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Abstract: We compute and study the drag force acting on a heavy quark propagating

through the matter produced in the collision of two sheets of energy in a strongly coupled

gauge theory that can be analyzed holographically. Although this matter is initially far

from equilibrium, we find that the equilibrium expression for heavy quark energy loss in

a homogeneous strongly coupled plasma with the same instantaneous energy density or

pressure as that at the location of the quark describes many qualitative features of our

results. One interesting exception is that there is a time delay after the initial collision

before the heavy quark energy loss becomes significant. At later times, once a liquid

plasma described by viscous hydrodynamics has formed, expressions based upon assuming

instantaneous homogeneity and equilibrium provide a semi-quantitative description of our

results — as long as the rapidity of the heavy quark is not too large. For a heavy quark with

large rapidity, the gradients in the velocity of the hydrodynamic fluid result in qualitative

consequences for the ‘drag’ force acting on the quark. In certain circumstances, the force

required to drag the quark through the plasma can point opposite to the velocity of the

quark, meaning that the force that the plasma exerts on a quark moving through it acts

in the same direction as its velocity. And, generically, the force includes a component

perpendicular to the direction of motion of the quark. Our results support a straightforward

approach to modeling the drag on, and energy loss of, heavy quarks with modest rapidity

in heavy ion collisions, both before and after the quark-gluon plasma hydrodynamizes, and

provide cautionary lessons at higher rapidity.
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1 Introduction

The discovery that strongly coupled quark-gluon plasma (QGP) is produced in ultrarel-

ativistic heavy ion collisions has prompted much interest in the real-time dynamics of

strongly coupled non-Abelian plasmas. For example, heavy quark energy loss has received

substantial attention. If one shoots a heavy quark through a non-Abelian plasma, how

much energy does it lose as it propagates? Equivalently, what is the drag force required

to pull a heavy quark through such a plasma at a specified velocity? This question has

been answered [1–3] for homogeneous plasma in thermal equilibrium in strongly coupled

N = 4 supersymmetric Yang-Mills (SYM) theory in the large number of colors (Nc) limit,

where holography permits a semiclassical description of energy loss in terms of string dy-

namics in asymptotically AdS5 spacetime [1–6]. One challenge (not the only one) in using

these results to glean qualitative insights into heavy quark energy loss in heavy ion colli-

sions is that a heavy quark produced during the initial collision event must first propagate

through the initially far-from-equilibrium matter produced in the collision before it later

plows through the expanding, cooling, hydrodynamic fluid of strongly coupled QGP. In

this paper we shall describe calculations that provide some qualitative guidance for how

to meet this challenge. For a review of many other ways in which holographic calculations

have yielded qualitative insights into properties of strongly coupled QGP and dynamics in

heavy ion collisions, see ref. [7].
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We want a toy model in which we can reliably calculate how the energy loss rate of a

heavy quark moving through the far-from-equilibrium matter present just after a collision

compares to that in strongly coupled plasma close to equilibrium. We study the energy

loss of a heavy quark moving through the debris produced by the collision of planar sheets

of energy in strongly coupled SYM theory introduced in ref. [8] and analyzed there and

in refs. [9, 10]. The incident sheets of energy move at the speed of light in the +z and

−z directions and collide at z = 0 at time t = 0. They each have a Gaussian profile in

the z direction and are translationally invariant in the two directions ~x⊥ = x, y orthogonal

to z. Their energy density per unit transverse area is µ3(N2
c /2π

2), with µ an arbitrary

scale with respect to which all dimensionful quantities in the conformal theory that we

are working in can be measured. The width w of the Gaussian energy-density profile of

each sheet is chosen to be w = 1/(2µ). We shall describe this setup, and its holographic

description, in section 2.1. Although there is no single right way to compare the widths

of these translationally invariant sheets of energy with Gaussian profiles to the widths of

a nucleus that has been Lorentz-contracted by a factor of 107 (RHIC) or 1470 (LHC),

reasonable estimates suggest that our choice of wµ corresponds to sheets with a thickness

somewhere between the thickness of the incident nuclei at RHIC and the LHC [8]. The

recent investigations of refs. [9, 10] suggest that it would be interesting to repeat our

analyses for varying values of wµ, but we leave this for future work since here we shall only

be seeking to draw qualitative lessons.

The principal lesson that has been learned to date from analyses of the collisions of

strongly coupled sheets of energy as in refs. [8–10] and from many other analyses of how

strongly coupled plasma forms from a large number of widely varied far-from-equilibrium

strongly coupled initial collisions (for example, see refs. [11–18]) is that the fluid hydro-

dynamizes, i.e. comes to be described well by viscous hydrodynamics, after a time thydro

that is at most around (0.7 − 1)/Thydro, where Thydro is the effective temperature (for ex-

ample, defined from the fourth root of the energy density) at the hydrodynamization time

thydro. At thydro, the fluid can still have sufficiently large velocity gradients and pressure

anisotropies that the dissipative effects of viscosity are significant. In the context of hy-

drodynamic modeling of heavy ion collisions at RHIC (for a recent example see ref. [19])

thydro ∼ 0.7/Thydro corresponds to a time ∼ 0.3 fm/c when T ∼ 500 MeV. This is about a

factor of two earlier in time than the upper bounds on the hydrodynamization times inferred

from hydrodynamic modeling of RHIC collisions [19–21]. Because QCD is asymptotically

free, the dominant dynamics at the earliest moments of a sufficiently energetic heavy ion

collision are expected to be weakly coupled, with the relevant (weak) coupling being αQCD

evaluated at the (short) distance scale corresponding to the mean spacing between gluons

in the transverse plane at the moment when the two highly Lorentz-contracted nuclei col-

lide. So, it would be inappropriate to take the estimates obtained in a context in which

the colliding sheets of matter are strongly coupled from beginning to end as estimates for

the hydrodynamization times of heavy ion collisions per se. The impact of these estimates

is that they teach us that the ∼ 10 year old result [20, 21] that the matter produced in

RHIC collisions takes at most 0.6-1 fm/c to hydrodynamize should not be seen as ‘rapid

thermalization’ since this timescale is comfortably longer than what we now know to expect
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if the physics of heavy ion collisions were strongly coupled from the start. After we have

calculated the drag force on a heavy quark that finds itself in the midst of the colliding

sheets of energy density, we shall seek similarly qualitative lessons to those that have been

drawn from the analyses of the collisions themselves.

We compute heavy quark energy loss by inserting a heavy quark moving at constant

velocity ~β between the colliding sheets before the collision and calculating the force needed

to keep its velocity constant throughout the collision. Via holography, the colliding planar

sheets of energy in SYM theory map into colliding planar gravitational waves in asymp-

totically AdS5 spacetime [8]. The addition of a heavy quark moving at constant velocity
~β amounts to including a classical string attached to the boundary of the geometry [6]

and dragging the string endpoint at constant velocity ~β, pulling the string through the

colliding gravitational wave geometry. We show how to compute the profile of the string in

this dynamical background in section 2.2. The force needed to maintain the velocity of the

string endpoint, which we compute in section 2.3, yields the energy loss rate of the heavy

quark [1, 2].

We describe our results in section III, beginning in section 3.1 with the case in which

the heavy quark is moving with ~β perpendicular to the z-direction, meaning that it has zero

rapidity. We compare the drag force that we calculate to what it would be in a homogeneous

plasma in thermal equilibrium that has the same energy density or transverse pressure or

longitudinal pressure as the matter that the quark finds itself in at a given instant in time.

We find that the peak value of the drag force, which occurs at a time when the matter

produced in the collision is still far from equilibrium, is comparable to the peak value of

the drag force in a static plasma with the same instantaneous energy density or pressure.

However, we find that both the initial rise in the drag force and its peak are delayed in

time relative to what they would be in a static plasma with the same instantaneous energy

density or pressure. In appendix B we provide some evidence that this time delay is of

order 1/πThydro at low β and increases slowly as γ ≡ 1/
√

1− β2 increases. All these results

are robust, in particular in the sense that we see them again when we consider a heavy

quark moving with some nonzero rapidity in sections 3.2 and 3.3.

The message from our results at early times is that there is no sign of any enhancement

in the energy loss experienced by a heavy quark by virtue of the matter that it finds itself

moving through being far from equilibrium. In broad terms, the energy loss is comparable

to what it would be in an equilibrium plasma with the same energy density; when looked

at in more detail, it can be significantly less by virtue of the initial delay in its rise. This is

quite different than at weak coupling, where instabilities in the far-from-equilibrium matter

can arise and can result in substantially enhanced rates of heavy-quark energy loss [22].

There are, however, no signs of any instabilities in the debris produced in the collisions

of the sheets of strongly coupled matter that we analyze [8, 9] or, for that matter, in any

analyses of far-from-equilibrium strongly coupled matter to date.

When we look at the drag force at late times, after the strongly coupled fluid has hy-

drodynamized, we find different results depending on whether the heavy quark has small

or large rapidity. At small rapidity, the drag force that we calculate is described semiquan-

titatively by assuming a homogeneous plasma in equilibrium with an appropriate time-
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dependent temperature. At large rapidity, however, this approximation misses qualitative

effects that, we show in sections 3.2 and 3.3, can be attributed to the presence of gradients

in the fluid velocity. We find that a velocity gradient in the fluid has the greatest effect on

the energy loss of the heavy quark when the direction of motion of the heavy quark is most

closely aligned with the velocity gradient. As a consequence, effects of velocity gradients

are larger at larger rapidity. We find generically that the force that must be exerted on

the quark in order to move it along its trajectory includes a component perpendicular to

the direction of motion of the quark, a component that can be substantial in magnitude.

In certain cases we also find that, as a consequence of gradients in the fluid velocity, the

z-component of the force that is required to move the quark in the positive-z direction

points toward negative z! We conclude in section IV with a look at the lessons on how

best to model the drag on heavy quarks produced in heavy ion collisions that can be drawn

from our results.

2 Holographic description

In a strongly coupled conformal gauge theory with a dual gravitational description, a heavy

quark moving through out-of-equilibrium matter that is on its way to becoming strongly

coupled plasma consists of a string moving in some non-equilibrium, but asymptotically

AdS5, black brane spacetime. For an infinitely massive quark, the endpoint of the string is

attached to the four-dimensional boundary of the geometry. The geometry of the boundary

is that of Minkowski space and the trajectory of the string endpoint on the boundary

coincides with the trajectory of the quark.

