost equal footing

treatment of the r, χ coordinates much more efficiently than Kinnersly’s tetrad. Second,

to complete our analysis later on we will have to discuss how the metric perturbations

hab (built out of the NP perturbed scalars) transform both under infinitesimal coordinate

transformations and infinitesimal change of basis. It turns out that if we work in the

Chambers-Moss tetrad, the results will be achieved without requiring a change of basis,

while the Kinnersly’s option would demand it. Again, this simplifies our exposition.

Teukolsky’s treatment applies to arbitrary spin s perturbations. Here, we are interested

in gravitational perturbations so we restrict our discussion to the s = ±2 spins. Let

us denote the unperturbed NP Weyl scalars by Ψi and their perturbations by δΨi with

– 7 –
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i = 1, · · · , 5. The important quantities for our discussion are the scalars δΨ0 and δΨ4. They

are invariant both under infinitesimal coordinate transformations and under infinitesimal

changes of the NP basis. A remarkable property of the Kerr-AdS geometry is that all

information on the most general2 linear perturbation of the system is encoded in these

gauge invariant variables δΨ0 and δΨ4. That is, the perturbation of the leftover NP

variables can be recovered once δΨ0 and δΨ4 are known. The later are the solutions of the

Teukolsky master equations.

For s = 2 perturbations the Teukolsky equation is{
[D − 3ε+ ε̄− 4ρ− ρ̄] (∆ + µ− 4γ)

− [δ + π̄ − ᾱ− 3β − 4τ ]
(
δ̄ + π − 4α

)
− 3Ψ2

}
δΨ0 = 4πT0 , if s = 2, (2.10)

while s = −2 perturbations are described by the Teukolsky equation{
[∆ + 3γ − γ̄ + 4µ+ µ̄] (D + 4ε− ρ)

−
[
δ̄ − τ̄ + β̄ + 3α+ 4π

]
(δ − τ + 4β)− 3Ψ2

}
δΨ4 = 4πT4 , if s = −2. (2.11)

The explicit form of the source terms T(s±), that vanish in our analysis, can be found in [8].

Next we introduce the separation ansatz{
δΨ4 = (r − iχ)−2 e−iωt eimφR

(−2)
ω`m (r)S

(−2)
ω`m (χ) , for s = −2 ,

δΨ0 = (r − iχ)−2 e−iωt eimφR
(2)
ω`m(r)S

(2)
ω`m(χ) , for s = 2 .

(2.12)

Also, define the radial {Dn,D†n} and angular {Ln,L†n} differential operators

Dn = ∂r + i
Kr

∆r
+ n

∆′r
∆r

, D†n = ∂r − i
Kr

∆r
+ n

∆′r
∆r

Ln = ∂χ +
Kχ

∆χ
+ n

∆′χ
∆χ

, L†n = ∂χ −
Kχ

∆χ
+ n

∆′χ
∆χ

, (2.13)

where the prime ′ represents derivative w.r.t. the argument and

Kr = Ξ
[
ma− ω

(
a2 + r2

)]
, Kχ = Ξ

[
ma− ω

(
a2 − χ2

)]
. (2.14)

With the ansatz (2.12), the Teukosky master equations separate into a pair of equations

for the radial R
(s)
ω`m(r) and angular S

(s)
ω`m(χ) functions,

(
D†−1∆rD1 + 6

(
r2

L2 − iΞω r
)
− λ
)
R

(−2)
ω`m (r) = 0 ,(

L†−1∆χL1 + 6
(
χ2

L2 + Ξω χ
)

+ λ
)
S

(−2)
ω`m (χ) = 0 , for s = −2 ,

(2.15)


(
D−1∆rD†1 + 6

(
r2

L2 + iΞω r
)
− λ
)
R

(2)
ω`m(r) = 0 ,(

L−1∆χL†1 + 6
(
χ2

L2 − Ξω χ
)

+ λ
)
S

(2)
ω`m(χ) = 0 , for s = 2 ,

(2.16)

2Excluding the exceptional perturbations that simply change the mass or angular momentum of the

background [60]. The Teukolsky formalism does not address these modes. See appendix A for a detailed

discussion.
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where we introduced the separation constant

λ ≡ λ(2)
ω`m = λ

(−2)
ω`m . (2.17)

Some important observations are in order:

• First note that the radial operators obey D†n = (Dn)∗ (where ∗ denotes complex

conjugation) while the angular operators satisfy L†n(χ) = −Ln(−χ).

• Consequently, the radial equation for R
(−2)
ω`m is the complex conjugate of the radial

equation for R
(2)
ω`m, but the angular solutions S

(±2)
ω`m are instead related by the symme-

try S
(2)
ω`m(χ) = S

(−2)
ω`m (−χ). The later statement implies that the separation constants

are such that λ
(−2)
ω`m = λ

(2)
ω`m ≡ λ.

• The eigenfunctions S
(s)
ω`m(χ) are spin-weighted AdS spheroidal harmonics, with pos-

itive integer ` specifying the number of zeros, `−max{|m|, |s|} (so the smallest ` is

` = |s| = 2). The associated eigenvalues λ can be computed numerically. They are a

function of ω, `,m and regularity imposes the constraints that −` ≤ m ≤ ` must be

an integer and ` ≥ |s|.

• We have the freedom to choose the normalization of the angular eigenfunctions. A

natural choice is ∫ 1

−1

(
S

(s)
ω`m

)2
dχ = 1 . (2.18)

2.3 Starobinsky-Teukolsky identities

Suppose we solve the radial and angular equations (2.16), (2.15) for the spin s = ±2. These

solutions for R
(s)
ω`m and S

(s)
ω`m(χ), when inserted in (2.12), are not enough to fully determine

the NP gauge invariant Weyl scalars δΨ0, δΨ4. The reason being that the relative nor-

malization between δΨ0 and δΨ4 remains undetermined, and thus our linear perturbation

problem is yet not solved [9, 10, 42]. Given the natural normalization (2.18) chosen for

the weighted spheroidal harmonics, the completion of the solution for δΨ0, δΨ4 requires

that we fix the relative normalization between the radial functions R
(+2)
ω`m and R

(−2)
ω`m . This

is what the Starobinsky-Teukolsky (ST) identities acomplish [9, 10, 40–42]. A detailed

analysis of these identities for the Kerr black hole is available in the above original papers

or in the seminal textbook of Chandrasekhar [11]. Here, we present these identities for the

Kerr-AdS black hole.

Act with the operator D†−1∆rD†0D
†
0∆rD†1 on the Teukolsky equation (2.16) for R

(2)
ω`m

and use the equation of motion for R
(−2)
ω`m . This yields one of the radial ST identities.

Similarly, to get the second, act with the operator D−1∆rD0D0∆rD1 on the Teukolsky

equation (2.15) for R
(−2)
ω`m , and make use of the equation obeyed by R

(−2)
ω`m . These radial ST

identities for the Kerr-AdS background relate R
(2)
ω`m to R

(−2)
ω`m ,{

D†−1∆rD†0D
†
0∆rD†1R

(2)
ω`m = CstR

(−2)
ω`m ,

D−1∆rD0D0∆rD1R
(−2)
ω`m = C∗stR

(2)
ω`m ,

(2.19)
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where we have chosen the radial ST constants {Cst, C∗st} to be related by complex con-

jugation. This is possible because, as noted before, the R
(±2)
ω`m solutions are related by

complex conjugation.

To get the angular ST identities, act with the operator L†−1∆µL†0L
†
0∆µL†1 on the

Teukolsky equation (2.16) for S
(2)
ω`m (and use the equation of motion for S

(−2)
ω`m ), and act

with L−1∆µL0L0∆µL1 on the equation (2.15) for S
(−2)
ω`m (and use the equation for S

(−2)
ω`m ).

This yields the pair of ST identities,{
L†−1∆µL†0L

†
0∆µL†1S

(2)
ω`m = KstS

(−2)
ω`m ,

L−1∆µL0L0∆µL1S
(−2)
ω`m = KstS

(2)
ω`m .

(2.20)

Since the equations for S
(±2)
ω`m are related by the symmetry χ → −χ, the ST constant Kst

on the r.h.s. of these ST identities is real. Moreover, because S
(±2)
ω`m are both normalized to

unity − see (2.18) − the ST constant is the same in both angular ST identities.

To determine |Cst|2 we act with the operator of the l.h.s. of the first equation of (2.19)

on the second equation and evaluate explicitly the resulting 8th order differential operator.

A similar operation on equations (2.20) fixes K2
st. We find that

|Cst|2 = K2
st + 144M2ω2Ξ2 , (2.21)

K2
st = λ2 (λ+ 2)2 + 8λΞ2aω [(6 + 5λ) (m− aω) + 12aω] + 144Ξ4a2ω2(m− aω)2

+
4a2

L2

[
λ (λ+ 2) (λ−6) + 12Ξ2(m− aω) [2mλ− aω (λ−6)]

]
+

4a4 (λ−6)2

L4
. (2.22)

This fixes completely the real constant Kst (we choose the positive sign when taking the

square root of K2
st to get, when a → 0, the known relation between the s = ±2 spin-

weighted spherical harmonics) but not the complex constant Cst. However, we emphasize

that to find the asymptotically global AdS boundary conditions in next section, we do not

need to know Cst, just Kst. Moreover, we do not need the explicit expression for Cst to

construct the map between the Kodama-Ishibashi and the a = 0 Teukolsky formalisms

of section 4.

