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1 Introduction

Modern QCD descriptions of hard-scattering events at particle colliders can be roughly

divided into two broad categories. In the first, fixed-order descriptions, matrix elements

are computed for all allowed initial states with a given final state, F , plus a limited number

of additional partons. The leading-order (LO) description has the minimal number (often

zero) of additional partons. For improved accuracy, one includes matrix elements with

one extra parton beyond leading order and one loop correction (next-to-leading order) and

so forth. The squared matrix elements are numerically integrated over the allowed phase

space, after accounting for any divergences. Given the accuracy, i.e. order of the description,

the possible number of additional final-state particles is in essence predetermined, and can

take one (LO), or two (NLO) etc, values. In the second, parton-shower descriptions, one

also starts from matrix elements for the desired hard process, F , but additional radiation is

now generated stochastically via a shower algorithm, which is essentially Markovian. This

is a unitary process, with probability one, and therefore does not change the probability

of the underlying hard process to occur. The number of final-state partons is now not

predetermined, and can take an infinity of different values. The two approaches have

complementary strengths and weaknesses (for a review, see e.g. [1]). When hard extra

emissions (e.g., hard jets) are important to model well, one looks to descriptions of the first

category. However, the calculation is then unpredictive for near-collinear and soft radiation

(e.g., jet substructure and soft wide-angle jets). The obverse holds for the second category.
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Even from this very cursory summary, it is clear that methods to unite the two —

combining strengths and eliminating weaknesses — are very important. Two longstanding

and very successful approaches for combining one-loop matrix elements with parton showers

are mc@nlo [2–6] and powheg [7–9]. An important restriction of both of these is that

only the spectra of the basic hard-scattering partons are corrected to NLO precision, while

those of additional QCD emissions are not. Removing this limitation, fully or partially, has

been the focus of much recent effort [10–19], and is also among the main goals of this paper.

While most other approaches employ parton-shower algorithms which are based on 1→ 2

splitting kernels, we develop an approach for matching NLO descriptions to showers based

on 2 → 3 splittings [20]. The equivalent of the 1 → 2 splitting kernels are, for us, dipole-

antenna functions [20–22]. At the practical level, our approach is in the context of the

vincia framework [23, 24]. Whatever the splitting kernel, the parton-shower approaches

rest upon the factorization of both phase space and matrix element when the splitting is

either soft or collinear, or both. A technical advantage of our approach is that the (n+ 3)-

particle phase-space factorizes exactly into a (n + 2)-particle phase space times a 2 → 3

phase space with all momenta on-shell, without need for momentum reshuffling [25]. Phase-

space factorization and the antenna-based matrix-element factorization are important to

our approach in about equal measure.

The essential bottleneck in such combinations of fixed order and parton shower is how

to avoid double counting both real emissions as well as virtual effects. A key aspect of

this is how well the NLO emissions are mimicked by parton-shower emissions. Emissions

generated by a parton-shower Markov chain in fact produce approximations to tree-level

matrix elements up to arbitrary numbers of legs, while the no-emission Sudakov factors

generate the equivalent all-orders loop corrections.1 This all-orders resummation of con-

tributions is ordered in a measure of jet resolution, called the evolution scale, which we

denote QE . It is typically chosen to be a measure of transverse momentum [20] or invariant

mass. Its fundamental role is to separate resolved from unresolved emissions, in analogy

to a jet-clustering measure. The different evolution variables each have their strengths,

depending on the context. As part of our present study, we judge them by how well their

fixed-order expansions approximate the NLO matrix elements.

The main purpose of this paper is to define, for e+e− initial states, an antenna-based

shower algorithm that incorporates multileg NLO corrections for both soft and hard emis-

sions, and to study the quality of the matching for a variety of evolution variables. We

strive for next-to-leading logarithmic (NLL) accuracy, in a way we shall detail below.

The leading-logarithmic (LL) structure of antenna showers was discussed in [27, 28],

with explicit comparisons of various algorithms to tree-level O(α2
s) matrix elements pre-

sented in [24, 28, 29]. A prescription for matching the showers to reproduce tree-level

matrix elements exactly (over all of phase space) was developed in [24], with uncertainty

variations provided in the form of vectors of alternative weights for each event. In [30]

and [31] substantial speedups of the matching algorithm were obtained by dividing phase

space into so-called sectors, and by deriving a formalism for using individual helicity am-

1For an introduction to such chains and a description of their properties, see e.g. [1, 26].
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plitudes to correct the shower evolution, respectively. To further probe the structure of

antenna showers, at the subleading-logarithmic level, we shall here consider the expansion

of exclusive 2 → 3 splitting probabilities to O(α2
s), comparing these to one-loop matrix

elements [32] and to corresponding second-order antenna functions [22, 33].

We shall compare six different types of ordering criteria for the shower evolution: 1)

strong ordering in transverse momentum, 2) strong ordering in dipole virtuality, 3 & 4)

strong ordering in two variants of emission energy (mostly intended as cross-checks), and

5 & 6) so-called smooth ordering in p⊥ and in dipole virtuality, as defined by [24]. We

also consider several different choices for the renormalization scale µR used in the tree-level

antenna functions and discuss how to systematically absorb contributions proportional to

the β-function by this choice, elaborating on earlier arguments [34, 35].

Finally, we will present a prescription for how to systematically incorporate the second-

order (one-loop) qq̄ → qgq̄ antenna into the shower evolution, for each of the studied evolu-

tion variable choices. This will essentially constitute the NLL accuracy mentioned above.

The resulting shower algorithm, whose qq̄ → qgq̄ splitting probability should therefore be

correct to O(α2
s) over all of phase space, has been implemented in the publicly available

vincia plug-in [23] to the pythia 8 event generator [36].

We have organized the paper as follows. In section 2 we discuss introductory aspects

of (antenna) shower algorithms, define the various evolution variables, and the implemen-

tation of an ordering prescription that rules the shower evolution. In section 3 we present

our matching prescription in detail, initially for 3-parton final states in Z-decay, then gen-

erally for n partons. In section 4 we discuss details of the Sudakov integrals required in

the matching prescription and compare the infrared limits of those integrals to those of the

one-loop matrix elements. In section 5 we combine one-loop and tree-level corrections in a

single algorithm, perform speed benchmarking, and study the impact on LEP observables,

especially in the context of αs(mZ) extractions. We conclude in section 6 and elaborate

on technical aspects in the appendices.

2 Antenna showers

In this section, we recap the basic antenna-shower formalism, as used in the vincia shower

algorithm. This also serves to introduce the basic notation and conventions that will be

used in later sections.

2.1 The formal basis of antenna showers

Antenna showers are based on the factorization of (squared) colour-ordered QCD ampli-

tudes in soft and collinear limits, which can be expressed as follows

|M(. . . , pi, pj , . . .)|2
i||j
→ g2

s C
P (z)

sij
|M(. . . , pi + pj , . . .)|2 (2.1)

|M(. . . , pi, pj , pk, . . .)|2
jg soft
→ g2

s C Ag(sij , sjk, sijk) |M(. . . , pi, pk, . . .)|2 , (2.2)

with g2
s = 4παs the strong coupling and the subscript g in the second line emphasizing

that the soft limit is only relevant for gluons.

– 3 –



J
H
E
P
1
0
(
2
0
1
3
)
1
2
7

In the collinear limit (first line), P (z) are the Altarelli-Parisi splitting kernels [37], z is

the energy fraction taken by parton i (with a fraction (1− z) going to parton j), and C is

a colour factor, which we discuss below. This limit forms the basis for traditional parton

showers, such as those in the pythia generator [38].

In the soft-gluon limit (second line), the function A has dimension GeV−2, and is called

an antenna function. For unpolarized massless partons,2 its leading term is the so-called

eikonal or dipole factor,

AEik(sij , sjk, sijk) =
2sik
sijsjk

, (2.3)

where sik = sijk−sij−sjk for massless partons. It was found early on that this factor can be

reproduced by a traditional parton shower by imposing the requirement of angular ordering

of subsequent emissions [40]. This gave rise to the angular-ordered showers [41, 42] in the

herwig and herwig++ generators [43, 44] as well as the imposition of an angular-ordering

constraint [38, 45] in the jetset and pythia generators [36, 46].

In fixed-order calculations, dipole [47] and antenna [21, 22, 25] functions are frequently

used to define subtraction terms. These functions include additional subleading terms,

beyond the eikonal one, which are necessary to correctly describe both soft and collinear

limits in all regions of phase space. In the parametrization we shall use, their most general

forms, for the branching process IK → ijk, are

AEmit(sij , sjk,m
2
IK) =

1

m2
IK

(
2yik
yijyjk

+
yjk(1− yjk)δig

yij
+
yij(1− yij)δkg

yjk
+ FEmit

)
(2.4)

ASplit(sij , sjk,m
2
IK) =

1

m2
IK

(
y2
jk + y2

ik

2yij
+ FSplit

)
, (2.5)

for gluon-emission and gluon-splitting processes, respectively, with the parent antenna

invariant mass, m2
IK = (pI + pK)2 = (pi + pj + pk)

2 and the scaled invariants,

yij =
sij
m2
IK

; yjk =
sjk
m2
IK

, (2.6)

and we use the notation δig = 1 if parton i is a gluon and zero otherwise. The func-

tions FEmit and FSplit allow for the presence of non-singular terms, which are in prin-

ciple arbitrary. A logical choice would be F = 0, but this would not be invariant un-

der reparametrizations of the antenna functions across the gluon-collinear singular lim-

its [24]. Since the F functions can anyway be made useful in the context of uncertainty

estimates [23, 24], we therefore leave them as functions whose forms we are free to choose.

In the soft-gluon limit, the eikonal factor is reproduced by the first term in in eq. (2.4).

In the collinear q → qg limit, the AP splitting kernel also is reproduced. For collinear

g → gg and g → qq̄ branchings, one must sum over the contributions from two neigbouring

antennae, which together reproduce the AP splitting kernel. Limits that are both soft and

collinear are also correctly reproduced [22].

2In the context of massive particles, replace sab by 2pa · pb in all expressions. For a more complete

treatment, see [39].
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In the antenna context, the colour factors are 2CF for qq̄ → qgq̄, CA for gg → ggg,3 and

2TR for gluon splitting to qq̄, again using the normalization convention adopted in [24].

However, for qg → qgg there is a genuine subleading ambiguity whether to prefer, say,

2CF , CA, or something interpolating between them [48]. At fixed order, the question of

subleading colour can in fact be dealt with quite elegantly, by using CA for all anten-

nae and then including an additional qq̄ antenna with a negative colour factor, −CA/N2
C ,

spanned between the two endpoint quarks, for each qg . . . q̄ chain [49]. In the context of an

antenna-based shower, however, it is desirable to use only positive-definite antenna func-

tions, and a prescription for absorbing the negative one into the positive ones was given

in [24]. In the context of this work, however, we shall largely ignore subleading-colour

aspects and, unless explicitly stated otherwise, assign a colour factor CA to the qg → qgg

antenna function, thereby overcounting the collinear limit in the quark direction by a factor

CA/(2CF ) ' 1 + 1/N2
C .

The renormalization scale used to evaluate the strong coupling in the antenna function,

g2
s = 4παs(µPS), is typically chosen proportional to p⊥ (following [34]). As alternatives,

we shall also consider µ2
PS ∝ m2

D = 2min(sij , sjk), and, as an extreme case which connects

with fixed-order calculations, the invariant mass of the antenna, µ2
PS ∝ m2

IK .

A final aspect concerns the phase-space factorization away from the collinear limit.

Within the framework of collinear factorization (and hence, in traditional parton showers),

the momentum fraction, z, is only uniquely defined in the exactly collinear limit; outside

that limit, the choice of z is not unique. In addition, a prescription must be adopted for en-

suring overall momentum conservation, leading to the well-known ambiguities concerning

recoil strategies (see e.g. [1]). In antenna showers, on the other hand, the antenna func-

tion is defined in terms of the unique branching invariants, sij and sjk, over all of phase

space, and the phase space itself has an exact Lorentz-invariant and momentum-conserving

factorization,

dΦn = dΦn−1 × dΦAnt , (2.7)

with

dΦAnt =
1

16π2m2
IK

dsijdsjk
dφ

2π
(2.8)

for massless partons (for massive ones, see [39]), with the φ angle parametrizing rotations

around the antenna axis, in the CM of the antenna. Note the equality signs; no approx-

imation is involved in this step. The only remaining phase-space ambiguity, outside the

singular limits, is present when specifying how the post-branching momenta are related to

the pre-branching ones. This is defined by a kinematics map, the antenna equivalent of a

recoil strategy, which we here take to be of the class defined by [21, 23].

3Note that in a process like H0 → gg, there are two gg antennae at the Born level, and hence the antenna

approximation to H0 → ggg is twice as large as the single gg → ggg antenna. Likewise, the collinear limit

of a gluon is obtained by summing over the contributions from both of the dipoles/antennae it is connected

to. One must also include a sum over permutations of the final-state gluons, if comparing to a summed

matrix-element expression.
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2.2 Constructing a shower algorithm

In a shower context, the amplitude and phase-space factorizations above imply that we

can interpret the radiation functions (AP splitting kernels or dipole/antenna functions) as

the probability for a radiator (parton or dipole/antenna) to undergo a branching, per unit

phase-space volume,
dP (Φ)

dΦ
= g2

s C A(Φ) , (2.9)

where we use Φ as shorthand to denote a phase-space point. (If there are several par-

tons/dipoles/antennae, the total probability for branching of the event as a whole is ob-

tained as a sum of such terms.)

An equally fundamental object in both analytical resummations and in parton show-

ers is the Sudakov form factor, which defines the probability for a radiator not to emit

anything, as a function of the shower evolution parameter, Q (i.e., similarly to a jet veto,

with Q playing the role of the jet clustering scale; we return to the choice of functional

form for the shower evolution scale in section 2.3). In the all-orders shower construction,

these factors generate the sum over virtual amplitudes plus unresolved real radiation, and

hence their first-order expansions play a crucial role in matching to next-to-leading order

matrix elements. We here recap some basic properties. The Sudakov factor, giving the

no-emission probability between two values of the shower evolution parameter, Q1 and Q2

(with Q1 > Q2), is defined by

∆(Q2
1, Q

2
2) = exp

(
−
∫ Q2

1

Q2
2

dP (Φ)

dΦ
dΦ

)
= exp

(
−
∫ Q2

1

Q2
2

g2
s C A(Φ) dΦ

)
, (2.10)

where it is understood that the integral boundaries must be imposed either as step func-

tions on the integrand or by a suitable transformation of integration variables, accompanied

by Jacobian factors.

This description has a very close analogue in the simple process of nuclear decay, in

which the probability for a nucleus to undergo a decay, per unit time, is given by the

nuclear decay constant,
dP (t)

dt
= cN . (2.11)

The probability for a nucleus existing at time t1 to remain undecayed before time t2, is

∆(t2, t1) = exp

(
−
∫ t2

t1

cN dt

)
= exp (−cN ∆t) . (2.12)

This case is especially simple, since the decay probability per unit time, cN , is constant. By

conservation of the total number of nuclei (unitarity), the activity per nucleon at time t,

equivalent to the “resummed” decay probability per unit time, is minus the derivative of ∆,

dPres(t)

dt
= −d∆

dt
= cN ∆(t, t1) . (2.13)

In QCD, the emission probability varies over phase space, hence the probability for an

antenna not to emit has the more elaborate integral form of eq. (2.10). By unitarity, the

– 6 –
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resummed branching probability is again minus the derivative of the Sudakov factor,

dPres(Φ)

dΦ
= g2

s C A(Φ) ∆(Q2
1, Q

2(Φ)) , (2.14)

with Q2(Φ) the shower evolution scale (typically chosen as a measure of invariant mass or

transverse momentum, see section 2.3), evaluated at the phase-space point Φ.

In shower algorithms, branchings are generated with this distribution, starting from a

uniformly distributed random number R ∈ [0, 1], by solving the equation,

R = ∆(Q2
1, Q

2) (2.15)

for Q2. For an initial distribution of “trial” branching scales, we do not use the full antenna

function, eq. (2.4), as the evolution kernel, but only its leading singularity,

AT =
2m2

IK

sijsjk
=

2

p2
⊥A

, (2.16)

where p⊥A is the ariadne definition of transverse momentum [50], which is also the one

used in vincia. This reflects the universal 1/p2
⊥ behaviour of soft-gluon emissions. In

addition to the trial scale, Q, two complementary phase-space variables are also generated

(which we usually label ζ and φ [24]), according to the shape of AT over a phase-space

contour of constant Q. From these, the model-independent set of trial phase-space vari-

ables (sij , sjk, φ) are determined by inversion of the defining relations Q(sij , sjk) and

ζ(sij , sjk), and the full kinematics (i.e., four-momenta) of the trial branching can then be

constructed [23].

To decide whether to accept the trial or not, we note that the function AT differs from

the eikonal in eq. (2.3) by the replacement of sik in the numerator by m2
IK . By accepting

the trial scales generated by AT with the probability

Peik =
Aeik

AT
=

sik
m2
IK

≤ 1 , (2.17)

the eikonal approximation can be recovered, by virtue of the veto algorithm [1, 51, 52].

Crucially, any other function that has the eikonal as its soft-collinear limit could equally

well be imprinted on the trial distribution by a similar veto. Two particularly relevant

choices are the full physical antenna function, eq. (2.4) (which includes additional collinear-

singular terms in addition to the eikonal) and the GKS-corrected antenna function (which

also incorporates a multiplicative factor that represents tree-level matching in vincia),

PLL
accept =

AEmit

AT
, (2.18)

PLO
accept = PLL

acceptRn , (2.19)

with AEmit given in eq. (2.4) and Rn the n-parton tree-level GKS matching factor [24], to

which we return in section 3.1.

Note that, for gluon-splitting antenna functions (Xg → Xqq̄), we use Q = mqq̄, with

a trial function ∝ 1/m2
qq̄, and again implement the physical antenna function, eq. (2.5),

– 7 –
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and LO matching corrections by vetos. We also include the so-called ariadne factor, PAri,

defined by

ASplit → PAriASplit =
2sN

sP + sN
ASplit , (2.20)

with sN the invariant mass squared of the colour neighbour on the other side of the splitting

gluon and sP = m2
IK the invariant mass squared of the parent (splitting) antenna. This

does not modify the singular behavior (as will be elaborated upon below), and was shown

to give significantly better agreement with the Z → qqq̄q̄ matrix element in [30].

Explicit solutions to eq. (2.15) using the trial function defined by eq. (2.16) were

presented in [24], for fixed and first-order running couplings. In the context of the present

work, two-loop running has been implemented using a simple numerical trick, as follows:

given a value of αs(MZ), we determine the corresponding two-loop value of Λ2−loop
QCD . We

then use that Λ value in the one-loop solutions in [24], and correct the resulting distribution

by inserting an additional trial accept veto:

P 2−loop
accept =

α2−loop
s (Q,Λ2−loop

QCD )

α1−loop
s (Q,Λ2−loop

QCD )
. (2.21)

Due to the faster pace of 2-loop running, α2−loop
s (Q,Λ) < α1−loop

s (Q,Λ), hence this accept

probability is guaranteed to be smaller than or equal to unity.

A final point concerns if there are several “competing” radiators (equivalent to several

competing nuclei, and/or several competing available decay channels for each nucleus).

In this case, the trial with the highest value of Q is selected (corresponding to the one

happening at the earliest time, t), and consideration of any other branchings (decays)

are postponed temporarily. After a branching, any partons involved in that branching

are replaced by the post-branching ones, and any postponed trial branchings involving

those partons are deleted. The evolution is then restarted, from the scale Q of the new

configuration, until there are no radiators left with trial branching scales larger than a

fixed, lower, cutoff, normally identified with the hadronization scale, Qhad ∼ 1 GeV.

2.3 Evolution and ordering

In order to solve eq. (2.15) we need to specify the form of eq. (2.10), which takes us from

one scale Q2
1 to a lower scale Q2

2. We change variables to parametrize the integral by the

ordering variable, Q, and another, complementary (but otherwise arbitrary), phase-space

variable which we denote by ζ. The generic evolution integral now reads

A
(
Q2

1, Q
2
2

)
=

∫ Q2
1

Q2
2

g2
s C dQ2dζ |J |A(Q2, ζ) (2.22)

with |J | denoting the Jacobian of this transformation. For branchings involving gluon

emission, we consider three possible choices for the ordering variable: dipole virtuality

mD, transverse momentum, and the energy of the emitted parton, E∗j (in the CM of the

parent antenna), with the following definitions,

Q2
E1 = m2

D = 2m2
IK min(yij , yjk) , (2.23)

– 8 –
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Dipole Virtuality-Ordering p⊥-ordering Energy-Ordering

(m2
min) (

〈
m2
〉

geometric
) (

〈
m2
〉

arithmetic
)

L
in

ea
r

in
y

Q2
E : (a) m2

D=2 min(yij , yjk)s (b) 2p⊥
√
s=2
√
yijyjks (c) 2E∗

√
s=(yij + yjk)s

Q
u

ad
ra

ti
c

in
y

Q2
E : (d)

m4
D
s =4 min(y2

ij , y
2
jk)s (e) 4p2

⊥=4yijyjks (f) 4E∗2 =(yij + yjk)
2s

Figure 1. Contours of constant value of yE = Q2
E/m

2
IK for evolution variables linear (top) and

quadratic (bottom) in the branching invariants, for virtuality-ordering (left), p⊥-ordering (middle),

and energy-ordering (right). Note that the energy-ordering variables intersect the phase-space

boundaries, where the antenna functions are singular, for finite values of the evolution variable.

They can therefore only be used as evolution variables together with a separate infrared regulator,

such as a cut in invariant mass, not shown here.

Q2
E2 = 4p2

⊥ = 4m2
IK yijyjk , (2.24)

Q2
E3 = 4E∗2j = m2

IK (yij + yjk)
2 = x2

j m
2
IK , (2.25)

with the energy fraction xj = 2E∗j /mIK .

All three options are available as ordering variables in the vincia shower Monte Carlo.

They are illustrated in figure 1, where contours of constant value of yE = Q2
E/m

2
IK are

shown for each variable, as a function of yij and yjk. For completeness, we show both the

case of a linear (top row) and quadratic (bottom row) dependence on the branching invari-

ants, for each variable. Since the ordering variable raised to any positive power will result

in the same relative ordering of emissions within a given antenna, the distinction between

linear and quadratic forms does not affect individual antenna Sudakov factors. It does, how-

ever, affect the “competition” between different antennae, and the choice of restart scale for

subsequent evolution after a branching has taken place, as will be discussed further below.