We shall focus on the case in which the gauge theory is N = 4 SYM theory with Nc

colors, although our results can immediately be generalized to any conformal gauge theory

with a gravity dual upon making a suitable modification to the relationship between the

’t Hooft coupling λ ≡ g2Nc of the gauge theory with g the gauge coupling constant, and

corresponding quantities in the gravity dual. In the limit of large Nc and large λ, the

evolution of the black brane geometry is governed by Einstein’s equations

RMN − 1
2GMN (R− 2Λ) = 0, (2.1)

with cosmological constant Λ = −6. In this limit, the back reaction of the string on the

geometry is negligible meaning that we can solve Einstein’s equations first, independently

of the string equations, and then subsequently determine the shape of the string in a

background given by the solution to Einstein’s equations.

2.1 Gravitational description of colliding sheets of energy

The geometry we choose to study is that of the colliding gravitational shockwaves studied

in ref. [8]. In the dual gauge theory living on the boundary this geometry corresponds to

colliding planar sheets of energy density. In Fefferman-Graham coordinates the pre-collision

metric is given by [23]

ds2 =
−dx+dx− + d~x2

⊥ + u4
[
h+dx

2
+ + h−dx

2
−
]

+ du2

u2
, (2.2)
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Figure 1. A plot of the boundary energy density as a function of time t and position along the

‘beam’ direction z for the colliding sheets of energy. Before t = 0, the energy density is that of two

sheets with Gaussian profiles moving toward each other at the speed of light. The sheets collide

around time t = 0 and leave debris in the forward light-cone that subsequently hydrodynamizes as

it expands, becoming strongly coupled, liquid, plasma.

where x± = t ± z and h± ≡ h(x±) for some function h(x±) that specifies the profile

of the incident gravitational shockwaves and hence the incident sheets of energy in the

boundary theory. The boundary of the geometry is located at AdS radial coordinate

u = 0. The gravitational shockwaves move in the ±z direction at the speed of light. If

h(x±) has compact support then h(x+) and h(x−) do not overlap in the distant past and

the metric (2.2) is an exact pre-collision solution to Einstein’s equations. Following ref. [8],

we choose Gaussian profiles

h(x±) = µ3(2πw2)−1/2e−
1
2
x2
±/w

2
, (2.3)

where µ defines the energy scale, meaning that we shall measure all other dimensionful

quantities in units of µ.

For a given solution to Einstein’s equations, the near-boundary behavior of the metric

encodes the boundary stress tensor Tµν [24, 25]. In the boundary gauge theory the en-

ergy density of each shock is proportional h(x±) [23]. The metric that we have described
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therefore corresponds in the boundary theory to two sheets of energy density (infinite in

extent, and translation-invariant, in the transverse dimensions) that are moving towards

each other in the ±z directions at the speed of light. The energy density profiles of the

sheets are Gaussians with widths w, and the incident sheets each have an energy per unit

area that is given by N2
c µ

3/(2π2) [8]. We choose the width of each shock to be w = 0.5/µ,

meaning that we shall be probing the collision of sheets of energy that are thinner by a

factor of 2/3 than those in ref. [8].

Near the collision time, when the functions h(x±) begin to overlap, the metric (2.2)

ceases to be a solution to Einstein’s equations. Using (2.2) as initial data in the distant

past, one must therefore compute the future evolution of the geometry numerically. Our

numerical scheme for solving Einstein’s equations can be found in refs. [8, 10]. In what

follows we simply state some of the salient features. A useful choice of coordinates for the

numerical evolution is that of infalling Eddington-Finkelstein coordinates where the metric

takes the form

ds2 =
−Adt2 + Σ2

[
eBd~x2

⊥ + e−2Bdz2
]

+ 2dt (Fdz − du)

u2
(2.4)

where A,B,Σ and F are functions of t, z and u. Lines of constant time t (and spatial

coordinates ~x⊥ and z) are infalling null geodesics.1

An important practical matter when solving Einstein’s equations is fixing the compu-

tational domain in u. The geometry we study in this paper contains a black brane with

planar topology. Moreover, the event horizon exists in the infinite past, even before the

collision takes place on the boundary [8, 12]. Therefore, a natural choice is to excise the

geometry inside the horizon, as this region is causally disconnected from the outside ge-

ometry. To perform the excision we identify the location of an apparent horizon (which

always lies inside the event horizon) and choose to stop integrating Einstein’s equations any

further into the black brane at its location. Our choice of coordinates makes this procedure

particularly simple. The metric ansatz (2.4) is invariant under the residual diffeomorphism

1

u
→ 1

u
+ ξ(t, z), (2.5)

where ξ does not depend on the radial coordinate u but is an arbitrary function of the

boundary spacetime coordinates t and z. One may fix ξ by demanding that the location

of the apparent horizon be at u = 1. With this choice of coordinates, the boundaries of

the computational domain are static: 0 < u < 1. The numerical procedure for determining

ξ and solving Einstein’s equations is described in refs. [8, 10] and we shall not review it

here. Following this procedure yields ξ as well as the bulk metric functions A, B, Σ and

F , whose asymptotic near-boundary behavior determines the stress-energy tensor Tµν of

the colliding sheets of energy in the boundary gauge theory, as described in ref. [8].

1 To the best of our knowledge there does not exist a closed form coordinate transformation taking the

pre-collision metric (2.2) onto the metric (2.4) used for numerical evolution. Therefore, for initial data

we compute the coordinate transformation required to put the initial metric (2.2) in the form of (2.4)

numerically. For details see refs. [8, 10].
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In the distant past the apparent horizon lies very deep in the bulk. This presents a

computational problem for solving Einstein’s equations numerically as the coefficient func-

tions in the metric (2.2) diverge deep in the bulk. As described in ref. [8], to regulate this

problem we choose to study study shocks which propagate and collide in a low tempera-

ture background plasma of temperature Tbackground. In the distant past the effect of the

background temperature is to push the apparent horizon up towards the boundary and

thereby control the size of the metric coefficient functions deep in the bulk. Our choice

of background temperature is Tbackground = 0.085µ which corresponds to an initial back-

ground energy density 213 times smaller than the energy density at the center of the sheets

of energy and 450 times smaller than the energy density at t = z = 0, during the collision.

Figure 1 shows a plot of the rescaled energy density

E ≡ 2π2

N2
c

T 00 (2.6)

for our colliding sheets as a function of position and time. Before t = 0, the energy density

is that of two sheets of energy with Gaussian profiles moving toward each other at the speed

of light. The sheets collide around time t = 0 and leave debris in the forward light-cone.

We shall calculate the rate of energy loss of (i.e. the ‘drag force’ acting on) a heavy quark

moving through the far-from-equilibrium matter right near t = z = 0, during the collision

when the energy density is largest. We shall then follow the quark forward in time and see

how it loses energy in the expanding, cooling, fluid that forms in the forward lightcone. In

gravitational terms, we wish to study the dynamics of a string moving in the black brane

geometry during and after the collision.

After the collision, the fluid in the forward lightcone is expanding meaning that at z 6= 0

it has a velocity that points in the direction of increasing |z|. The fluid velocity is defined

to be the future-directed time-like eigenvector of Tµν , normalized such that uµu
µ = −1:

Tµνu
ν = −N

2
c

2π2
ε uµ, (2.7)

with −ε the eigenvalue, ε being the proper energy density rescaled as in (2.6). At any

spacetime point, we can find the local fluid rest frame by first using (2.7) to determine

uµlab frame and then boosting to a frame in which, at this spacetime point, uµ is given

by uµrest frame = (1, 0, 0, 0). In this local fluid rest frame, the stress-energy tensor at the

spacetime point of interest is diagonal and can be written as

Tµνrest frame =
N2
c

2π2
diag(ε,P⊥,P⊥,P‖) . (2.8)

Note that at z = 0 the velocity of the fluid vanishes by symmetry, meaning that at z = 0

in (2.7) we have simply uµlab frame = uµrest frame = (1, 0, 0, 0) and ε = E = T 00(2π2)/N2
c .

Before we turn to describing the dynamics of the string and then to calculating the

rate at which the heavy quark loses energy, we should justify referring to the matter that

is formed in the forward light-cone as a fluid. In figure 2 we compare the pressures in

the ‘beam’ direction and perpendicular to it at z = 0 to what those pressures would

– 7 –
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Figure 2. Pressure, both parallel to the direction of motion of the colliding sheets (P‖) and in

the transverse directions (P⊥), as a function of time at z = 0 during the collision of the sheets of

energy illustrated in figure 1. We compare the pressures in the collision, shown as solid colored

curves, to what they would be if the hydrodynamic constitutive relations were satisfied, shown as

dashed curves. We see that the strongly coupled fluid produced in the collision hydrodynamizes to

a reasonable degree before t = 2/µ, although with the more strict operational criterion defined in

the text, the hydrodynamization time is thydro = 2.8/µ.

be if the matter were a fluid described by the equations of viscous hydrodynamics for

the N = 4 SYM plasma, to first order in a derivative expansion. In particular, the

hydrodynamic constitutive relations allow us to determine P‖ and P⊥ from the proper

energy density ε and the fluid velocity uµ, determined via (2.7). (Because we are making

this comparison at z = 0, where the fluid is at rest in the lab frame, in this instance (2.7)

is trivial as described above.) We plot the pressures determined by applying the first order

hydrodynamic constitutive relations to ε and uµ as dashed curves in figure 2. We see that

from a time that is clearly before 2/µ onwards the flow of the fluid is described very well

by hydrodynamics. We can use the same operational definition of the hydrodynamization

time thydro as in ref. [8], namely the time after which the actual pressures within the matter

produced in the initially far-from-equilibrium collision are both within 15% of the values

derived from the hydrodynamic constitutive relations. With this definition, in figure 2

hydrodynamization occurs at t = thydro = 2.8/µ. It is clear from the figure that one could

choose a reasonable but less strict criterion for hydrodynamization with respect to which

hydrodynamization occurs well before 2/µ. The reason that with the strict criterion thydro

is a little later is that P‖ is so small that a 15% relative deviation corresponds to a very

small absolute deviation.