Neverthless we can say a bit more about the phase of Cst. Recall that in the Kerr case,

finding the real and imaginary parts of Cst requires a respectful computational effort which

was undertaken by Chandrasekhar [10] (also reviewed in sections 82 to 95 of chapter 9 of

the textbook [11]). À priori we would need to repeat the computations of [10], this time

in the AdS background, to find the phase of Cst in the Kerr-AdS background (which was

never done to date). However, if we had to guess it we would take the natural assumption

that Cst is given by the solution of (2.21) that reduces to the asymptotically flat partner

of [10] when L→∞,

Cst = C1 + i C2 with C1 = Kst , C2 = −12MωΞ. (2.23)

However, we emphasize again that this expression must be read with some grain of salt

and needs a derivation along the lines of [10] to be fully confirmed.

Having fixed the ST constants we have specified the relative normalization between

the Teukolsky variables δΨ0 and δΨ4. We ask the reader to see appendix A for a further

discussion of this issue.
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2.4 Metric perturbations: the Hertz potentials

In the previous subsections we found the solutions of the Teukolsky master equations for

the gauge invariant Weyl scalars of the Newman-Penrose formalism. We will however need

to know the perturbations of the metric components, hµν = δgµν . These are provided by

the Hertz map, hµν = hµν(ψH), which reconstructs the perturbations of the metric tensor

from the associated scalar Hertz potentials ψH (in a given gauge) [24]–[29]. The later are

themselves closely related to the NP Weyl scalar perturbations δΨ0 and δΨ4.

In the Kerr-AdS background, the Hertz potentials are defined by the master equations

they obey to, namely,[
(∆+3γ − γ + µ)(D+4ε+3ρ)− (δ + β + 3α− τ)(δ+4β+3τ)−3Ψ2

]
ψ

(−2)
H = 0 , (2.24a)[

(D−3ε+ε− ρ)(∆−4γ−3µ)− (δ−3β−α+ π)(δ−4α−3π)− 3Ψ2

]
ψ

(2)
H = 0 . (2.24b)

Introducing the ansatz for the Hertz potential

ψ
(s)
H =

{
e−iωteimφ(r − iχ)2R

(−2)
ω`m (r)S

(−2)
ω`m (χ) , s = −2 ,

e−iωteimφ(r − iχ)2R
(2)
ω`m(r)S

(2)
ω`m(χ) , s = 2 ,

(2.25)

into (2.24) (in the Kerr-AdS background), we find that R
(s)
ω`m and S

(s)
ω`m are exactly the

solutions of the radial and angular equations (2.15) and (2.16). This fixes the precise map

between the Hertz potentials and the NP Weyl scalar perturbations.

The Hertz map is such that the Hertz potentials ψ
(−2)
H and ψ

(2)
H generate the metric

perturbations in two different gauges, namely the ingoing (IRG) and the outgoing (ORG)

radiation gauge, defined by

IRG : `µhµν = 0, gµνhµν = 0 , ORG : nµhµν = 0, gµνhµν = 0 . (2.26)

The Hertz map is finally given by3

hIRG
µν =

{
`(µmν)

[
(D+3ε+ε̄−ρ+ρ̄) (δ+4β+3τ)+(δ+3β−ᾱ−τ−π̄) (D+4ε+3ρ)

]
−̀ µ`ν (δ+3β+ᾱ−τ) (δ+4β+3τ)−mµmν (D+3ε−ε̄−ρ) (D+4ε+3ρ)

}
ψ

(−2)
H

+c.c. , (2.27)

hORG
µν =

{
n(νmµ)

[(
δ̄+β̄−3α+τ̄+π

)
(∆−4γ−3µ)+(∆−3γ−γ̄+µ−µ̄)

(
δ̄−4α−3π

)]
−nµnν

(
δ̄−β̄−3α+π

) (
δ̄−4α−3π

)
−mµmν (∆−3γ+γ̄+µ) (∆−4γ−3µ)

}
ψ

(2)
H

+c.c. . (2.28)

We have explicitly checked that (2.27) and (2.28) satisfy the linearized Einstein equation

(see also footnote 3).

It is important to emphasize that the Hertz map provides the most general metric per-

turbation with ` ≥ 2 of the Kerr-AdS black hole [8–10, 27]. We defer a detailed discussion

of this observation to appendix A.

3Note that (2.28), whose explicit derivation can be found in an appendix of [29], corrects some typos in

the map first presented in [25].
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3 Boundary conditions for global AdS perturbations of Kerr-AdS

We start this section with a brief recap of the Teukolsky system which emphasizes some of

its properties that are essential to discuss the asymptotic boundary conditions.

The gravitational Teukolsky equations are described by a set of two families of equa-

tions, one for spin s = 2 and the other for s = −2. In Petrov type D backgrounds, these

two families encode the same information, once we use the Starobinsky-Teukolsky identities

that fix the relative normalization between both spin-weighted spheroidal harmonics S
(s)
ω`m

and between both radial functions R
(s)
ω`m. Indeed, modulo the ST relative normalization,

the two radial functions are simply the complex conjugate of each other, and the two an-

gular functions are related by S
(2)
ω`m(χ) = S

(−2)
ω`m (−χ). This is a consequence of the fact that

the Teukolsky operator acting on δΨ0 is the adjoint of the one acting on δΨ4.

The upshot of these observations, with relevance for practical applications, is that the

Teukosky system in Petrov type D geometries is such that we just need to analyze the

s = 2 sector (for example) to find all the information, except BCs, on the gravitational

perturbations (excluding modes that just shift the mass and angular momentum). In

other words, given R
(2)
ω`m, S

(2)
ω`m and the ST constants we can reconstruct all the s = −2

Teukolsky quantities.

Were we discussing perturbations of the asymptotically flat Kerr black hole and this

section on the boundary conditions would end with the following single last observation.

Being a second order differential system, the gravitational field has two independent asymp-

totic solutions, namely, the ingoing and outgoing traveling modes. Since we are not in-

terested in scattering experiments, the BC (that preserves asymptotic flatness) would be

fixed by selecting the purely outgoing BC. For practical purposes, we would definitely just

need to study the s = 2 Teukolsky system of equations.

The situation is far less trivial when we look into perturbations of Kerr-AdS. This

time the second order differential system has two independent asymptotic solutions that

are power laws of the radial variable. The BC to be chosen selects the relative normalization

between these two solutions. What is the criterion to make this choice? This will be made

precise in the next subsection. Before such a formal analysis we can however describe it at

the heuristic level. Basically we want the perturbed background to preserve the asymptotic

global AdS character of the Kerr-AdS background. Global AdS asymptotic structure means

that the system behaves as a confining box were the only allowed perturbations are those

described by standing waves. Standing waves on the other hand can be decomposed as a

fine-tuned sum of IRG and ORG modes such that we have a node at the asymptotic AdS

wall. With this brief argument we conclude that to find the asymptotic global AdS BC

we necessarily need to use the information on both the IRG and ORG Teukolsky metric

perturbations, i.e. the BC discussion will require using information on both spins. Once we

find it, it is still true that the spin s = 2 sector of the Teukolsky system encodes the same

information as the s = −2 one, and we will be able to study the properties of perturbations

in Kerr-AdS using only the s = 2 sector (say). (Note that an infinitesimal rotation of the

tetrad basis should allow to derive our results using only the ORG, say).

So we take the most general gravitational perturbation of the Kerr-AdS black hole to

be given by the sum of the ingoing and outgoing radiation gauge contributions as written
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in (2.27) and (2.28). (By diffeomorphism invariance, this solution can be written in any

other gauge through a gauge transformation). The physically relevant perturbations

are those that are regular at the horizon and asymptotically global AdS. In this section

we find one of our most fundamental results, namely the BCs we need to impose on

our perturbations.

3.1 Definition of asymptotically global AdS perturbations

When considering linear perturbations of a background we have in mind two key proper-

ties: the perturbations should keep the spacetime regular and they should be as generic

as possible, but without being so violent that they would destroy the asymptotic struc-

ture of the background. To make this statement quantitative, in the familiar case of an

asymptotically Minkowski background, the appropriate boundary condition follows from

the requirement that the perturbations preserve asymptotically the Poincaré group of the

Minkowski spacetime [30].

For the AdS case, Boucher, Gibbons, and Horowitz [31] and Henneaux and Teiltel-

boim [32] have defined precisely what are the asymptotic BC we should impose to get

perturbations that approach at large spacelike distances the global AdS spacetime (see

e.g [33, 34] for a more recent discussion of AdS BCs). The main guideline is that perturba-

tions in a global AdS background must preserve asymptotically the global AdS symmetry

group O(3, 2), much like perturbations in a flat background must preserve asymptotically

the Poincaré group of the Minkowski spacetime. More concretely, asymptotically global

AdS spacetimes are defined by BCs on the gravitational field which obey the following

three requirements [32]:

(1) they should contain the asymptotic decay of the Kerr-AdS metric;

(2) they should be invariant under the global AdS symmetry group O(3, 2);

(3) they should make finite the surface integral charges associated with the O(3, 2)

generators.