In labeling the columns in figure 1, we have also emphasized that mass-ordering, as

defined here, corresponds to choosing the smallest of the daughter antenna masses as the
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yE = Q2

sijk
=

m2
jk

s
m2
D
s

m4
D
s2

2p⊥√
s

4p2
⊥
s

2E∗√
s

4E∗2

s

|J(yE , ζ1)| = yE
(1−ζ1)2

yE
4(1−ζ1)2

1
8(1−ζ1)2

yE
4ζ1(1−ζ1)

1
8ζ1(1−ζ1) yE

1
2

|J(yE , ζ2)| = 1 1
2

1
4
√
yE

yE
2ζ2

1
4ζ2

1 1
2
√
yE

Note: |J(Q2, ζ)| = sijk|J(yE , ζ)|.

Table 1. Jacobian factors for all combinations of evolution variables and ζ choices.

“resolution scale” of the branching, whereas p⊥ and energy correspond to using the geo-

metric and arithmetic means of the daughter invariants, respectively. Naively, each of these

could be taken as a plausible measure of the resolution scale of a given phase-space point.

We shall see below which ones lead to better agreement with the one-loop matrix elements.

We consider two possible definitions for the complementary phase-space variable ζ,

ζ1 =
yij

yij + yjk
(2.26)

ζ2 = yij . (2.27)

We emphasize that the choice of ζ has no physical consequences, it merely serves to

reparametrize the Lorentz-invariant phase space. We may therefore let the choice be gov-

erned purely by convenience, and, for each antenna integral, select whichever of the above

definitions give the simplest final expressions. The corresponding Jacobian factors, for each

of the evolution-variable choices we shall consider, are listed in table 1.

Note that, for the special case of the m2
D and m4

D variables, which contain the non-

analytic function min(yij , yjk), the ζ definitions in eqs. (2.26) and (2.27) apply to the

branch with yij > yjk. For the other branch, yij and yjk should be interchanged. With

this substitution, the Jacobians listed in table 1 apply to both branches.4

For branchings involving gluon splitting, g → qq̄, we restrict our attention to two

possibilities, ordering in p⊥, defined as above, and ordering in gluon virtuality, defined as

Q2
E4 = m2

g∗ = m2
qq̄ (for gluon splitting) . (2.28)

Note that the normalization factors for the ordering variables have in all cases been chosen

such that the maximum value of the ordering variable is m2
IK .

Since the phase space for subsequent branchings is limited both by the scale QE of the

previous branching (according to strong ordering) and by the invariant mass of the antenna

mj , the effective “restart scale”, after a branching in a strongly ordered shower, is given by

Q2
Rj = min(Q2,m2

j ) , (2.29)

for each antenna j.

Depending on the choice and value of Q, one or both daughter antennae after a splitting

may have a non-trivial restriction on the phase space available for subsequent branching.

Conversely, if Q > mj , there is no such restriction. Physically, we distinguish between the

4This corresponds to replacing yij by max(yij , yjk) in the numerator of eq. (2.26) and in eq. (2.27).
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Figure 2. Illustration of the regions of 3-parton phase space in which the subsequent evolution of

the qg and gq̄ antennae is restricted (from above) by the strong-ordering condition. See the text

for further clarification of this plot. Black: both antennae restricted. Dark Gray: one antenna

restricted, the other unrestricted. Light Gray: both antennae unrestricted. Top/Bottom: Q2

linear/quadratic in the branching invariants, for mass-ordering (left), p⊥-ordering (middle), and

energy-ordering (right).

case in which the strong-ordering condition implies a non-trivial constraint on the evolution

of the produced antennae, eating into the phase-space that would otherwise be accessible,

and the case in which the strong-ordering condition does not imply such a constraint.

The regions of qq̄ → qgq̄ phase space in which either zero, one, or both of the daughter

antennae (qg and gq̄ respectively) are constrained by the ordering condition are illustrated

in figure 2, for each of the choices of evolution variable under consideration. The black

shaded areas correspond to regions in which both the qg and gq̄ antennae are restricted,

by having Q < mj . The darker gray shaded areas show regions in which only one of the

antennae is restricted, while the other will still be allowed to evolve over its full phase

space. In the light-gray shaded areas, both of the antennae are allowed to evolve over all

of their available phase spaces, equivalent to the ordering condition imposing no constraint

on the subsequent evolution. We recall that we are here discussing the upper boundary on

the subsequent evolution, hence the infrared5 (IR) poles are not affected.

To further clarify the meaning of the plots in figure 2, let us discuss panel (e) as an

example. The coordinates, (yij , yjk), represent the 3-parton state before it evolves to a

5Note: we use the word infrared to refer collectively to soft and/or collinear regions of phase space.
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4-parton state, and each point corresponds to a specific value of the evolution variable at

hand, cf. figure 1. Assuming ordering in p⊥ and using subscript (3) for quantities evalu-

ated in the 3-parton state, the value of the evolution variable for a specific (yij , yjk) point

is Q2
E(3) = 4p2

⊥(3) = 4yijyjks, with s = m2
Z at the Z pole. The further evolution of the

shower, from a 3- to a 4-parton state, involves a sum over all possible branchings of the

qg and gq̄ antennae. Consider the qg one. Its branchings can again be characterized by

two invariants (s1, s2), both of which will be smaller than m2
qg. However, depending on the

value of m2
qg (or, equivalently, yij) the p⊥ of the new configuration, 4p2

⊥(4) = 4s1s2/m
2
qg

may actually be larger than 4p2
⊥(3). In a strongly ordered shower, such configurations are

not allowed, and would be discarded. Whether this situation can occur or not, for one or

both of the qg and gq̄ antennae, as a function of (yij , yjk), is what figure 2 reveals, for each

type of ordering variable.

The mathematical consequence is that, in the dark- and black-shaded regions, respec-

tively, the upper boundary of one or both of the qg and gq̄ antenna integrals is set by the

evolution variable, rather than by phase space. This creates an important difference be-

tween the integrals generated by a shower algorithm and those used for IR subtractions in

traditional fixed-order applications for which the integrals often run over all of phase space,

although some subtraction schemes feature parameters that allow restrictions on the phase

space for the subtraction terms [53, 54]. In particular, we see that the strong-ordering con-

dition will generate additional logarithms involving sij/Q
2
E(3) as argument. For a “good”

choice of evolution variable, these logarithms should explicitly cancel against ones present

in the one-loop matrix elements, a question we shall return to in detail in section 4.

Several interesting structures can be seen in figure 2. Firstly, the linearized variables

imply less severe constraints on the subsequent evolution than the quadratic ones. This is

easy to understand given that the linearized variables, Qlin, are related to the quadratic

ones, Qqdr, by

Q2
lin = QqdrmIK , (2.30)

and hence Qlin > Qqdr, implying a higher absolute restart scale for the linearized ordering

variables.

It is also apparent that, for a given choice of linearity, mass-ordering reduces the phase-

space for further evolution more than p⊥-ordering does, which in turn is more constraining

than energy-ordering. In this comparison, however, it becomes important to recall that the

traditional ordering variables used, e.g., in vincia, are the linearized mass-ordering and

the quadratic p⊥ and energy-ordering variables.6 Within that group, p⊥-ordering appears

to be the most restrictive, followed by energy-ordering, with (traditional, linearized) mass-

ordering leading to the most open phase space for the subsequent evolution.

We are now able to fully specify the boundaries of the evolution integrals in eq. (2.22).

For eachQE contour (see figure 1), the integration limits in ζ are listed in table 2. Combined

with a QE interval and an antenna function, these boundaries account for the integrated

tree-level splitting probability when going from one scale Q2
1 to another Q2

2, as expressed

6This distinction comes about from using quantities that are similar to a squared mass, squared trans-

verse momentum, and squared energy, respectively.
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Ordering type Q2
E ζmin(Q2

E) ζmax(Q2
E) 3→ 4 restriction

p⊥-ordering
linear 2m2

IK
√
yijyjk

1∓
√

1−Q4
E
/m4

IK
2

θ
(
m2

ant − 2
√
sijsjk

)
squared 4m2

IK yijyjk
1∓
√

1−Q2
E
/m2

IK
2

θ
(
m2

ant − 4
sijsjk
s

)
mD-ordering

linear 2m2
IK min(yij , yjk)

Q2
E

2m2
IK

1− Q2
E

2m2
IK

θ
(
m2

ant − 2 min(sij , sjk)
)

squared 4m2
IK min(y2

ij , y
2
jk)

√
Q2

E

4m2
IK

1−
√

Q2
E

4m2
IK

θ

(
m2

ant − 4
min(s2ij ,s

2
jk)

s

)
E∗-ordering

linear m2
IK (yij + yjk) 0 1 1

squared m2
IK (yij + yjk)2 0 1 θ

(
m2

ant −
(sij+sjk)2

s

)
Table 2. Boundaries corresponding to the ordering variables portrayed in figure 1, with m2

ant

corresponding to the active 3 → 4 dipole sqg or sgq̄, and s = m2
Z at the Z pole. We have chosen

ζ2 as the energy sharing variable for mD and p⊥ ordering and ζ1 for E∗ ordering, with ζ defined

as in eq. (2.26) and eq. (2.27). The energy variable will lead to infinities if the hadronization scale

is not imposed as a cut-off.

by eq. (2.22). The last column in table 2 tells when the 3→ 4 ordering condition is active.

In figure 2 this corresponds to a region darkening due to the restriction, with its shade

determined by the amount of restricted dipoles.

Finally, we note that the dependence on Q in eq. (2.29) causes explicit non-Markovian

behavior at the 4-parton level and beyond, since the value of Q then depends explicitly on

which branching was the last to occur. A more strictly Markovian variant of this is obtained

by letting the min() function act on all possible Q values (corresponding to all possible

colour-connected clusterings) of the preceding topology. In that case, a single Q value can

be used to characterize an entire n-parton topology, irrespective of which branching was

the last to occur. Since the distinction between Markovian and non-Markovian shower

restart conditions only enters starting from the 4 → 5 parton evolution step, it will not

affect our discussion of the second-order 2 → 3 branching process. For completeness, we

note that the strongly ordered showers in vincia are of the ordinary non-Markovian type,

while the smoothly ordered ones are Markovian.

2.4 Smooth ordering

In addition to traditional (strongly ordered) showers, we shall also consider so-called smooth

ordering [24]: applying the ordering criterion as a smooth dampening factor instead of as a

step function. This is not as radical as it may seem at first. Applying a jet algorithm to any

set of events will in general result in some small fraction of unordered clustering sequences.

This is true even if the events were generated by a strongly ordered shower algorithm, if the

jet clustering measure is not strictly identical to the shower ordering variable. An example

of this, for strong ordering in p⊥ and in mD, clustered with the kT algorithm, can be found

in [55].

In smooth ordering, the only quantity which must still be strictly ordered are the

antenna invariant masses, a condition which follows from the nested antenna phase spaces

and momentum conservation. Within each individual antenna, and between competing

ones, the measure of evolution time is still provided by the ordering variable, which we
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Figure 3. The smooth-ordering factor (solid) compared to a strong-ordering Θ function (dashed).

therefore typically refer to as the “evolution variable” in this context (rather than the

“ordering variable”), in order to prevent confusion with the strong-ordering case. The

evolution variable can in principle still be chosen to be any of the possibilities given above,

though we shall typically use 2p⊥ for gluon emission and mqq̄ for gluon splitting.

In terms of an arbitrary evolution variable, Q, the smooth-ordering factor is [55]

Pimp =
Q̂2

Q̂2 +Q2
, (2.31)

where Q is the evolution scale associated with the current branching, and Q̂ measures the

scale of the parton configuration before branching. A comparison to the strong-ordering

step function is given in figure 3, on a log-log scale.

In the strongly-ordered region of phase-space, Q� Q̂, we may rewrite the Pimp factor

as

Pimp =
1

1 + Q2

Q̂2

Q<Q̂
= 1− Q2

Q̂2
+ . . . . (2.32)

Applying this to the 2 → 3 antenna function whose leading singularity, eq. (2.16), is pro-

portional to 1/Q2, we see that the overall correction arising from the Q2/Q̂2 and higher

terms is finite and of order 1/Q̂2; a power correction. The LL singular behaviour is there-

fore not affected. However, at the multiple-emission level, the 1/Q̂2 terms do modify the

subleading logarithmic structure, starting from O(α2
s), as we shall return to below.

In the unordered region of phase-space, Q > Q̂, we rewrite the Pimp factor as

Pimp =
Q̂2

Q2

1

1 + Q̂2

Q2

Q>Q̂
=

Q̂2

Q2

(
1− Q̂2

Q2
+ . . .

)
, (2.33)

which thus effectively modifies the leading singularity of the LL 2→ 3 function from 1/Q2

to 1/Q4, removing it from the LL counting. The only effective terms ∝ 1/Q2 arise from

finite terms in the radiation functions, if any such are present, multiplied by the Pimp factor.

Only a matching to the full tree-level 2→ 4 functions would enable a precise control over

these terms. Up to any given fixed order, this can effectively be achieved by matching to
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Figure 4. Illustration of scales and Sudakov factors involved in an unordered sequence of two 2→ 3

branchings, representing the smoothly ordered shower’s approximation to a hard 2→ 4 process.

tree-level matrix elements, as will be discussed in section 3.1. Matching beyond the fixed-

order level is beyond the scope of this paper. We thus restrict ourselves to the observation

that, at the LL level, smooth ordering is equivalent to strong ordering, with differences

only appearing at the subleading level.

The effective 2 → 4 probability in the shower arises from a sum over two different

2→ 3⊗ 2→ 3 histories, each of which has the tree-level form

Â Pimp A ∝
1

Q̂2

Q̂2

Q̂2 +Q2

1

Q2
=

1

Q̂2 +Q2

1

Q2
, (2.34)

thus we may also perceive the combined effect of the modification as the addition of a

mass term in the denominator of the propagator factor of the previous splitting. In the

strongly ordered region, this correction is negligible, whereas in the unordered region,

there is a large suppression from the necessity of the propagator in the previous topology

having to be very off-shell, which is reflected by the Pimp factor. Using the expansion for

the unordered region, eq. (2.33), we also see that the effective 2 → 4 radiation function,

obtained from iterated 2→ 3 splittings, is modified as follows,

P2→4 ∝
1

Q̂2

Q̂2

Q2

1

Q2
→ 1

Q4
+O(. . .) , (2.35)

in the unordered region. That is, the intermediate low scale Q̂, is removed from the effective

2→ 4 function, by the application of the Pimp factor.

Finally, to illustrate what happens to the Sudakov factors, we illustrate the path

through phase space taken by an unordered shower history in figure 4. An antenna starts

showering at a scale equal to its invariant mass,
√
s, and a first 2→ 3 branching occurs at

the evolution scale Q̂. This produces the overall Sudakov factor ∆2→3(
√
s, Q̂). A daughter
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antenna, produced by the branching, then starts showering at a scale equal to its own in-

variant mass, labeled
√
s1. However, for all scales larger than Q̂, the Pimp factor suppresses

the evolution in this new dipole so that no leading logs are generated. To leading approxi-

mation, the effective Sudakov factor for the combined 2→ 4 splitting is therefore given by

∆eff
2→4 ∼ ∆2→3(

√
s, Q̂) , (2.36)

in the unordered region. Thus, we see that a dependence on the intermediate scale Q̂

still remains in the effective Sudakov factor generated by the smooth-ordering procedure.

Since Q̂ < Q in the unordered region, the effective Sudakov suppression of these points

might be “too strong”. The smooth ordering therefore allows for phase space occupation

in regions corresponding to dead zones in a strongly ordered shower, but it does suggest

that a correction to the Sudakov factor may be desirable, in the unordered region. A study

of Z → 4 jets at one loop would be required to shed further light on this question.

Having presented introductory aspects of (antenna) showers, we now turn to a detailed

discussion of how we match them to higher fixed-order calculations.

3 Matched antenna showers

3.1 Tree-level matching

The strategy for matching to tree-level matrix elements used in vincia was defined by GKS

in [24] and is tightly related to the veto algorithm outlined above. The philosophy is to

view the shower produced by the smoothly ordered antenna functions as generating an all-

orders approximation to QCD, which can be systematically improved, order by order, by

including one more factor in the accept probability, called the matrix-element correction.

For a given trial branching, the full trial accept probability, up to the highest matched

number of partons, is then obtained as a product of the ordinary trial-accept probability

in the shower, multiplied by this extra correction factor.

Since the shower is already correct in the soft and collinear limits, the matrix-element

correction factor will tend to unity in those limits, but it can deviate on either side of

unity outside those limits. As long as the combined accept probability is still smaller than

unity, a probabilistic accept/reject step can still be applied, without having to worry about

reweighting the events (which would be required if the total accept probability should

exceed unity). It is also important to define the factor only in terms of physical cross

sections (here represented by LO matrix elements), which guarantees positivity. (Again, if

it were allowed to become negative, one would have to introduce negative-weight events,

but this is avoided in the GKS strategy as defined in [24]).

As we have seen, the shower furnishes an all-orders approximation to QCD. The aim

is, for each resolved parton/jet multiplicity, to match the answer provided by the shower

to an, ideally, all-orders exact expression, by applying a multiplicative correction factor,

schematically [24, 38]

Matched = Approximate
Exact

Approximate
. (3.1)
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At tree level, we in fact know only the first term in the expansion of the numerator, and

we therefore expand the shower approximation to the same level. For n partons, assuming

the approximation has already (recursively) been matched to the preceding order,

Exact→ |Mn|2 (3.2)

Approximate→
∑
j

g2
TjCTjATjPaccept|Mn−1j |2 =

∑
j

g2
jCjPimpPAriAj |Mn−1j |2 , (3.3)

where the subscript “T” indicates trial quantities (cf. section 2.2), we have suppressed the

dependence on phase-space points, Φ, and the subscript j in the (n − 1)-parton matrix

element indicates the configuration obtained by performing the inverse shower step that

removes parton j from the n-parton state.

The factors in eq. (3.3) are easy to calculate if a tree-level matrix-element (ME) gen-

erator is available to provide the |M |2 factors. The total ME-corrected accept probability

is thus simply eq. (2.19),

PLO
accept = Paccept Rn = Paccept

|Mn|2∑
j g

2
j Cj Pimp PAri Aj |Mn−1j |2

. (3.4)

As mentioned above, this factor should be positive and smaller than unity, in order to

avoid having to reweight any events. In practice, we have found the trial function defined

in eq. (2.16) to guarantee this for all processes we have so far considered, mainly consisting

of Z → n and H → n partons. As shown in [24], it is also possible to absorb subleading-

colour corrections into this matching factor in a positive-definite way, but since subleading

colour goes beyond the scope of our study we do not reproduce the arguments here.

The fact that these factors change the distribution of the final set of generated events

to the correct matrix-element answer can be explained by following the steps of the al-

gorithm and summing over all possible branching histories. We start from Born-level

matrix-element events, and generate trial shower branchings, for a trial approximation to

the (B + 1)-parton matrix element of:

|MTrial
B+1 |2 =

∑
i

g2
T i CT iAT i |MLO

Bi |
2 , (3.5)

with i running over all possible single-parton clusterings that correspond to allowed shower

branchings. Applying the LO accept probability, eq. (3.4), changes this to

→
∑
i

g2
T i CT iAT i PLO

accept |MLO
Bi |

2

=
∑
i

g2
i Ci Pimp PAriAi

|MLO
B+1|2∑

j g
2
sj Cj Pimp PAriAj |MLO

Bj
|2
|MLO

Bi |
2

= |MLO
B+1|2 . (3.6)

That is, summed over shower histories, numerators and denominators are designed to can-

cel exactly, leaving only the LO matrix element for B+1 partons, as desired. Due to the
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full phase-space coverage and explicitly Markovian nature of the smoothly ordered shower

algorithm, this procedure is straightforward to iterate for Born + 2, 3, etc partons.7

To provide a connection with antenna subtraction, which will be useful when we extend

to NLO matching below, we can rewrite the ratio in eq. (3.1) by a trivial rearrangement,

Matched = Approximate

(
1 +

Exact−Approximate

Approximate

)
. (3.7)

The numerator in this equation is very similar to a standard antenna-subtracted matrix

element, though we emphasize that our antennae are of course modified by the presence of

the Pimp and PAri factors.

Let us finally re-emphasize that since we apply the correction factor to the antenna

functions themselves, thereby modifying the probability for a branching to occur, the prob-

ability for a branching not to occur is also modified. These corrections will therefore also

be present in the Sudakov factors generated by the corrected shower evolution. The fact

that the correction factor, Rn, is unity in all LL singular limits (since the shower func-

tions are guaranteed to match the matrix-element singularities there) implies that the LL

properties of the Sudakov factors are not affected by this modification. However, the tower

of subleading logarithms is changed, for better or worse. While it is known that finite

terms do not exponentiate our corrections here also include a more subtle aspect, namely a

resummation of the subleading logarithms present in the higher-order matrix elements. At

this level, however, we cannot be sure that this procedure produces the correct subleading

logarithms of a formally higher-order resummation. Therefore, we view it at present merely

as an interesting, and hopefully beneficial, side-effect of unitarity-based matching. The ex-

amination of formally subleading terms carried out in this paper is a first step towards a

more rigorous study of these aspects.

3.2 One-loop matching at the Born level

For the Born level, at NLO, the GKS matching strategy [24] reduces to the powheg one [7–

9]. We nonetheless begin by recapitulating the steps used to derive the one-loop correction

to the Born-level matrix element, in our notation. We then continue to higher multiplicities.

As our basis for one-loop matching we take the tree-level strategy described in sec-

tion 3.1. Since the corrections are applied as modifications to the branching probabilities,

without adding, subtracting, or reweighting events, the total inclusive rate after tree-level

matching to any number of partons, is still just the leading-order, Born-level one. By the

same token, after one-loop matching, at the integrated level, the total NLO correction to

the inclusive rate must therefore just be the NLO “K-factor”,

KNLO =
σNLO

inc

σLO
inc

. (3.8)

7That is not the case for ordinary strongly ordered frameworks, due to the presence of dead zones in

phase space and to the generally non-Markovian shower restart conditions. For such algorithms, addition of

events in the dead zones [56], with CKKW-like Sudakov-factor prescriptions for multi-leg matching [57, 58],

would presumably be necessary.
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For processes like Z decay, where the NLO correction has no dependence on the Born-level

kinematics, this is trivial to implement as an overall reweighting factor on the Born-level

events,

KNLO
Z = 1 + VZ = 1 +

αs
π
, (3.9)

where we have introduced the notation V for the NLO correction term, anticipating a sim-

ilar notation for the multileg case below. Note that one could equally trivially normalize

to NNLO or to data, as desired for the application at hand (we note though that such a

normalization choice does not, by itself, ensure NNLO precision for any quantity besides

the total inclusive rate).

However, when the amount of final state particles exceeds two, the NLO correction de-

pends on the Born-level kinematics, therefore it is worth illustrating the general procedure

for deriving a fully differential K-factor, for each phase-space point. This also serves as a

useful warm-up exercise for the multi-leg case below.

At NLO, we may distinguish between inclusive and exclusive rates for the first time.