We shall calculate the drag force on the heavy quark as it plows through the matter

produced in the collision both before the hydrodynamization time thydro, when the matter

is far from equilibrium, and after thydro when we have an expanding, cooling, hydrodynamic

liquid. As in ref. [8], we see from figure 2 that at the hydrodynamization time thydro the

– 8 –
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parallel and transverse pressures are very different. The fluid is very anisotropic at the time

that it hydrodynamizes and becomes locally isotropic only at a much later time, beyond

that shown in the figure. We shall therefore be studying the drag force on a heavy quark

when it is first in the far-from-equilibrium matter at t ∼ 0, well before hydrodynamization,

and then later in an expanding cooling hydrodynamic fluid that is far from isotropic.

2.2 String dynamics

For a given solution to Einstein’s equations, for example the one above that describes

the dynamics of a black brane in the bulk and the collision, hydrodynamization, and

hydrodynamic flow of the strongly coupled matter in the boundary theory, we can add an

infinitely heavy quark moving through the boundary theory matter by adding a string in

the bulk geometry whose endpoint follows the trajectory of the quark along the boundary.

The dynamics of the string are governed by the Polyakov action

SP = −T0

2

∫
d2σ
√
−ηηabGMN∂aX

M∂bX
N , (2.9)

where σ1 ≡ τ is a temporal worldsheet coordinate, σ2 ≡ σ is a spatial worldsheet coordinate,

XM (τ, σ) = (t(τ, σ), ~x(τ, σ), u(τ, σ)) are the string embedding functions that describe where

the string is located within the spacetime metric that we are interested in probing, ηab is

the worldsheet metric and T0 =
√
λ

2π is the string tension. We choose worldsheet coordinates

such that the worldsheet metric takes the form

ηab =

(
−α(τ, σ) −1

−1 0

)
(2.10)

with α(τ, σ) being an arbitrary function. Just as we did in the spacetime metric (2.4), we

have chosen worldsheet coordinates that are infalling Eddington-Finkelstein coordinates.

Lines of constant τ are infalling null worldsheet geodesics. As we describe further below,

we fix the function α(τ, σ) by demanding σ = u.

Varying the Polyakov action with respect to the embedding functions XM yields dy-

namical equations of motion. Likewise, varying the Polyakov action with respect to the

worldsheet metric yields a system of constraint equations. With our choice of infalling

Eddington-Finkelstein bulk and worldsheet coordinates, the dynamical equations of mo-

tion take the simple form

Ẋ ′N + ΓNABẊ
AX ′B = 0 (2.11)

where ΓNAB are Christoffel symbols associated with the metric (2.4) for the bulk space-

time and

ẊM ≡ ∂τX
M − 1

2
αX ′M , (2.12a)

X ′M ≡ ∂σX
M . (2.12b)

The constraint equations are even simpler:

X ′2 = 0, (2.13a)

Ẋ2 = 0. (2.13b)

– 9 –
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The constraint equation (2.13a) is a temporal constraint. If (2.13a) is satisfied every where

in space at one time, the dynamical equations (2.11) imply that it will be satisfied at all

subsequent times. The constraint equation (2.13b) is a boundary constraint. If (2.13b)

is satisfied at all times at one value of σ the dynamical equations (2.11) imply it will be

satisfied at all σ.

Given XM for all σ at some value of τ , the equations of motion (2.11) constitute a linear

system of ordinary differential equations for ẊM . To solve these equations, in addition to

specifying the initial conditions for XM one must specify five boundary conditions at all

τ at the AdS boundary, where the string endpoint is located. Three boundary conditions

are simply that the string endpoint moves on a given trajectory ~xo(t)

lim
σ→0

~x(τ, σ) = ~xo(t). (2.14)

We choose the trajectory

~xo(t) = ~βt, (2.15)

for some constant velocity ~β. These boundary conditions correspond to choosing to study

a heavy quark, whose location after all coincides with the location of the endpoint of the

string, that is moving with constant velocity ~β and that finds itself at z = 0 at time t = 0,

meaning that this heavy quark finds itself right in the center of the collision that we wish

to probe. We shall present results for several different values of ~β.

Two more boundary conditions are required. For convenience, we choose

lim
σ→0

t(τ, σ) = τ, (2.16)

so that the worldsheet time τ corresponds to the coordinate time t at the boundary. The

remaining boundary condition comes from demanding that the boundary constraint (2.13b)

is satisfied at σ = 0. The boundary conditions (2.15) and (2.16) and the boundary con-

straint (2.13b) are satisfied at σ = 0 provided that2

lim
σ→0

ṫ =
1

2

[
1 +

1

γ

]
, lim

σ→0
~̇x =

~β

2
, lim

σ→0
u̇ = − 1

2γ
, (2.17)

where γ ≡ 1/

√
1− ~β2 as usual.

We can now see how to evolve the string forward in τ , given an initial string profile

specified by XM at some initial τ . The algorithm has two steps. First we need to obtain

ẊM =
(
ṫ, ~̇x, u̇

)
at the initial τ . We do this by observing that if we think of ẊM as the

dynamical variables, the equations of motion (2.11) are first order differential equations

for ẊM with the independent variable being σ. We can solve these equations for ẊM as

functions of σ at the initial τ as long as we know X ′M — which we do since we have been

given XM for all σ at the initial τ — and as long as we have boundary conditions for ẊM

2 To see that this is true one can solve the string equations of motion (2.11) and the constraint equa-

tions (2.13) with a power series expansion in σ near σ = 0. In doing so one can directly incorporate the

boundary conditions (2.15) and (2.16) into the series expansions. With the expansion known to order σ,

one can easily see that the boundary limit of ẊM takes the form (2.17).
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at σ = 0 — which we have in (2.17). So, we solve (2.11) starting from σ = 0 and obtain

ẊM at all σ at the initial τ . In the second step of the algorithm, we use (2.12a), rewritten

as ∂τX
M = ẊM + 1

2αX
′M , to compute the field velocities ∂τX

M . To do this we need the

function α. With the gauge choice σ = u, it is given simply by α = −2u̇. With ∂τX
M

known, we can then determine XM at the new τ , thus completing the evolution of the

system from the initial τ to a τ one time-step later. We then repeat.

All that we still need to specify is our choice of initial conditions for XM at an initial

time t that we shall typically take to be −3/µ, when the centers of the incident sheets of

energy are 6/µ = 12w apart. In the distant past, well before the sheets of energy collide,

the near-boundary geometry between the sheets of energy, which is where the heavy quark

is located, is that of an equilibrium black brane with a small temperature Tbackground. This

is so provided that we do not choose |~β| so large that at our initial time the heavy quark is

within one of the incident sheets. We shall make sure not to do this, which is to say that we

shall make sure that at our initial time the heavy quark has not yet felt the sheets of energy

that are soon going to hit it to any significant degree. We therefore choose initial conditions

such that the string profile coincides with the trailing string solution of refs. [1, 2] moving

at velocity ~β, given in appendix A. Such initial conditions satisfy the temporal constraint

equation (2.13a) near the AdS boundary.3

Constructing initial string profiles that are equilibrium solutions to the pre-collision

geometry ensures that the future non-trivial evolution of the string is entirely due to the

change in the bulk geometry associated with the collision event, not due to transients that

would come along as artifacts of any other choice of initial conditions. However, as we shall

describe below, although perturbing the initial string profile does result in an early-time

transient before the collision happens, the change that results in the rate of energy loss of

the heavy quark during and after the collision event is negligible. Because in an actual

heavy ion collision a heavy quark is produced during the collision, we are not particularly

interested in any aspect of the motion of our heavy quark before the collision of our sheets

of energy. This, together with the insensitivity of the results during and after the collision

that we are interested in to initial conditions and associated transients, means that our

study could be repeated with other choices of initial conditions for the string without

changes to our conclusions.

We discretize the σ coordinate using pseudo-spectral methods. Specifically, we decom-

pose the σ dependence of all functions in terms of the first 20–35 Chebyshev polynomials.

3Our choice of initial conditions is slightly complicated by our choice of infalling Eddington-Finkelstein

coordinates. In infalling Eddington-Finkelstein coordinates the bulk is the causal future of the boundary.

At any given Eddington-Finkelstein time t, even in the distant past before the sheets of energy collide

on the boundary, the gravitational shocks are colliding somewhere deep in the bulk. As a consequence

of this, choosing the trailing string of refs. [1, 2] will lead to a small violation of the temporal constraint

equation (2.13a) deep in the bulk. However, as time progresses the violation of the constraint decreases

in magnitude and then as time progress further towards t = 0 when the sheets collide on the boundary,

the portion of the string that violates the temporal constraint equation is rapidly enveloped by the event

horizon of the black brane. Because of this, the initial violation of the temporal constraint equation is

causally disconnected from physics near the boundary and hence is of no concern. We discuss this further

in appendix A.
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We then time evolve the string profile, typically from t = −3/µ to t = +6/µ, according

to the algorithm that we have described above using a fourth order Runge-Kutta ordinary

differential equation solver.

2.3 Extracting the drag force acting on the quark from the string profile

Because the quark is a point-like source which is being pushed through the surrounding

medium at a constant speed by some external agent, it must be transferring energy and

momentum to the surrounding medium meaning that the boundary stress tensor is not

conserved:

∂µT
µν(x) = F ν(x) = −fνδ3(~x− ~βt), (2.18)

where fν is the four momentum lost by the quark per unit time. Note that, as always

for a force, fν does not transform as a four-vector under Lorentz transformations. It is

conventional to write
dpν

dt
= fν , (2.19)

with pν the four momentum of the quark, even though in the setup we are analyzing the four

momentum of the quark does not actually change. The external agent does work in order

to move the quark at constant speed and, in so doing, transfers energy and momentum to

the medium surrounding the quark; the quark does not slow down. If the external agent

dragging the quark is a classical background electric field, the total stress tensor

Tµνtot = Tµν + TµνEM, (2.20)

is conserved

∂µT
µν
tot = 0 . (2.21)

Via the quark, energy and momentum flow from the electric field into the surrounding

medium. The quantity fν is thus given by

fν(t) = −
∫
d3x ∂µT

µν(x) =

∫
d3x ∂µT

µν
em(x) . (2.22)

Just as the near-boundary behavior of the metric encodes the expectation value of

the boundary stress tensor, the near boundary behavior of the string profile encodes fν .

Specifically, fν can be identified as the flux of four momentum down the string [26]. The

flux down the string can be extracted by noting that the total action for the holographic

system,

Stot = SP + SEM, (2.23)

must be diffeomorphism invariant. The electromagnetic action SEM only has support at

the boundary and couples the string endpoint to the classical background electric field used

to drag the quark (which is to say the string endpoint) at constant velocity.