If we work in the coordinate system {T,R,Θ,Φ}, where the line element of global AdS

is given by (2.6), the metric perturbations that obey the above BCs behave asymptoti-

cally as [32]:

hTµ =
1

R
FTµ(T,Θ,Φ) +O

(
R−2

)
, for µ = T,Θ,Φ , (3.1a)

hTR =
1

R4
FTR(T,Θ,Φ) +O

(
R−5

)
, (3.1b)

hRR =
1

R5
FRR(T,Θ,Φ) +O

(
R−6

)
, (3.1c)

hRµ =
1

R4
FRµ(T,Θ,Φ) +O

(
R−5

)
, for µ = Θ,Φ , (3.1d)

hµν =
1

R
Fµν(T,Θ,Φ) +O

(
R−2

)
, for µ, ν = Θ,Φ , (3.1e)

where Fµν(T,Θ,Φ) are functions of {T,Θ,Φ} only.
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These BCs are defined with respect to a particular coordinate system. Consider a

generic infinitesimal coordinate transformation xµ → xµ + ξµ, where ξ is an arbitrary

gauge vector field. Under this gauge transformation the metric perturbation transforms

according to

hµν → hµν − 2∇(µξν) , (3.2)

which we can use to translate the BCs (3.1) in the {T,R,Θ,Φ} frame into any other

coordinate system, so long as ξ decays sufficiently fast at infinity.

3.2 Boundary conditions for asymptotically global AdS perturbations

Modulo gauge transformations, the most general perturbation of linearized Einstein equa-

tions in the Kerr-AdS background can be written as

hµν = hIRG
µν + hORG

µν , (3.3)

where hIRG
µν and hORG

µν are determined by the Hertz maps (2.27) and (2.28), with the

Hertz potentials ψ
(±2)
H defined in (2.25) and the associated Teukolsky functions obeying

the equations of motion (2.16) and (2.15). Note that the relative normalization between

these two contributions is fixed by the Starobinsky-Teukolsky treatment.

Solving the radial Teukolsky equations (2.16) and (2.15) at infinity, using a standard

Frobenius analysis, we find that the two independent asymptotic decays for R
(±2)
ω`m are

R
(2)
ω`m

∣∣
r→∞ ∼ A

(2)
+

L

r
+A

(2)
−

L2

r2
+O

(
L3

r3

)
,

R
(−2)
ω`m

∣∣
r→∞ ∼ B

(−2)
+

L

r
+B

(−2)
−

L2

r2
+O

(
L3

r3

)
, (3.4)

where the amplitudes A
(s)
± ≡ {A

(2)
± , B

(−2)
± } are, at this point, independent arbitrary con-

stants. Our task is to find the BC we have to impose in order to get a perturbation hµν

that is asymptotically global AdS. That is, we must find the constraints, A
(s)
− = A

(s)
−
(
A

(s)
+

)
,

that these amplitudes have to obey to get the Henneaux-Teiltelboim decay (3.1). We will

find that the most tempting condition, where we set to zero the leading order term in the

expansion, A
(s)
+ = 0, is too naive and does not do the job. Note that it follows from (2.5)

that for large R, or r, one has R ∼ r
[
(L2 − χ2)/L2Ξ

]1/2
and cos Θ ∼ χ

[
L2Ξ/(L2 − χ2)

]1/2
.

Therefore, to get the asymptotically global AdS decay of hµν in the {t, r, χ, φ} coordinate

system we can simply replace {T,R,Θ,Φ} → {t, r, χ, φ} in (3.1).

In hIRG
µν , we can express S

(−2)
ω`m (χ) as a function of S

(2)
ω`m(χ) and its derivative using

the first Starobinsky-Teukolsky (ST) identity in (2.20) and the angular equation of mo-

tion (2.16). This eliminates S
(−2)
ω`m from (3.3). At this stage, we could also immediately

replace the ST constant Kst by its expression (2.22). Instead, we choose to keep it unspec-

ified until a later stage in our computation.

The explicit expression of hIRG
µν +hORG

µν when we introduce (3.4) into (2.27) and (2.28)

contains order r2 terms but no other higher power of r. Our first task is to use all the gauge

freedom (3.2) to eliminate, if possible, these O(r2) terms and all lower power law terms that
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are absent in the asymptotically global AdS decay (3.1). The gauge parameter compatible

with the background isometries is ξ = e−iωteimφξµ(r, χ)dxµ. A simple inspection of ∇(µξν)

concludes that the most general components of the gauge vector field, that can contribute

up to O(r2) terms, can be written as the power law expansion in r:

ξt =

n∑
j=0

ξ
(j)
t (χ)r2−j , ξr =

n∑
j=0

ξ(j)
r (χ)r−(1+j) ,

ξχ =

n∑
j=0

ξ(j)
χ (χ)r2−j , ξφ =

n∑
j=0

ξ
(j)
φ (χ)r2−j . (3.5)

Inserting this expansion and (3.4) into (3.3), we find that there is a judicious choice of

the functions ξ
(i)
µ (χ) such that we can eliminate most of the radial power law terms that

are absent in the several metric components of (3.1) (the expressions are long and not

illuminating). More concretely, we are able to gauge away all desired terms but the O(r2)

contribution in the components hχχ, hχφ and hφφ.

At this point, having used all the available diffeomorphism (3.2), we find ourselves at

a key stage of the analysis. To eliminate the undesired leftover O(r2) contributions we

will have to fix the BCs that the amplitudes introduced in (3.4) have to obey to guar-

antee that the perturbation is asymptotically global AdS. There are two conditions that

eliminate simultaneously the O(r2) terms in hχχ, hχφ and hφφ. One is the coefficient of

a term proportional to S
(2)
ω`m(χ), and the other is proportional to ∂χS

(2)
ω`m(χ).4 Clearly,

these two contributions have to vanish independently. We can use them to express, for

example, the amplitude B
(−2)
+ and the ST constant Kst in terms of the other amplitudes

B
(−2)
− , A

(2)
± , perturbation parameters ω,m, λ and the rotation background parameter a (the

mass parameter M is absent in these expressions):

0 =WB
(−2)
+ −B(−2)

− L

[
−4 amLΞ

(
2 i A

(2)
− +5LΞωA

(2)
+

)
+2a2

(
−6+λ+6L2Ξ2ω2

)
A

(2)
+

+λL2
(
2+λ−4L2Ξ2ω2

)
A

(2)
+ −8L3Ξω

(
iA

(2)
− +LΞωA

(2)
+

)(
1+

1

2
λ−L2Ξ2ω2

)]
,

(3.6)

Kst =−
B

(−2)
−
L3W

{
λ2(2+λ)2L6+8a λ(6+5λ)mL6Ξ2ω−144a3mL4Ξ2ω

(
−2+λ+2L2Ξ2ω2

)
+4a2L4

[
λ
[
−12+(−4+λ)λ+24m2

]
+2
[
(6−5λ)λ+18m2

]
L2Ξ2ω2

]
+4a4L2

[
36−12λ+λ2−48λm2+12

[
λ−6

(
1+m2

)]
L2Ξ2ω2+36L4Ξ4ω4

]
+ 48a6m2

(
2λ+ 3L2Ξ2ω2

)}
, (3.7)

4Note that in this computation we use the angular equation of motion (2.16) to get rid of second and

higher derivatives of S
(2)
ω`m.
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where we have defined

W ≡L3
[
λ(2+λ)A

(2)
− − 4(1+λ)LΞω

(
iλA

(2)
+ +2LΞωA

(2)
−

)
+4i(2+3λ)L3Ξ3ω3A

(2)
+

]
+8L7Ξ4ω4

(
A

(2)
− − i LΞωA

(2)
+

)
− 4 amL2Ξ

[
3 i λA

(2)
+ +LΞω

(
5A

(2)
− −8 i LΞωA

(2)
+

)]
+2a2L

[
2
(

2 i LΞωA
(2)
+ −A

(2)
−

) (
3 + λ− 3L2Ξ2ω2

)
+ 3λA

(2)
−

]
. (3.8)

At this stage we finally introduce the explicit expression for the angular Starobinski-

Teukolsky constant, namely, Kst is given by the positive square root of (2.22). In addition,

we also use the property that the radial R
(±2)
ω`m solutions are the complex conjugate of each

other. In these conditions we find that conditions (3.6)–(3.7) are obeyed if and only if

A
(2)
− = −i ηA(2)

+ , B
(−2)
− = i ηB

(−2)
+ , (3.9)

with two possible solutions for η, that we call ηs and ηv, for reasons that will become clear

in the next section. These define the BCs we look for. To sum up, the two possible BCs

on the Teukolsky amplitudes, defined in (3.4), that yield an asymptotically global AdS

perturbation, take the form (3.9) with

1) η = ηs =
Λ0 −

√
Λ1

Λ2
, or (3.10)

2) η = ηv =
Λ0 +

√
Λ1

Λ2
, (3.11)

where we have introduced

Λ0 ≡ 2a2(λ−6)− 8(λ+1)L4ω2Ξ2+8L6ω4Ξ4+L2
[
λ(λ+2)− 4 Ξ2aω [5(m− aω)+2aω]

]
,

Λ1 ≡ 4a4(λ−6)2+L4λ2(λ+2)2+48(λ+6)a3Ξ2L2ω(m−aω)+8λ(5λ+6)(m−aω)L4Ξ2aω

+4a2L2

[
λ
[
−12+(λ− 4)λ+24(m− aω)2Ξ2

]
+12Ξ2L2ω2

[
2λ+3(m− aω)2Ξ2

] ]
,

Λ2 ≡ 4LΞ
[
2am+L2ω

(
2+λ− 2L2ω2Ξ2

)]
. (3.12)

Note that the BCs do not depend on the mass parameter M of the background black hole

(neither does the ST constant Kst).

The metric of the Kerr-AdS black hole asymptotically approaches that of global AdS.