Either can in principle be used to derive matching equations between showers and fixed-

order calculations, but the exclusive one is best suited for deriving expressions at the fully

differential level. We recall that the exclusive n-jet cross section is defined as the cross

section for observing n and only n jets, while the inclusive n-jet cross section counts the

number of events with n or more jets. One therefore has the trivial relation

σincl
n (Q) =

∑
k≥n

σexcl
k (Q) . (3.10)

with Q the resolution scale of whatever (IR safe) algorithm is used to define the jets.

3.2.1 Inclusive Born

The total inclusive rate produced by the tree-level matched shower is just the Born-level

matrix element,

Approximate → |M0
2 |2 , (3.11)

where the subscript indicates the parton multiplicity (2 for Z → qq̄ decay) and the super-

script indicates the loop order beyond the Born level (0 indicates the Born loop order).

Because cancellation of real and virtual corrections is exact in both the unmatched shower

as well as in the tree-level matching scheme described above, there are no further corrections

to consider for the inclusive rate. In other words, the total integrated cross section pro-

duced by the shower is obtained merely by integrating eq. (3.11) over all of the Born-level

phase space. We now seek a correction term, V2, such that

Matched → (1 + V2Z) |M0
2 |2 (3.12)

gives the correct inclusive NLO rate. From eq. (3.9), we know that the correction term for

Z decay is

V2Z =
αs
π
. (3.13)

A systematic way of deriving this result, which can be applied to arbitrary processes,

is provided by considering the cross section at the exclusive level.
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3.2.2 Exclusive Born

The shower expression for the exclusive Z → qq̄ rate (defined at the hadronization cut-off,

which is the lowest meaningful resolution scale in the perturbative shower) is

|M0
2 |2 ∆(s,Q2

had) = |M0
2 |2
(

1−
∫ s

Q2
had

dΦant g
2
s C Ag/qq̄ +O(α2

s)

)
, (3.14)

where we have expanded the Sudakov factor ∆ to first order. Due to the presence of the

hadronization scale, this expression is IR finite and can be defined in 4 dimensions.

We remark here on the validity of this expansion in αs for the exclusive cross section.

For the purpose of constructing the matching factor to order αs the expansion is a para-

metric one. In the ratio of the exact and approximate exclusive cross section, since the

singularities match to the shower accuracy, divergences or large logaritms (depending on

whether one choose zero or finite resolution scale) cancel and the resulting factor has a

well-behaved expansion in αs.

The colour factor for qq̄ → qgq̄ is

Cg/qq̄ = 2CF , (3.15)

and we assume that the antenna function, A, is either the one derived from Z decay [20]

or has been matched to it, using LO matching. That is,

g2
s 2CF Ag/qq̄ =

|M0
3 |2

|M0
2 |2

. (3.16)

We first consider the limit Qhad → 0, in which case the expression becomes

|M0
2 |2 ∆(s, 0) = |M0

2 |2
(

1−
∫ s

0
dΦant g

2
s 2CF Ag/qq̄ +O(α2

s)

)
, (3.17)

which can only be defined in the presence of an IR regularization scheme. We shall here

use dimensional regularization, working in d = 4 − 2ε dimensions. Below, we rederive the

matching equations in 4 dimensions, for Qhad 6= 0, and show that the same final matching

factors are obtained in both cases.

At NLO, the exclusive Z → qq̄ rate at “infinite” perturbative resolution is

|M0
2 |2 + 2 Re[M0

2M
1
2
∗
] = |M0

2 |2
(

1 +
2 Re[M0

2M
1
2
∗
]

|M0
2 |2

)
, (3.18)

where we have written the right-hand side in a form similar to eq. (3.17), in d dimensions.

Because the resolution scale has been taken to zero, there are no unresolved 3-parton

configurations to include. The virtual matrix element is

2 Re[M0
2M

1
2
∗
]

|M0
2 |2

=
αs
2π

2CF
(
2Iqq̄(ε, µ

2/s)− 4
)
, (3.19)

with the function Iqq̄ used to classify the ε divergences [22, 33, 59]. Note that we have

modified the definition of I to make it explicitly dimensionless, see appendix A. On the

shower side, the integral of the Z → qgq̄ antenna in eq. (3.17) is [22]∫ s

0
dΦant 2CF g2

s Ag/qq̄ =
αs
2π

2CF

(
−2Iqq̄(ε, µ

2/s) +
19

4

)
, (3.20)
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and, not surprisingly, the difference comes out to be exactly αs/π × |M0
2 |2. Writing this

correction as a multiplicative K-factor, we obtain eq. (3.9).

As a cross-check, we now repeat the derivation in 4 dimensions, reinstating the

hadronization scale. The fixed-order side is then

|M0
2 |2
(

1 +
2 Re[M0

2M
1
2
∗
]

|M0
2 |2

+

∫ Q2
had

0
dΦant g

2
s C Ag/qq̄

)
, (3.21)

where the integral that has been added corresponds to unresolved 3-parton configurations,

with A again given by eq. (3.16). Though eq. (3.14) is now defined entirely in 4 dimensions,

we still need dimensional regularization to regulate the two last terms in the fixed-order

expression. In principle, the integral in the last term could be carried out explicitly, but

it is simpler to rewrite it as∫ Q2
had

0
dΦant g

2
s C Ag/qq̄ =

∫ m2
Z

0
dΦant g

2
s C Ag/qq̄ −

∫ m2
Z

Q2
had

dΦant g
2
s C Ag/qq̄ (3.22)

where the first term is just the full antenna integral, eq. (3.20), and the second term

is identical to the one appearing in eq. (3.14), with which it cancels completely, cf. the

definition of the tree-level matching, eq. (3.16). The final correction term is therefore

again exactly equal to αs/π × |M0
2 |2.

Note that the scale and scheme dependence of the αs/π correction is not specified since

its ambiguity is formally of order α2
s. For definiteness we take the renormalization scale

for this correction to be proportional to the invariant mass of the system, µR = kinc
µ

√
ŝ

(so that µR = kinc
µ mZ at the Z pole), with kinc

µ thus representing the free parameter that

governs the choice of renormalization scale for the total inclusive rate for Z → hadrons.

We shall consider both one-loop and two-loop running options. The value of αs(mZ) will

be determined from LEP data in section 5.

3.3 One-loop matching for Born + 1 parton

The approximation to the 3-parton exclusive rate produced by a shower matched to (at

least) NLO for the 2-parton inclusive rate and to LO for the 3-parton one, is

Approximate → (1 + V2) |M0
3 |2 ∆2(m2

Z , Q
2
3) ∆3(Q2

R3, Q
2
had) , (3.23)

where M0
3 is the tree-level Z → qgq̄ matrix element and QR3 denotes the “restart scale”.

For strong ordering, QR3 is equal to Q3, while, for smooth ordering, it is given by the nested

antenna phase spaces, i.e., by the successive antenna invariant masses. The subscripts on

the two Sudakov factors ∆2 and ∆3 make it explicit that they refer to the event as a

whole, see the illustration in figure 5. Again, we have the choice whether we wish to work

in 4 dimensions, with a non-zero hadronization scale, Qhad, or in d dimensions with the

hadronization scale taken to zero. We have maintained the hadronization scale in eq. (3.23),

though we shall see below that the dependence on it does indeed cancel in the final result.

The 2-parton Sudakov factor, ∆2, is generated by the (matched) evolution from 2 to

3 partons,

∆2(m2
Z , Q

2
3) = 1−

∫ m2
Z

Q2
3

dΦant g
2
s 2CF Ag/qq̄ +O(α2

s) , (3.24)
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Figure 5. Illustration of the evolution scales and Sudakov factors appearing in the exclusive 3-jet

cross section, eq. (3.23).

with Ag/qq̄ again defined by eq. (3.16). Notice that the integral only runs from the starting

scale, m2
Z , to the 3-parton resolution scale, Q2

3, hence this integral is IR finite, though

it does contain logarithms. In the remainder of this paper, we shall work only with the

leading-colour part of the Sudakov and matrix-element expressions, hence from now on

we replace 2CF in the above expression by CA,

∆LC
2 (m2

Z , Q
2
3) = 1−

∫ m2
Z

Q2
3

dΦant g
2
s CA Ag/qq̄ +O(α2

s) . (3.25)

The 3-parton Sudakov factor, ∆3, imposes exclusivity and is given by

∆3(Q2
R3, Q

2
had) = 1−

2∑
j=1

∫ Q2
R3

Q2
had

dΦant g
2
s (CA AEj + 2TR ASj) +O(α2

s) , (3.26)

where the index j runs over the qg and gq̄ antennae, and we use subscripts E and S

for gluon emission and gluon splitting, respectively. We have implicitly assumed smooth

ordering here, which implies that the upper boundaries on the integrals are given by the

respective dipole invariant masses (squared), sj . Note also that we must take into account

all modifications that are applied to the LL antenna functions, including Pimp, PAri, and LO

matrix-element matching factors. (We do not write out these factors here, to avoid clutter.)

I.e., the antenna functions in the above expression must be the ones actually generated by

the shower algorithm, including the effect of any modifications imposed by vetos.

For strong ordering, there are no Pimp factors, and the upper integral boundary is

instead min(Q2
3, sj),

∆3(Q2
3, Q

2
had) = 1−

2∑
j=1

∫ min(Q2
3,sj)

Q2
had

dΦant g
2
s (CA AEj + 2TR ASj) +O(α2

s) . (3.27)

However, since strong ordering is not able to fill the entire 4-parton phase space [24, 29],

full NLO matching can only be obtained for the smoothly ordered variant. It is nonetheless

interesting to examine both types of shower algorithms, since even in the strongly ordered

– 22 –



J
H
E
P
1
0
(
2
0
1
3
)
1
2
7

case, we may compare the Sudakov logarithms arising at O(α2
s) to those present in the

fixed-order calculation.

On the fixed-order side, the expression for the 3-parton exclusive rate is simply

Exact → |M0
3 |2 + 2 Re[M0

3M
1∗
3 ] +

∫ Q2
had

0

dΦ4

dΦ3
|M0

4 |2 , (3.28)

where the last term represents 4-parton configurations in which a single parton is unresolved

with respect to the hadronization scale. For Z decay, d-dimensional expressions for the

virtual matrix element have been available since long [22, 32, 33, 60]. Details on the

calculation and in particular its renormalization, are given in appendix B, in a notation

convenient for our purposes.

We now seek a fully differential matching factor, K3 = 1+V3, such that the expansion of

Matched = (1 + V3) Approximate , (3.29)

reproduces the exact expression, eq. (3.28), to one-loop order. (“Approximate” here

stands for the tree-level matched shower approximation, eq. (3.23).) Trivial algebra yields

V LC
3 =

[
2 Re[M0

3M
1∗
3 ]

|M0
3 |2

]LC

− V2

+

∫ m2
Z

Q2
3

dΦant g
2
s 2CA Ag/qq̄ +

2∑
j=1

∫ sj

0
dΦant g

2
s (CA AEj + 2TR ASj)

+

∫ Q2
had

0

dΦ4

dΦ3

|M0
4 |2

|M0
3 |2
−

2∑
j=1

∫ Q2
had

0
dΦant g

2
s (CA AEj + 2TR ASj) , (3.30)

where we have reinstated d-dimensional forms of the one-loop matrix element and of the

divergent 3→ 4 terms. For a shower matched to |M0
4 |2 at leading order, the last two terms

will cancel, by definition of the matched antenna functions (even for an unmatched shower,

the difference could at most be a finite power correction in the hadronization scale, since

the matrix element and the shower antenna functions have the same singularities), yielding:

V LC
3Z =

[
2 Re[M0

3M
1∗
3 ]

|M0
3 |2

]LC

− V2Z

+

∫ m2
Z

Q2
3

dΦant g
2
s 2CA Ag/qq̄ +

2∑
j=1

∫ sj

0
dΦant g

2
s (CA AEj + 2TR ASj) .(3.31)

Rewriting the remaining integrals in terms of a set of standardized antenna subtraction

terms, writing out the ordering functions for gluon emission and gluon splitting, OE and

OS , explicitly, and denoting the ariadne factor for gluon splitting by PA, we arrive at the

following master equation for the second-order correction to the 3-jet rate:

V LC
3Z =

[
2 Re[M0

3M
1∗
3 ]

|M0
3 |2

]LC

− V2Z +

2∑
j=1

∫ sj

0
dΦant g

2
s

(
CAA

std
Ej + nFA

std
Sj

)
(3.32)
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+

∫ m2
Z

Q2
3

dΦant g
2
s CA Astd

g/qq̄ +

∫ m2
Z

Q2
3

dΦant g
2
s CA δAg/qq̄

−
2∑
j=1

∫ sj

0
dΦant g

2
s

(
CA (1−OEj) Astd

Ej + nF (1−OSj) PAj Astd
Sj

)

+
2∑
j=1

∫ sj

0
dΦant g

2
s (CA δAEj + nF δASj)−

2∑
j=1

∫ sj

0
dΦantg

2
snF

(
1− PAj

)
Astd
Sj ,

with the standardized Gehrmann-Gehrmann-de Ridder-Glover (GGG) subtraction terms

defined by [22]:

Astd
g/qq̄ = a0

3 ( = A0
3) ,

∫ s

0
dΦant g

2
s A

std
g/qq̄ =

αs
2π

(
−2I

(1)
qq̄ (ε, µ2/s) +

19

4

)
Astd
g/qg = d0

3 ,

∫ s

0
dΦant g

2
s A

std
g/qg =

αs
2π

(
−2I(1)

qg (ε, µ2/s) +
17

3

)
Astd
q̄/qg = e0

3 ( = 1
2E

0
3) ,

∫ s

0
dΦant g

2
s A

std
q̄/qg =

αs
2π

(
−2I

(1)
qg,F (ε, µ2/s)− 1

2

) (3.33)

whose IR limits and integrated pole structures were examined thoroughly in [22, 33, 59],

though we have here rewritten the IR singularity operators I(1) in explicitly dimensionless

forms, see appendix A. (The alphabetical labeling in eqs. (3.33) corresponds to the

notation used in [22].)

The first line combined with the first term on the second line in eq. (3.32) represent a

standard antenna-subtracted one-loop matrix element, normalized to the Born level, with

the standardized subtraction terms tabulated in eq. (3.33), and the additional finite term

V2Z originating from the NLO matching at the preceding order; see section 3.2, eq. (3.13).

The subsequent terms express the difference between the simple fixed-order subtraction

carried out in the first line and the actual terms that are generated by a matched Markovian

antenna shower. Physically, these terms represent the difference between the evolution of

a single dipole (the original qq̄ system) and evolution of two dipoles (the post-branching

qgq̄ system), with a transition occuring at the branching scale Q3. As mentioned above,

the OEj and OSj factors in the third line represent the ordering criterion imposed in the

evolution, either strong or smooth. For smooth ordering, they are

1−OEj = 1− Q2
3

Q2
Ej +Q2

3

, (3.34)

1−OSj = 1− Q2
3

m2
qq̄ +Q2

3

, (3.35)

with QEj the evolution variable used for gluon emissions, while for strong ordering, the

factor (1 − Oj) can be removed if the integral boundaries are replaced by [Q2
3, sj ] (note:

this replacement should only be done in the third line).

The last term in eq. (3.32) is an artifact of the ariadne factor, PAri, which was

introduced in section 2.2 and is applied to gluon-splitting antennae in vincia. Summed

over the two “sides” of the splitting gluon, this produces the same collinear singularities as
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the standard gluon-splitting antenna, but in highly asymmetric configurations in which the

splitting gluon is near-collinear to a neighbouring colour line, the ariadne factor produces

a strong suppression, which improves the agreement with the tree-level 4-parton matrix

element [30], and which then generates an additional logarithm.

Notice that all but the δA terms are defined in terms of standarized antenna functions,

and the corresponding integrals can be carried out analytically, once and for all. We give

explicit forms for each of these terms, for each choice of evolution variable, in the following

section.

The only terms of eq. (3.32) that need to be integrated numerically are thus the δA

terms, which express the difference between the standardized antenna functions and those

generated by the actual (matched) shower evolution, which may have different finite terms

and/or be matched to the LO 4-parton matrix element. Nonetheless, since the previous

lines already contain most of the structure, we expect these functions to be relatively well-

behaved and numerically sub-leading. Specifically, the δA terms for gluon emission and

gluon splitting, respectively, are defined by

δALC
Ej = OEj

(
RLC

4EA
LL
Ej − Astd

Ej

)
, (3.36)

δALC
Sj = OSj PAj

(
R4SA

LL
Sj − Astd

Sj

)
, (3.37)

with ALL the unmatched shower antenna function (as defined in [30, 39]) and the second-

order LO matching factors, R4E and R4S (for Z → qggq̄ and Z → qq̄′q′q̄, respectively),

defined as in eq. (3.4), but including only the leading-colour terms in RLC
4E . For strong

ordering, similarly to above, the Oj factors can be removed by changing the integration

boundaries of the δA terms to [0, Q2
3].

Finally, we note that one could in principle equally well have defined eq. (3.32) without

the terms on the third line. The δA terms in eqs. (3.36) and (3.37) would then likewise have

to be defined without Pimp and PAri factors. However, while this would give a seemingly

cleaner relation with standard fixed-order subtraction, the behaviour of the (numerical)

integrals over the δA terms would be more difficult, due to over-subtraction in the un-

ordered regions. (Showers without either a strong-ordering condition or a smooth-ordering

suppression greatly overestimate the real-radiation matrix elements in the unordered re-

gion [24, 28, 30].) Numerically, it is therefore more convenient to integrate the contributions

represented by the third line in eq. (3.32) analytically, leaving only the suppressed terms

in eq. (3.37) to be integrated over numerically.

To be specific, the numerical integration over the δA terms is performed by rewriting

the δA integrals in dimensionless MC form, as:

αs
2π
CA

2∑
j=1

1

4

1

N

N∑
i=1

( sj δAj(Φi) ) , (3.38)

and similarly for the gluon-splitting terms, with Φi a number of random (uniformly dis-

tributed) antenna phase-space points. The common factor 1/4 arises from combining the

prefactor 8π2 above with the area of the phase-space triangle, 1/2, and the factor 1/(16π2)
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from the phase-space factorization, dΦant. For smooth p⊥-ordering with an arbitrary nor-

malization factor N⊥ (so Q2
E = N⊥p

2
⊥), the ordering factors, Oj , reduce to:

OE(qigj , q̄k → qagbgc, q̄k) =
yjk

yjk + xabxbc
, (3.39)

OE(qi, gj q̄k → qi, gagbq̄c) = same with i↔ k , (3.40)

OS(qigj , q̄k → qaq̄
′
bq
′
c, q̄) =

N⊥yjk
N⊥yjk + xbc

, (3.41)

OS(qi, gj q̄k → qi, q̄
′
cq
′
bq̄a) = same with i↔ k , (3.42)

where we have used y with ijk indices for the scaled invariants in the original qgq̄ topology

and x with abc indices for the integration variables in the antenna phase space. Note also

that the y values are normalized to the full 3-parton CM energy (squared), while the x

values are normalized to their respective dipole CM energies (squared).

3.4 The renormalization term

A further ingredient to be discussed is the choice of renormalization scale on both the

fixed order and parton shower sides of the calculation, as these scales are in general chosen

differently in both sides. Hence a translation term arises at second order, which must

account for this difference, keeping in mind that, as the scale evolves from one to the other,

flavour thresholds are passed. Our aim is to have the flexibility to use fixed order matrix

elements renormalized according to their usual scheme, while maintaining the freedom to

make a different choice on the shower side.

The fixed order calculations for Z-decay to jets to which we match are customarily

renormalized in a version of the MS scheme called the Zero-Mass Variable Flavour Number

Scheme (ZM-VFNS). In this scheme the bare QCD coupling is renormalized as

gb = µεg(µ2
R)

[
1 +

αs(µ
2
R)

8π

{(
−1

ε
+ γE − ln 4π + ln

µ2
R

µ2

)
β0

}]
(3.43)

with β0 = (11CA − 2nF )/3 ≡ βF0 and nF is the number of light flavours. One thus ignores

flavours that are heavier than the scale of the calculation, both in the virtual and in the

real calculations. Once all the UV poles are cancelled, one has a running coupling that

depends on the number of light flavours for the scale µR at hand. One then changes the

flavour number when a threshold is crossed. For our present case of Z boson decay to jets

we take nF = 5 for µR not too different from the Z-boson mass.

Let us be more specific about the matching of αs across flavour thresholds. At one loop,

α(nF )
s (µR) =

4π/βF0
ln(µ2

R/Λ
2
F )

. (3.44)

The value of ΛF depends on the number of active flavours, as follows. When passing

flavour thresholds the following one-loop matching conditions are imposed

α(5)
s (mb) = α(4)

s (mb), α(4)
s (mc) = α(3)

s (mc) . (3.45)
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These conditions can be satisfied if ΛF obeys the matching conditions

ln
Λ2
F

Λ2
F+1

=
2

3βF0
ln
m2
F+1

Λ2
F+1

. (3.46)

With these conditions one can also express αs values for different flavour numbers into

eachother. E.g. if mc < µR < mb, one can express α
(4)
s (µR) in terms of α

(5)
s (µR) by the

relation

α(4)
s (µR) = α(5)

s (µR)
1

β4
0

β5
0

+
(

1− β4
0

β5
0

)
α

(5)
s (µR)

α
(5)
s (mb)

. (3.47)

For completeness we briefly review how this nF -dependent UV singularity occurs in

the context of the (inclusive) 3-jet rate, in the case where we only consider massless

quarks [32, 60]. In the virtual contribution, the only one-loop diagram for Z → qq̄g that

is sensitive to the number of flavours is the quark self-energy correction on the external

gluon. The self-energy diagram itself, being scaleless, is zero in dimensional regularization.

However, renormalization of the coupling amounts to adding a nF counterterm on the

exteral gluon line proportional to

nF
2

3ε

(
µ2

µ2
R

)ε
. (3.48)

The real contribution contributes a nF dependent (collinear) 1/ε pole as well, from

gluon-splitting

− nF
2

3ε

(
µ2

s

)ε
. (3.49)

In the sum over real and virtual contributions the poles cancel, as guaranteed by the KLN

theorem, leaving a logarithm of the form

nF
2

3
ln

(
s

µ2
R

)
. (3.50)

On the shower side a related prescription is used, in which the running coupling is

evaluated at a shower scale µPS, such that the scale again depends on the number of

flavours. Depending on the value of µPS, a corresponding value of nF is chosen, as well

as of the QCD scale ΛF . This is often different from that for a fixed order calculation.

To give a specific example, matrix elements will typically be renormalized at a scale

characteristic of the total CM energy, i.e., µ2
ME = s an event-independent value, while

resummation arguments imply one best chooses a running scale, such as µPS = p⊥, for

shower applications [34, 35], which can differ per event.

Shifting to a different scale for αs of a given flavour number is quite straightforward.