Under an infinitesimal diffeomorphism XM → XM +χM the variation in the Polyakov

action (2.9) only has support at the boundary and reads

δSP = lim
u→0

∫
d4xnN χ

M
√
−G T NM , (2.24)
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where DM is the covariant derivative with respect to the bulk spacetime metric (2.4), nN
is the normal to the boundary at u = 0, and

T MN (Y ) =
−T0√
−G

∫
d2σ
√
−η ηab ∂aXM ∂bX

Nδ5(Y −X), (2.25)

is the string stress tensor. Likewise, the variation in the electromagnetic action is

δSEM =

∫
d4xχµ∂νT

ν
µEM = −

∫
d4xχµFµ, (2.26)

where in the last line we used ∂νT
ν
µEM = −Fµ with Fµ defined in (2.18). Upon demanding

that the variation in the action vanish for all χµ, we conclude that

Fµ = lim
u→0

nN
√
−GT Nµ , (2.27)

from which the drag fµ can easily be extracted via (2.18).

Setting the normal to the boundary nM = δM5, one might naively conclude4 that

Fµ = limu→0

√
−GT 5

µ. However, this cannot be correct. Near the boundary some com-

ponents of the string stress tensor diverge like 1/u2. As a consequence of this divergence

limu→0

√
−GT 5

µ transforms nontrivially under the radial diffeomorphism (2.5). Simply

put, the expression limu→0

√
−GT 5

µ depends on one’s choice of the gauge parameter ξ used

in solving Einstein’s equations.

The unique remedy to the above problem is to set nM = δM5 + u2∂Mξ. This choice

is simply the near-boundary limit of δ5N , transformed by (2.5). In other words, nM =

δM5 would have been correct if we had used ξ = 0 but is not correct once we make the

transformation (2.5) that we needed to make in order to solve Einstein’s equations. With

the correct choice of nM , Fµ in (2.27) is invariant under all infinitesimal diffeomorphisms,

including those arising from eq. (2.5). We therefore conclude that

Fµ = lim
u→0

[√
−G

(
T 5
µ + u2∂αξ

(
T αµ − δαµT 5

5

))]
. (2.28)

We note that fµ can also be expressed in terms of the canonical worldsheet fluxes

πaM ≡
δSP

δ (∂aXM )
= −T0

√
−η GMN η

ab ∂bX
N . (2.29)

A straightforward exercise using the string stress (2.25) and (2.29) shows that

fµ = lim
u→0

[
πσµ + u2 πσ5 ∂µξ − u2 πaµ ∂αξ ∂aX

α
]
. (2.30)

We see that for the choice ξ = 0 the usual identification of force in terms of the canonical

fluxes [1, 2] is reproduced.

4As we did, in a preliminary version of this study [27]. The drag forces calculated in ref. [27] are not

correct but, comparing the figures from that preliminary report to those in section 3 where we present our

results, the differences are not large.
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Figure 3. The path in the (z, t)-plane of a quark moving in the z = 0 direction, i.e. with zero

rapidity, is shown as the red line superimposed on a color-plot of the rescaled energy density E , see

eq. (2.6), in units of µ4. Thinking of the x-axis as perpendicular to the page, the quark is moving

out of the page with velocity βx.

3 Results

In this section we present and discuss the results that we have obtained for the drag force

on a heavy quark being dragged through the colliding sheets of figure 1. We shall initially

choose the quark to be moving with a velocity ~β in the plane perpendicular to the direction

of motion of the colliding sheets. Later we shall consider the more general case where the

velocity of the quark has components both parallel to and perpendicular to the ‘beam’

direction. We shall compare our results to expectations based upon comparing the drag

force that we calculated to what it would have been in a static homogeneous plasma with

the same instantaneous energy density or parallel pressure or transverse pressure as that at

the position of the quark. To further explore the effect of a time-dependent background on

the drag force, in appendix B we consider a toy example in which the temperature increases

with time but the plasma remains homogeneous and isotropic and does not undergo any

expansion.

3.1 Heavy quark with zero rapidity

We begin with the case where the heavy quark is moving perpendicular to the ‘beam’ di-

rection, which is to say perpendicular to the z-direction along which the sheets of energy

collide. Although our heavy quark was present before the collision, from a phenomeno-

logical perspective this calculation may inform how we think about a heavy quark that is

produced at t = 0 in a heavy ion collision with zero rapidity moving with some perpendic-

ular velocity ~β. The z = 0 path along which the heavy quark is moving is illustrated in
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Figure 4. Drag force in units of µ2
√
λ/(2π) on a quark being pulled through the collision in the

x-direction at z = 0, i.e. at zero rapidity, with velocity βx = 0.5. The dashed curves show the

drag force that the quark would experience in an equilibrium plasma with the same instantaneous

energy density, parallel pressure or perpendicular pressure as that at the location of the quark. The

dashed curves are described further in the text.

figure 3, as is the energy density through which it moves. The parallel and perpendicular

pressures of the material in which it finds itself are those that we plotted in figure 2. The

case of a quark moving at zero rapidity is simpler than the more general case that we will

turn to next for two reasons: (i) a quark moving along the z = 0 plane is always moving

through fluid at rest, with uµ = (1, 0, 0, 0), meaning that in this case the local fluid rest

frame is the same as the lab frame; (ii) the drag force acting on the quark with zero rapidity

is directed antiparallel to the velocity vector, with no component of the force perpendicular

to the direction of motion of the quark. We have calculated the drag force as described in

section 2. Our results for quarks moving at zero rapidity with speed βx = 0.5 and βx = 0.95

are shown as the solid red curves in figures 4 and 5, respectively.

We are interested in comparing our results to expectations based upon the classic result

for the drag force required to move a heavy quark with constant velocity ~β through the

equilibrium plasma in strongly coupled SYM theory, namely [1, 2]

d~p

dt

∣∣∣∣
eq

=

√
λ

2π
(πT )2

~β√
1− β2

, (3.1)

where T is the temperature of the equilibrium plasma. Out of equilibrium, the matter does

not have a well-defined temperature. We can nevertheless use (3.1) to frame expectations

for d~p/dt at any point in spacetime, as follows. At z = 0 the fluid is at rest, meaning that

the lab frame in which we are working is the local fluid rest frame and the stress tensor for

the fluid takes the form (2.8) which we now rewrite as

Tµνrest frame =
π2N2

c

8
diag(3T 4

e , T
4
⊥, T

4
⊥, T

4
‖ ) . (3.2)
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Figure 5. Same as figure 4 but for a quark moving at zero rapidity with a velocity βx = 0.95.

If the fluid were at rest in equilibrium, we would have Te = T⊥ = T‖ = T . In the

nonequilibrium setting of interest, through (3.2) we have defined three different “effective

temperatures”, no one of which is a true temperature since none can be defined. We can

then use each of these three “temperatures” in the equilibrium expression (3.1), obtaining

the three dashed curves in figures 4 and 5. Because the stress tensor is traceless, any one

of the dashed curves can be obtained from the other two; only two are independent. This

also explains why wherever two of the dashed curves cross the third must cross also. Note

that none of the three dashed curves should be seen as a “prediction” for the actual drag

force experienced by the heavy quark in the far-from-equilibrium conditions created by the

collision of the sheets of energy. Rather, the three dashed curves tell us what the drag

force would be in a static plasma with the same instantaneous energy density or transverse

pressure or parallel pressure as that present in the far-from-equilibrium conditions at time

t and position z = 0. The dashed curves are devices through which we use what we know

about the drag force in an equilibrium plasma to frame expectations for the nonequilibrium

case.5

Comparing the drag force on the heavy quark, the solid red curves in figures 4 and 5,

to the three dashed curves yields many observations. Reading the figures from left to

right, we first see that at very early times where Te = T⊥ = T‖ = Tbackground the drag

force is indeed given by the equilibrium result (3.1) for a static plasma with temperature

Tbackground. Next, we see that the increase in the drag force due to the dramatic change

5Some support for this strategy is provided by analyses [28–30] of the drag force on a heavy quark

moving through a fluid that is undergoing boost invariant expansion in one dimension and is translation

invariant in the other two dimensions. In this setting, the gradient expansion of hydrodynamics becomes

an expansion in powers of 1/τ2/3, with τ the proper time. (See, for example, refs. [11, 13].) At leading

order, which is to say at late times, the fluid can be treated as ideal meaning that Te = T⊥ = T‖ ≡ T (τ)

with T (τ) ∝ 1/τ1/3 [31]. In this approximation, the drag force on the heavy quark is indeed given by (3.1)

with T replaced by T (τ) [28, 29]. Ref. [30] includes an investigation of the next order corrections.
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in the stress tensor of the fluid corresponding to the collision of the sheets of energy is

delayed. And, the delay in the increase of the drag force seems to increase with increasing

heavy quark velocity. We shall return to this below. Third, we see that the peak value of

the drag force is comparable to the expectations provided by the dashed curves, meaning

that the peak value of the drag force in the far-from-equilibrium matter produced in the

collision is not dramatically smaller or larger than what it would be in a static plasma

with the same instantaneous energy density. These second and third observations suggest

that a reasonable first-cut approach to modelling the drag on a heavy quark in a heavy

ion collision would be to turn the drag force on roughly one “sheet thickness” in time

after the collision and from then on use the equilibrium expression (3.1) with an effective

temperature determined by the instantaneous energy density. Fourth, at late times when

the expansion of the fluid is described well by viscous hydrodynamics we see in figures 4

and 5 that the drag force is best approximated by the value that it would have in a static

plasma with the same instantaneous transverse pressure. To some degree this agreement

is coincidental as we see that for β = 0.5 our result is a little below (3.1) with the effective

temperature T⊥ while for β = 0.95 our result is a little above this benchmark. What seems

robust is the fact that at late times the actual force required to drag the quark through the

expanding, cooling, anisotropic hydrodynamic fluid lies within the band of expectations

spanned by the drag force in a static plasma with the same instantaneous energy density

or parallel pressure or transverse pressure. For a heavy quark with zero rapidity, we see

no qualitative deviation relative to these expectations, meaning that we see no qualitative

consequences of the presence of gradients of the fluid velocity.