The boundary conditions (3.9)–(3.10) are the most fundamental result of our study: per-

turbations obeying these BCs are the ones that preserve the asymptotically global AdS

behavior of the background. These are also natural BCs in the context of the AdS/CFT

correspondence: they allow a non-zero expectation value for the CFT stress-energy tensor

while keeping fixed the boundary metric. The reader interested in different BCs that al-

low, e.g. for a dynamical boundary metric, can start from the respective asymptotic metric

decay that replaces (3.1) and work out the above procedure to get the associate BCs on

the Teukoslsky variables.
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3.3 Horizon boundary conditions

At the horizon, the BCs must be such that only ingoing modes are allowed.

A Frobenious analysis at the horizon gives the two independent solutions,

R
(s)
ω`m ∼ Ain (r − r+)

− s
2
−iω−mΩH

4πTH +Aout (r − r+)
s
2

+i
ω−mΩH

4πTH +O
(
(r − r+)2

)
, (3.13)

where Ain, Aout are arbitrary amplitudes and ΩH , TH are the angular velocity and tem-

perature defined in (2.4). The BC is determined by the requirement that the solution is

regular in ingoing Eddington-Finkelstein coordinates (appropriate to extend the analysis

through the horizon) and demanding regularity of the Teukolsky variable in this coordinate

system. This requires that we set Aout = 0 in (3.13):

R
(s)
ω`m

∣∣∣
r→r+

= Ain (r − r+)
− s

2
−iω−mΩH

4πTH +O
(
(r − r+)2

)
. (3.14)

4 Map between Teukolsky and Kodama-Ishibashi formalisms (a = 0)

In the previous section we found the boundary conditions we need to impose on the solution

of the Teukolsky master equation to get gravitational perturbations of the Kerr-AdS black

hole that preserve the asymptotically global AdS behavior of the background. The Kerr-

AdS family includes the global AdS-Schwarzchild black hole and the global AdS geometry

as special elements when we set, respectively, a = 0 and a = 0 = M . Thus, our BCs also

apply to perturbations of these static backgrounds.

On the other hand, perturbations of the global AdS(-Schwarzchild) backgrounds were

already studied in great detail in the literature using the Kodama-Ishibashi (KI) gauge

invariant formalism. In four dimensions, the KI formalism reduces exactly to the analysis

firstly done by Zerilli and Regge and Wheeler (in the L → ∞ case). Indeed, the KI

vector master equation is the Regge-Wheeler master equation for odd (also called axial)

perturbations [12], and the KI scalar master equation is the Zerilli master equation for

even (also called polar) perturbations [13].

Clearly, there must be a one-to-one map between the Kodama-Ishibashi and the

Teukolsky formalisms (when a = 0). This map was never worked out so we take the

opportunity to find it.5 Actually, this task will reveal to be quite fruitful since we will find

some remarkably simple connections.

Recall the main difference between the Kodama-Ishibashi and the Teukolsky for-

malisms. The former is well suited only for backgrounds that are locally the product

of a 2-dimensional orbit spacetime (parametrized by the time and radial coordinates) and

a base space K. If this is the case, we can do a harmonic decomposition of the perturba-

tions hab according to how they transform under coordinate transformations on K. This is

certainly the case of the global AdS(-Schwarzchild) backgrounds where the base space is a

sphere, K = S2, and we can introduce a spherical harmonic decomposition of gravitational

5For an earlier discussion of the relation between the Teukolsky and the Regge-Wheeler-Zerilli variables

in the asymptotically flat case see [56].
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perturbations. (Unfortunately, the Kerr-AdS geometry cannot be written as a local prod-

uct of two such spaces and the KI formalism does not apply to it). On the other hand,

the Teukolsky formalism uses a harmonic decomposition with respect to the spin-weighted

spherical harmonics S
(s)
ω`m.

These two harmonic decompositions are distinct and responsible for the differences be-

tween the Teukolsky and KI formalisms. We can however write uniquely the scalar/vector

KI harmonics in terms of standard scalar spherical harmonics (associated Legendre poly-

nomials), and there is another unique differential map that generates the spin-weighted

spherical harmonics also from standard spherical harmonics. This provides the necessary

bridge between the two formalisms that leads to their unique map. To appreciate this we

will discuss these harmonics in detail. Also, to make the KI discussion self-contained, we

will briefly review the KI formalism in the next subsection, before constructing the desired

map in subsection 4.2.

So far we have not discussed the role of the boundary conditions (BCs) in this map.

We found a set of two distinct BCs for the Teukolsky solution. Quite interestingly, we

will see that Teukolsky perturbations with BC (3.10) maps to the KI scalar modes while

Teukolsky perturbations with BC (3.11) generates the KI vector modes.

4.1 Kodama-Ishibashi gauge invariant formalism

In the Kodama-Ishibashi (KI) formalism [14], the most general perturbation of the global

AdS(-Schwarzchild) geometries is decomposed into a superposition of two classes of modes:

scalar and vector. Scalar and vector modes are expanded in terms of the scalar S(x, φ) and

vector Vj(x, φ) harmonics that we review next (x = cos θ; see (2.1)).

Scalar perturbations are given by [14]

hsab = fabS, hsai = rfaSi, hsij = 2r2 (HLγijS +HTSij) , (4.1)

where (a, b) are components in the orbit spacetime parametrized by {t, r}, (i, j) are legs

on the sphere, {fab, fa, HT , HL} are functions of (t, r), and S is the KI scalar harmonic,

Si = −λ−1/2
s DiS, Sij = λ−1

s DiDjS + 1
2γijS, γjk is the unit radius metric on S2 and Dj is

the associated covariant derivative. Assuming the ansatz S(x, φ) = eimφY m
`s

(x), the scalar

harmonic equation (4S2 + λs) S = 0 (4S2 = γjkDjDk) reduces to

∂x
[(

1− x2
)
∂xY

m
`s (x)

]
+

(
λs −

m2

1− x2

)
Y m
`s (x) = 0 . (4.2)

Its regular solutions, with normalization
∫ 2π

0 dφ
∫ 1
−1 dx |S|

2 = 1, are

S(x, φ) =

√
2`s + 1

4π

(`s −m)!

(`s +m)!
Pm`s (x) eimφ ≡ Y m

`s (x, φ) , (4.3)

with λs = `s (`s + 1) , `s = 0, 1, 2, · · · , |m| ≤ `s.

where Pm` (x) is the associated Legendre polynomial. Hence, the KI scalar harmonic S(x, φ)

is the standard scalar spherical harmonic Y m
`s

(x, φ).
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On the other hand, the KI vector perturbations are given by [14]

hvab = 0 , hvai = rhaVi, hvij = −2λ−1
v r2hTD(iVj) , (4.4)

where {ha, hT } are functions of (t, r) and the KI vector harmonics Vj are the solutions of

(4S2 + λv) Vj = 0 , DjV
j = 0 (Transverse condition). (4.5)

The regular vector harmonics can be written in terms of the spherical harmonic Y m
`v

(x, φ) as

Vj dx
j = − im

1− x2
Y m
`v (x, φ) dx+

(
1− x2

)
∂xY

m
`v (x, φ) dφ , (4.6)

with λv = `v (`v + 1)− 1, `v = 1, 2, · · · , |m| ≤ `v.

With this harmonic decomposition, the linearized Einstein equation reduces to a set

of two decoupled gauge invariant KI master equations for the KI master fields Φ
(j)
`j

which

can be written in a compact form as,(
�2 −

Uj
f

)
Φ

(j)
`j

(t, r) = 0 , where f = 1 +
r2

L2
− 2M

r
, and j = {s,v}, (4.7)

for scalar (s), and vector (v) perturbations. Here, �2 is the d’Alembertian operator in

the 2-dimensional orbit spacetime, and the expression for the potentials {Us, Uv} can be

found in equations (3.2)-(3.8) and (5.15) of KI [14], respectively. They depend on the

properties of the background, namely on the mass parameter M and cosmological length

L, and on the eigenvalues λs, λv of the associated (regular) vector, and scalar harmonics

defined above. Since the background is time-translation invariant, the fields can be further

Fourier decomposed in time as Φ
(j)
`j

(t, r) = e−iωjtΦ
(j)
ωj`j

(r).

We will need to express KI master fields in terms of the metric functions. Going

through [14], for ω 6= 0, one finds that the gauge invariant KI scalar master field is given by

Φ
(s)
ω`s

=
−ω r (ftt + 4fHL) + f2 (2iftr + ω rfrr)

ω f (λs − 2f + rf ′)
+

2i
[
rf2f ′t +

(
r2ω2 + f2 − rff ′

)
ft
]

√
λs ω f (λs − 2f + rf ′)

+
2r

λs f (λs−2f+rf ′)

[ [
r2ω2+2f2−f

(
λs+rf ′

)]
HT +rf

(
2f+rf ′

)
H ′T +r2f2H ′′T

]
+

2r2 (ff ′r + f ′fr)√
λs (λs − 2f + rf ′)

. (4.8)

On the other hand the gauge invariant KI vector master field is

Φ
(v)
ω`v

=
if√
λv ω

(√
λv hr + rh′T

)
. (4.9)

The KI master variables have the asymptotic expansion,

Φ
(j)
ωj`j

∣∣
z→0
∼ Φ0 + Φ1

L

r
+ · · · where j = {s,v} . (4.10)

The linear differential map h
(j)
ab = h

(j)
ab

(
Φ(j)

)
that reconstructs the metric perturbations

(in a given gauge) can be read from (4.1) and (4.8) (scalar case) and from (4.4) and (4.9)
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(vector case), if we follow [14]. The requirement that these metric perturbations are asymp-

totically global AdS in the sense described in section 3 imposes the conditions [4, 35]:

Scalar BC: Φ1 = − 6M

λs − 2
Φ0, (4.11)

Vector BC: Φ0 = 0 . (4.12)

We can of course consider different asymptotic BCs. For example, past studies on

(quasi)normal modes have considered the BC Φ0 = 0 for scalar modes, instead of (4.11).