Translating from a shower scale µPS to a matrix-element scale µME amounts to replacing,

for an antenna function

ag/qq̄
∣∣
µR=µPS

→
(

1 +
αs
2π

11NC − 2nF
6

ln

(
µ2

ME

µ2
PS

)
+O(α2

s)

)
ag/qq̄

∣∣
µR=µME

. (3.51)

– 27 –



J
H
E
P
1
0
(
2
0
1
3
)
1
2
7

A further aspect is that shower Monte Carlos normally switch to 4-flavour (3-flavour)

running for scales µ < mb (µ < mc), matching the αs value across the thresholds to obtain

a continuous running. For a consistent treatment, such thresholds must be taken into

account when translating αs from the shower scale to the matrix-element one. At one-loop

order (which is all that is relevant for the NLO expansion), this can be done by inserting

an additional term for each flavour threshold in the region [µPS, µME],

+
αs
2π

1

3
ln

(
m2

thres

µ2
PS

)
, (3.52)

with mthres the flavour threshold. Physically, eq. (3.51) expresses running with nF flavours

all the way from µPS to µME. The correction term, eq. (3.52), expresses that the number

of flavours was effectively lower below each flavour threshold passed on the way. Note that

this can also be used to account for a larger number of flavours in the shower calculation,

e.g., at scales µPS > mt, with the sign change of the correction then automatically reflected

by the logarithm.

For coherent parton-shower models, the arguments presented in [35] also motivate a

change to a “Monte Carlo” scheme for αs, in which ΛQCD is rescaled, for each nF , by the

so-called CMW factor ∼ 1.5 (with some mild flavour dependence), relative to its MS value.

If the shower model being matched employs this scheme, then a further rescaling of the

renormalization-scale argument, µPS → µPS/kCMW, should be used in eq. (3.51), with

kCMW = exp

(
67− 3π2 − 10nF /3

2(33− 2nF )

)
=


1.513 nF = 6

1.569 nF = 5

1.618 nF = 4

1.661 nF = 3

(3.53)

for NC = 3. The translation of renormalization scale (and scheme) yields then an additional

term to be added to the definition of V3 in eq. (3.32),

V3µ = − αs
2π

11NC − 2nF
6

ln

(
µ2

ME

µ2
PS

)
= − αs

2π

β0

2
ln

(
µ2

ME

µ2
PS

)
, (3.54)

plus any additional flavour-threshold correction terms, cf. eq. (3.52). By inserting these

terms, which enter at overall order α2
s ln(µ2

ME/µ
2
PS), the two calculations can be compared

consistently at one-loop accuracy.

Note that if several different shower paths populate the same fixed-order phase-space

point, then each path will in general be associated with a distinct µPS value. Thus, one

V3µ term arises for each shower path, weighted by the relative contribution of each path

to the total. Since for our case there is only one antenna contributing to Z → qgq̄, this

particular complication does not arise here.

We finally alert the reader regarding the use of different flavour number αs’s in the

master equation (3.32). In that equation cancellation of 1/ε divergences take place, already

in the first line of the right hand side. For this cancellation it is important that the

subtraction terms, originating from the shower expansion and listed in eq. (3.33), use α
(5)
s
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renormalized as in the fixed order calculation. All subsequent terms in the master equation

are finite, and constitute differences of unordered and strongly ordered shower based terms,

which are also finite, and beyond NLO.

3.5 Leading-colour one-loop correction for Z → 3 jets

Combining the results above, in particular eqs. (3.32), (3.33), and (3.54), we obtain the

complete expression for the leading-colour8 one-loop correction for Z → 3 Jets,

V3Z(q, g, q̄) =

[
2 Re[M0

3M
1∗
3 ]

|M0
3 |2

]LC

− αs
π
− αs

2π

(
11NC − 2nF

6

)
ln

(
µ2

ME

µ2
PS

)
+
αsCA

2π

[
− 2I(1)

qg (ε, µ2/sqg)− 2I(1)
qg (ε, µ2/sgq̄) +

34

3

]

+
αsnF

2π

[
− 2I

(1)
qg,F (ε, µ2/sqg)− 2I

(1)
gq̄,F (ε, µ2/sgq̄)− 1

]

+
αsCA

2π

[
8π2

∫ m2
Z

Q2
3

dΦantA
std
g/qq̄ + 8π2

∫ m2
Z

Q2
3

dΦantδAg/qq̄

−
2∑
j=1

8π2

∫ sj

0
dΦant(1−OEj)Astd

g/qg+
2∑
j=1

8π2

∫ sj

0
dΦantδAg/qg

]

+
αsnF

2π

[
−

2∑
j=1

8π2PAj

∫ sj

0
dΦant(1−OSj)Astd

q̄/qg+

2∑
j=1

8π2

∫ sj

0
dΦantδAq̄/qg

−1

6

sqg − sgq̄
sqg + sgq̄

ln

(
sqg
sgq̄

)]
, (3.55)

where:

• the first line contains the full (leading-colour) one-loop matrix element, the V2Z cor-

rection from one-loop matching at the preceding order, and the V3µ term from the

choice of shower renormalization scale;

• the second line contains the standardized subtraction term arising from the qg → qgg

and gq̄ → ggq̄ antennae;

• the third line contains the standardized subtraction term arising from the qg → qq̄′q′

and gq̄ → q̄′q′q̄ antennae;

• the fourth to last lines contain the terms arising from the difference between the

(matched) shower evolution and the standardized subtraction terms, including the

consequences of ordering choices and modification factors such as those arising from

the Ariadne factor and from matching to the LO matrix elements.

8We use the usual MC definition of leading colour and include terms ∝ CA and ∝ nF but neglect ones

∝ 1/CA.
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We denote the singular subtracted 1-loop matrix element by SVirtual

SVirtual =

[
2 Re[M0

3M
1∗
3 ]

|M0
3 |2

]LC

+
αsCA

2π

[
− 2I(1)

qg (ε, µ2/sqg)− 2I(1)
qg (ε, µ2/sgq̄) +

34

3

]

+
αsnF

2π

[
− 2I

(1)
qg,F (ε, µ2/sqg)− 2I

(1)
gq̄,F (ε, µ2/sqg)− 1

]
(3.56)

In section 4, we compute the analytical integrals corresponding to each of the

shower-generated terms, for different choices of evolution variable, ordering criterion, and

antenna functions.

With the one-loop matrix element expressed as in appendix B.2, it is easy to see

that the infrared singularity operators in eq. (3.56) cancel, leaving only explicitly finite

remainders (which may still contain logarithms of resolved scales). This then constitutes

the description of the one-loop matching for Z → 3 jets, having already discussed the case

for two jets. In the context of eq. (3.10) we have now corrected the first two terms on the

r.h.s. to NLO accuracy.

We round off with a few remarks on the normalizations of the various Z → n-parton

rates that are obtained by our procedure, since this is a point on which the various ap-

proaches to multileg NLO corrections differ. We make the following observations:

1. The total inclusive Z decay rate: the matrix-element correction scheme derived in

this paper maintains a strict unitarity between the real and virtual corrections that

are applied beyond Born level. An important consequence is that the total inclusive

Z decay rate is not changed by switching on the V3Z correction.9

2. The inclusive Z → 3 jets rate: both the virtual (one-loop) correction to the 3-jet

rate and the real (tree-level) correction to the 4-jet rate are included here. Hence the

inclusive 3-jet rate is NLO correct. Without these corrections, it would only be LO

correct. Thus, the 3-jet inclusive rate does change when switching on the V3Z term.10

3. The exclusive Z → 2 jets rate: the strict unitarity imposed by our correction method

implies that every 3-jet event begins life as a 2-jet one. Since the the V3Z term

modifies the probability for a 2-jet event to evolve to become a 3-jet one, at the

O(α2
s) level, the 2-jet exclusive rate receives an equal and opposite correction. This

represents an O(α2
s) ambiguity on the exclusive 2-jet rate, which is not adressed in

our paper (though it could be removed by normalizing to the full NNLO result for

Z → 2, cf. the inclusive 2-jet rate above).

4. The exclusive Z → 3 jets rate: for a given 3-parton configuration, the evolution to 4

partons and beyond is not changed by V3Z (though it is changed by the application

9The theoretically most sensible choice would be to normalize the inclusive Z → 2-parton rate to the

full NNLO result, but at the level we work at, one could equally well normalize to NLO or to data. In

either case, the total normalization of the generated sample is left unchanged by the V3Z correction.
10In section 5.2 below (comparisons to LEP measurements), this is seen most easily in figure 15, where the

“(NLO off)” curves undershoot the “(NLO on)” ones, for observable regions dominated by 3 or more jets.
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of the 4-parton tree-level corrections, which we take to be included throughout this

paper). Thus, while switching V3Z on does change the total amount of 3-jet events

(cf. the inclusive 3-jet rate above), it does not directly change the fraction of those

events which will develop a fourth or more jets.

3.6 One-loop correction for Born + 2 partons

To illustrate how the formalism presented here generalizes to higher multiplicities, we take

the case of the NLO correction to Z → 4 partons. For simplicity, however, we continue

to restrict our analysis of the correction factor to the leading-colour level. At NLO, the

exclusive Z → 4 partons rate at “infinite” perturbative resolution (similarly to above) is

Exact → |M0
4 |2 + 2Re[M0

4M
1∗
4 ] . (3.57)

Labeling the 4 partons by Z → i, j, k, `, there are two possible antenna-shower

histories leading to each 4-parton configuration, with j and k the last emitted parton,

respectively. Those two contributions both enter in the definition of the tree-level 4-parton

matching factor,

R4 =
|M0

4 (i, j, k, `)|2

Aj/IK |M0
3 (I,K, `)|2 +Ak/JL|M0

3 (i, J, L)|2
, (3.58)

such that their sum reproduces the full 4-parton matrix element. Note that a separate

such factor is applied to Z → qggq̄ and Z → qq̄′q′q̄, and that we have suppressed colour

and coupling factors here, for compactness (we ignore the small, non-singular extra

interference terms for the special case where all four quarks have the same flavour). The

antenna functions, A, are understood to include all such factors, as well as any Pimp and

Pari factors appropriate to the branchings at hand. For a general n-parton matrix element,

the denominator contains one term for each possible clustering.

Labeling the IK → ijk history by A and the JL → jk` one by B, the sum over the

two histories yields

R4∆4(Q4, 0)
∑
α∈A,B

Aα3→4|Mα
3 |2∆2(m2

Z , Q
α
3 )∆3(Qα3 , Q

α
4 )

3∏
m=2

(1 + V α
m) , (3.59)

where it is understood that α is an index, not a power, and the last product factor takes

into account the NLO matching at the preceding multiplicities. Expanding the Sudakov

factors to first order and using the definition of the NLO correction factor at the preceding

multiplicity, eq. (3.31), this becomes

R4

(
1−
∑
k

∫ sk

0
dΦantR5A4→5

)∑
α∈A,B

Aα3→4|Mα
3 |2
1+

2Re[M0
3M

1∗
3 ]α

|Mα
3 |2

+
∑
j

∫ Qα4

0
dΦantA

α
3→4

 ,
(3.60)

which we can rewrite as

|M4|2
(

1−
∑
k

∫ sk

0
dΦantR5A4→5

)
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+ R4

∑
α∈A,B

Aα3→4|Mα
3 |2
2Re[M0

3M
1∗
3 ]α

|Mα
3 |2

+
∑
j

∫ Qα4

0
dΦantA

α
3→4

 , (3.61)

where we again emphasize that the antenna functions are understood to include all relevant

coupling, Pimp, and Pari factors. The first term represents the new subtraction that the

shower generates at 4 partons, while the second represents part of the NLO correction

to the preceding multiplicity. For one of the histories (the one followed by the “current”

event), this correction has already been evaluated and can be reused. The contribution

from the other history will have to be recomputed, however. In general, there will be one

subtraction to perform at the n-parton level, and there will be m ∼ n − nBorn − 1 new

subtractions that have to be done at the (n − 1)-parton level, in addition to the one that

was already done during the evolution of the current event.

Clearly, there is an undesirable scaling behavior built into this, which will make NLO

matching at many partons quite computing intensive. An alternative, which eliminates

the sum over histories, is that of sector showers, see e.g., [30, 61]. Though this is not the

main avenue pursued in this paper, we nevertheless give some comments below on how a

sector-based NLO matching scheme could be constructed.

3.7 One-loop matching for sector showers

The matching conditions derived above may also be applied to so-called sector showers [30,

61], with a few relatively minor modifications. The expansion of the Sudakov factors

generated by the LO matched shower will now contain integrals over ratios of matrix

elements (which are the LO matched sector antenna functions), multiplied by sector vetos.

The presence of the sector vetos makes analytical phase-space integration more difficult.

However, since the sector approach merely represents a different way of decomposing

the same singularities as the global one, we may effectively recycle the integrals carried out

for the global case by adding and subtracting the terms produced by a smoothly ordered

“standard” shower (i.e., using the GGG functions). The first four lines of eq. (3.32) then

remain unchanged. The definition of the δA terms in the last line, however, changes to

2∑
j=1

∫ sj

0
dΦant g

2
sCA

(
Θsct
j Asct

g/qg −A
std
g/qg

)
, (3.62)

for the terms arising from the qgq̄ → qggq̄ Sudakov factor, with analogous ones arising

from the gluon-splitting contributions. The step function, Θj , represents the sector veto

applied to the sector antenna functions. The sector antenna function, up to the tree-level

matched orders, is just

g2
sC Asct =

|M0
n|2

|M0
n−1|2

. (3.63)

Since the individual sector and global antenna functions have different singularity

structures (they are only guaranteed to have the same singularities at the summed level),

the integrals in eq. (3.62) are divergent, and cannot be carried out numerically. In order to

obtain numerically convergent integrals, we must divide up the contributions of the global

– 32 –



J
H
E
P
1
0
(
2
0
1
3
)
1
2
7

terms onto each sector, and perform a set of correlated integrals in which the singularities

explicitly cancel in the divergent limits,

→
∫ sqg

0
dΦant g

2
sCA Θsct

1

(
Asct
g/qg −A

std
g/qg

)
−
∫ sgq̄

0
dΦant g

2
sCA Θsct

1 Astd
g/gq̄

+

∫ sgq̄

0
dΦant g

2
sCA Θsct

2

(
Asct
g/gq̄ −A

std
g/gq̄

)
−
∫ sqg

0
dΦant g

2
sCA Θsct

2 Astd
g/qg , (3.64)

where each line now corresponds to the sum of contributions to a single sector, for which the

difference between sector and global antennae is finite. The individual integrals are of course

still divergent, but they can now be treated numerically by collecting the terms on each line

under a single integral sign. Analytically, this is complicated since the two integrals on each

line are not associated with the same kinematics map.11 Numerically, however, we may

still ensure a point-by-point cancellation in the singular limits by keeping the two integrals

formally separate, but carrying them out simultaneously, in a correlated way, as follows.

For each antenna, generate a random uniformly distributed phase-space point,

[yij , yjk, φ] , (3.65)

and evaluate the first term in eq. (3.64). (If the point is outside the relevant sector, this

term is zero for the time being). If the pair (jk), say, corresponds to a sector shared with a

neighboring antenna (as in our example), check whether the correlated phase-space point

defined by

[yjk, 1− yjk − yij , φ] , (3.66)

in the neighboring antenna passes the same sector veto as before, and if so, subtract the

global term corresponding to the second term on the first line of eq. (3.64). The sampling

represented by eq. (3.66) is uniform, as long as that used to generate the original point,

eq. (3.65), is uniform. The replacement of yij by 1 − yjk − yij corresponds precisely to

the mapping z → 1 − z in the collinear limit, which is what is required to reestablish a

point-by-point cancellation of the sector and global singularities.

4 Sudakov integrals

In this section, we work out the standardized Sudakov integrals appearing in the second

and third line of eq. (3.32), for each choice of evolution variable. We also study the soft

and collinear limits of the Sudakov integrals and compare them to those of the one-loop

matrix element. This provides an explicit check of whether the first-order expansion of the

Sudakov factors generates the correct logarithms present in the fixed-order calculation.

Given our choice of the GGG antenna functions as our standard ones, the relevant

terms are

g2
s

CA s∫
Q2

3

a0
3 dΦant−

2∑
j=1

CA

∫ sj

0
(1−OEj ) d0

3 dΦant−
2∑
j=1

2TR nFPAj

∫ sj

0
(1−OSj ) e0

3 dΦant


(4.1)

11In the example here, for Z → 3 partons, one term is associated with branchings in the qg antenna,

while the other is associated with branchings in the gq̄ one.
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The general form of the first term, which originates from the 2→ 3 branching step, is

g2
sCA

s∫
Q2

3

a0
3 dΦant =

αsCA
2π

(
5∑
i=1

KiIi(s,Q
2
3)

)
(4.2)

where the definitions for the Ki and the Ii functions are given in appendix C, for each type

of antenna function and ordering variable. Their derivation and soft/collinear structure

will be discussed more closely below, for each choice of ordering and evolution variable. The

form of the 3→ 4 integrals depends on whether we work in the context of strong or smooth

ordering. We shall now consider each of those cases in turn, beginning with strong ordering.

4.1 Strong ordering

For strong ordering, the inverted ordering conditions in eq. (3.32), (1−OEj/Sj ), reduce to

step functions expressing integration over the unordered region. The integration surface

is thus limited from below by the phase-space contour defined by the evolution scale of

the first branching, Q2, and from above by the edge defined by the invariant mass of the

antenna.

The expression generated by the 3→ 4 splitting case for gluon emission is

− g2
s

2∑
j=1

CA

∫ sj

0
(1−OEj ) d0

3 dΦant =−αsCA
2π

(
5∑
i=1

KiIi(sqg, Q
2
3)

)
− αsCA

2π

(
5∑
i=1

KiIi(sgq̄, Q
2
3)

)
.

(4.3)

where Ki and Ii are the same as those for the 2→ 3 term above, though they here appear

with different arguments. The remaining case is the 3→ 4 gluon splitting defined by

− g2
s

2∑
j=1

nFPAj

∫ sj

0
(1−OSj ) e0

3 dΦant = −αsnF
2π

PAqgH(sqg, Q
2
3) − αsnF

2π
PAgq̄H(sgq̄, Q

2
3).

(4.4)

with H defined in appendix C and PAj as defined in eq. (2.20). We will discuss the

derivation of these terms in more detail in the following three subsections, for strong mD-,

p⊥, and energy-ordering, respectively.

4.1.1 Dipole virtuality

We begin with dipole virtuality as evolution variable, which is perhaps the simplest case.

We start by repeating the integrals of eq. (3.32) with the one-particle phase space defined

as in eq. (2.8). In the case of dipole virtuality the contours are triangular (figure 2.3).

We recall that, for the g → qq̄ terms, it is the qq̄ invariant mass that is used as evolution

variable, regardless of what choice is made for gluon emissions. The mD scale of the

previous emission still enters, however, since that defines the ordering scale applied to both

emissions and splittings. The explicit forms of the terms in eq. (4.1) are:

=
αs
4π

CA
s

s−min(sqg ,sgq̄)∫
min(sqg ,sgq̄)

ds1

s−s1∫
min(sqg ,sgq̄)

ds2 a
0
3(s1, s2)
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−

CAsgq̄ Θ (sgq̄ − 2sqg)

sgq̄−sqg∫
sgq̄

ds1

sgq̄−s1∫
sqg

ds2 +
CA
sqg

Θ (sqg − 2sgq̄)

sqg−sgq̄∫
sqg

ds1

sqg−s1∫
sqg

ds2

 d0
3(s1, s2)

−

nFsqgΘ (sqg−sgq̄)PA1

sqg∫
sgq̄

ds1

sqg−s1∫
0

ds2+
nF
sgq̄

Θ (sgq̄−sqg)PA2

sgq̄∫
sqg

ds1

sgq̄−s1∫
0

ds2

e0
3(s1, s2)

 ,
(4.5)

with PAj =
2sqg

sqg+sgq̄
and PA2 =

2sgq̄
sqg+sgq̄

as defined in eq. (2.20) and the gluon-splitting

antenna e0
3 has its singularities in s1.

For compactness, we only show the integration for the double-pole (soft-collinear

eikonal) terms present in both a0
3 and d0

3 here, which are the only sources of

transcendentality-2 terms. The full antenna integrals, including also the lower-

transcendentality terms originating from single poles and finite terms, are given in ap-

pendix C. The T = 2 part of the a0
3 integral is

αsCA
4π

[∫ s−min(sqg ,sgq̄)

min(sqg ,sgq̄)
ds1

∫ s−s1

min(sqg ,sgq̄)
ds2

2

s1s2

]
. (4.6)

To evaluate this expression, we first rewrite it in a dimensionless form in terms of the

rescaled integration variables yi = si/(s− 1
2Q

2
3), with upper boundary 1 and lower boundary

ξmin =
min(sqg, sgq̄)

s−min(sqg, sgq̄)
. (4.7)

The integration is over a triangular surface. The lower integration boundary cuts off the

evolution variable at the value of the 3-parton evolution scale. The other boundary is

determined by the total energy of the dipole before branching which here is
√
s. We use

the integral∫ 1

x

dy

y
ln

(
1− y + x

x

)
= ln2(x)− ln(x) ln (1 + x)− Li2

(
1

1 + x

)
+ Li2

(
x

1 + x

)
. (4.8)

to obtain

αsCA
2π

[
ln

(
s

min(sqg, sgq̄)

)
ln

(
s−min(sqg, sgq̄)

min(sqg, sgq̄)

)

− Li2

(
s−min(sqg, sgq̄)

s

)
+ Li2

(
min(sqg, sgq̄)

s

)]
. (4.9)

To discuss the 3 → 4 Sudakov terms, let us for definiteness assume that we are in

a 3-parton phase-space point with sqg > sgq̄. The opposite case is symmetric. Again we

only include the T = 2 terms explicitly here, with the details of the full antenna integrals

relegated to appendix C.

αsCA
4π

[ ∫ sqg−sgq̄

sgq̄

ds1

∫ sqg−s1

sgq̄

ds2
2

s1s2

]
. (4.10)
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The integration is again over a triangular surface. The total energy of the dipole before

branching is now sqg. The integral in eq. (4.10) corresponding to the sum over antenna

integrals only contains one d0
3 integral because the other has equal upper and lower

integration boundaries. Note that this integral actually vanishes for sqg ≤ Q2
3, which

amounts to the dipole-virtuality ordering allowing the 3→ 4 branchings to populate their

full respective phase spaces (i.e. no correction term is necessary).

Focusing on the case sqg > 2sgq̄ for which the second integral is nonvanishing (which

now amounts to the ordering condition imposing a nontrivial restriction on the 3→ 4 phase

space, see figure 2.3), we obtain, including the 2→ 3 term

αsCA
4π

[∫ 1

ξmin

dy1

∫ 1−y1+ξmin

ξmin

dy2
2

y1y2
−
∫ 1

ξ′min

dy′1

∫ 1−y′1+ξ′min

ξ′min

dy′2
2

y′1y
′
2

]
, (4.11)

y′i = si/(sqg − sgq̄) and boundaries

ξ′min =
sgq̄

sqg − sgq̄
. (4.12)

with lower-transcendentality terms again available in appendix C. For the mirror case

sgq̄ > 2sqg essentially symmetric expressions are obtained, while for the intermediate cases

in which the two invariants are within a factor 2 of each other, the second integral in

eq. eq. (4.11) simply vanishes.