We are using initial conditions that correspond to a heavy quark which has been

dragged through an equilibrium plasma with the low temperature Tbackground for a long

time before the collision. This, of course, is not reminiscent at all of what actually happens

in a heavy ion collision, where the heavy quark is created during the collision. It is therefore

important to check how sensitive our results for the drag force on the heavy quark during

and after the collision are to the choices we are making for the initial shape of the string

well before the collision. If our results during and after the collision were sensitive to our

choice of initial conditions this would be problematic, since there can be no right answer

to the question of what the initial conditions for a heavy quark before the collision should

be since in actual heavy ion collisions there are no heavy quarks present then. Fortunately,

as we illustrate in figure 6 we have found that our results of interest, namely our results

for the drag force on the heavy quark during and after the collision, are quite insensitive

to the choice of initial conditions. The solid red curve in figure 6 is the same as that in

figure 4, while the blue, purple and green dashed curves correspond to initial string profiles

chosen such that the initial drag force is zero, four or sixteen times that for the red curve.6

These perturbations to the initial shape of the string, which are in no way small, do have

transient effects at early times but their effects on the drag force felt by the heavy quark

during and after the collision are negligible.

6In obtaining these results, we have determined t(τ, σ) by solving the temporal constraint equation

(2.13a) numerically; see appendix A for a discussion.

– 17 –



J
H
E
P
1
0
(
2
0
1
3
)
0
1
3

−2 0 2 4 6

0

0.2

0.4

0.6

0.8

1

tµ

d
p d
t
×

2
π

µ
2
√
λ

 

 

with T in = Tbkg

with T in = 0
with T in = 2Tbkg

with T in = 4Tbkg

Figure 6. Illustration of how the drag force depends on the initial string shape. The four curves

show the drag force on a quark whose string initially has the shape of the string trailing behind a

heavy quark that is being dragged through an equilibrium plasma with temperatures ranging from

zero to four times the actual temperature Tbackground of the low temperature plasma present before

the collision. The solid red curve is the same as the solid red curve in figure 4. The other three

curves show that by the time the collision occurs the drag force felt by the heavy quark is quite

insensitive to the choice of initial conditions. Note that the initial drag force felt by the heavy quark

varies between zero and sixteen times that for the red curve; the perturbations to the initial shape

of the string illustrated here are not small, but their residual effects during and after the collision

are. In all cases, the heavy quark is dragged with velocity βx = 0.5 and βz = 0.

Let us now return to the question of how the drag force changes with quark velocity

β. Looking at figures 4 and 5, the biggest effect of increasing β is certainly the increase

in the overall magnitude of the drag force. Since we have seen that our results are not

dramatically different from the equilibrium expectations provided by the dashed curves in

these figures, it is natural to look at the equilibrium formula (3.1) and ask to what degree

the β-dependence in our results is described by assuming that the drag force scales with βγ.

Figure 7 provides the answer. Almost all of the change in the overall magnitude of the drag

force, e.g. the change in the height at which it peaks seen by comparing figures 4 and 5,

can be understood as scaling with βγ. The interesting β-dependent effect that remains

in figure 7 is the time delay in the onset and peaking of the drag force. This time delay

increases with increasing β. We investigate the β-dependence of the time delay in figure 8.

From this figure we see that a reasonable characterization of our results for the time at

which the drag force peaks is that at low velocity it peaks about one sheet thickness after

the time when (around the same time as) the drag force in an equilibrium plasma with the

same with the same instantaneous energy density (transverse pressure) would peak while

at higher velocities its peak is delayed by a time that increases approximately linearly

with γ. In appendix B we investigate this time delay further by watching how the drag

force responds in a background in which the temperature of the plasma is homogeneous in
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Figure 7. Rescaled drag force for four different quark velocities β, all in the x-direction as in

figures 4 and 5. We see that the largest β-dependence of our results in figures 4 and 5 can be

understood by assuming that the drag force scales roughly with βγ. The remaining β-dependence

seen here illustrates the fact that the delay in the onset of, and subsequent peak in, the drag force

increases with β. The dashed curve shows the rescaled drag force that the quark would experience

in an equilibrium plasma with the same instantaneous energy density. From (3.1) we see that, once

we have rescaled by βγ, the dashed curve is β-independent.
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Figure 8. The time delay ∆tp between the time at which the drag force on a heavy quark moving

with velocity β at zero rapidity peaks, i.e. the peak in the solid curve in figure 7, and the time at

which the dashed curve in figure 7 peaks. We plot ∆tp vs. γ for velocities ranging from β = 0.05

to β = 0.973. The increase in ∆tp clearly has a component that is linear in γ, but the dependence

is not completely linear. The value of ∆tp at γ → 1, i.e. at β → 0, is similar to the delay between

the peaks in the purple and blue dashed curves in figures 4 and 5, which is 0.53/µ.

– 19 –



J
H
E
P
1
0
(
2
0
1
3
)
0
1
3

space but over some narrow range of time increases from a low value to a high value. This

investigation indicates that the fact that the time delay increases roughly linearly with

increasing γ may be generic while the fact that (for the colliding sheets of energy above)

we find that at low velocity the drag force peaks close to when the transverse pressure

peaks is likely a coincidence. It also indicates that at low velocity the drag force may

generically peak at a time that is about 1/(πThydro) later than the time when the energy

density peaks, where Thydro is the temperature defined from the fourth root of the energy

density of the fluid at the time when the fluid hydrodynamizes. For the collision we are

analyzing, this corresponds to a time delay of around one sheet thickness.

The analysis in appendix B supports a gravitationally intuitive picture in which a time

delay of order 1/(πThydro) corresponds to the time it takes information from deep inside

the bulk, near the black hole horizon, to propagate to the boundary. The information

that the geometry near the horizon has changed cannot propagate in the bulk faster than

the speed of light, meaning that the time it takes for such a change to affect the string

near the boundary — which is what determines the drag force on the heavy quark — is

at least ∼ 1/(πThydro). Furthermore, for a quark that is moving with a large γ the length

of the string that stretches from the quark at the boundary down to the near-horizon

region is proportional to γ, suggesting that the time delay for a fast quark should include

a contribution that is proportional to γ/(πThydro). These considerations are somewhat

heuristic, however, since the changes in the bulk geometry to which the string dragging

behind the heavy quark responds do not occur only in the near-horizon region.

A time delay between a change in the stress tensor of the plasma and the resulting

change in the drag force that is proportional to γ can be understood qualitatively in terms

of the boundary gauge theory as follows. Clearly, the drag force depends not only on the

instantaneous stress tensor of the plasma in which the quark finds itself and the velocity

of the quark but also on the history of the quark. In particular, our results suggest that

the drag force takes on its “correct” value — i.e. the value it would have in an equilibrium

plasma whose stress tensor is similar to the instantaneous stress tensor of the fluid around

it — only if the fields that dress the moving quark are configured appropriately. Perhaps

as the energy density of the plasma increases the longer wavelength fields that dress the

moving quark must be stripped off leaving only those on length scales of order 1/Te and

smaller. Perhaps when the energy density decreases those longer wavelength fields need

to grow back. Whether or not such speculations are correct in detail, our results indicate

that the drag force on the quark responds to changes in the conditions around the quark

only after the fields carried along with the moving quark rearrange themselves in a way

that takes some time. If the time this takes were constant in the rest frame of the quark,

the time delay that we evaluate would be proportional to γ.7

3.2 Heavy quark with zero transverse momentum

In this section and the next we shall consider more general cases in which the quark has

some nonzero velocity βz in the ‘beam’ direction parallel to the direction of motion of the

7A time delay between some change in the environment in which a heavy quark finds itself and the

resulting change in the drag force on the heavy quark has been seen in other contexts, see for example

refs. [32, 33], in which it has also been attributed to the time it takes for the gluon fields around the moving

quark to rearrange.
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Figure 9. The red arrows show the trajectories in the (z, t)-plane of two quarks with nonzero

rapidity, with βz = 0.2 and βz = 0.4. The trajectories are superimposed on the plot of the rescaled

energy density E as in figure 3. We shall consider cases in which the quark has zero or nonzero

transverse velocity βx. In all cases that we shall consider, the quark is pulled with constant velocity
~β through the energy density produced by the colliding sheets.

colliding sheets, which is to say that we shall allow the quark to have nonzero rapidity.

As illustrated in figure 9, we shall only consider trajectories in which the velocity ~β of the

quark is constant and in which the initial position of the quark has been chosen such that

at t = 0 the quark is at z = 0, meaning that the quark passes through the spacetime point

at which the sheets of energy collide. Although in our setup the quark has existed for all

time, we are of course interested in gaining qualitative insights into circumstances in which

a heavy quark is produced at z = t = 0 with some velocity ~β. We shall not consider values

of βz that are greater than 0.4 because we want to ensure that at the time t = −3/µ at

which we choose our initial conditions the quark has not yet felt the sheet of energy that

is about to catch up with it in any significant away.

In order to obtain the greatest contrast with the case in which the quark has zero

rapidity, analyzed above, in this section we shall consider the case in which the quark has

a nonzero βz but has no transverse velocity, βx = 0. We shall allow both βx and βz to be

nonzero in the next section.

The solid red curve in figure 10 shows the force on a quark with βz = 0.4 and βx = 0.

To interpret the force shown in figure 10, we first need to ask what the velocity of the fluid

is at the location of the quark as a function of time, since the drag on the quark should

depend on its velocity relative to that of the moving fluid. The fluid velocity is always in

the z-direction and its magnitude is given by

βfluid
z ≡ uz

u0
(3.3)

where uµ is the fluid velocity four-vector obtained from the stress tensor in the lab frame
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Figure 10. The ‘drag’ force (solid red curve) acting on a quark moving through the matter

produced in the collision along a trajectory with βz = 0.4 and βx = 0. The force is shown in the

lab frame. The dashed curves show what the force would be if in the local fluid rest frame it were

given by the drag force that the quark would experience in an equilibrium plasma with the same

instantaneous energy density, parallel pressure or perpendicular pressure as that in the local fluid

rest frame at the location of the quark. The dashed curves are described further in the text.
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Figure 11. The fluid velocity βfluid, defined in the text, at the location of a quark moving along the

trajectory in figure 9 with βz = 0.4. If the hydrodynamic fluid at late times were boost invariant,

βfluid would be given by βz = 0.4. Note that at late times βfluid > 0.4, meaning that the fluid is

moving faster than the quark.

as described by eq. (2.7). We show βfluid in figure 11. Reading this figure from left to

right while referring to figure 9: (i) We see that at the time t = −3/µ at which we choose

our initial conditions the quark is already feeling some effects of the fast-approaching sheet
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of energy. The quark is initially immersed in the background plasma, which is at rest,

meaning that the fact that βfluid 6= 0 can be attributed to the Gaussian tail of the sheet of

energy which is approaching with velocity 1. (ii) Then, the sheet of energy incident from

the left catches up to the quark and as the energy of the sheet overwhelms that of the

background plasma βfluid rises toward the speed of light. Note that the quantity βfluid can

be computed as we have described even when the matter is far from equilibrium, as long

as its energy density is positive [9]. At these early times βfluid should not really be thought

of as the velocity of a fluid, although for convenience we shall refer to it as such. (iii) Next,

the left-moving sheet of energy slams into the right-moving sheet and, briefly, βfluid is near

zero. By symmetry, βfluid = 0 at all times at z = 0, meaning that βfluid = 0 at the location

of the quark at t = 0. (iv) Finally, at late times after the fluid has hydrodynamized, βfluid

is close to βz = 0.4. Note that if the hydrodynamic expansion at late times were boost

invariant, the velocity of the fluid at late times on a trajectory with constant rapidity like

the one that the quark is following would be given by the velocity of the quark itself. In

other words, if the expanding fluid at late times were boost invariant, the curve in figure 11

would have βfluid = 0.4 at late times.