However, these BCs are not asymptotically global AdS, i.e. they do not preserve the

boundary metric, as first observed in [35]. We thus we do not consider them. Other BCs

that might be called asymptotically globally AdS were studied in [36], but turn out to

lead to ghosts (modes with negative kinetic energy) and thus make the energy unbounded

below [37].

4.2 Teukolsky vs Kodama-Ishibashi (Regge-Wheeler-Zerilli)

Equations (4.3) and (4.6) express the KI scalar S(x, φ) and vector V(x, φ) harmonics as

a function of the scalar spherical harmonic Y m
` (x, φ) defined in (4.3). The spin-wheighted

spherical harmonics S
(s)
`m(x, φ) used in the Teukolsky harmonic decomposition are also re-

lated to the scalar spherical harmonic Y m
` (x, φ) through the differential map [57, 58]

S
(−2)
`m (x, φ)=S

(2)
`m(−x, φ) ;

S
(2)
`m(x, φ)=

√
(`−2)!

(`+2)!

√
(`+1)!

(`−1)!

[(
1−x2

)
∂x

(
1√

1−x2
S

(1)
`m(x, φ)

)
− i√

1−x2
∂φS

(1)
`m(x, φ)

]
,

S
(1)
`m(x, φ)=

√
(`− 1)!

(`+ 1)!

[√
1− x2 ∂xY`m(x, φ)− i√

1− x2
∂φY`m(x, φ)

]
. (4.13)

These (regular) harmonics obey the angular Teukolsky equations (2.15)–(2.16) with a = 0

and λ = `(`+ 1)− 2.

The two angular maps just described provide the starting point to bridge the KI and

Teukolsky formalisms. We now need the radial map. The metric perturbations of the two

formalisms must be the same (modulo gauge transformations), i.e.

hsµν + hvµν = hIRG
µν + hORG

µν , (4.14)

where recall that the KI metric on the l.h.s. is given by (4.1), (4.3), (4.4) and (4.6). On the

other hand, the Teukolsky metric on the r.h.s. is given by (2.27), (2.28), (2.25) and (4.13).

Fix the l.h.s. of (4.14) to have fixed values of KI quantum numbers `s and `v. Then, the

most natural expectation is that such a KI perturbation is described by a (possibly infinite)

sum, in the quantum number `, of Teukolsky harmonics (the background is spherically

symmetric so we can set wlog m = 0 in our discussion; see below). In fact, a mode by

mode analysis (using properties of internal products) reveals that `s = `v = ` (with no

sum involved). This simplifies considerably the construction of the map.
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Take (4.14) with the identification `s = `v = ` with integer ` ≥ 2. The later inequality

requires a discussion before proceeding. The KI formalism describes all scalar modes with

integer `s ≥ 0 (where `s = 0 are perturbations that just shift the mass of the solution and

`s = 1 is a pure gauge mode), and all vector modes with integer `v ≥ 1 (where `v = 1 are

perturbations that generate just a shift in the angular momentum of the solution) [14, 59].

However, the Teukosky quantum number is constrained to be an integer ` ≥ |s| = 2, so

the Teukolsky formalism is blind to the modes that generate deformations in the mass and

angular momentum of the geometry [27, 60]. The simplest way to confirm this is to note

that the map (4.13) would be trivial for the “` = 0, 1” modes.

In these conditions, each metric component on the l.h.s. of (4.14) is proportional to

the spherical harmonic Y m
` (x), or to its first derivative, or to a linear combination of both

such contributions. The same applies to the r.h.s. of (4.14). Matching all the coefficients of

these angular contributions we can find the radial KI metric functions {fab, fa, HT , HL},
{ha, hT } that describe the Teukolsky perturbations. Finally, inserting these radial KI

functions into (4.8) and (4.9) we express the KI variables Φ
(s,v)
ω` (r) as a function of the

radial Teukolsky functions R
(s)
ω`m(r) and their first derivative. Note that the above KI

metric functions are in a particular gauge induced by the Hertz construction. However, (4.8)

and (4.9), and thus the associated final map, are gauge invariant. To write Φ
(s,v)
ω` (r) as a

function of a single Teukolsky function, e.g. R
(2)
ω`m(r), we further use the radial Starobinsky-

Teukolsky identity (2.19) (which, recall, expresses R
(−2)
ω`m (r) as a function of R

(2)
ω`m(r) and

its first derivative), and the equation of motion (2.16) for R
(−2)
ω`m (r). We finally end up with

the desired gauge invariant map between the KI scalar and vector master fields Φ
(s,v)
ω`m and

the Teukolsky radial function R
(2)
ω`m (and its derivative):

Φ
(s)
ω` =

1

KstCst

√
(`+ 2)!√
(`− 2)!

r2

2f(λr + 6M)

(
KstCst

(`− 2)!

(`+ 2)!
+

(`+ 2)!

(`− 2)!
+ 12 iMω

)
×
{
rf
[(

2iω + f ′
)

(λr + 6M)− 2λf
] (
R

(2)
ω`

)′
+
[
4f3 − 2f2

(
λ+ 4− 2irω + rf ′

)
+ r2

(
λ+ 2 + rf ′

) (
f ′2 + 3iωf ′ − 2ω2

)
+f
[
(λ+ 2− 2iωr)2 + 4rω(2rω + i)− rf ′

(
λ− 2 + 8irω + 2rf ′

)] ]
R

(2)
ω`

}
, (4.15)

Φ
(v)
ω` =

i

KstCst

√
(`+ 2)!√
(`− 2)!

r

4f

(
−KstCst

(`− 2)!

(`+ 2)!
− (`+ 2)!

(`− 2)!
+ 12 iMω

)
×
{[

f
(
λ+ 2− 4irω − 2rf ′

)
+ r2

(
f ′2 + 3iωf ′ − 2ω2

)]
R

(2)
ω`

+rf
(
rf ′ − 2f + 2iωr

) (
R

(2)
ω`

)′}
. (4.16)

In these expressions, λ = `(`+1)−2 is the spin-weighted eigenvalue for a = 0 and M is the

mass parameter of the black hole. Note that for a = 0, the case we are discussing in this

and following sections, the background spacetime is spherically symmetric. Consequently,

the radial Teukolsky equations and solutions are independent of the azimuthal quantum
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number m. Therefore, henceforth we droped the associated subscript in R
(2)
ω`m in the

maps (4.15)–(4.16) (and henceforward). The Starobinsky-Teukolsky angular and radial

constants Kst and Cst are given by (2.21)–(2.23), which for a = 0 boil down to6

Kst =
(`+ 2)!

(`− 2)!
, Cst = Kst − 12 iM ω. (4.17)

To check our matching we explicitly verify that our KI master fields obey the KI master

equations (4.7) when R
(2)
ω` (r) satisfies the radial Teukolsky equation (2.16), with λ = `(`+

1)−2. Note that the map (4.15)–(4.16) is valid also in the asymptotically flat limit L→∞.

To have the complete map between the Teukolsky and KI formalism we still need to

discuss the relation between the asymptotically global AdS KI BCs (4.10)–(4.12) and the

global AdS Teukolsky BCs (3.9)–(3.11). The later, for a = 0, simply reduce to

1) A
(2)
− = −i η A(2)

+ , η = ηs = −Lω
(

1 +
λ

λ− 2 (L2ω2 − 1)

)
, (4.18)

2) A
(2)
− = −i η A(2)

+ , η = ηv =
λ

2Lω
− Lω . (4.19)

It follows from (3.4) and (3.9) that asymptotically

R
(2)
ω`

∣∣
r→∞ ∼ A

(2)
+

L

r

[
1− i η L

r
+

1

2

(
`2 + `− 4− L2ω2

) L2

r2

]
+O

(
L4

r4

)
, (4.20)

Consider first the scalar case described by (4.15). Choose the BC to be such that η = ηs
as defined in (4.18). In these conditions, inserting (4.20) into the scalar map (4.15) and

taking its asymptotic expansion we find that it reduces exactly to the KI expression (4.10),

Φ(s) ∼ Φ0 + Φ1
L
r , with

Φ1 = − 6M

`(`+ 1)− 2
Φ0, (4.21)

Φ0 =
LA

(2)
+

2Cst

√
(`− 2)!√
(`+ 2)!

(`+2)!
(`−2)! − 12iMω

`(`+ 1)− 2L2ω2

(
Cst +

(`+ 2)!

(`− 2)!
+ 12iMω

)
,

which matches the global AdS KI BC (4.11) for scalar modes once we use λs = `(` + 1).

We see this as one of the most non-trivial tests of our calculations.

Next, take the vector case described by (4.16). This time select the BC η = ηv defined

in (4.19). Plug (4.20) into the vector map (4.16) and take its asymptotic expansion. We

get the KI expression (4.10) with

Φ0 = 0, Φ1 =
LA

(2)
+

8ωCst

√
(`− 2)!√
(`+ 2)!

(
(`+ 2)!

(`− 2)!
+ 12iMω

)(
Cst +

(`+ 2)!

(`− 2)!
− 12iMω

)
, (4.22)

which is the global AdS KI BC (4.12) for vector modes.

6We ask the reader to revisit the discussion leading to (2.23). For that reason, and without any loss

except compactness, we prefer to present our forthcoming results without explicitly giving the expression

for Cst.
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So one of the Teukolsky Robin BCs selects the scalar sector of KI perturbations and

the other selects the vector KI sector. This is the simplest map we could have predicted!