The full double-logarithmic term from the expanded Sudakov terms in eq. (4.5), for

strong ordering in dipole virtuality, is then

αsCA
2π

[
ln

(
s

1
2Q

2
3

)
ln

(
s− 1

2Q
2
3

1
2Q

2
3

)
− Li2

(
s− 1

2Q
2
3

s

)
+ Li2

(
1
2Q

2
3

s

)
(4.13)

+Θ
(
smax−Q2

3

)(
−ln

(
smax
1
2Q

2
3

)
ln

(
smax− 1

2Q
2
3

1
2Q

2
3

)
+Li2

(
smax− 1

2Q
2
3

smax

)
−Li2

(
1
2Q

2
3

smax

))]
,

where the Θ function ensures that the second term is only active if

smax = max(sqg, sgq̄) > 2 min(sqg, sgq̄) = Q2
3 , (4.14)

so that the expression applies over all of phase space.

We shall now consider the infrared limits of this result, and compare them to those

of the one-loop matrix element. For this comparison we keep only terms that involve

logarithms of the invariants. The soft limit corresponds to vanishing Q2
3 (ξmin → 0). The

first line of eq. (4.13) represents the contribution of the 2→ 3 expanded Sudakov. To find

the contribution in the soft limit, we choose to approach the limit along the diagonal of

the phase space triangle. Parametrizing this by sqg/s = sgq̄/s→ y we find for this term

ln2(y)− π2

6
.

The contributions of the 3 → 4 Sudakovs in the soft limit are examined in two separate

cases corresponding to the two regions in figure 2.3. In the first case given by smax < 2smin,
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corresponding to the light grey area in the figure, the step function in eq. (4.13) yields

zero. In the second case given by smax > 2smin, corresponding to the dark grey area in

the figure, the step function is equal to one. The double logs and dilogarithms now yield

a finite contribution that does not diverge in the soft limit. We can understand this by

parametrizing the soft limit by λ

sqg = λs sgq̄ = pλs s′1 = λκs s′2 = λµs p > 2 , (4.15)

so that the integral becomes∫ smax−smin

smin

ds1

∫ smax−s1

smin

ds2
1

s1s2
→
∫ p−1

1
dκ

∫ p−κ

1
dµ

1

κµ
. (4.16)

This implies that the integration variable scales with the integration limits and is

independent of the soft limit. We can also expect this behaviour from examing figure 2.3.

The shape of the different regions does not change for different values of Q2
3, in contrast

with the case of transverse momentum, as we will see below.

After the poles cancel in eq. (3.55), the pole-subtracted version of the one-loop matrix

element, SVirtual , defined in eq. (3.56), contains all the relevant terms on the matrix-

element side. The transcendentality-2 terms of SVirtual are given by

−R(y1, y2) = Li2 (y1)+Li2 (y2)− π
2

6
− ln y1 ln y2 +ln y1 ln(1−y1)+ln y2 ln(1−y2) . (4.17)

Including the transcendentality-1 terms (see appendix B), taking the soft limit by sending

sqg/s = sgq̄/s = y → 0, and keeping only logarithmic terms, the pole-subtracted matrix

element (ME) reduces to

ME: sqg/s = sgq̄/s = y → 0
αsCA

2π

[
− ln2(y)− 10

3
ln(y)

]
+
αsnF

6π
ln(y), (4.18)

The single log proportional to CA originates from the renormalization term and the single

log of the closed quark loops (proportional to nF ) arises due to the definition of the infrared

singularity operator, defined in the appendix in eq. (A.3).

Taking the same limit of the Sudakov integrals for dipole virtuality eq. (4.5), but omit-

ting for the time being the renormalization term, V3µ, we find for the parton shower (PS),

−PS: sqg/s = sgq̄/s = y → 0
αsCA

2π

[
ln2 y +

3

2
ln(y)

]
. (4.19)

We see that the soft limit almost cancels against eq. (4.18). For an NLL-accurate

shower, however, all divergent terms should match precisely, leaving at most a finite re-

mainder in the final matching correction, eq. (3.55). In the expressions above, this holds

for the ln2(y) term but not for the single logarithms (different coefficient). Interestingly,

the remainder is proportional to the QCD β function, specifically

ME− PS → −αs
2π

1

2
β0 ln(y) . (4.20)
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It can therefore be absorbed in the choice of renormalization scale by solving for µPS in

V3µ, which yields:

µ2
PS ∝ y s . (4.21)

This tells us that, in the soft limit, the specific choice of a renormalization scale that is

linear in the branching invariants will absorb all logarithms up to and including α2
s ln(y).

Interestingly, this reasoning would rule out µ2
R ∝ p2

⊥, since our p⊥-definition is quadratic

in the invariants, p2
⊥ = sijsjk/s. A better choice of renormalization scale would appear to

be µR ∝ mD, specifically

µ2
PS = min(sij , sjk) =

1

2
m2
D . (4.22)

Taken at face value, this seems to contradict the standard literature [34] on p⊥ as the opti-

mal universal renormalization-scale choice. However, as we shall see below in figure 6, there

is in fact no choice of renormalization scale that absorbs all logarithms for this particular

evolution variable; the choice µR ∝ mD merely manages to reabsorb the additional loga-

rithms that are generated by the ordering condition as y → 0, but leftover logs in other parts

of phase space will remain uncanceled, ruining the NLL precision. In that sense, choosing

µR ∝ p⊥ would simply leave a different set of uncanceled logs, nonvanishing as y → 0.

Before we show the results over all of phase space however, we first investigate a

complementary interesting limit, the hard-collinear one, which is characterized by one of

the invariants becoming maximal while the other vanishes. In this limit, the pole-subtracted

one-loop matrix element, SVirtual , becomes

ME: sqg/s→ 1, sgq̄/s = y → 0
αs
2π

[
−5

3
CA +

1

6
nF

]
ln(y) (4.23)

There are no log-squared terms in this limit, and both of the single-log terms are half as

large here as they were in the soft limit.

The Sudakov integrals for mD-ordering yield one divergent term, −1
6CA ln(y), in the

hard-collinear region, modulo a factor αs/(2π). The Sudakov integral for gluon splitting

in the neighbouring antenna, represented by the first term on the second-to-last line of

eq. (3.55) is specified in the last line of eq. (4.5). The step function is only non-zero

for the first term in the hard-collinear limit sqg → s, sgq̄ → 0 and produces a term
1
6PAjnF ln(y). The numerator of the corresponding Ariadne factor contains the invariant

of the neighboring dipole sgq̄ which vanishes in this limit and causes the dipole splitting

contribution to reduce to zero. The nF -dependent contribution is instead shifted to the

last term of eq. (3.55), which has the same limit but without the Ariadne pre-factor. The

hard-collinear limit of the shower terms, including only terms involving logarithms of the

invariants and not including the V3µ term, is therefore

−PS: sqg/s→ 1, sgq̄/s = y → 0
αs
2π

[
−1

6
CA +

1

6
nF

]
ln(y) . (4.24)

Again, the combination (ME−PS) relevant for computing the correction factor is propor-

tional to the QCD β function, and in fact has exactly the same form as eq. (4.20). The

– 38 –



J
H
E
P
1
0
(
2
0
1
3
)
1
2
7

(a) µPS =
√
s (b) µPS = p⊥ (c) µPS = mD

µPS = 1
2mD, with CMW µPS = mD, with CMW

Figure 6. NLO correction factor for strong mD-ordering, with GGG antennae. Top row: µR =
√
s

(left), µR = p⊥ (middle), and µR = mD (right). Bottom row: using the CMW ΛMC, with

µR = 1
2mD (left) and µR = mD (right). For all plots, αs = 0.12, nF = 5, and gluon splittings were

evolved in mqq.

conclusion is therefore that, also in this limit, all logarithms through α2
s ln(y) can be ab-

sorbed by choosing a renormalization scale which is linear in the vanishing invariant. The

particular choice which is linear in both the soft and collinear limits is µPS ∝ mD. To illus-

trate this, we show the full NLO Z → 3 jets correction factors, (1 + V3Z), for mD-ordering

with a few different choices of renormalization scale and scheme, in figure 6. Note that

the axes are logarithmic, in ln(yij) = ln(sij/s), to make the infrared limits clearly visible.

Without the V3µ term, the correction factor looks as depicted in the top left-hand plot

in figure 6. The increasing contours towards the axes indicate uncanceled logarithms in the

correction factor. The middle pane shows the correction factor derived for µPS = p⊥. As

discussed above, there is an uncanceled logarithm in the soft limit (lower left-hand corner

of the plot), since p⊥ is quadratic in the vanishing invariants there. However, in the hard-

collinear limits (upper left-hand and lower right-hand corners), p⊥ is linear in the vanishing

invariant, and hence the contours remain bounded there. In the right-hand pane, we show

the choice µPS = mD, which can be seen to lead to bounded correction factors (below

∼ 1.3) in all three phase-space corners. Nonetheless, there is still an uncanceled divergence
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between the soft and hard collinear limits. We shall see in the section on p⊥-ordering below

that the cure for this is basically to choose a better evolution variable.

In the bottom row of figure 6, we show a few variations on µPS = mD, specifically we

include the CMW rescaling of ΛQCD, as defined by eq. (3.53), and show how a variation of

the renormalization scale by a factor of 2 affects the correction factor. In the left-hand pane,

we show µPS = 1
2mD and in the right-hand one µPS = mD. Of these, the choice µPS = 1

2mD,

with CMW rescaling, leads to the smallest correction factors (best LO behaviour), and this

could therefore be taken as a useful default for mD-ordering, e.g. for uncertainty estimates.

4.1.2 Transverse momentum

For a shower ordered in p⊥, the antenna phase-space integrals in eq. (3.32) are performed

over contours such as those depicted for pT squared in figure 1. The curved contours

motivate a coordinate transformation from (s1, s2) to a basis defined as the dimensionless

evolution variable y = Q2

s = 4s1s2
s2

, complemented by an energy-sharing variable, which we

define as z = s1
s . Note that the coordinate transformation depends explicitly on the total

invariant mass s of the 2 → 3 dipole. For the 3 → 4 integrations, the invariant mass s is

replaced by the invariant mass of the appropriate dipole (either sqg or sgq̄). The integration

boundaries in z are determined by the intersection of the invariant mass of the dipole with

the evolution parameter Q2. The choice of y and its integration boundaries make the effect

of strong ordering especially clear since we see integration from Q2 to the total invariant

mass of the dipole (the unordered region). As before, the integration over the gluon-

splitting antenna
(
e0

3

)
makes use of a different phase space integration, in mqq̄, and only

uses the evolution parameter as a cut-off in the singularity of the corresponding dipole.

The contributing terms are:

g2
s

CA∫ s

Q2
3

a0
3 dΦant−

2∑
j=1

CA

∫ sj

0
(1−OEj ) d0

3 dΦant−
2∑
j=1

2TR nFPAj

∫ sj

0
(1−OSj ) e0

3 dΦant


=
αs
4π

[
CA sA1

[
Q2

3

s
, 1

]
−CAsqgA2

[
4sgq̄
s
,max

(
4sgq̄
s
, 1

)]
−sgq̄ CAA3

[
4sqg
s
,max

(
4sqg
s
, 1

)]
−nF

(
PA1

sqg

∫ max(Q2
3,sqg)

Q2
3

ds1

∫ sqg−s1

0
ds2+

PA2

sgq̄

∫ max(Q2
3,sgq̄)

Q2
3

ds1

∫ sgq̄−s1

0
ds2

)
e0

3(s1, s2)

]
(4.25)

with

An [a, b] =

∫ b

a
dyn

∫ znmax

znmin

dzn |Jn|An(yn, zn) for n = 1, 2, 3, (4.26)

and

yn = 4
s1s2

m4
IK

, zn =
s1

m2
IK

, |J1| =
m4
IK

4zn
, znmax

min
=

1

2

(
1±

√
1− yn

)
. (4.27)

For n = 1 we set m2
IK = s, for n = 2 m2

IK = sqg and for n = 3 m2
IK = sgq̄. The Ariadne

factor PAj is defined in eq. (2.20). The max condition on the outer integration boundary

of A2 and A3 reflect that the correction term disappears if the generated Q2
3 is larger than
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the invariant mass of the dipole. As for mD-ordering, we here work out the most divergent

behavior explicitly, by focussing on the double log terms arising from the eikonal term in

the antenna, and relegate the full form of the antenna integrals to appendix C. The double

poles give rise to terms

αsCA
2π

∫ 1

Q2
3
s

dy1

∫ zmax

zmin

dz1
1

y1z1
,

which lead to the following generic transcendentality-2 integrals,∫ 1

x

dy1

y1
ln

(
1 +
√

1− y1

1−
√

1− y1

)
= Li2

(
1

2

(
1−
√

1− x
))
− Li2

(
1

2

(
1 +
√

1− x
))

+
1

2
ln
(x

4

)
ln

[
−
(
−2 + 2

√
1− x+ x

x

)]
. (4.28)

The double logarithm in the shower expansion is generated by a combination of the 2→ 3

and 3→ 4 Sudakov integrals, with the respective pieces adding up to

αsCA
2π

[
−π

2

6
+

1

2
ln
(sqgsgq̄

s2

)2
+
π2

3
− 1

2
ln
(sqg
s

)2
− 1

2
ln
(sgq̄
s

)2
]
. (4.29)

We see that a partial cancellation arises between the first two terms (which come from the

2 → 3 Sudakov expansion) and the last three (which come from the 3 → 4 expansion).

What remains is a log squared in both invariants ln (sqg/s) ln (sgq̄/s).

At the single-log level, the 3 → 4 terms give a numerically larger coefficient than the

2 → 3 ones, leading to a single log remainder. The gluon-splitting term also reduces to a

single log. The overall result in the soft limit is then

− PS: sqg = sgq̄ = y → 0
αsCA

2π

[
ln2(y)− 1

3
ln(y)

]
+
αsnF

6π
ln(y) (4.30)

Comparing with the result of the virtual correction in the soft limit, eq. (4.18), we

see that the shower generates the double log terms correctly, and, similarly to the case of

mD-ordering, there is a single-log remainder which is proportional to the QCD β function.

However, for p⊥-ordering the constant of proportionality is 1, rather than 1
2 , a difference

which translates to the optimal renormalization-scale choice being quadratic in the invari-

ants in this case, rather than linear. Before commenting further on this difference, let us

first consider the complementary, hard-collinear, limit.

In the hard-collinear limit, we find the same as for mD-ordering,

−PS: sqg = y → 0, sgq̄ → s
αs
2π

[
−1

6
CA +

1

6
nF

]
ln(y) . (4.31)

Double logs (eikonal parts of the antenna) also appear at both the 2 → 3 and 3 → 4

levels, but cancel among each other as almost all other antenna terms do; what remains

at the single-log level is the integrated difference between a quark-antiquark antenna

and a quark-gluon antenna, plus the nF -dependent ‘Ariadne Log’. The only contributing
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(a) µPS =
√
s (b) µPS = p⊥ (c) µPS = mD

µPS = p⊥, with CMW µPS = 2p⊥, with CMW

Figure 7. NLO correction factor for strong p⊥-ordering, with GGG antennae. Top row: µPS =
√
s

(left), µPS = p⊥ (middle), and µPS = mD (right). Bottom row: using the CMW ΛMC, with

µPS = p⊥ (left) and µPS = 2p⊥ (right). For all plots, αs = 0.12, nF = 5, and gluon splittings were

evolved in mqq.

Sudakov gluon splitting contribution is the second term in the last line of eq. (4.25).

Integration over the sgq̄ dipole, however, is associated with an Ariadne factor carrying sqg
in the numerator and therefore reduces to zero. As before, we can write the remainder

as half the QCD β function, which implies that a renormalization scale linear in the

vanishing invariants can absorb the logarithm.

To summarize, for p⊥-ordering we find that the optimal renormalization-scale choice

must be quadratic in the vanishing invariants in the soft limit and linear in the hard-

collinear limit. Those conditions are fulfilled by p⊥ itself, thus

µ2
PS ∝ p2

⊥ =
sijsjk
sijk

(4.32)

absorbs all logarithmic terms up to and including α2
s ln(y) in the LO couplings.

Illustrations of the full NLO correction factors, (1 + V3Z), are given in figure 7. The

ordering of the plots in the top row are the same as in figure 7, showing, from left to right,

µPS =
√
s, µPS = p⊥, µPS = mD. Similarly to the case of strong mD-ordering, both of the

latter two choices exhibit no logarithmic divergences in the hard-collinear regions (top left
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and bottom right corners of the plots), but in the soft region (bottom left corner) it is here

µPS = p⊥ which leaves the correction factor free of logarithms. Indeed, we see that the

combination of evolution and renormalization in p⊥ leads to a rather flat correction factor

over all of phase space, showing that this combination is indeed “better” than mD-ordering.

In the bottom row of plots in figure 7, we include the CMW factor and show the

correction factors for µPS = p⊥ (left) and µPS = 2p⊥ (right). In particular on the left-hand

pane, the NLO correction factor is essentially unity in the soft limit, while the corrections

in the hard-collinear regions remain less than ∼ 20%. This gives some additional weight

to the arguments for p⊥-ordered showers with p⊥ as renormalization scale being the best

default choice for strongly ordered dipole-antenna showers. It also provides some rationale

why one typically finds a rather large value of αs(mZ) ∼ 0.13 (with CMW rescaling, or

αs(mZ) ∼ 0.14 without it) when tuning such models to LEP event shapes; there is still a

genuine order 20% NLO correction in the hard resolved region (upper right-hand corner).

We return to this in more detail in the context of full LO + NLO matching in section 5.

4.1.3 Energy

To put the differences between mD and p⊥ in context, we now briefly examine the case of

energy ordering, which is known to produce the wrong DGLAP evolution in the collinear

limit [27, 28, 62], and hence we should find larger (possibly divergent) NLO corrections.

Slicing phase space with the energy variable Q2
3 = sijk(yij + yjk)

2, see figure 1,

requires the use of an explicit infrared cut-off because the contours otherwise allow for

the invariants to hit singular regions for every value of the contour. We will here use a

cut-off in transverse momentum (a cut-off in dipole virtuality is also possible). The cutoff

motivates us to switch to a different choice of integration variables. Therefore integration

is transformed from (s1, s2) to the dimensionless evolution parameters y2
E = Q2

s = (s1+s2)2

m2
IK

and completed with the energy sharing variable ζ = s2
m2
IK

. The interesting integrals arising

from expanding the Sudakov form factor then are

g2
s

CA∫ s

Q2
3

a0
3 dΦant−

2∑
j=1

CA

∫ sj

0
(1−OEj ) d0

3 dΦant−
2∑
j=1

2TR nFPAj

∫ sj

0
(1−OSj ) e0

3 dΦant


=
αs
4π

[CA {AE1(s, 1)−AE2(min[sqg, 1], 1)−AE3(min[sgq̄, 1], 1)}

− nF

(
PAqg
sqg

∫ max(Q2
3,sqg)

Q2
3

ds1

∫ sqg−s1

0
ds2+

PAgq̄
sgq̄

∫ max(Q2
3,sgq̄)

Q2
3

ds1

∫ sgq̄−s1

0
ds2

)
e0

3(s1, s2)

]
(4.33)

with

AEn(m2
IK , 1) =

∫ 1

Q2
3

m2
IK

dy2
E

∫ 1

0
dζ ′

1

2
AE0

n(y2
E , ζ

′).

With AE0
1 = a0

3, AE0
2 = d0

3 and AE0
3 = e0

3. The inner integral has been rescaled to make

it independent of the outer integral with ζ = yEζ
′. To establish the cut-off, we use the

relation 4 s1s2
s2

= 4p2
⊥/s, which we demand to be larger than the cut-off ∆. In terms of our

– 43 –



J
H
E
P
1
0
(
2
0
1
3
)
1
2
7

variables we then have the condition

4ζ ′(1− ζ ′) > ∆

y2
E

. (4.34)

The upper and lower limits on ζ ′ are then

ζ ′− < ζ ′ < ζ ′+, ζ ′± =
1

2

(
1±

√
1− ∆

y2
E

)
. (4.35)

Focussing on the eikonal integral

αsCA
4π

∫ 1

y2
E=

Q2
3
s

dy2
E

y2
E

∫ ζ′+

ζ′−

dζ ′

ζ ′
, (4.36)

the result for this integral is

αs
2π

[
Li2

(
1

2

(
1−
√

1−∆
))
− Li2

(
1

2

(
1 +
√

1−∆
))

+
1

2

[
−2 atanh

(√
1− ∆

y2
E

)
ln(4)

+atanh
(√

1−∆
)

ln(16) + ln2
(

1−
√

1−∆
)
− ln2

(
1 +
√

1−∆
)
− ln2

(
1−

√
1− ∆

y2
E

)

+ ln2

(
1 +

√
1− ∆

y2
E

)]
− 2Li2

(
1

2

(
1−

√
1− ∆

y2
E

))
+ Li2

(
1

2

(
1 +

√
1− ∆

y2
E

))]
.

(4.37)

In the soft limit y2
E = 4y2 → 0 this reduces to

−1

2
ln2(∆)− ln2

(
∆

4y2

)
− 2 ln(4y4) ln(2)− Li2

(
∆

64y2

)
(4.38)

Thus we see that there are explicit non-cancelling double-logarithmic terms that involve

the hadronization cutoff, ∆. Depending on the ratio between the dipole mass and the

cutoff, these would lead to asymptotically divergent correction factors.

One might wonder whether using a linearized form of energy ordering would make a

difference, see figure 1. Rather than go through the derivations again, we merely show the

full NLO corrections in figure 8, for both linear (top row) and squared (bottom row) energy

ordering, for an (arbitrary) dimensionless cutoff value of ∆ = 10−7.

From left to right in both rows, we show the three renormalization-scale choices,

µPS = p⊥ (left), µPS = mD (middle), and µPS = QE (right), with the latter equal to linear

energy in the top row and squared energy in the bottom one. Interestingly, the contours

in the linear case are increasing towards the soft region, while they ultimately decrease in

the squared case. It is clear, however, that no intelligent choice of renormalization scale

can absorb the infrared divergences. Moreover, any other choice of ∆ would have led to

different contours, due to the explicit ln(∆) terms, hence even if a “least bad” choice was

found, it would not be universal.
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(a) µPS = p⊥ (b) µPS = mD (c) µPS = E∗

(d) µPS = p⊥ (e) µPS = mD (f) µPS = E∗2/
√
s

Figure 8. NLO correction factor for strong energy-ordering, with GGG antennae, for various

renormalization-scale choices and linear (top row) and squared (bottom row) scaling of the evolution

variable with gluon energy.