With an understanding of the velocity of the matter through which the heavy quark

is moving now in hand, we can return to figure 10 and compare the drag force there with

expectations based upon the force (3.1) on a heavy quark that is being dragged through

plasma in equilibrium, as we did in figure 4. The expression (3.1) describes the force on a

quark moving through matter at rest, so to use it at any given time t we must first boost

to a frame in which the matter through which the quark in figure 10 is moving is at rest

at that time. That is, we boost by a velocity βfluid(t), plotted in figure 11, to the local

fluid rest frame. In the local fluid rest frame, the quark is moving in the z-direction with

a velocity

βz,RF =
βz − βfluid

1− βz βfluid
(3.4)

that can be positive or negative depending on whether βfluid is smaller or larger than the

velocity βz of the quark in the lab frame. Next, we compute the stress tensor in the local

fluid rest frame, where it takes the form (3.2), and use the temperatures Te, T⊥ and T‖ so

obtained as well as the velocity βz,RF from (3.4) in the expression (3.1). This gives us the

drag force that the quark would experience if, in the local fluid rest frame, it were moving

with velocity βz,RF through an equilibrium plasma with the same instantaneous energy

density, perpendicular pressure or parallel pressure as that of the matter at its location.

Finally, we boost the three forces computed in this way back to the lab frame, using the

appropriate Lorentz transformation for forces, given in the present context by8

fµeq, lab frame =
1

u0 + uzβz,RF


u0f0

eq,RF + uzfzeq,RF

fxeq,RF

fyeq,RF

u0fzeq,RF + uzf0
eq,RF

 , (3.5)

8It is a worthwhile check of the formalism for extracting the drag force from the bulk gravitational

quantites that we have set out in section 2.3 to confirm that upon boosting the bulk black brane metric

and the trailing string profile by a velocity βfluid and evaluating (2.30) one obtains (3.5).
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with uµ the fluid four-velocity from eq. (2.7). We plot the three lab-frame forces computed

as we have just described as the three dashed curves in figure 10. If we apply this algorithm

in the more general case in which in the lab frame the quark is moving with both βz and

βx nonzero, the result is

fxeq, lab frame =

√
λ

2π
(πT )2γ

(
u0βx − uzβxβz

)
fzeq, lab frame =

√
λ

2π
(πT )2γ

(
u0βz + uz(βx)2 − uz

)
,

(3.6)

which can be written as

fµeq, lab frame = −
√
λ

2π
(πT )2 1

γ

(
uνu

ν
qu

µ
q + uµ

)
, (3.7)

where we have defined uµq ≡ γ(1, ~β) and have allowed for a generic choice of coordinate

axes. The T used in the expressions (3.6) or (3.7) can be either the Te or the T⊥ or the T‖
obtained from the stress tensor in the local fluid rest frame.

We can now compare the actual drag force on a quark moving in the z-direction,

the solid red curve in figure 10, to the expectations for an equilibrium plasma moving with

velocity βfluid with the same instantaneous energy density or pressure, shown as the dashed

curves. In many respects, this comparison is as we found in figure 4 for a quark moving in

the x-direction. As in figure 4, we see in figure 10 that the maximum value of the drag force

in the far-from-equilibrium matter produced during the collision is within the expectations

for the maximum drag force spanned by the three dashed curves. And, as in figure 4, we

see a time delay in the rise in the magnitude of the drag force. Here, though, the drag

force first goes negative as the heavy quark is hit from the left by the sheet of energy going

in the same direction and only then goes positive as the second sheet of energy slams into

the first.

The most interesting differences between figures 10 and 4 arise at late times. First, we

see that the magnitude of the drag force at late times is much smaller in figure 10 than

in figure 4. This reflects the fact that at late times the quark and the fluid are moving

at comparable velocities, see figure 11, meaning that their relative velocity is small. In

fact, at t ' 2.8/µ the fluid velocity and the quark velocity are equal — the dashed curves

in figure 10 therefore cross zero there. Interestingly, we see that the solid curve stays

positive for quite a long time afterwards until t = 5.0/µ meaning that there is an extended

period of time when: (i) The fluid has hydrodynamized. (ii) The fluid is moving faster

than the quark, which would suggest that the ‘drag’ force on the quark needed to keep

it moving at constant βz should be a force pulling backward on it, toward negative z,

pulling against the push from the fluid that is moving faster than the quark. That is,

we expect that dp/dt should be negative, as is indeed the case for the dashed curves in

figure 10. (iii) Instead, the quark is still being dragged forward, toward positive z, with

dp/dt positive. This means that in the local fluid rest frame the force that the external

agent must exert in order to move the quark towards the left acts toward the right. The

quark is moving towards the left in this frame but the force exerted on it by the liquid
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Figure 12. Forces as in figure 10, plotted here in the local fluid rest frame and focusing on times

tRF > 1.5/µ to better illustrate the behavior after hydrodynamization. After tRF = 2.8/µ, the

quark is moving to the left in the local fluid rest frame (in the lab frame, the fluid is moving faster

than the quark) and the dashed curves accordingly lead us to expect that the force needed to drag

the quark leftward in the local fluid rest frame should be a force acting toward the left. Instead, we

see that between tRF = 2.8/µ and tRF = 5.0/µ, the ‘drag’ force that must be exerted to maintain

the leftward motion acts toward the right!

through which it is moving is also acting toward the left, pushing it in the direction of its

motion rather than dragging it in the opposite direction! We illustrate this in figure 12

by plotting the force exerted on the quark in the local fluid rest frame. The reason that

a result as surprising as this is possible is that in formulating our expectations, as shown

via the dashed curves, we are completely neglecting the effects of spatial gradients in the

fluid velocity.9 Unlike in figure 4, in figure 10 these gradients are aligned parallel to the

direction in which the quark is moving; the lesson we learn is that in this circumstance

the gradients in the fluid velocity can have qualitative effects on the ‘drag’ force that must

be exerted on the quark. Qualitative effects of the gradient in the fluid velocity arise in

figures 10 and 12 but not in figure 4 both because the effects of the gradient on the ‘drag’

force are larger in absolute magnitude when the gradient is aligned with the motion of the

quark and because in this case the drag force in the absence of gradients would be very

small since the relative velocity of the quark and the fluid is so small.

The red curves in figure 13 show the gradient of the fluid velocity in the lab frame and

in the local fluid rest frame, in each case projected onto the quark velocity in that frame,

9We have also neglected spatial gradients in the energy density of the fluid. In the following, we will show

that after hydrodynamization the effects of spatial gradients on the drag force that we compute correlate

well with the behavior of the gradients of the fluid velocity. We have checked that the spatial gradients of

the energy density are small at these late times, as are their effects on the force that we compute.
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Figure 13. Component of the gradient of the fluid velocity in the direction of motion of the quark

at the location of the quark in the lab frame (left panel) and in the local fluid rest frame (right

panel). The differences between the two panels arises because βz,RF � βz. In all curves in both

panels, the trajectory of the quark has βz = 0.4. The different curves are for trajectories with

varying values of βx. At tRF = 2.8/µ, the sign of βz,RF flips, which is to say that in the lab frame

the velocity of the fluid exceeds the velocity of the quark. We see in the right panel that adding

a βx that is quite small compared to βz in the lab frame, but is comparable to βz,RF, significantly

reduces (∇uz)RF · β̂RF.

namely

(∇uz) · β̂ ≡ ∂uz

∂z

βz
β

(3.8)

and

(∇uz)RF · β̂RF ≡
∂uz

∂z

∣∣∣∣
RF

βz,RF

βRF
(3.9)

for the trajectory with βz = 0.4 and βx = 0. For trajectories with βz = 0 and βx > 0,

both quantities vanish identically. Figure 13 shows that if we start with βz = 0.4 and add

a nonzero βx that is small compared to βz in the lab frame but that is large compared to

|βz,RF|, for example βx = 0.2, the quantity (∇uz)RF · β̂RF is substantially reduced while in

the lab frame (∇uz) · β̂ is not much changed. This suggests that if we analyze the drag

force on a quark that follows a trajectory with βz = 0.4 and βx = 0.2, we should find

results that in the local fluid rest frame are more similar to those in figure 4 but in the lab

frame are more similar to those in figure 10. We shall confirm this expectation in the next

section, but in so doing we shall discover a second surprise.

3.3 Heavy quark with nonzero rapidity and transverse momentum

In this section we analyze the force that must be exerted in order to move a heavy quark

through the colliding sheets of energy along a trajectory with nonzero βx and βz, which

is to say with both transverse momentum and rapidity nonzero. We start by considering

a trajectory with βz = 0.4 as in figures 10 and 11 but now with βx = 0.2. Because the

velocity of the quark now has a component perpendicular to the velocity of the fluid at the

location of the quark (this was not the case in both previous sections) we now expect and
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Figure 14. The force (solid red line) in the lab frame that must be exerted in the direction of

motion of the quark (in the lab frame) in order to drag it with a velocity βx = 0.2 and βz = 0.4,

a trajectory with nonzero transverse momentum and rapidity. The dashed curves, computed as

described in the previous section, show what this force would be if in the local fluid rest frame the

quark were being dragged through a plasma with the same instantaneous energy density, perpen-

dicular pressure or parallel pressure as that at the location of the quark.

find that the force that must be exerted in order to move the quark along this trajectory

has a component perpendicular to the direction of motion of the quark.