To sum this section, we found the differential map between the Teukolsky/KI variables

and BCs. For scalar modes, the differential map is given by (4.15) with the global AdS

Teukolsky BC (4.18) mapping into the scalar KI BC (4.11) via (4.21). For vector modes,

the differential map is instead (4.16), and the global AdS Teukolsky BC (4.19) maps into

the vector KI BC (4.12) through (4.22). By continuity, when we turn on the rotation a, we

can say that the Teukolsky BC (3.9), (3.10) generates the “rotating scalar modes”, while

the BC (3.9), (3.11) selects the “rotating vector modes”.

5 Global AdS (quasi)normal modes

The normal modes of global AdS can be studied using the Teukolsky equations and the

boundary conditions (3.9)–(3.11). We take the opportunity to find these normal mode

frequencies since the scalar modes are not explicitly derived in the literature. We also

revisit, from a Teukolsky perspective, the quasinormal mode spectrum of the global AdS-

Schwarzschild black hole.

Introducing the differential operator definitions (2.13), the s = +2 the Teukolsky

equations (5.1) read

∂χ

(
∆χ∂χS

(2)
ω`m

)
+

[
−
(
Kχ −∆′χ

)2
∆χ

+

(
6χ2

L2
− 4K ′χ + ∆′′χ

)
+ λ

]
S

(2)
ω`m = 0 ,

∂r

(
∆r∂rR

(2)
ω`m

)
+

[
(Kr + i∆′r)

2

∆r
+

(
6r2

L2
− 4iK ′r + ∆′′r

)
− λ

]
R

(2)
ω`m = 0 . (5.1)

It follows from (2.1) that in the static case it is appropriate to work in the coordinate system

{t, r, x, φ} where χ = a x. In these conditions equations (2.16) with a = 0 reduces to

∂x

[(
1− x2

)
∂x S

(2)
ω`m(x)

]
+

[
λ− 2− (m+ 2x)2

1− x2

]
S

(2)
ω`m(x) = 0 ,

∂r

(
∆r∂r R

(2)
ω` (r)

)
+

[(
ωr2 − i∆′r

)2
∆r

+ 2

(
1 +

9r2

L2

)
+ 8irω − λ

]
R

(2)
ω` (r) = 0 . (5.2)

The spin weighted spherical harmonic is independent of the mass parameter M and cos-

mological radius L, and can be found analytically. Next, we discuss in detail the regularity

analysis that leads to the solution (4.13).

The regular solution at the north pole x = 1 is (2F1 is the standard Hypergeomet-

ric function)

S
(2)
ω`m = (1− x)

|m+2|
2 (1 + x)

|m−2|
2 2F1

(
1

2

(
ã− b̃

)
,
1

2

(
ã+ b̃

)
, |m+ 2|+ 1,

1− x
2

)
,

with ã = |m− 2|+ |m+ 2|+ 1 , b̃ =
√

4λ+ 9 . (5.3)
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This solution diverges at the south pole x = −1 as a positive power of (1 + x)−1 (or as

ln(1 + x) in the special case of m = 2) unless we quantize the angular eigenvalue and

quantum numbers as

λ = `(`+ 1)− 2 , with ` = 2, 3, 4, · · · , |m| ≤ ` , (5.4)

where we have introduced the quantum number ` with ` − max{|m|, |s| = 2} giving the

number of zeros of the eigenfunction along the polar direction. The regular spin s = 2

spherical harmonic that solves the angular equation (5.2) is finally

S
(2)
ω`m = (1− x)

|m+2|
2 (1 + x)

|m−2|
2 (5.5)

×2F1

(
1

2
(−2`+ |m− 2|+ |m+ 2|), 1

2
(2+2`+|m−2|+|m+2|), |m+2|+1,

1−x
2

)
.

with the quantum numbers `,m constrained by the conditions (5.4). This harmonic is

valid both for the global AdS-Schwarzchild and global AdS backgrounds since the angular

equation is independent of M . Using the relation between the Hypergeometric function

and the Associated Legendre polynomial we can rewrite (5.5) as (4.13).

To study the (quasi)normal modes of these backgrounds we now need to study the

radial equation (5.2). Since this equation depends on the mass parameter M we need

to study the cases M = 0 and M > 0 separately. In the next subsection we first find

the normal modes of global AdS and we study the quasinormal modes of global AdS-

Schwarzchild in subsection (5.2).

5.1 Normal modes of global AdS

In the global AdS background (M = 0), the radial Teukolsky equation (5.2) has an exact

solution. The solution that is regular at the origin (r = 0) is

R
(2)
ω` = A0

(
1− i r

L

) 1
2

(Lω−2)(
1+

i r

L

)− 1
2

(Lω+2`)( r
L

)`
2F1

(
`−1, `+1+Lω, 2(`+1),

2r

r−i L

)
.

(5.6)

where A0 is an arbitrary amplitude. Asymptotically this solution behaves as

R
(2)
ω`

∣∣∣∣
r→∞
∼ A0 e

iπ
2

(Lω+`)

[
− iL

r
2F1(`− 1, `+ 1 + Lω, 2(`+ 1), 2)

+
L2

r2

1

2

1

`+ 1

( [
2
(
L2ω2 + 1

)
+ `(Lω − 1)− `2

]
F
(
`, `+ 2 + Lω; 2`+ 3; 2

)
+`(`− 1 + Lω)F

(
`+ 1, `+ 2 + Lω; 2`+ 3; 2

))]
+O

(
L3

r3

)
. (5.7)

Comparing this decay with (3.4) we can read the expressions for two amplitudes A
(2)
+ and

A
(2)
− . These amplitudes are à priori independent but the requirement that the perturbation

is asymptotically global AdS constrains them to be related by the BCs (4.19). These

BCs quantize the frequencies of the perturbations that can fit in the global AdS box,
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respectively, as

1) Scalar normal modes of global AdS: ωL = 1 + `+ 2p , (5.8)

2) Vector normal modes of global AdS: ωL = 2 + `+ 2p , (5.9)

where the non-negative integer p is the radial overtone that gives the number of nodes along

the radial direction and recall that ` ≥ 2 is an integer. The frequencies (5.8) and (5.9)

describe, respectively, the scalar and vector normal mode frequencies of global AdS. Note

that we are adopting the standard KI classification of the scalar/vector perturbations,

in the sequence of our conclusions of the previous section. Without any surprise, the

frequencies (5.8) and (5.9) precisely agree with the normal mode frequencies of global AdS

that we obtain when we solve the KI master equation (4.7) subject to the BCs (4.11), i.e.

Φ1 = 0 in the scalar case [4, 35] and Φ0 = 0 in the vector case [5, 46].

5.2 Quasinormal modes of global AdS-Schwarzchild

In this subsection we study some properties of the gravitational quasinormal mode (QNM)

spectrum of the global AdS-Schwarzschild black hole (GAdSBH). In the AdS4/CFT3 dual-

ity, this spectrum is dual to the thermalization timescales of the perturbed thermal states

of the CFT3 living on the sphere, as discussed in [35] (following the detailed analysis of the

AdS5/CFT4 case presented in [23]). We focus our attention in the low-lying QNMs (small

radial overtone p and harmonic `) because they are expected to dominate the late-time

behavior of the time evolution.

Many properties of this gravitational QNM spectrum were already studied with some

detail in the past. The low-lying KI vector QNMs with global AdS BCs were discussed

in [35, 43, 44]. The asymptotic behavior of these vector modes for large overtone were

further analyzed in [43]–[49] (see footnote 1). On the other hand, the low-lying KI scalar

QNMs with global AdS BCs were studied in [35] (see also [23]). Finally, the asymptotic be-

havior of the vector/scalar QNMs for large harmonic ` was found in a WKB analysis in [5].

Our results agree with the vector results of Cardoso-Lemos [43] and with the results

of Michalogiorgakis-Pufu [35]. Our conclusions and presentation contribute to complement

these previous analysis mainly by plotting the QNM spectrum as a function of the horizon

radius, and not just a few points of the spectrum. Our discussion will always focus on the

parameter space region of r+/L where the relevant physics is and/or where the spectrum

varies the most. Given the t− φ symmetry of the GAdSBH, the QNM frequencies always

come in trivial pairs of {ω,−ω∗}. We just plot the element of the pair with positive

real frequency.

To find the QNM spectrum we solve the Teukolsky radial equation (5.2) numerically

subject to the asymptotically global AdS BCs, namely, (4.18) in the scalar case and (4.19)

in the vector case. We use spectral methods to solve the numerical problem, which uses

a Chebyshev discretization of the grid. We work with the compact radial coordinate 0 ≤
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Figure 1. Left panel: hydrodynamic QNM (which ends in the black point) and the first four

microscopic QNM curves (that start at the vector normal modes of AdS pinpointed as red dots)

of the ` = 2 harmonic of the vector QNM spectrum of GAdSBH. Right panel: imaginary part of

the hydrodynamic vector QNM as a function of the horizon radius in AdS units. For large r+/L,

the data approaches the black curve which is the analytical prediction (5.11). The green dots in

the hydrodynamic and in the lowest-lying (p = 0) microscopic QNM curves are exactly the values

taken from table 2 of [43]. See text for detailed discussion of these plots.

y ≤ 1 and with the new radial function qj defined as

Vector: y =

√
1− r+

r
, R

(−2)
ω` =

(
1− y2

)
y

2− i ωL
2πTH qv ; (5.10)

Scalar: y = 1− r+

r
, R

(−2)
ω` = (1−y)y

1− iωL
4πTH

(
1− L2

r2
+

(1−16πTH r+/L)

6πTH
(1−y)

)− iωL
2

qs.