As mentioned above, the main point of showing these comparisons is to place the com-

parison between mD and p⊥ in the previous subsections in perspective. Thus, while we saw

that p⊥ was generating a better-behaved correction factor than mD, the one for mD is still

far better behaved than is the case for energy ordering. From this perspective, we still be-

lieve it could make sense, e.g., to use mD-ordering, with the NLO correction factor included,

as a conservative uncertainty variation for a central prediction based on p⊥-ordering.

4.2 Smooth ordering

We will now discuss the same Sudakov integrals as in the previous subsections but for

the case of smooth ordering (section 2.4). This is especially interesting given that smooth

ordering is the way vincia is able to fill all of phase space without significant under- or

overcounting at the LO level [24]. As discussed in section 2.4, however, this does involve

some ambiguity in what Sudakov factors are associated with the unordered points, and

the NLO 3-jet correction factors should tell us explicitly whether this ambiguity generates

problems at this level.
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The Sudakov integrations are actually more straightforward for smooth ordering than

was the case for strong ordering, since the Pimp factor regulates the integrands on the

boundaries. Therefore the integrations always run over the full phase space of the system.

The 2 → 3 splitting generates the same terms as in the strong-ordering case, eq. (4.2).

Including also the 3 → 4 terms, the expanded Sudakov generates the following antenna

integrals,

g2
s

CA∫ s

0
a0

3 dΦant−
2∑
j=1

CA

∫ sj

0

Q2
Ej

Q2
Ej

+Q2
3

d0
3 dΦant−

2∑
j=1

2TR nFPAj

∫ sj

0

m2
qq̄

m2
qq̄+Q

2
3

e0
3 dΦant

 ,
(4.39)

where Q3 is the evolution scale evaluated on the 3-parton configuration and QEj (mqq̄) is

the scale of the 3→ 4 emissions (splittings) being integrated over. The full answer for the

3→ 4 case for gluon emission is

−g2
s

2∑
j=1

CA

∫ sj

0

Q2
Ej

Q2
Ej

+Q2
3

d0
3dΦant =−αsCA

4π

(
5∑
i=1

KiLi(sqg, Q
2
3)

)
−αsCA

4π

(
5∑
i=1

KiLi(sgq̄, Q
2
3)

)
.

(4.40)

where Ki and Li can be found in appendix C. The full answer for the 3→ 4 case for gluon

splitting is

− g2
s

2∑
j=1

nFPAj

∫ sj

0

m2
qq̄

m2
qq̄ +Q2

3

e0
3 dΦant = −αsnF

4π
G(sqg, Q

2
3) − αsnF

4π
G(sgq̄, Q

2
3). (4.41)

where G can be found in the appendix. We will discuss the derivation of these terms in

more detail in the following two subsections, for smooth mD- and p⊥-ordering, respectively.

4.2.1 Dipole virtuality

Since the 2→ 3 emission terms remain the same as in the case of strong mD-ordering, we

only need to rederive the 3→ 4 contributions to V3Z , which are

− g2
s

 2∑
j=1

CA

∫ sj

0

(
1− Q2

3

Q2
Ej+Q

2
3

)
d0

3 dΦant+

2∑
j=1

2TR nFPAj

∫ sj

0

(
1− Q2

3

m2
qq̄+Q

2
3

)
e0

3 dΦant


= −αs

4π

[
CA
sqg

(∫ 1
2
sqg

0
ds2

∫ sqg−s2

s2

ds1
2s2

Q2
3 + 2s2

+

∫ 1
2
sqg

0
ds1

∫ sqg−s1

s1

ds2
2s1

Q2
3 + 2s1

)
d0

3

+
CA
sgq̄

(∫ 1
2
sgq̄

0
ds2

∫ sgq̄−s2

s2

ds1
2s2

Q2
3 + 2s2

+

∫ 1
2
sgq̄

0
ds1

∫ sgq̄−s1

s1

ds2
2s1

Q2
3 + 2s1

)
d0

3

+2nF

(
PA1

sqg

∫ sqg

0
ds2

∫ sqg−s2

0
ds1+

PA2

sgq̄

∫ sgq̄

0
ds2

∫ sgq̄−s2

0
ds1

)
s1

s1+Q2
3

e0
3

]
(4.42)

with Q2
3 = 2 min(sqg, sgq̄) and e0

3 carrying the singularity in s1. We will focus again on de-

riving the transcendality-2 terms explicitly, with the full expressions given in the appendix.

We start by recalling the expression for the strongly-ordered 2→ 3 branching,

αsCA
2π

[
ln

(
s

1
2Q

2
3

)
ln

(
s− 1

2Q
2
3

1
2Q

2
3

)
− Li2

(
s− 1

2Q
2
3

s

)
+ Li2

(
1
2Q

2
3

s

)]
.
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To this we add the results from the eikonal term
2sqg
s1s2

of one 3→ 4 gluon emission, the first

line in eq. (4.42),

− 2αsCA
π

∫ 1
2

0
dy2

∫ 1−y2

y2

dy1
1

y1(y2
3 + 2y2)

=−αsCA
2π

[
− ln(4) ln

(
1− 1

1+y2
3

)
+ln(4) ln

(
1+

1

1+y2
3

)
−2 Li2

(
− 1

y2
3

)
+2 Li2

(
1

2+y2
3

)
−2 Li2

(
2

2 + y2
3

)]
(4.43)

where we have transformed yi = si
sqg

for i = 1, 2 and y2
3 =

Q2
3

sqg
= 2 min(1,

sgq̄
sqg

). Taking the

limit for the soft region y2
3 → 2 (since we take the invariants as vanishing simultaneously),

we see that the remainder is just a finite term that contains no logarithms of the vanishing

invariants,

αsCA
8π

[
2 ln2(2) + Li2

(
1

4

)]
. (4.44)

We will receive this contribution twice. Including all divergent logarithmic contributions

and disregarding constant terms such as in eq. (4.44) , we find the same as in the

strong-ordering case,

− PS: sqg = sgq̄ = y → 0
αsCA

2π

[
ln2(y) +

3

2
ln(y)

]
, (4.45)

and hence the preferred choice of scale in the soft limit remains one which is linear in the

vanishing invariants, such as µPS ∝ mD.

In the hard collinear limit the Sudakov integrals plus the ‘Ariadne Log’ reduce to

− PS: sqg = y → 0, sgq̄ → s
αsCA

2π

[
−1

6
CA +

1

6
nF

]
ln(y) , (4.46)

again the same as in the strongly ordered case, cf. eq. (4.24).

To summarize, we do not expect any qualitatively different limiting behaviour in the

smoothly ordered case with respect to the strongly ordered one, though details may of

course still vary. To illustrate this, we include the plots in figure 9. In all cases, we use a

renormalization scale ∝ mD, but with different prefactors, from left to right: µPS = mD,

µPS = mD/2, and finally µPS = mD/2 with CMW rescaling. In particular the latter gives

correction factors very close to unity in both the soft and hard collinear limits, while we

still see the leftover divergence inbetween those limits that was also present in the case of

strong mD-ordering, cf. figure 6. Nonetheless, it is worth noting that for a large region of

phase space, say with mij > 0.1m (corresponding to ln(yij) > −4.6), the corrections are

still quite well behaved and relatively small, less than ∼ 20%.
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(a) µPS =mD (b) µPS = 1
2mD (c) µPS = 1

2mD, with CMW

Figure 9. NLO correction factor for smooth mD-ordering, with GGG antennae, and µPS = mD

(left), µPS = 1
2mD (middle), and µPS = 1

2mD with CMW rescaling (right). For all plots, αs = 0.12,

nF = 5, and the evolution scale for gluon splittings was mqq.

4.2.2 Transverse momentum

Again we only need to recompute the contributions from the 3→ 4 Sudakov terms, as the

2→ 3 ones are the same as in the strongly ordered case. The 3→ 4 Sudakov integrals are

− g2
s

 2∑
j=1

CA

∫ sj

0

(
1− Q2

3

Q2
Ej+Q

2
3

)
d0

3 dΦant+

2∑
j=1

2TR nFPAj

∫ sj

0

(
1− Q2

3

m2
qq̄+Q

2
3

)
e0

3 dΦant


=−αs

4π

[(
CA
sqg

∫ sqg

0
ds2

∫ sqg−s2

0
ds1

4s1s2

Q2
3sqg+4s1s2

+
CA
sgq̄

∫ sgq̄

0
ds2

∫ sgq̄−s2

0
ds1

4s1s2

Q2
3sgq̄+4s1s2

)
d0

3

+2nF

(
PA1

sqg

∫ sqg

0
ds2

∫ sqg−s2

0
ds1+

PA2

sgq̄

∫ sgq̄

0
ds2

∫ sgq̄−s2

0
ds1

)
s1

s1 +Q2
3

e0
3

]
(4.47)

As before we focus on explicitly calculating the transcendentality-2 contribution arising

from the eikonal part of the antenna in the first term in the first line of eq. (4.47),

− αsCA
2π

∫ 1

0
dy2

∫ 1−y2

0
dy1

4y1y2

y2
3 + 4y1y2

1

y1y2

= −αsCA
2π

[
−Li2

(
− 2

−1 +
√

1 + y2
3

)
− Li2

(
2

1 +
√

1 + y2
3

)]
(4.48)

where we have transformed yi = si
sqg

and y2
3 =

Q2
3

sqg
. In the limit smin/s, smax/s = y → 0 so

that y2
3 → 0, this yields

αsCA
2π

[
−1

2
ln2(y)

]
. (4.49)

Adding the contributions from the 2→ 3 splitting and transcendentality-1 terms, we find

the following result for the soft limit

− PS: sqg = sgq̄ = y → 0
αsCA

2π

[
ln2(y)− 1

3
ln(y)

]
+
αs
6π
nF ln(y) , (4.50)
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(a) µPS = p⊥ (b) µPS = 2p⊥

(c) µPS = p⊥, with CMW (d) µPS = 2p⊥, with CMW

Figure 10. NLO correction factor for smooth p⊥-ordering, with GGG antennae, without (top row)

and with (bottom row) the CMW rescaling of ΛQCD. The left-hand panes use µPS = p⊥ and the

right-hand ones µPS = 2p⊥. For all plots, αs = 0.12, nF = 5, and the evolution scale for gluon

splittings was mqq.

as in the strongly ordered case. The double logarithm matches with SVirtual and the

single logarithm can be absorbed by choosing a renormalization scale that is quadratic in

the vanishing invariants, such as µPS ∝ p⊥.

In the hard collinear limit, the shower integrals behave as

−PS: sqg = y → 0, sgq̄ → s
αs
2π

[
−1

6
CA +

1

6
nF

]
ln(y) , (4.51)

the same as in all the other cases. This completes the argument that indeed µPS ∝ p⊥ is

the appropriate choice also for smooth p⊥-ordering.

In figure 10, we show the NLO correction factors, (1 + V3Z), for smooth p⊥-ordering.

The top row shows the correction factors without using the CMW rescaling of ΛQCD,

and the plots in the bottom row include it. For the left-hand panes, we used a shower

renormalization scale of µPS = p⊥, and for the right-hand ones we used µPS = 2p⊥.

We see that all correction factors are essentially well-behaved, with no runaway logs,

similarly to the case of strong p⊥-ordering. However, for the case of smooth p⊥-ordering,

it looks as if the CMW rescaling (bottom row) is almost doing “too much” in the soft
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(a) µPS = p⊥, N⊥ = 1 (b) µPS = p⊥, N⊥ = 4, (c) µPS = p⊥, N⊥ = 4,

g → qq̄ in p⊥ PAj = 1

Figure 11. NLO correction factor for smooth p⊥-ordering, with GGG antennae: variations of

how gluon splittings are interleaved with gluon emissions, see text. We used αs = 0.12, nF = 5,

and µPS = p⊥.

region. Given that the CMW arguments [35] were derived explicitly by considering the

subleading behaviour of strongly ordered (coherent) parton showers, we do not perceive of

this as any major drawback. Instead, one should merely be aware of the slight shifts in the

NLO corrections that result from applying it or not, recalling that a rescaling of Λ by the

CMW factor ∼ 1.5 is within the ordinary factor 2 variation of the renormalization scale

that is often taken as a standard for uncertainty estimates.

The shifts caused by CMW rescaling and/or by renormalization-scale prefactors are

of course fully taken into account in our implementation in the vincia code, and are thus

reabsorbed into the one-loop matching coefficient at the matched order, stabilizing the

prediction. Differences at higher orders will result from the fact that the CMW rescaling,

if applied, is used for all shower branchings, while the NLO correction derived here is only

applied at the Z → 3 stage of the calculation.

Because smooth p⊥-ordering is the default in vincia we wish to understand this case

as best as we can, and therefore we include some further comparisons with non-default

settings in figure 11.

In the left figure of figure 11, we modify the normalization of the evolution variable

from the vincia default Q2
E = 4p2

⊥ to the ariadne choice Q2
E = p2

⊥. Though the

normalization factor cancels in the Pimp factor for sequential gluon emissions, it is relevant

for deciding the relative ordering between gluon emissions and gluon splittings. As this

plot shows, however, the modification only produces quite small differences in the NLO

correction factor, and with the “wrong” sign. Thus, we retain N⊥ = 4 as the default in

vincia. In middle figure of figure 11, we change the evolution variable for gluon splittings

to be the same as that for gluon emissions, i.e., p⊥, with similar conclusions as for the

previous variation. In the right figure of figure 11, we switch off the Ariadne factor for

gluon splittings. We notice that the NLO corrections get slightly larger. There is no

change along the diagonal yij = yjk since the Ariadne factor is unity there, but along the
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SVirtual
soft

(
−L2 − 10

3 L−
π2

6

)
CA + 1

3nFL

hard collinear −5
3LCA + 1

6nFL

Table 3. Limits of SVirtual , with L denoting ln(y), where y parametrizes the limit in the soft

region taken along the diagonal of the phase space triangle y = sqg/s = sgq̄/s → 0. The hard

collinear limit only takes one invariant sqg/s or sgq̄/s to the soft limit while the other is set to 1.

We have omitted an overall factor of αs/2π.

strong smooth V3Z

p⊥
soft

(
L2− 1

3L+ π2

6

)
CA+ 1

3nFL
(
L2− 1

3L−
π2

6

)
CA+ 1

3nFL −β0L

hard collinear −1
6LCA + 1

6nFL
(
−1

6L−
π2

6

)
CA + 1

6nFL −1
2β0L

mD

soft
(
L2 + 3

2L−
π2

6

)
CA

(
L2 + 3

2L−
π2

6

)
CA −1

2β0L

hard collinear −1
6LCA + 1

6nFL
(
−1

6L−
π2

3

)
CA + 1

6nFL −1
2β0L

Table 4. Limits of strong and smooth p⊥ and mD ordering, with naming conventions as defined

in table 3. Non divergent terms, such as π2 have been omitted in the calculation of V3Z , and the

renormalization term in V3Z is set to zero. An overall factor of αs/2π is suppressed.

edges of the plots, the NLO corrections become larger, which further motivates the choice

of keeping the Ariadne factor switched on by default in vincia.

The overall result is that the infrared limits are generally well-behaved for p⊥ evolution

with µPS ∝ p⊥. Remaining differences amount to small finite shifts of order 10%-20% away

from unity. At that level, the effective finite terms of the antenna functions also play a

role, hence it is too early to draw definite conclusions just based on the plots presented

here. The impact of finite terms will be studied in section 5 in the context of matching

to the LO matrix elements for Z → 4 partons, which effectively fixes the finite terms with

respect to the pure-shower answers studied here.

4.3 Tables of infrared limits

The results of the preceding subsections on the infrared limits of the pole-subtracted

matrix elements and of the Sudakov integrals generated by the various evolution-scale

choices are collected here, in parametric form, for easy reference. The renormalization

terms, V3µ, are not included. Table 3 expresses the limits of SVirtual , while table 4

contains the Sudakov-integral limits.

5 Results including both LO and NLO corrections

In the preceding section, we focussed on deriving the analytic forms of the shower integrals

and comparing their infrared limits to the matrix-element expressions. It is now time

to include also the finite terms arising from matching to the 4-parton tree-level matrix

element, expressed by the δA terms in eq. (3.55). Our ultimate aim in this section is to

include the full leading-colour one-loop corrections through second order in αs (i.e., up to
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and including Z → 3 partons) and combine these with the full-colour tree-level corrections

through third order in αs (i.e., up to and including Z → 5 partons, the default in vincia).

However, since we shall perform the δA integrals numerically, adding those terms to the

analytic ones derived in the previous section, we first wish to examine the numerical size

and precision required on the δA terms themselves.

5.1 Finite antenna terms and LO matching corrections

Finite-term variations of the antenna functions (and in particular fixing the finite terms

via unitary LO matching corrections, such as is done in vincia [24]) will affect the terms

generated by the 3 → 4 Sudakov expansions in the following way. Larger finite terms

will cause an increased amount of 3 → 4 branchings, which in turn will decrease the

associated Sudakov factor (in the sense of driving it closer to zero). This will feed into the

NLO correction factor, which compensates and drives the final answer back towards its

NLO-correct value. (Note that similar variations will not occur for the 2 → 3 branching

step, since we treat that as fixed to the LO 3-parton matrix element throughout.) This

feedback mechanism is encoded in the δA terms in eq. (3.55).

Following the reasoning above, we should expect larger antenna finite terms to

increase the NLO correction factor (since, to stabilize the 3-parton exclusive rate, it must

compensate for losing more 3-parton phase-space points to 4-parton ones), and vice versa:

smaller finite terms should result in a decrease of the NLO correction. At the pure-shower

level (i.e., without LO matrix-element corrections to fix the finite terms), this is illustrated

by figure 12. For ease of comparison, all plots use the CMW rescaling of ΛQCD, µPS = p⊥,

nF = 5, and αs(mZ) = 0.12. The default antenna functions in vincia12 are shown in the

middle panes, for strong (top row) and smooth (bottom row) ordering, respectively. A

variation with smaller finite terms for the 3 → 4 antenna functions is shown to the left,

and one with larger finite terms on the right. As expected, the NLO correction factors

react by becoming lower for smaller finite terms and higher for larger finite terms, for

both strong and smooth ordering.

We emphasise that the plots in figure 12 are shown purely for illustration, to give a

feeling for the changes produced by finite-term variations. In the actual matched shower

evolution, the constraint imposed by matching to the LO 4-parton matrix elements fixes

the finite terms, via the unitary procedure derived in [24], which was briefly recapped in

section 3.1. The effective finite terms then depend on the full LO 4-parton matrix elements,

and have a more complicated structure than the simple antenna functions we have so far

been playing with. We shall therefore not attempt to integrate them analytically, but prefer

instead to let vincia compute a numerical MC estimate for us.

Each point in that MC integration will involve computing at least one LO 4-parton

matrix element, hence it is crucial to know how many points will be needed to obtain suffi-

cient accuracy. Since everything else is handled analytically, this will be the deciding factor

12Note that vincia was recently updated with a set of helicity-dependent antenna functions [31], so the

defaults shown here are not identical to the GGG ones, but are instead helicity sums/averages over the

functions defined in [31].

– 52 –



J
H
E
P
1
0
(
2
0
1
3
)
1
2
7

MIN Antennae, VINCIA Antennae, MAX Antennae,

Strong Strong Strong

MIN Antennae, VINCIA Antennae, MAX Antennae,

Smooth Smooth Smooth

Figure 12. NLO correction factor for strong (top row) and smooth (bottom row) p⊥-ordering,

for MIN (left), vincia default (middle), and MAX (right) antenna functions. We use µR = p⊥
combined with CMW rescaling, αs = 0.12, and gluon splitting in mqq.

in determining the speed of the NLO-corrected algorithm. We shall perform a speed test

below in section 5.4, but first we need to determine the accuracy we need on the δA integral.

A first analytic estimate of the size of the δA terms can be obtained by simply comput-

ing the ones produced by switching from GGG to the vincia default antennae (summed

and averaged over helicities [31]), with the following O(1) finite-term differences:

qg → qgg : F vincia
Emit − FGGG

Emit = 1.5 − (2.5− yij − 0.5yjk) = −1 + yyij + 0.5yjk ,

(5.1)

qg → qq̄′q′ : F vincia
Split − FGGG

Split = 0.0 − (−0.5 + yij) = 0.5− yij , (5.2)

with FEmit and FSplit defined in eqs. (2.4) and (2.5). The δA terms produced by these

differences are plotted in figure 13, for strong ordering in mD (left) and p⊥ (center),

and for smooth ordering in p⊥ (right), respectively. As expected, they do come out to

be numerically subleading, roughly of order αs/(2π), relative to LO (unity), yielding

corrections ranging from a few permille to about a percent of the LO result.
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Figure 13. Size of δA terms differences between GGG and vincia default antennae.
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Figure 14. Distribution of the size of the δA terms (normalized so the LO result is unity) in actual

vincia runs (v.1.1.00). Left: linear scale, default settings. Right: logarithmic scale, with variations

on the minimum number of MC points used for the integrations (default is 100).

Finally, in figure 14, we include the full LO 4-parton matrix elements and plot the

distribution of numerically computed δA terms during actual vincia runs, for 100,000

events. The result is now represented by a one-dimensional histogram, with δA on the

x-axis and relative rate on the y-axis. On the left-hand pane, the δA distribution with

default settings is shown on a linear scale, while the right-hand pane shows the same result

on a logarithmic scale, including variations with higher numerical accuracy.

As mentioned above, the integration is done by a uniform Monte Carlo sampling of

the δA integrands. We require a numerical precision better than 1% on the estimated size

of the term (relative to LO) and, by default, always sample at least 100 MC points for

each antenna integral. In the left-hand pane of figure 14, we see that, even with the full

4-parton LO matrix-element corrections included, the size of the δA terms remains below

one percent for the vast majority of 3-parton phase-space points.
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On the logarithmic scale in the right-hand pane of figure 14, however, it is evident

that there is also a tail of quite rare phase-space points which are associated with larger

δA corrections. Numerical investigations reveal that this tail is mainly generated by the

integrals over the g → qq̄ terms, in particular in phase-space points in which the gluon is

collinear to one of the original quarks. This agrees with our expectation that these terms

are the ones to which the pure shower gives the “worst” approximation, and hence they

are the ones that receive the largest matrix-element corrections. As a test of the numerical

stability of the NLO corrections for these points, we increased the minimum number of MC

points used for the δA integration from the default 100 (shown with “+” symbols) to 400

(“×” symbols) and 1600 (“∗” symbols), cutting the expected statistical MC error in half

with each step, at the cost of increased event-generation time. Though we do observe a

slight broadening of the distribution between the default and the higher-precision settings,

the shifts should be interpreted horizontally and remain well under the required percent-

level precision with respect to LO. The default settings are therefore kept at a minimum of

100 MC points, though we note that future investigations, in particular of more complicated

partonic topologies, may require developing a better understanding of, and perhaps a better

shower approximation to, these integrals, especially the g → qq̄ contribution.