Let us first look at the drag force parallel to the direction of motion the quark in the

lab frame,
dp‖

dt
≡

~f · ~β
β

, (3.10)

which is shown as the solid red curve in figure 14. (Note that dp‖/dt and, below, dp⊥/dt

refer to the force parallel and perpendicular to the direction of motion of the quark; in

contrast, T‖ and T⊥ are defined via the pressures in the fluid that act in the directions

parallel to and perpendicular to the direction of motion of the colliding sheets and hence

of the fluid, i.e. the z-direction.) We see that, as in both sections 3.1 and 3.2, the dashed

curves provide a reasonable guide to the peak value of the drag force but the actual force

peaks later than the dashed curves do, a time delay that is by now familiar.

At late times, after the fluid has hydrodynamized, we see behavior that is more similar

to that in section 3.2 in the sense that the drag force in the direction of motion of the quark

is affected by the gradients in the fluid velocity to such a degree that it is well outside the

expectations spanned by the three dashed curves. Unlike when βx was zero, though, with

βx = 0.2 at least the sign of the force is the same for the solid and dashed curves. The

dashed curves nevertheless fail to give a qualitative description of the actual drag force

after the fluid has hydrodynamized. This is consistent with the left panel of figure 13

which shows that, when βz = 0.4, turning on βx = 0.2 does not substantially reduce the

magnitude of the component of the gradient of the fluid velocity in the direction of motion
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Figure 15. Forces as in figure 14 plotted here in the local fluid rest frame and focusing on times

tRF > 1.5/µ to better illustrate the behavior after hydrodynamization. We saw in figure 12 that

when βz = 0.4 and βx = 0 the dashed curves that show what the drag force in the local fluid rest

frame would be in a spatially homogeneous plasma with the same instantaneous energy density or

transverse pressure or parallel pressure failed to describe the actual force on the quark, because

they neglected the effects of gradients in the fluid velocity on the force. Here, with βx = 0.2, we see

that after hydrodynamization the actual force on the quark falls within the range of expectations

spanned by the dashed curves.

of the quark — in the lab frame. In figure 15 we see that the story is different in the

local fluid rest frame. With βx = 0.2, we find that the drag force in this frame does lie

within the range of expectations spanned by the three dashed curves. This is consistent

with the right panel of figure 13, where we saw that, because |βz,RF| � βz, when we turn

on βx = 0.2 we do substantially reduce the component of the gradient of the fluid velocity

in the direction of motion of the quark — in the local fluid rest frame.

Turning now to the force acting perpendicular to the direction of motion of the quark,

we fix our sign conventions by defining this as

dp⊥
dt
≡ fz βx

β
− fxβz

β
. (3.11)

It is plotted as the solid red curve in the left panel of figure 16. The dashed curves show

what the force perpendicular to the direction of motion of the quark would be in the lab

frame if, in the local fluid rest frame, the quark were moving through an equilibrium plasma

with the same instantaneous energy density, perpendicular pressure, or parallel pressure as

that at the location of the quarks.

The force perpendicular to the direction of motion of the quark is a new development,

present only when both βx and βz are nonzero. In the lab frame, the existence of a

perpendicular force is no surprise since in this frame of reference the quark is moving

through a fluid whose velocity includes a component perpendicular to its own. For this

reason, in the left panel of figure 16 the dashed curves show that even if there were no
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Figure 16. Left panel: as in figure 14, but here we plot the force that must be exerted perpendic-

ular to the direction of motion of the quark, in the lab frame. Note the scale on the vertical axis:

this component of the force is significantly smaller than the component of the force in figure 14.

Right panel: the force that must be exerted perpendicular to the direction of motion of the quark

in the local fluid rest frame. If, in this frame, the quark were moving through a homogeneous fluid

(e.g. the equilibrium plasma with the same instantaneous energy density or pressure as that at the

location of the quark) the force in this frame could only act parallel to the direction of the quark.

The dashed curves therefore all vanish in the right panel. The actual force does not vanish and is

in fact quite substantial at its peak: even in the local fluid rest frame, the force needed to drag the

quark includes a component perpendicular to its direction of motion.

velocity gradients in the fluid the force would include a component perpendicular to the

direction of motion of the quark in the lab frame. This poses an obvious question: boost

to the local fluid rest frame and ask whether in that frame the drag force is parallel to the

direction of motion of the quark. We show in the right panel of figure 16 that the answer

is no: even in a reference frame in which at each point in time we have boosted to a frame

in which the quark is moving through a fluid at rest, the force required to drag the quark

along its trajectory through this fluid includes a component perpendicular to the direction

of motion of the quark! In this frame, in the absence of gradients in the fluid there could

be no component of the force perpendicular to the motion of the quark. The right panel

of figure 16 thus represents a stark consequence of the presence of spatial gradients in the

matter produced in the collision. The effect is largest at early times, when the matter

is far from equilibrium. At these early times, the effect is large indeed: the peak value

of the force perpendicular to the motion of the quark is about half as large as the peak

value of the drag force that acts parallel to the velocity of the quark. The effect is also

nonvanishing at late times, after the expanding fluid has hydrodynamized. We find this

result to be generic, arising for any trajectory in which both βx and βz are nonzero. A

drag force that includes a component perpendicular to the direction of motion of the quark

through a medium arises in other contexts in which some anisotropy in the medium has

been introduced [34–36]. Here we see this phenomenon arising as a robust consequence of

gradients in the fluid velocity — a form of anisotropy that must be present in heavy ion

collisions.
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Figure 17. Drag force parallel to (left panel) and perpendicular to (right panel) the direction of

motion of the quark in the lab frame, as in figure 14 and the left panel of figure 16, but here for a

quark with βx = 0.7 and βz = 0.4.
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Figure 18. As in figure 17, but here in the local fluid rest frame.

To get a sense of how generic our results are, we close this section by illustrating them

for the case where the heavy quark is dragged along a trajectory with βx = 0.7 and βz = 0.4.

In figure 17 we first show our results in the lab frame, finding results that are similar in

most respects to those at smaller βx that we saw in figures 14 and 16. The important

distinction is that in figure 17 we see that at late times, after hydrodynamization, the

drag force that we calculate is well described by the dashed curves meaning that, unlike in

figure 14, here there are no qualitative effects of the gradients in the fluid velocity apparent.

We can understand this by noting from the left panel of figure 13 that by increasing βx
from 0.2 to 0.7 we have substantially reduced the component of the gradient of the fluid

velocity in the direction of motion of the quark in the lab frame.

In figure 18, we show our results for the case with βx = 0.7 and βz = 0.4 after boosting

to the local fluid rest frame. Again, we find that even in a frame in which the quark is

moving through a fluid that is instantaneously at rest the force required to drag the quark
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along its trajectory includes a component perpendicular to the trajectory. We see that

this effect of gradients in the fluid velocity is somewhat smaller in absolute terms, and

much smaller relative to the drag force in the direction of motion of the quark, here where

βx = 0.7 than it was in the right panel of figure 16, where βx = 0.2. This reflects the fact

that as βx increases at fixed βz the component of the gradient of the fluid velocity in the

direction of motion of the quark decreases.

4 Conclusions and lessons for heavy ion physics

The straightforward approach to modelling the rate of energy loss of heavy quarks produced

in a heavy ion collision proceeds as follows: (i) Use the equilibrium equation of state to

turn the proper energy density as a function of space and time in the collision (for example

described via viscous hydrodynamics) into an effective temperature as a function of space

and time; (ii) Use perturbative QCD to calculate the distribution of the initial positions

and momenta of heavy quarks produced via hard scattering at the earliest moments of the

heavy ion collision; (iii) Use the effective temperature from (i) in the expression (3.1) for

the drag force in a homogeneous plasma in thermal equilibrium, perhaps with the overall

prefactor in (3.1) turned into a parameter to be fit to data; (iv) Use the resulting spacetime-

dependent drag force, and consequent energy loss rate, in a Langevin equation employed to

model the dynamics of heavy quarks in heavy ion collisions, as for example in refs. [37–42].

Our results indicate that a straightforward approach along the lines above can reason-

ably be applied even at very early times, before hydrodynamics applies. In particular, even

though the peak value of the energy loss in the matter produced in the collision of the two

sheets of energy that we have analyzed occurs before hydrodynamization, at a time when

the matter produced in the collision is still far from equilibrium, this peak value is never-

theless reasonably well reproduced by the straightforward approach. Certainly there is no

sign of any significant “extra” energy loss arising by virtue of being far from equilibrium.

The message of our calculation seems to be that if we want to use (3.1) to learn about

heavy quark energy loss in heavy ion collisions, it is reasonable to apply it throughout the

collision, even before equilibration, defining the T that appears in it through the energy

density. The error that one would make by treating the far-from-equilibrium energy loss

in this way is likely to be smaller than other uncertainties. We anticipate that this is the

most robust lesson for heavy ion physics that we can draw from our results.

It also seems to be a generic feature of our results that there is some time delay after

the collision before the rate of energy loss of the heavy quark rises to its peak value, even

though it is during this very earliest time that the matter in which the quark is immersed

has the very highest energy density. Although we have not characterized the delay time in

the case of the collision of sheets of energy quantitatively, our analysis of this delay in a

simpler setting suggests that it is of order 1/(πThydro) (where Thydro is the temperature of

the fluid when it hydrodynamizes) for a heavy quark whose velocity β through the matter

is not relativistic, and increases slowly as 1/
√

1− β2 increases. This would correspond

to a delay of something like 0.1-0.2 fm/c in a heavy ion collision at RHIC. This delay

suggests that it takes a little time after the heavy quark is enveloped by matter with a high
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energy density before the gluon fields around the heavy quark respond to the presence of

the matter, with the drag and energy loss rising only after this response. Although our

strongly coupled calculation cannot provide a complete characterization of the very earliest

moments of a heavy ion collision, it is possible that this qualitative lesson may carry over.

It would be interesting to use a model of heavy quark dynamics in heavy ion collisions to

investigate whether a time delay along these lines has observable consequences.