The horizon BC (3.14) translates to a simple Neumann BC and the asymptotic BC (4.19)

yields a Robin BC, in the vector case. For the scalar case, both the horizon BC (3.14)

and the asymptotic BC (4.18) translate to a Robin BC relating qs and its derivative. In

both cases, we get a generalized quadratic eingenvalue problem in the (complex) QNM

frequencies ω. We give the harmonic ` and run the code for several dimensionless horizon

radius r+/L.

To discuss the results consider first the vector QNM spectrum. We will either plot the

imaginary part of the dimensionless frequency Im(ωL) as a function of the real part Re(ωL)

or the QNM real/imaginary parts as a function of the horizon radius in AdS units (r+/L).

On the Left panel of figure 1 we plot the first five low-lying QNMs of the ` = 2 vector

harmonic. The points in the vertical line have pure imaginary frequencies and, as r+/L

grows large, it approaches the black point (0, 0). They are the vector hydrodynamic modes

since, in the limit r+ � L, they can be found solving the perturbed Navier-Stokes equation

that describes the hydrodynamic regime of the CFT3 on the sphere (the associated plasma

is conformal, hence it has zero bulk viscosity and shear to entropy density ratio η/s =
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1/(4π)) [23, 35]. To leading order in the inverse of the horizon radius, this hydrodynamic

computation yields the frequency [35]

ωL
∣∣
hydro

= −i `
2 + 2`− 1

3

L

r+
+O

(
L2

r2
+

)
. (5.11)

Recall that the hydrodynamic regime requires that the perturbation wavelength is much

larger than the thermal scale (the inverse of the temperature) of the theory. So this

regime is achieved when r+/L (and thus the temperature THL) grows without bound and

the perturbation frequency becomes arbitrary small. This is indeed what happens as we

approach the black point moving from bottom to top along the vertical line of figure 1.

On the Right panel of this figure we plot the (imaginary) frequency of the hydrodynamic

mode as a function of r+/L for 0 < r+/L < 1000. The black curve describes the analytical

hydrodynamic curve (5.11). As predicted in [35], we confirm that as r+/L grows the black

curve indeed approaches the numerical data.

Returning to the Left panel of figure 1, the red points describe the first 4 radial over-

tones (p = 0, 1, 2, 3) of the ` = 2 vector normal modes of AdS; see (5.9). The associated

four vector QNMs in the Left panel of figure 1 are microscopic modes (as oppose to hy-

drodynamic) because as these curves move away from the red points, i.e. as r+/L (and

THL) grows so does Im(ωL). So we never reach the hydrodynamic regime ω � TH and

we need the microscopic theory to describe them. This tower of overtones which are con-

tinuously connected to the normal modes of AdS are often said to form the main series

or main sequence of the vector QNM spectrum. In the plot we also pinpoint with green

dots the points with fixed r+/L = 0.5 and r+/L = 1.0 in each overtone curve (for the

p = 0 and microscopic mode curves we also identify the green mode with r+/L = 2). The

green dots in the hydrodynamic and in the lowest-lying (p = 0) microscopic QNM curves

are also exactly the values taken from table 2 of [43]. Modes with fixed r+/L in the main

sequence and for p ≥ 1 scale linearly with r+/L. To illustrate this property we connect

with auxiliary dashed black straight line the two set of modes with r+/L = 0.5, 1 that we

have singled out. The points of the lowest-lying (p = 0) QNM curve of the main sequence

do not however fit in these lines as is visible in the plot, but apart from this curiosity, the

p = 0 overtone curve is similar to the higher overtone curves.

Further properties of this lowest-lying (p = 0) microscopic QNM curve are displayed

in figure 2. The Left (Right) panel plots the real (imaginary) part of the QNM frequency

as a function of the horizon radius for r+/L ≤ 2. The curve starts at the vector AdS

normal mode frequency (red point) and the frequency stays very close to the real axis for

r+/L < 0.2. The real (imaginary) part keeps (increasing) decreasing monotonically for

larger values of r+/L (e.g. for r+ = 100L one has ωL ∼ 266.384 − 184.959 i [43]). The

same 3 green points for r+/L = 0.5, 1, 2 of figure 1 are also plotted here. As an extra check

of our numerics, in addition to the blue points, which are obtained solving numerically

the Teukolsky system with BC (4.19), we also display with magenta points the numerical

solution of the KI system with BC (4.12). In the sequence of the map constructed in

section 4 these two curves have to overlap. This is indeed the case (the magenta points are

drawn larger to be visible in the plot).
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Figure 2. Lowest-lying (p = 0) microscopic vector QNM of the ` = 2 harmonic of GAdSBH. The

green dots are exactly the values taken from table 2 of [43]. The blue (magenta) dots are obtained

solving numerically the Teukolsky (KI) equations. (See text for detailed discussion of these plots).

To analyze the evolution of the vector QNM spectrum as the vector harmonic changes,

in figure 3 we plot the same information as in figure 2, and in addition the lowest-lying

(p = 0) microscopic QNM of the next seven vector harmonics `. More concretely, from

bottom to top we have the harmonics ` = 2, 3, · · · , 10. From the Left panel, we conclude

that there are regions in the parameter space (i.e. windows in the range of r+/L) where the

real part of the frequency spectrum is in a first approximation isospectral (i.e. difference

between consecutive harmonics at constant r+/L is approximately constant) but there are

also others where the lowest harmonics ` = 2, 3 spoil this property. From the Right panel,

we see that the window of r+/L around the global AdS case (r+/L = 0; red dot (0,0)) where

the imaginary part of the spectrum is approximately flat increases as the harmonic ` grows.

The green dots in the ` = 2, 3 curves are exactly the values taken from table 2 of [43].

Consider now the scalar QNM spectrum of the GAdSBH. In figure 4 we plot the first

four low-lying QNMs of the ` = 2 scalar harmonic. In this case, the spectrum has no

pure imaginary frequencies, and all the QNM curves are continuously connected to the

scalar normal modes frequencies (5.8) of AdS here coloured as red dots for the overtones

p = 0, 1, 2, 3. Clearly, the p = 0 overtone curve on the left is a special curve. Indeed, in

this case as r+/L (and THL) grows the imaginary part of the frequency first decreases but

then it has a minimum after which it approaches zero (see the black point). That is, we

approach the hydrodynamic regime ω � TH . This is thus the scalar hydrodynamic QNM.

For the p ≥ 1 the imaginary part of the frequency decreases monotonically as r+/L: these

are microscopic scalar QNMs. Solving the linearized hydrodynamic equations on Rt × S2

for a conformal plasma, [35] finds that to leading order the scalar hydrodynamic QNM is

described by

ωL
∣∣
hydro

=

√
`(`+ 1)√

2
− i `

2 + 2`− 2

6

L

r+
+O

(
L2

r2
+

)
, (5.12)
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Figure 3. Lowest-lying (p = 0) microscopic vector QNMs of the first 8 harmonics of the GAdSBH.

From bottom to top we have: ` = 2, 3, · · · , 10. The red dots give the vector normal mode frequen-

cies (5.9). The green dots are exactly taken from table 2 of [43].

Figure 4. Hydrodynamic QNM (which ends at the black point) and the first three microscopic

QNM curves (that start at the vector normal modes of AdS pinpointed as red dots) of the ` = 2

harmonic of the scalar QNM spectrum of GAdSBH. The green dots have exactly the values taken

from table 1 and 2 of [35] (we have added the r+ = 0.5 green points in the p ≥ 1 curves). (See text

for detailed discussion of this plot).

and this fixes the black point in figure 4 when r+/L → ∞. This analytical result was

already compared against numerical data for large radius in [35]. Much like in the vector

case, in the main sequence (p ≥ 1), microscopic modes with fixed r+/L scale linearly with

r+/L. To illustrate this property we connect with auxiliary dashed black straight line the

two set of modes with r+/L = 0.2, 0.5. The green dots have exactly the values taken from

table 1 and 2 of [35] (we have added the r+ = 0.5 green points in the p ≥ 1 curves).
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Figure 5. Hydrodynamic scalar QNM of the ` = 2 harmonic of GAdSBH. The green dots are

exactly the values taken from taken from table 1 and 2 of [35]. The blue (magenta) dots are

obtained solving numerically the Teukolsky (KI) equations. (See text for detailed discussion of

these plots).

In figure 5 we give details for the hydrodynamic scalar QNM of the ` = 2 harmonic.

We plot the real (imaginary) part of the frequency as a function of r+/L in the window

of values where the frequency varies the most, namely r+/L < 7. The red point is the

scalar normal mode frequency (5.8) for p = 0. This plot complements the data in table

1 and 2 of [35] which is also represented as green dots in these plots (these are the QNM

for r+/L = 0.2, 1, 5). For larger values of r+/L the real (imaginary) part keeps decreasing

(increasing) monotonically (for reference, for r+ = 100L one has ωL ∼ 1.732−0.007 i [35]).

In the limit r+/L → ∞ it approaches the real value, ωL = 1.732, dictated by (5.12)

which is plotted as a black dashed line for reference. In this figure 5, the blue points

are obtained solving numerically the Teukolsky system with BC (4.18), while the magenta

points represent the numerical solution of the KI system with BC (4.11). It follows from

the map constructed in section 4 that these two curves have to overlap. This is indeed the

case (the magenta points are drawn larger to be visible in the plot).