For completeness, we note that the runs used to obtain these distributions were

performed using the new default “Nikhef” tune of vincia’s NLO-corrected shower, which

will be described in more detail in the following subsection. Parameters for the tune are

given in appendix D.

5.2 LEP results

Since we have restricted our attention to massless partons in this work, we shall mainly

consider the light-flavour-tagged event-shape and fragmentation distributions produced by

the L3 experiment at LEP for our validations and tuning, see [63]. We consider three

possible vincia settings:

• New default (NLO on): uses two-loop running for αs, with CMW rescaling of ΛQCD.

From the comparisons to event-shape variables presented in this section, we settled

on a value of αs(MZ) = 0.122. A few modifications to the string-fragmentation

parameters were made, relative to the old default, to compensate for differences in

the region close to the hadronization scale. The revised parameters are listed in

appendix D, under the “Nikhef” tune.

• New default (NLO off). Identical to the previous bullet point, but with the NLO

correction factor switched off.

• Old default (LO tune): uses one-loop running for αs, without CMW rescaling of

ΛQCD, and αs(MZ) = 0.139. The string-fragmentation parameters are those of the

“Jeppsson 5” tune, see appendix D.

The three main event-shape variables that were used to determine the value of αs(MZ)

are shown in figure 15, with upper panes showing the distributions themselves (data and
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Figure 15. L3 light-flavour event shapes: thrust, C, and D.

MC) and lower panes showing the ratios of MC/data, with one- and two-sigma uncertainties

on the data shown by darker (green) and lighter (yellow) shaded bands, respectively. The

Thrust (left) and C-parameter (middle) distributions both have perturbative expansions

that start atO(αs) and hence they are both explicitly sensitive to the corrections considered

in this paper. The expansion of the D parameter (right) begins at O(α2
s). It is sensitive

to the NLO 3-jet corrections mainly via unitarity, since all 4-jet events begin their lives

as 3-jet events in our framework. It also represents an important cross-check on the value

extracted from the other two variables.

For a pedagogical description of the variables, see [63]. Pencil-like 2-jet configurations

are to the left (near zero) for all three observables. This region is particularly sensitive

to non-perturbative hadronization corrections. More spherical events, with several hard

perturbative emissions, are towards the right (near 0.5 for Thrust and 1.0 for C and D).

The maximal τ = 1 − T for a 3-particle configuration is τ = 1/3 (corresponding to the

Mercedes configuration), beyond which only 4-particle (and higher) states can contribute.

This causes a noticeable change in slope in the distribution at that point, see the left pane

of figure 15. The same thing happens for the C parameter at C = 3/4, in the middle pane

of figure 15. The D parameter is sensitive to the smallest of the eigenvalues of the sphericity

tensor, and is therefore zero for any purely planar event, causing it to be sensitive only to

4- and higher-particle configurations over its entire range.

Both the new NLO tune (solid blue line with filled-dot symbols) and the old LO one

(dashed magenta line with open-triangle symbols) reproduce all three event shapes very

well. With the NLO corrections switched off (solid red line with open-circle symbols), the

new tune produces a somewhat too soft spectrum, consistent with its low value of αs(MZ)

not being able to describe the data without the benefit of the NLO 3-jet corrections.

As a further cross check, we show two further event-shape variables that were included

in the L3 study in figure 16: the Wide and Total Jet Broadening parameters, BW and

BT , respectively. These have a somewhat different and complementary sensitivity to the

perturbative corrections, compared to the variables above, picking out mainly the trans-
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Figure 16. L3 light-flavour event shapes: jet broadening
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Figure 17. L3 light-flavour fragmentation observables: charged-track multiplicity and momentum

distribution.

verse component of jet structure. They are equal at O(αs), but BT receives somewhat

larger O(α2
s) corrections than BW . Again, we see that both the old (LO) and new (NLO)

defaults are able to describe the data, and that the spectrum with the new default value

for αs(MZ) is too soft if the NLO corrections are switched off.

Finally, as an aid to constraining the Lund fragmentation-function parameters, the

L3 study also included two infrared-sensitive observables: the charged-particle multiplicity

and momentum distributions, to which we compare in figure 17, with the momentum

fraction defined as

x =
2|p|√
s
. (5.3)

There is again no noteworthy differences between the old and new default tunes.

Having determined the value of αs(MZ) and the parameters of the non-perturbative

fragmentation function, we extended the validations to include a set of jet-rate and jet-
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〈
χ2
〉
Shapes T C D BW BT

pythia 8 0.4 0.4 0.6 0.3 0.2

vincia (LO) 0.2 0.4 0.4 0.3 0.3

vincia (NLO) 0.2 0.2 0.6 0.3 0.2

〈
χ2
〉
Frag Nch x Mesons Baryons

pythia 8 0.8 0.4 0.9 1.2

vincia (LO) 0.0 0.5 0.3 0.6

vincia (NLO) 0.1 0.7 0.2 0.6

〈
χ2
〉
Jets rexc

1j ln(y12) rexc
2j ln(y23) rexc

3j ln(y34) rexc
4j ln(y45) rexc

5j ln(y56) rinc
6j

pythia 8 0.1 0.2 0.1 0.2 0.1 0.3 0.2 0.3 0.2 0.4 0.3

vincia (LO) 0.1 0.2 0.1 0.2 0.0 0.2 0.3 0.1 0.1 0.0 0.0

vincia (NLO) 0.2 0.4 0.1 0.3 0.1 0.3 0.2 0.2 0.1 0.2 0.1

Table 5.
〈
χ2
〉

values for: Top: L3 light-flavour event shapes (left) and fragmentation variables [63],

and LEP average meson and baryon fractions (right) [70, 71]. Bottom: Durham kT n-jet rates,

rnj , and jet resolutions, yij , measured by the ALEPH experiment [64]. For the latter, the
〈
χ2
〉

calculation was restricted to the perturbative region, ln(y) > −8. A flat 5% theory uncertainty was

included on the MC numbers. Both default pythia and the vincia (LO) tune use αs(mZ) = 0.139

while the vincia (NLO) tune uses αs(mZ) = 0.122.

resolution measurements by the ALEPH experiment [64] (now without the benefit of light-

flavour tagging), using the standard Durham kT algorithm for e+e− collisions [65], as

implemented in the fastjet code [66]. We also compared to default pythia 8 and, for

completeness, checked that the relative production fractions of various meson and baryon

species were indeed unchanged relative to the old vincia default.

Rather than presenting all of this information in the form of many additional plots,

table 5 instead provides a condensed summary of all the validations we have carried out,

via
〈
χ2
〉

values for each of the models with respect to each of the LEP distributions,

including a flat 5% “theory uncertainty” on the MC numbers. Already from this simple

set of χ2 values, it is clear that the LO models/tunes are already doing very well.13 This

agreement, however, comes at the price of using a very large (“LO”) value for αs, which is

not guaranteed to be universally applicable.

The main point of the overview in table 5 is that an equally good agreement can be

obtained with an αs(mZ) value that is consistent with other NLO determinations [72],

specifically

αs(mZ) = 0.122 , (5.4)

once the NLO 3-jet corrections are included. This should carry over to other NLO-

corrected processes, and hence the fragmentation parameters we have settled on should be

applicable to future NLO-corrected studies with vincia, and can also serve as a starting

point for NLO-level matching studies with pythia 8. In the latter context, the 2-loop

running in particular could be retained, while the soft fragmentation parameters would

presumably have to be somewhat readjusted to absorb differences between vincia and

pythia 8 near the hadronization scale.14

13Both vincia and pythia are known to give quite good fits to LEP data [24, 31, 67, 68]. For comparisons

including other generators and tunes, see mcplots.cern.ch [69].
14The differences in soft fragmentation parameters between existing LO vincia and pythia-8 tunes could

be used as an initial guideline for such an effort, see, e.g., appendix D.
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5.3 Uncertainties

As in previous versions of vincia, we use the method proposed in [24] to compute a

comprehensive set of uncertainty bands, which are provided in the form of a vector of

alternative weights for each event. Each set is separately unitary, with average weight

one.15 The difference with respect to previous versions is that each variation now benefits

fully from the inclusion of NLO corrections.

When setting the parameter Vincia:uncertaintyBands = on, the uncertainty

weights are accessible through the method

double vincia.weight(int i=0);

with i = 0 corresponding to the ordinary event sample, normally with all weights equal to

unity, and the following variations, for i =:

1. Default: since the user may have chosen other settings than the default, the default

is included as the first variation.

2. alphaS-Hi: all renormalization scales are decreased to µ = µdef/kµ, where µdef = p⊥
for gluon emission and µdef = mqq̄ for gluon splitting. The default size of the variation

(kµ = 2) can be changed by the user, if desired. A second-order compensation for

this variation is provided by the renormalization-scale sensitive term V3µ.

3. alphaS-Lo: all renormalizzation scales are increased to µ = µdef ∗ kµ, with similar

comments as for alphaS-Hi above.

4. ant-Hi: antenna functions with large finite terms (MAX [31]). This variation is

already compensated for by LO matching (up to the LO matched orders) and is not

explicitly affected by the NLO corrections.

5. ant-Lo: antenna functions with small finite terms (MIN [31]), with similar comments

as above.

6. NLO-Hi: branching probabilities are multiplied by a factor (1 + αs) to represent

unknown (but finite) NLO corrections. Is canceled by NLO matching (up to the

NLO matched order).

7. NLO-Lo: branching probabilities are divided by a factor (1 + αs). Is canceled by

NLO matching.

8. Ord-pT: smooth p⊥ ordering for all branchings, including g → qq̄ ones. Compensated

at first order by LO matching, and at second order (Sudakov corrections) by NLO

matching via ordering-sensitive terms in V3Z .

9. Ord-mD: smooth mD ordering for gluon emissions (with mqq̄ used for gluon split-

tings). Similar comments as for Ord-pT above.

15vincia currently does not attempt to give a separate estimate of the uncertainty on the total inclusive

cross section. The uncertainties it computes only pertain to shapes of distributions and the effects of cuts

on the total inclusive rate.
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Figure 18. Comparison of explicit and automated uncertainty variations without (left) and with

(right) NLO 3-jet corrections. The individual curves each represents an explicit run, while the

shaded blue areas represent the automated uncertainty estimates calculated from the central run.

10. NLC-Hi: qg emission antennae use CA as color factor. Compensated at first order by

LO matching. Not affected by NLO matching since those are so far only only done

at leading color.

11. NLC-Lo: qg emission antennae use 2CF as color factor, with similar comments as

above.

We emphasize that these variations are not all independent (for instance the αs and NLO

variations are highly correlated) and hence the corresponding uncertainties should not

be summed in quadrature. In the vinciaroot plotting tool included with vincia, the

uncertainty band is constructed by taking the max and min of the variations. See the

vincia HTML manual for more information about the uncertainty bands and [24] for

details on their algorithmic construction.

To illustrate these variations, and the effect of the NLO 3-jet corrections upon them,

we include the two plots shown in figure 18. We here take the Thrust observable as a

representative example. (More such plots can be generated using the vinciaroot interface

and the vincia03-root.cc example program included with the vincia code.) Similarly to

previous plots in this paper, the top pane shows the normalized distribution, 1/σ dσ/d(1−
T ), and the bottom one shows the ratio of theory to data. Now, however, there is also a

middle pane, which gives the relative breakdown of the automated uncertainty variations

into their respective components (normalized to unity). In each plot, we compare four

individual runs of vincia to the automated uncertainty variations, with the latter based on
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the central run. This provides a useful cross check of whether the variations are indeed well

represented by the automated estimates, before (left) and after (right) including the NLO

3-jet corrections. For the individual runs, we have chosen to show the renormalization-scale

(µPS = p⊥ for the central run and factor-2 variations) and evolution-variable (p⊥ for the

central run and mD as the last variation) dependence. (The antenna-function variations

are canceled already at LO for this observable, so they are not interesting in the present

context.) The automated uncertainty bands include all 10 variations, with the middle

panes showing the contributions from each. In both plots, the scale-variation uncertainty

dominates over the full range of the observable, highlighting that this is the main component

that would need to be improved in order to obtain more precise results. Note, however,

that both the central value at large 1− T and the amount of scale variation, are improved

by the introduction of the NLO 3-jet corrections in the right-hand pane. We also note that

the distributions obtained from the explicit variation runs are faithfully reproduced by the

automated variations, thus validating our confidence in the automated approach.

5.4 Speed

Although the CPU time required by matrix-element and shower/hadronization generators

is still typically small in comparison to that of, say, full detector simulations, their speed and

efficiency are still decisive for all generator-level studies, including tuning and validation,

parameter scans, development work, phenomenology studies, comparisons to measurements

corrected to the hadron level, and even studies interfaced to fast detector simulations. For

this wide range of applications, the high-energy simulation itself constitutes the main part

of the calculation. An important benchmark relevant to practical work is for instance

whether the calculation can be performed easily on a single machine or not.

Higher matched orders are characterized by increasing complexity and decreasing un-

weighting efficiencies, resulting in an extremely rapid growth in CPU requirements (see

e.g. [31]). At NLO, the additional issues of negative weights and/or so-called counter-

events can contribute further to the demands on computing power. With this in mind,

high efficiencies and fast algorithmic structures were a primary concern in the development

of the formalism for leading-order matrix-element corrections in vincia [24, 30, 31], and

this emphasis carries through to the present work. We can make the following remarks.

• The only fixed-order phase-space generator is the Born-level one. All higher-

multiplicity phase-space points are generated by (trial) showers off the lower-

multiplicity ones. This essentially produces a very fast importance-sampling of phase-

space that automatically reproduces the dominant QCD structures.

• Likewise, the only cross-section estimate that needs to be precomputed at initial-

ization is the total inclusive one. Thus, initialization times remain at fractions of a

second regardless of the matching order.

• The matrix-element corrected algorithm works just like an ordinary parton shower,

with modified (corrected) splitting kernels. In particular, all produced events have

the same weights, and no additional unweighting step is required.
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LO level NLO level Time / Event Speed relative to pythia

Z → Z → [milliseconds] 1
Time / pythia 8

pythia 8 2, 3 2 0.6 1

vincia (NLO off) 2, 3, 4, 5 2 2.5 ∼ 1/4

+ uncertainties 2, 3, 4, 5 2 2.9 ∼ 1/5

vincia (NLO on) 2, 3, 4, 5 2, 3 3.9 ∼ 1/7

+ uncertainties 2, 3, 4, 5 2, 3 4.0 ∼ 1/7

Table 6. Event-generation time in default vincia 1.1.01 (NIKHEF tune), with and without au-

tomated uncertainty evaluations and NLO 3-jet corrections, compared to default pythia 8.179.

• Since the corrections are performed multiplicatively, in the form of (1 + correction),

with 1 being the LO answer, there are no negative-weight events and no counter-

events. The only exception would be if the correction becomes larger than the LO

answer, and negative. This would correspond to a point with a divergent fixed-order

expansion, in which case the use of NLO corrections would be pointless anyway.

Moreover, as demonstrated by the plots in the previous sections, our definitions of

the corrections are analytically stable (and numerically subleading with respect to

LO) over all of phase space, including the soft and collinear regions, for reasonable

renormalization- and evolution-variable choices.

• The parameter variations described in section 5.3 can be performed together with the

matching corrections to provide a set of uncertainty bands in which each variation

benefits from the full corrections up to the matched orders. These are provided in

the form of a vector of alternative weights for each event [24], at a cost in CPU time

which is only a fraction of that of a comparable number of independent runs.

These attributes, in combination with helicity dependence in the case of the leading-order

formalism [31], allow vincia to run comfortably on a single machine even with full-fledged

matching and uncertainty variations switched on.

The inclusion of NLO corrections will necessarily slow down the calculation. The

relative increase in running time relative to pythia 8, is given in table 6, including the

default level of tree-level matching, with and without the NLO 3-jet correction.16 Without

it (but still including the default tree-level corrections which go up to Z → 5 partons),

vincia is 5 times slower than pythia. With the NLO 3-jet correction switched on, this

increases only slightly, to a factor 7. For a fully showered and hadronized calculation which

includes second-order virtual and third-order tree-level corrections, we consider that to still

be acceptably fast. Importantly, an event-generation time of a few milliseconds per event

implies that serious studies can still be performed on an ordinary laptop computer.

16The numbers include both showering and hadronziation and were obtained on a single 2.53 GHz CPU,

with gcc 4.7 -O2, using default settings for pythia 8 and the “Nikhef” NLO tune for vincia.
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6 Outlook and conclusions

In this work, we have investigated the expansion of a Markov-chain QCD shower algorithm

to second order in the strong coupling, for e+e− → 3 partons, and made systematic com-

parisons to matrix-element results obtained at the same order. Using these results, we have

subjected the subleading properties of shower algorithms with different evolution/ordering

variables and different renormalization-scale choices to a rigorous examination. At the

analytical level, we have compared the logarithmic structures at the edge of phase space,

and at the numerical level we have illustrated the difference between the expanded shower

algorithm and the one-loop matrix element.

We find that the choice of p⊥-ordering, with a renormalization scale proportional to

p⊥ yields the best agreement with the one-loop matrix element, over all of phase space.

This elaborates on, and is consistent with, earlier findings [34, 35]. Using the antenna

invariant mass, mD, for the evolution variable still gives reasonable results in the hard

regions of phase space, but leads to logarithmically divergent corrections for soft emissions,

the exact form of which depends on the choice of renormalization variable. In the vincia

code, we retain the option of using mD mainly as a way of providing a conservative

uncertainty estimate.

With the NLO 3-jet corrections included as multiplicative corrections to the shower

branching probabilities, we find that we can obtain good agreement with a large set of LEP

event-shape, fragmentation, and jet-rate observables with a value of the strong coupling

constant of αs(MZ) = 0.122. This is in strong contrast with earlier (LO) tunes of both

pythia and vincia which employed much larger values ∼ 0.14 to obtain agreement with

the LEP measurements. The parameters for the NLO tune are collected in appendix D

and represent the first dedicated NLO-corrected tune to LEP data.

This paper is intended as a first step towards a systematic embedding of one-loop

amplitudes within the vincia shower and matching formalism. To arrive at a full-fledged

prescription, this will need to be extended to hadron collisions, ideally in a way that

allows for convenient automation. A first step towards developing the underlying shower

formalism for pp collisions was recently taken [73], and more work is in progress [74].

In addition, further studies should be undertaken of the impact of unordered sequences

of radiation that can occur for the smooth-ordering case (it may be necessary to adopt a

strategy similar to the truncated showers of the mc@nlo approach), and the mutually

related issues of total normalization and how much of the (hard) corrections are exponen-

tiated (similar to the differences between the powheg and mc@nlo formalisms, but here

occurring at one additional order, where the relevant total normalization is the NNLO one).

Finally, it would be interesting to develop an extension of this formalism that would allow

second-order-corrected antenna functions to be used at every stage in the shower, thereby

upgrading the precision of the all-orders resummation, a project that would involve exam-

ining the second-order corrections to branchings of qg and gg mother antennae as well. We

look forward to following up on these issues in the near future.

– 63 –



J
H
E
P
1
0
(
2
0
1
3
)
1
2
7

Acknowledgments
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and T. Sjöstrand for discussions and comments on the manuscript. PS thanks the

Galileo Galilei Institute for Theoretical Physics, LH would like to thank Lund University

and both of us thank CEA-Saclay for their hospitality. We also thank the INFN for

partial support during the completion of this work. EL and LH have been supported

by the Netherlands Foundation for Fundamental Research of Matter (FOM) programme

104, entitled “Theoretical Particle Physics in the Era of the LHC”, and the National

Organization for Scientific Research (NWO).

A Infrared singular operators

Here we list the IR singularity operators from [22, 33, 59] as they are used in section 3.

I
(1)
qq̄

(
ε, µ2/sqq̄

)
= − eεγ

2Γ (1− ε)

[
1

ε2
+

3

2ε

]
Re

(
− µ

2

sqq̄

)ε
(A.1)

I(1)
qg

(
ε, µ2/sqg

)
= − eεγ

2Γ (1− ε)

[
1

ε2
+

5

3ε

]
Re

(
− µ

2

sqg

)ε
(A.2)

I
(1)
qg,F

(
ε, µ2/sqg

)
=

eεγ

2Γ (1− ε)
1

6ε
Re

(
− µ

2

sqg

)ε
(A.3)

B One-loop amplitudes

B.1 Renormalization

Because a detailed derivation of the calculation of Z → 3 jets can be found in [32]

we restrict ourselves to listing the result in form that is convenient for our purpose.

Divergences are regulated using dimensional regularization with d = 4 − 2ε. Our results,

before ultraviolet renormalization, are cross-checked with [32] where one must undo

the renormalization in their case. In order to cancel the ultraviolet poles we need to

renormalize the coupling according to (see also section 3.4)

αbare
s = αs(µ

2
R)µ2ε

[
1− β0

ε
Sε

(
αs(µ

2
R)

4π

)(
µ2

µ2
R

)ε]
(B.1)

where

β0 =
11Nc − 2nF

3
(B.2)

and Sε = (4π)ε exp(−ε γE) contains the factors characterizing the MS scheme. Due to the

renormalization, the leading order calculation will generate a term quadratic in αs(µ
2
R),

− αs(µR)2

4π

β0

ε

[
1 + ε ln

(
µ2
R

µ2

)]
Born , (B.3)

which directly cancels the ultraviolet poles of the next-to-leading order calculation.
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B.2 One-loop matrix element

The fixed-order expression relevant to matching in the vincia context is the one-loop

matrix element normalized by the tree-level one. We decompose this into leading- and

subleading-colour pieces, as follows:

2 Re
[
M

(1)
3 M0∗

3

]
|M0

3 |2
=
αs
2π

(LC +QL+ SL) , (B.4)

with the LC piece containing the CA part of the gluon loops, the QL one containing the

quark loops, proportional to nFTR, and the SL piece containing the subleading gluon-loop

corrections, proportional to −1/NC . As usual in MC applications, we usually refer to

“Leading Colour” as including both the NC and TR pieces. These are both associated with

so-called planar colour flows that are simple to relate to the colour-flow representations

used in Monte Carlo event generators, see e.g. [1, 75]. The subleading-colour piece is

included below for completeness, but has so far been left out of the NLO matching

corrections implemented in the vincia code.

The notation of the infrared pole structure of these terms has been written similar

to the integrated antenna in [22], with the difference that we have chosen to expand the

scale factor µ in the integrated antenna terms in order to obtain explicitly dimensionless

logarithms.

The quark has been labelled 1, the anti-quark 2 and the gluon 3.