The straightforward approach to modelling the drag force on a heavy quark in a heavy

ion collision is built upon the result (3.1) for a homogeneous fluid and therefore neglects all

effects of gradients in the fluid velocity. A third qualitative lesson that we can infer from

our results is that this neglect works reasonably well for heavy quarks with small rapidity,

whose velocities are close to perpendicular to the gradient in the fluid velocity.

We have found qualitative consequences for the drag force on heavy quarks with larger

rapidity, moving closer to parallel to the gradient in the fluid velocity, arising from the

presence of a velocity gradient, which is to say qualitative phenomena that are not present

at all in the straightforward approach that we have sketched above. For example, we have

found that because of the gradients in the fluid the force exerted by the fluid on a heavy

quark that has a small velocity relative to the fluid at its location can sometimes point in

the same direction as the velocity of the quark, rather than dragging on it. And, generi-

cally, we find that the force exerted by the fluid on a heavy quark will have a component

perpendicular to the velocity of the quark, even as seen in the local fluid rest frame. This

perpendicular force can be large; we found instances where at early times, before hydro-

dynamization, its peak value in the local fluid rest frame was about half as large as the

maximum drag force acting parallel to the velocity of the quark. The perpendicular force is

nonzero at late times too, when the quark is propagating through a liquid that is described

well by viscous hydrodynamics. This perpendicular force can also be attributed to the

presence of gradients in the fluid velocity. Here too, it would be interesting to use a model

of heavy quark dynamics in heavy ion collisions to investigate the consequences of these

effects. That being for the future, at present the fourth lesson from our results is that

the straightforward approach to modelling heavy quark dynamics in heavy ion collisions

should be used with caution for heavy quarks at high rapidity.

From a more theoretical perspective, next steps that our results motivate include re-

peating our analysis for the collisions of sheets of energy with varying widths and seeking an

analytical understanding of the effects of gradients in the fluid velocity (and temperature)

on heavy quark energy loss.
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A Trailing string solution in an equilibrium background

The trailing string solution that describes an infinitely heavy quark being dragged in the

~x-direction with velocity ~β through an equilibrium plasma with temperature Tbackground

is [1, 2]

~x = ~β

(
t+ uh tan−1 u

uh

)
, (A.1)

where we have not yet made the transformation (2.5) meaning that the event horizon

of the black brane in the bulk is located at uh = 1/(πTbackground). With this choice of

string profile, when we choose worldsheet coordinates of the form (2.10) the temporal

constraint (2.13a) becomes a differential equation for t as a function of τ and u that, in

the case of a time-independent metric corresponding to a static plasma with temperature

Tbackground, has the solution

t+ uh tan−1 u

uh
= τ + uh

√
γ tan−1 u

√
γ

uh
(A.2)

where γ = 1/

√
1− ~β2. After we make the transformation (2.5), the trailing string pro-

file (A.1) is given by

~x = ~β

(
t+ uh tan−1 u

(1 + uξ)uh

)
(A.3)

and for the case of a static plasma the solution to the temporal constraint equation is now

t+ uh tan−1 u

(1 + uξ)uh
= τ + uh

√
γ tan−1 u

√
γ

(1 + uξ)uh
. (A.4)

As we have described in section 2.2, upon making the transformation (2.5) we choose

worldsheet coordinates in which u = σ. This together with the expressions (A.3) and (A.4)

give us our initial conditions for XM , which is to say u, t and ~x, as functions of τ and σ.

If all we were interested in doing was dragging a heavy quark through static plasma,

there would be nothing to add. The background of interest to us, however, is one where the

heavy quark is initially in a region of spacetime filled with static plasma but in which in the

future the quark will be slammed by two sheets of energy, incident upon it from the +z and

−z directions. As we mentioned in section 2.2, at any given early Eddington-Finkelstein

time t, even well before the sheets of energy collide on the boundary, the gravitational

shocks are already colliding somewhere deep in the bulk. Eddington-Finkelstein coordinates

on the worldsheet are advantageous from the point of view of making it possible to solve

the evolution equations but from the point of view of specifying the initial conditions this

feature is a complication. There are two possible ways to proceed. The route that we

have followed in obtaining all the results that we show is to use (A.3) and (A.4) as our

initial conditions at all σ, even deep in the bulk, even though deep in the bulk where the

gravitational shocks are already colliding at the early t at which we are initializing the string

profile the choice (A.4) does not satisfy the temporal constraint equations. The other option

is to use (A.3) and then to solve the temporal constraint differential equation numerically,

replacing (A.4) by a numerically determined t(τ, σ). Because we are initializing at a time

– 33 –



J
H
E
P
1
0
(
2
0
1
3
)
0
1
3

t when the quark at the boundary is in a region of static plasma, these two options yield

identical results close to the boundary, where (A.4) itself solves the temporal constraint

equation. They are inequivalent deep in the bulk, and indeed there is no one “right answer”

for how to initialize the string profile deep in the bulk in Eddington-Finkelstein coordinates.

We have checked, however, that these two options yield identical results for the drag force

on the heavy quark, meaning that for our purposes they are equivalent. The reason that

the distinction between them is irrelevant is that it arises only deep enough within the bulk

that well before the sheets collide at the boundary the region of the string that is affected by

these considerations has been enveloped by the event horizon of the black brane. Because of

this, the initial violation of the temporal constraint equation (assuming we pursue the first

option) and the initial arbitrariness associated with choosing the profile (A.3) where there

is no reason to do so (in either the first or second option) are causally disconnected from the

boundary. Since the drag force on the heavy quark is computed from the near-boundary

asymptotics of the string profile, nothing in this paragraph affects it.

B Varying temperature

We discovered in section 3.1 that when the energy density and pressures of the matter

through which the heavy quark is moving change there seems to be a time delay in the

response of the drag force experienced by the heavy quark, relative to the way in which

the drag force would change if it were given by its value in a static plasma with the same

instantaneous energy density or pressure. In this appendix we shall quantify this time

delay in a time-dependent background that is much simpler than the colliding sheets of

energy that are our focus throughout the rest of this paper. We shall consider a background

that, at all times, is a spatially homogeneous plasma whose properties are exactly as if it

is in thermal equilibrium at temperature T , and in particular which always has zero fluid

velocity throughout, but by hand we shall make T (t) change with time. This of course

violates energy conservation in the boundary theory. It is therefore no surprise that the

bulk metric that provides the dual gravitational description of this ad hoc setup is not a

solution to Einstein’s equations. The setup in this appendix is therefore not a model for

anything; it is simply a device with which to evaluate the time delay in the response of

the drag force on a heavy quark to a change in the conditions in which the heavy quark

finds itself. Note that in this setup there are no spatial gradients of the fluid velocity since

uµ = (1, 0, 0, 0) at all times. Also, Te = T⊥ = T‖ = T (t) at all times.

The metric that describes a spatially homogeneous plasma with a time-dependent

temperature is given in Eddington-Finkelstein coordinates by (2.4) with

A =

((
1

u
+ ξ(t)

)2

f(u, t)− 2
∂ξ

∂t

)
,

Σ =
1

u
+ ξ(t), B = F = 0,

(B.1)

with

f(u, v) = 1−
(

u

(1 + uξ(t))uh(t)

)4

(B.2)
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Figure 19. Drag force, scaled by βγ, for a heavy quark with velocity β moving through a spatially

homogeneous plasma with a time dependent temperature T (t) that increases from πT = µ at early

times to πT = 2µ at late times and is described by (B.4). The different solid curves show the scaled

drag force on quarks with different velocities. The dashed curve is the equilibrium expectation (3.1).

Because Te = T⊥ = T‖ = T (t) there is only a single dashed curve.

where uh(t) = 1/(π T (t)) and where ξ(t) describes the residual diffeomorphism introduced

in (2.5). As we discussed there, we fix ξ by demanding that the apparent horizon be at

u = 1. In this simplified setup, in coordinates in which ξ = 0 the apparent horizon is at

u = uh(t) whereas ensuring that it is at u = 1 corresponds to choosing

ξ(t) =
1

uh(t)
− 1 , (B.3)

which ensures that f(u = 1, t) = 0.

We shall choose a time-dependent temperature that starts at πT = µ at early times and

ends at πT = 2µ at late times, rising smoothly during a window in time that is ∼ 1/(kµ)

wide, with k a parameter. We choose

uh(t) = 1− 1

4
(1 + erf(k t µ)) . (B.4)

For large values of k, uh(t) (and therefore T (t)) becomes a step function at t = 0. In

figure 19, we choose k = 3. We have plotted the drag force rescaled in such a way that

the dashed curve, which is obtained by substituting T (t) into (3.1) and shows what the

drag force would be in an equilibrium plasma with the instantaneous temperature T (t),

is independent of the quark velocity β and is a plot of (πT (t)/µ)2. We see that the

actual drag force, shown as the solid curves, is β-dependent even when rescaled as in the

figure and shows a significant, and somewhat β-dependent, time delay. The temperature

of the plasma has risen quite significantly before the drag force begins to rise; once the
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Figure 20. The delay time ∆t, defined from results as in figure 19 as described in the text, as a

function of γ for two values of the parameter k that controls the rapidity with which the temperature

increases.

temperature reaches its final plateau the drag force is only about half way up its rise; and,

finally, the drag force over-shoots before approaching its new equilibrium value from above.

There are various ways in which we could choose an operational definition of the time

delay from the results in figure 19. We shall define the time delay ∆t as the delay between

the times when the dashed and solid curves cross the midpoint between the initial drag

force and the final drag force, i.e. in figure 19 when they cross 2.5. In figure 20 we show how

∆t depends on the quark velocity for two different values of k, the parameter that controls

the rapidity with which T (t) changes. For both values of k we see that at low velocities

there is a time delay of around 0.5, which we note is around 1/(πTfinal) where Tfinal is the

final temperature. And, for both values of k we see that the time delay increases with

increasing β in a way that is close to, but not exactly, linear with γ.

From a gravitational perspective, the fact that there is a time delay can be described

in qualitative terms as if when the horizon at u = uh moves the drag force only learns of

this at a time that is delayed by of order the light-travel-time for information from the

horizon travelling through the bulk to reach the near-boundary region, where the drag on

the heavy quark is encoded. If taken literally, this interpretation would suggest that in

the setup of this appendix the time delay should start out around 1/(πTinitial) and then

drop to around 1/(πTfinal). This interpretation should not be taken too literally, however,

because making uh time dependent makes the entire bulk metric at all u time dependent,

not just the metric near the horizon.
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