The evolution of the scalar QNM spectrum as the scalar hydrodynamic harmonic

changes is displayed in figure 6 where we plot the curve(s) of figure 5, and in addition the

hydrodynamic QNM of the next seven vector harmonics `. More concretely, from bottom

to top (on the Left panel and on the right side of the Right panel) we have the harmonics

` = 2, 3, · · · , 10. On the Left panel we normalize the real frequency to the respective p = 0

normal mode frequency of AdS (5.8). We see that the real part of the frequency spectrum is

in a first approximation isospectral at each fixed r+/L. From the Right panel, we conclude

that the imaginary part of the frequency always has a minimum, unlike the vector case.

Like in the vector QNM case, the inset plot shows that there is a window of r+/L around

the global AdS case (r+/L = 0; red dot (0,0)) where the imaginary part of the spectrum

is approximately flat increases, and this window increases as the harmonic ` grows. The

green dots are exactly the values taken from table 1,2 and 3 of [35].
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Figure 6. Hydrodynamic scalar QNMs of the first 8 harmonics of the GAdSBH. Viewing from the

right side of the plots, from bottom to top we have: ` = 2, 3, . . . , 10. The red dots give the scalar

normal mode frequencies (5.8) with p = 0. The green dots are exactly taken from table 1-3 of [35].

As a final remark, note that as discussed below (4.14), the Teukolsky formalism de-

scribes only the harmonics with ` ≥ |s| = 2. So, it misses the Kodama-Ishibashi vector

mode with `v = 1 and scalar mode with `s = 0. The QNM spectrum of these KI modes

is very special because it only contains a zero-mode, i.e. a mode with zero frequency. The

scalar zero-mode produces a shift in the mass of the solution, while the vector zero-mode

generates angular momentum (thus connecting perturbatively global AdS-Schwarzschild

to Kerr-AdS) [14, 59]. The Teukolsky formulation is blind to these modes that generate

deformations in the conserved charges [27, 60].
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A An overview of perturbations in Kerr(-AdS)

The Teukolsky solutions δΨ0 and δΨ4, the Starobinski-Teukolsky identities, and the Hertz

map that constructs the associated metric perturbations provide the complete information

about the most general metric perturbation of the Kerr(-AdS) black hole [8–10] (the only

exception being the “` = 0, 1” modes that simply add mass or angular momentum to the

background [60]; onwards we omit these exceptional modes from our discussion).

In this appendix we provide a brief historical overview of the studies that culminated

with the above conclusion. In this discussion we assume the background to be Petrov type

D and we highlight some facts that are sometimes not duly appreciated.

In the Newman-Penrose formalism, the fundamental gravitational variables are the

4 components of the NP tetrad basis ea = {`,n,m,m}, the 12 complex NP spin coefi-

cients (2.2) and the 5 complex NP Weyl scalars {Ψ0, · · ·Ψ4}. These variables are governed

by a set of three systems of equations, namely, the Bianchi identities, the Ricci identities,

and the commutation relations for the basis vectors. The metric is determined once we fix

the tetrad basis by

gµν = −2`(µnν) + 2m(µmν) . (A.1)

The most general perturbation of this system requires determining 10+24+16=50 real

functions to specify the perturbations of the 5 complex Weyl scalars, 12 complex spin

coeficients and the 16 matrix components Aba that describe the deformations of the tetrad

via δea = Abaeb.

In the Kerr(-AdS) background, this general perturbation system divides into two sec-

tors [9, 10]:

I) δΨ0, δΨ1, δΨ3, δΨ4, δκ, δσ, δλ, δν ; (A.2)

II) δΨ2, δα, δβ, δε, δγ, δπ, δρ, δµ, δτ, δ`, δn, δm, δm . (A.3)

The first family describes perturbations of those variables that vanish in the Kerr(-AdS)

background because it is a Petrov type D geometry. The second involves all other quantities

that are not required to vanish in such a Petrov background.7 A remarkable property is

that these two sectors of perturbations “almost decouple” in the sense that we can solve

the perturbation sector I) without solving the NP equations involving the perturbations

of sector II). The solutions of sector I) are however a prerequisite to then search for the

solutions of sector II) [9, 10].

Teukolsky [8], and later Chandrasekhar [9] following an independent computation,

found the solutions of the perturbation sector I). One just needs to solve the Teukolsky

master equation that gives the solution for δΨ0, say. The Starobinski-Teukolsky identities

fix the relative normalization between these two variables [9, 10, 40–42]. These scalars δΨ0

and δΨ4 are gauge invariant, i.e. invariant both under infinitesimal coordinate transfor-

mations and infinitesimal changes of NP basis. We can then set δΨ1 = 0 = δΨ3 by an

7This includes the spin coefficient ε that would vanish if we worked with an appropriate tetrad basis,

but not otherwise. In particular it is not required to vanish by the algebraically special character of the

spacetime.
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infinitesimal rotation of the tetrad basis. Finally, the perturbations of the spin coefficients

δκ, δσ, δλ, δν are obtained by applying differential operators to δΨ0 and δΨ4. So the in-

formation on the linear perturbation of our system I) is encoded in the gauge invariant

variables δΨ0 and δΨ4. (This is not the full story concerning perturbation sector I); we

will come back and complete it in the end of this appendix).

The most general perturbation problem is however not yet solved since we still need

to find the solutions for the perturbation sector II) in (A.3). In a tour de force com-

putation that requires starting with sector I) solutions, Chandrasekhar did a direct and

complete integration of the remaining linearized NP equations to find the sector II) so-

lutions (A.3) [10]. Remarkably, in the end of the day, all sector II) perturbations are

determined also only as a function of δΨ0, δΨ4. This justifies the statement that the

Teukolsky master equations and the Starobinski-Teukolsky identities encode the complete

information about general perturbations of the Kerr(-AdS) black hole. Note in particular

that with the knowledge of the basis vector perturbations we can also easily construct the

perturbations of the metric components through the variation of (A.1) [10].

An astonishing twist in this story is that we do not need the major effort of integrat-

ing the full system of NP equations to get what is often the most desired result, namely

the metric perturbations hab. This was first realized by Cohen and Kegeles [24, 26] and

Chrzanowski [25] who have assumed some ad hoc, but smart guessed, hypothesis to build

the Hertz map. At this point in time, this map was a prescription to reconstruct the most

general perturbations of the metric tensor only from the knowledge of the Teukolsky master

solutions δΨ0, δΨ4, i.e. without requiring information on the variables (A.3) (in a Petrov

type D background). An elegantly simple proof of the Hertz map construction was finally

provided by Wald in [27]. It promotes the Hertz construction from a prescription into a

formal map. Keypoints in Wald’s proof are: 1) the existence of the decoupled Teukolsky

master equations (2.10)–(2.11) for δΨ0, δΨ4; 2) the fact that the Teukolsky operator for

δΨ0 is the adjoint of the one for δΨ4, which on the other hand is in the end of the day re-

sponsible for the existence of the Starobinsky-Teukolsky differential identities (2.19)–(2.20);

3) the fact that the equations (2.24) defining the Hertz map are the adjoint of the original

Teukolsky master equations (2.10)–(2.11). Ultimately all these properties are due to the

algebraically special character of the background.

The upshot of Wald’s proof of the Hertz map prescription of [24]–[26] is that we can

use this map (2.27)–(2.28) to obtain the complete, most general, metric perturbation of the

Kerr(-AdS) black hole (with the exception of the modes that change the mass and angular

momentum), without needing to integrate the extra NP equations that would be necessary

to find the solutions (A.3). It is worth to look back and appreciate this result: à priori

we had to find a total of 50 variables. However, in the end of the day we just need to

solve the Teukolsky master equation for δΨ0 (the equation for δΨ4 is its adjoint and their

relative normalization set by the ST identities) to get through the Hertz map the most

general metric perturbation. An important corollary of this result is that the global AdS

boundary conditions we find in section 3 apply to generic perturbations of the Kerr-AdS

black hole (with ` ≥ 2).
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We now return to an issue that was left without its complete discussion. As said

above, once we have completed the analysis of [8, 9] we find the solution of perturbation

sector I). Strickly speaking there is however some residual incompleteness in this solution

since [9, 10]: 1) at this point we just know the absolute value but not the real and imaginary

parts of the angular Starobinski-Teukolsky constant Cst, and 2) there is still an unknown

numerical factor needed to fully determine the perturbations δλ, and δν. Both these

gaps in our knowledge are filled once we solve perturbation sector II) via an integrability

condition [9, 10] (also reviewed in sections 82 to 95 of chapter 9 of the textbook [11]).

To our knowledge, the analogous computation of [10] that determines this information

in the Kerr-AdS case was never done, and it would be interesting to undergo this task.

However, to determine the asymptotically global AdS BCs of section 3 we do not need this

knowledge at all. Moreover, we do not need the explicit expression for Cst to construct

the map between the Kodama-Ishibashi and the a = 0 Teukolsky formalisms of section 4.

Nevertheless, and for completeness, in the main text we conjectured the expression for Cst to

be the solution of |Cst|2 as given in (2.23) that reduces to the asymptotically flat expression

of [10] when L→∞. This expression is written in (2.23) or (4.17) when a→ 0. This is a

reasonable expectation but it would nevertheless be important to confirm this expression

with a computation similar to the one done in [10]. This would close the Kerr-AdS linear

gravitational perturbation programme.

It is believed that Einstein’s equation is not a special system of coupled PDEs. On

the other hand, when these equations are linearized around a Petrov type D background

and written in the Newman-Penrose formalism it is astonishing to find how special the

linearized PDE system is.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License which permits any use, distribution and reproduction in any medium,

provided the original author(s) and source are credited.
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