LC =NC

[(
2I(1)
qg (ε, µ2/s13) + 2I(1)

qg (ε, µ2/s23)
)

(B.5)

+

(
−R(y13, y23) +

3

2
ln

(
s123

µ2
R

)
+

5

3
ln

(
µ2
R

s23

)
+

5

3
ln

(
µ2
R

s13

)
− 4

)
+

1

s123 a0
3

[
2 ln(y13)

(
1 +

s13

s12 + s23
− s23

s12 + s23
− s23s13

4(s12 + s23)2

)
+ 2 ln(y23)

(
1− s13

s12 + s13
+

s23

s12 + s13
− s23s13

4(s12 + s13)2

)
+

1

2

(
s13

s23
− s13

s12 + s13
+
s23

s13
− s23

s12 + s23
+
s12

s23
+
s12

s13
+ 1

)]]
QL =2nFTR

[(
2I

(1)
qg,F (ε, µ2/s13) + 2I

(1)
qg,F (ε, µ2/s23)

)
(B.6)

+
1

6

(
ln

(
s23

µ2
R

)
+ ln

(
s13

µ2
R

))]
SL =

1

NC

[(
2I

(1)
qq̄ (ε, µ2/s12)

)
(B.7)

−
(

4 +
3

2
ln(y12) +R(y12, y13) +R(y12, y23)

)
+

1

s123 a0
3

[
R(y12, y13)

(
s13

s23
+ 2

s12

s23

)
+R(y12, y23)

(
s23

s13
+ 2

s12

s13

)
+ ln(y12)

(
4s12

s13 + s23
+

2s2
12

(s13 + s23)2

)
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+
1

2
ln(y13)

(
s13

s12 + s23
+

4s12

s12 + s23
+

s12s13

(s12 + s23)2

)
+

1

2
ln(y23)

(
s23

s12 + s13
+

4s12

s12 + s13
+

s12s23

(s12 + s13)2

)
− 1

2

(
s13

s23
− s23

s13
− s12

s23
− s12

s13
+

s12

s12 + s13
+

s12

s12 + s23
+

4s12

s13 + s23

)]]
with

R(y, z) = ln(y) ln(z)− ln(y) ln(1− y)− ln(z) ln(1− z) +
π2

6
− Li2(y)− Li2(z) , (B.8)

a0
3 =

|M0
3 |2

g2
s CF |M0

2 |2
=

1

s123

(
(1− ε)s13

s23
+

(1− ε)s23

s13
+ 2

s12s123 − εs13s23

s13s23

)
(1−ε) , (B.9)

and the infrared singular operators, I(1), given in appendix A.

With the one-loop matrix element expressed in this form, cancellation of the infrared

poles against the integrated antennae (see below) coming from the shower will be partic-

ularly simple and will yield an expression purely dependent on the renormalization scale,

µR, and on the kinematic invariants s12, s23, and s12, but not on the scale factor µ.

C Antenna integrals

In this appendix we list the results of antenna integrals over phase space corresponding to

the various evolution variables.

C.1 Strong ordering gluon emission

The expressions for a gluon emitting antenna is given in eq. (2.4). With a redefinition the

same antenna function reads

ag/IK(y1, y2)=
1

m2
IK

[
2(1−y1−y2)

y1y2
+
y1

y2
+
y2

y1
−δIg

y2
2

y1
−δKgy

2
1

y2
+C00+C10y1+C01y2

]
(C.1)

where y1, y2 correspond to yij , yjk of eq. (2.6), respectively. Recall that the last three

terms serve to give a flexible and explicit way of tracking extra non-singular terms in

antennae. The phase space integral over these antenna, as determined by the evolution

variable, can be written as

1

16π2m2
IK

∫ m2
IK

Q2
E

ag/IK |J (Q2, ζ)| dQ2 dζ. (C.2)

All antenna integrals in eq. (3.32) have been written in such a way that they are integrated

over their whole invariant mass plus a correction term running from the evolution variable

to the total invariant mass. The integrals running over the whole invariant mass contain

singular regions and therefore poles while the correction terms yield finite corrections.

These finite corrections are discussed per evolution variable below. We define the integrals

DQζ =
1

m4
IK

∫
dQ2 dζ |J | (C.3)
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I1 = DQζ
1

y1(Q2, ζ)y2(Q2, ζ)
(C.4)

I2 = DQζ
1

y2(Q2, ζ)
= DQζ

1

y1(Q2, ζ)
(C.5)

I3 = DQζ
y1(Q2, ζ)

2y2(Q2, ζ)
= DQζ

y2(Q2, ζ)

2y1(Q2, ζ)
(C.6)

I4 = DQζ
y2

2(Q2, ζ)

2y1(Q2, ζ)
= DQζ

y2
1(Q2, ζ)

2y2(Q2, ζ)
(C.7)

I5 = DQζ
[
C00 + C01y1(Q2, ζ) + C10y2(Q2, ζ)

]
. (C.8)

So that, in these terms, the results read

1

16π2m2
IK

∫ m2
IK

Q2
E

dQ2dζ |J(Q2, ζ)| ag/IK =
1

8π2

(
5∑
i=1

KiIi

)
(C.9)

where

K1 = 1 , K2 = −2 K3 = 2, K4 = −δIg − δKg, K5 = 1. (C.10)

We now turn to specific cases.

C.1.1 Dipole virtuality

The results for the individual contributing parts of the antenna function as defined in

eq. (C.4) - eq. (C.8) with ξ =
min(sqg ,sgq̄)

m2
IK−min(sqg ,sgq̄)

are

I1 =

[
Li2

(
ξ

1 + ξ

)
− Li2

(
1

1 + ξ

)
+ ln (ξ) ln

(
ξ

1 + ξ

)]
I2 =

[
−1 + ξ − ln (ξ)

1 + ξ

]
I3 =

−3 + 3ξ2 − (2 + 4ξ) ln (ξ)

8 (1 + ξ2)

I4 =
(ξ − 1) (11 + ξ (20 + 11ξ))− 6 (1 + 3ξ (1 + ξ)) ln (ξ)

36 (1 + ξ)3

I5 =
(−1 + ξ)2 (C01 + C10 + 2(C01 + C10)ξ + 3C00(1 + ξ))

12 (1 + ξ3)

In the case of integration over the 3→ 4 splittings, the definition of the integrals remains

the same. Only the definition of ξ changes with

ξ3→4 =
min (sqg, sgq̄)

max (sqg, sgq̄)−min (sqg, sgq̄)
(C.11)

C.1.2 Transverse momentum

The results for the individual contributing parts of the antenna function as defined in

eq. (C.4) - eq. (C.8) are

I1 =

[
−Li2

(
1

2

(
1+
√

1−y2
3

))
+Li2

(
1

2

(
1−
√

1−y2
3

))
− 1

2
ln

(
4

y2
3

)
ln

(
1−
√

1−y2
3

1+
√

1− y2
3

)]
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I2 =

[
−2
√

1− y2
3 + ln

(
1 +

√
1− y2

3

1−
√

1− y2
3

)]

I3 =

[
−1

2

√
1− y2

3 +
1

4
ln

(
1 +

√
1− y2

3

1−
√

1− y2
3

)]

I4 =

[
−13

√
1− y2

3

36
+

1

36
y2

3

√
1− y2

3 +
1

3
ln

[
1 +

√
1− y2

3

]
−

ln
(
y2

3

)
6

]

I5 =
1

24

[
2

(
3C00 − (C01 + C10)(−1 + y2

3)
√

1− y2
3 − 3C00 y

2
3 ln

(
1 +

√
1− y2

3

1−
√

1− y2
3

))]
,

with y2
3 =

Q2
3

m2
IK

and m2
IK = s. In the case of the 3→ 4 splittings the only adaptation takes

place in the former definition where m2
IK is set equal to sqg or sgq̄ dependent on which

dipole is being integrated over.

C.1.3 Energy ordering

The results for this evolution parameter are

I1 = Li2

(
1

2

(
1−
√

1−∆
))
− Li2

(
1

2

(
1 +
√

1−∆
))

+
1

2

[
−2 atanh

(√
1− ∆

y3

)
ln(4)

+atanh
(√

1−∆
)

ln(16)+ln2
(
1−
√

1−∆
)
−ln2

(
1+
√

1−∆
)
−ln2

(
1−

√
1−∆

y3

)

+ ln2

(
1 +

√
1− ∆

y3

)]
− 2Li2

(
1

2

(
1−

√
1− ∆

y3

))
+ Li2

(
1

2

(
1 +

√
1− ∆

y3

))

I2 = 2

[
−
√

1−∆ +
√
−∆ + y3 + atanh

(√
1−∆

)
−√y3 atanh

(√
1− ∆

y3

)]
I3 =

1

4

[
−2
√

1−∆ + 2
√
y3(−∆ + y3) + ln(2 + 2

√
1−∆−∆) + (−1 + y3) ln(∆)

−y3 ln(−∆ + 2(y3 +
√
y3(−∆ + y3))

]
I4 =

1

36

(
−13
√

1−∆+
√

1−∆∆−∆
√
−∆+y3+13y3

√
−∆+y3+12 atanh

(√
1−∆

)
−12y

3
2
3 atanh

(√
1− ∆

y3

))
I5 =

1

24

(
2
(
−(C01 + C10)(−

√
1−∆ +

√
1−∆∆−∆

√
−∆ + y3 + y3

√
−∆ + y3

+3C00(
√

1−∆−
√
y3(−∆ + y3)) + 3C00∆ ln

(
∆− 2(y3 +

√
y3(−∆ + y3))

−2(1 +
√

1−∆) + ∆

)))

with ∆ used as a cut-off on 4p2
⊥ and y3 =

(sqg+sgq̄)2

s2
.

– 68 –



J
H
E
P
1
0
(
2
0
1
3
)
1
2
7

C.2 Strong ordering gluon splitting

The branching of a gluon splitting into a quark antiquark pair can only take place at the

3→ 4 level splitting. The generation of a gluon splitting takes place through an alternative

form of phase space generation than the discussed mD, p⊥ and En variables. Instead phase

space is sampled in a triangular surface comparable to mD ordering, yet in this case using

only one cutoff, the Q2 generated at the 2 → 3 level, to avoid the singular region of the

gluon splitting antenna. The gluon splitting antenna is given by

aq̄/qg(y1, y2) =
1

m2
IK

(
(1− 2y1)

2y2
+
y2

1

y2
+ C00 + C01y1 + C10y2

)
. (C.12)

Because the integration surface is similar for all evolution types only depending on the

cutoff Q2 the integration is demonstrated for all types

H=
1

2m2
IK

∫ m2
IK

Q2
E

ds2

∫ m2
IK−s2

0
ds1aq̄/qg(s1, s2)=

m2
IK

2

∫ 1

yE=
Q2
E

m2
IK

dy2

∫ 1−y2

0
dy1aq̄/qg(y1, y2)

=
1

72

[
−13 + 6C01 + 6C10 + 18C00(−1 + yE)2 + 18yE+

+yE (−6C10(3 + (−3 + yE)yE + yE(−9 + 4yE + 6C01(−3 + 2yE)))− 12 ln(yE)] (C.13)

Where the factor a half has been added for the sake of consistency with respect to the

treatment of gluon emission. The factor m2
IK needs to be replaced by either sqg or sgq̄

dependent on which dipole is being integrated.

C.3 Smooth ordering gluon emission

The phase space integral in the case of smooth ordering differs from strong ordering by

allowing integration over the whole phase space region. The inclusion of a damping factor

regulates the accessible region of phase space which generates a different phase space occu-

pancy than in the case of strong ordering. A general form for smooth ordering integration

of a gluon emission antenna is

1

16π2m2
IK

∫ m2
IK

0
ds1

∫ m2
IK−s1

0
ds2

Q2
Ej

Q2
Ej

+Q2
3

ag/IK(s1, s2) (C.14)

Where we use the definition of eq. (C.1) with si = yim
2
IK , Q2

3 denotes the branching scale

and QEj indicates the evolution variable used for gluon emission. We define the following

integrals

Ds =
1

m4
IK

∫ m2
IK

0
ds1

∫ m2
IK−s1

0
ds2

Q2
Ej

Q2
E2
j

+Q2
3

(C.15)

L1 = Ds
m4
IK

s1s2
(C.16)

L2 = Ds
m2
IK

s1
= Ds

m2
IK

s2
(C.17)
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L3 = Ds
s1

2s2
= Ds

s2

2s1
(C.18)

L4 = Ds
s2

1

2m2
IKs2

= Ds
s2

2

2m2
IKs1

(C.19)

L5 = Ds
[
C00 + C01

s1

m2
IK

+ C10
s2

m2
IK

]
. (C.20)

So that, in these terms, the results read

1

16π2m2
IK

∫ m2
IK

0
ds1

∫ m2
IK−s1

0
ds2

Q2
Ej

Q2
E2
j

+Q2
3

ag/IK =
1

8π2

(
5∑
i=1

KiLi

)
(C.21)

where

K1 = 1 , K2 = −2 K3 = 2, K4 = −δIg − δKg, K5 = 1. (C.22)

We now turn to specific cases.

C.3.1 Smooth mass ordering

The only term from eq. (C.14) that requires specification is the damping factor

Q2
Ej

Q2
Ej

+Q2
3

=
min(s1, s2)

min(s1, s2) + min(sqg, sgq̄)
. (C.23)

The computation of the individual antenna parts will require separating the phase space

triangle in two regions (s1 > s2 and vice versa) in order to make the damping factor

definite. After summing over these two regions we obtain the following values for gluon

emission contributions

L1 = 2

[
ln(2) ln

(
1 +

1
1
2y

2
3

)
− Li2

(
− 1

y2
3

)
− Li2

(
1

1 + 1
2y

2
3

)
+ Li2

(
1

2 + y2
3

)]

L2 = −1 + 2y2
3 arccoth(1 + 2y2

3)− 1

2
y2

3arccoth(1 + y2
3) ln(4) + ln

(
2 +

1
1
2y

2
3

)

+
1

2
y2

3

(
Li2

(
− 1

y2
3

)
+ Li2

(
1

1 + 1
2y

2
3

)
− Li2

(
1

2 + y2
3

))

L3 =
1

8

[
−3 + ln(4) + 2 ln

(
1 +

1

y2
3

)
+ 2y2

3

(
1

2
y2

3 ln(2) ln

(
1 +

1
1
2y

2
3

)
− ln

(
4y2

3

1 + 2y2
3

)

+ ln

(
1 +

1

1 + 2y2
3

))
− y4

3

(
Li2

(
− 1

y2
3

)
+ Li2

(
1

1 + 1
2y

2
3

)
− Li2

(
1

2 + y2
3

))]

L4 =
1

36

(
−11− 3

2
y2

3(1+y2
3)−6 ln

(
2y2

3

1+2y2
3

)
+

3

2
y2

3

(
4

(
3+

1

2
y4

3

)
arccos(1+2y2

3)−ln(8)

+3y2
3

(
−1

2
y2

3arccos(1 + y2
3) ln(4)− ln(2y2

3) + ln(2 + 4y2
3) + ln

(
1 +

1

1 + 2y2
3

)))
+6 ln

(
2 +

2

1 + 2y2
3

)
+

18

8
y6

3 Li2

(
− 1

y2
3

)
+ Li2

(
1

1 + 1
2y

2
3

)
− Li2

(
1

2 + y2
3
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L5 =
1

48

[
4(3C00 + C01 + C10) + 3(8C00 + C01 + C10)y2

3 − 6(C01 + C10)y4
3

−12y2
3(1 + y2

3)(4C00 + C01 + C10 − (C01 + C10)y2
3) arccoth

(
1 + 2y2

3

)]
,

with y2
3 =

2 min(sqg ,sgq̄)

m2
IK

.

C.3.2 Smooth transverse momentum ordering

In the case of smooth ordering for transverse momentum we find the following result for

the ordering requirement

Q2
Ej

Q2
Ej

+Q2
3

=

s1s2
m2
IK

s1s2
m2
IK

+
sqgsgq̄
s

. (C.24)

Where m2
IK should be replaced by sqg or sgq̄ dependent on the dipole of integration. In

combination with eq. (C.14) we find the following results for the partial gluon emission

antenna parts

L1 = −Li2

(
− 2

−1 +
√

1 + y2
3

)
− Li2

(
2

1 +
√

1 + y2
3

)

L2 = −2−
√

1 + y2
3 ln

(
−1 +

√
1 + y2

3

1 +
√

1 + y2
3

)

L3 = −1

2
− 1

4

√
1 + y2

3 ln

(
−1 +

√
1 + y2

3

1 +
√

1 + y2
3

)

L4 =
1

36
√

1 + y2
3

[
−
√

1 + y2
3(13 + 3y2

3) + 3(1 +
1

4
y2

3)(1 + y2
3)

×

(
− ln

(
1−

√
1 + y2

3

1 + 1
2y

2
3

)
+ ln

(
1 +

√
1 + y2

3

1 + 1
2y

2
3

))]
L5 =

1

12

(
3C00 + C01 + C10 + 3(C01 + C10)y2

3

− 3

2
(C01 + C10)y2

3

√
1 + y2

3

(
− ln

(
1− 1√

1 + y2
3

)
+ ln

(
1 +

1√
1 + y2

3

))

+
3

2
C00y

2
3

(
Li2

(
− 2

−1 +
√

1 + y2
3

)
+ Li2

(
2

1 +
√

1 + y2
3

)))
,

with y2
3 =

4sqgsgq̄
sm2

IK

C.4 Smooth ordering gluon splitting

Additionally we also need to consider the gluon splitting antenna function for smooth

ordering. Similar to the strong ordering case, the separate generation of gluon splitting

variables allows for a new choice for evolution variable and thereby a different phase space
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surface. As in the case of gluon emission we allow for integration over the whole phase space,

using the damping factor to limit the accessible area. A general notation is the following

G =
1

m2
IK

∫ m2
IK

0
ds1

∫ m2
IK−s1

0
ds2

Q2
Ej

Q2
E2
j

+Q2
3

aq̄/qg(s1, s2), (C.25)

with the definition for the gluon splitting antenna as in eq. (C.12).

C.4.1 Dipole mass

With the gluon splitting antenna as defined in eq. (C.12) and the phase space integral

eq. (C.25) we find the following result for the dipole mass evolution type

G =
1

72s3
P

(
−12(s3

P + 3(−1 + 2C00 + C10)y2
3s

2
P + 3(−1 + 2C00 − 2C01 + 2C10 + 2C10)y4

3sP

+ (−2− 6C01 + 3C10)y6
3) arctanh

(
sP

2y2
3 + sP

)
+ sP

(
(−13 + 18C00 + 6C01 + 6C10)s2

P + 3(−4 + 12C00 − 6C01 + 9C10)y2
3sP

−6(2 + 6C01 − 3C10)y4
3 + 18s2

P ln

(
sP + y2

3

y2
3

)))
, (C.26)

with y3 =
N ′min(sqg ,sgq̄)

s and sP = max(sqg, sgq̄)/s. Note that the gluon splitting antenna

has been defined with the singularity in y2 which determines the form of the damping factor.

C.4.2 Transverse momentum

With the gluon splitting antenna defined in eq. (C.12) and the phase space integral

eq. (C.25) we find the following result for the transverse momentum evolution type

G =
1

72

(
− 13 + 18C00 + 6C01 + 6C10 + 3(−4 + 12C00 − 6C01 + 9C10)y2

3

− 6(2 + 6C01 − 3C10)y2
3 + 36y2

3acoth(1 + 2y2
3)− 6(−2 + y2

3(6C00(1 + y2
3)

+ 3C10(1 + y2
3)2 − y2

3(3 + 2y2
3 + 6C01(1 + y2

3)))) ln

(
1 +

1

y2
3

))
, (C.27)

with y2
3 = 4

Nsqgsgq̄
sm2

IK
.

D NLO tune parameters

In table 7 below, we list the perturbative and non-perturbative fragmentation parameters

for the Nikhef NLO tune of vincia. For reference, we compare them to the current (LO)

default Jeppsson 5 tune, which was used for comparisons to LO vincia in this paper.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License which permits any use, distribution and reproduction in any medium,

provided the original author(s) and source are credited.
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NLO Tune LO Tune

Parameter (Nikhef) (Jeppsson 5) Comment

! * alphaS

Vincia:alphaSvalue = 0.122 = 0.139 ! alphaS(mZ) value

Vincia:alphaSkMu = 1.0 = 1.0 ! Renormalization-scale prefactor

Vincia:alphaSorder = 2 = 1 ! Running order

Vincia:alphaSmode = 1 = 1 ! muR = pT:emit and Q:split

Vincia:alphaScmw = on = off ! CMW rescaling of Lambda on/off

! * Shower evolution and IR cutoff

Vincia:evolutionType = 1 = 1 ! pT-evolution

Vincia:orderingMode = 2 = 2 ! Smooth ordering

Vincia:pTnormalization = 4. = 4. ! QT = 2pT

Vincia:cutoffType = 1 = 1 ! Cutoff taken in pT

Vincia:cutoffScale = 0.8 = 0.6 ! Cutoff value (in GeV)

! * Longitudinal string fragmentation parameters

StringZ:aLund = 0.40 = 0.38 ! Lund FF a (hard fragmentation supp)

StringZ:bLund = 0.85 = 0.90 ! Lund FF b (soft fragmentation supp)

StringZ:aExtraDiquark = 1.0 = 1.0 ! Extra a to suppress hard baryons

! * pT in string breakups

StringPT:sigma = 0.29 = 0.275 ! Soft pT in string breaks (in GeV)

StringPT:enhancedFraction = 0.01 = 0.01 ! Fraction of breakups with enhanced pT

StringPT:enhancedWidth = 2.0 = 2.0 ! Enhancement factor

! * String breakup flavour parameters

StringFlav:probStoUD = 0.215 = 0.215 ! Strangeness-to-UD ratio

StringFlav:mesonUDvector = 0.45 = 0.45 ! Light-flavour vector suppression

StringFlav:mesonSvector = 0.65 = 0.65 ! Strange vector suppression

StringFlav:mesonCvector = 0.80 = 0.80 ! Charm vector suppression

StringFlav:probQQtoQ = 0.083 = 0.083 ! Diquark rate (for baryon production)

StringFlav:probSQtoQQ = 1.00 = 1.00 ! Optional Strange diquark suppression

StringFlav:probQQ1toQQ0 = 0.031 = 0.031 ! Vector diquark suppression

StringFlav:etaSup = 0.68 = 0.68 ! Eta suppression

StringFlav:etaPrimeSup = 0.11 = 0.11 ! Eta’ suppression

StringFlav:decupletSup = 1.0 = 1.0 ! Optional Spin-3/2 Baryon Suppression

Table 7. Parameters of the “Nikhef” NLO tune, compared to those of the “Jeppsson 5” LO tune.
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[36] T. Sjöstrand, S. Mrenna and P.Z. Skands, A brief introduction to PYTHIA 8.1, Comput.

Phys. Commun. 178 (2008) 852 [arXiv:0710.3820] [INSPIRE].

[37] G. Altarelli and G. Parisi, Asymptotic freedom in parton language, Nucl. Phys. B 126 (1977)

298 [INSPIRE].
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