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1 Introduction

A convenient bottom-up approach to model building in string theory is to consider D-

branes placed at local geometric singularities in a compactification manifold [1–6]. The local

properties of the singularities, together with the D-branes, determine the matter and gauge

content of the theory. In a previous paper [7] (see also [8, 9]) we described a construction,

called Toric Lego, in which local toric singularities supporting different desirable sectors of

a low-energy field theory (e.g. a standard model sector, a supersymmetry breaking sector,

and a dark matter sector) can be glued together geometrically to construct a larger parent

singularity, resulting in a consistent, anomaly free, field theory encompassing the different

sectors. The sizes of collapsing cycles connecting the different daughter singularities fix the

masses of messengers communicating between the different low-energy field theory sectors.

This sort of modular model building is especially convenient because it makes it possible

to separately engineer field theories realizing specific useful properties, which can then be

glued together to form a complete model.

Any local construction of this kind faces a basic question — can the desired local sin-

gularity be embedded consistently in a globally well-defined compact Calabi-Yau manifold?

In particular, global tadpole cancellation conditions in general require the introduction of

orientifold planes with negative D-brane charges, which may be incompatible with the local

structure and embedding we have chosen, as we will see in some later examples.

In this paper we make progress towards an algorithm for systematically producing

tadpole-satisfying global embeddings of toric singularities in type IIB compactifications,

e.g. those in the Toric Lego models [7]. The natural place to look for such global realizations

is in terms of Calabi-Yau manifolds given as hypersurfaces in toric varieties. This task is

made easier thanks to Kreuzer and Skarke’s classification of toric varieties in terms of

reflexive polyhedra in four dimensions [10]. The class of global models that we study

can all be described as follows: consider a Calabi-Yau manifold, M , described in terms

of a hypersurface constraint in a four dimensional toric variety A∇ obtained from the

four dimensional polytope ∇. The global embedding of the local toric singularity is then

obtained by determining whether one of the three dimensional cones obtained in a given

(fine) triangulation of ∇ is the cone over the two dimensional toric diagram of the local

singularity.

Failure to find a global realization through our procedure does not imply that the local

singularity can have no globally well-defined embedding — it simply means that there is no

embedding within the class of models considered. For example, there may be an embedding

into a Calabi-Yau constructed as a complete intersection within a higher dimensional toric

variety. This class of embeddings can also be studied using a natural extension of our

methods, see the discussion in section 7.2.

As mentioned above, the introduction of D-branes in the global realization of the toric

singularities means that we naturally have to include orientifold planes as well. Since we

are mainly interested in gauge theories with U(N) factors only, we focus on Z2 permutation

involutions in which pairs of branes at singularities are exchanged. These type IIB com-

pactifications are then up-lifted to (singular) Calabi-Yau fourfolds in F-theory. One can in
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fact avoid the step of constructing a IIB orientifold background, and directly construct an

F-theory compactification. We comment further on this possibility in section 7.1.

Naturally, there are other important constraints that a realistic global model must

satisfy beyond tadpole cancellation, such as moduli stabilization at the desired values

for the local model, and realistic supersymmetry breaking at a local minimum of the

potential. In this paper we content ourselves with providing a way to find large classes of

embeddings which satisfy D7 tadpole cancellation, with the expectation that in the class

of global models that we find, some models also have working moduli stabilization and

supersymmetry breaking. We plan to return to this important question in future work.

Relation to previous work

There are various approaches to the problem of bottom-up model building in the literature.

In the following we quickly review the main similarities and differences of the existing

constructions to our approach.

A recent class of F-theory models [11–15] embeds a (typically SU(5)) GUT brane

wrapping a small but not collapsed cycle into F-theory. The gauge dynamics comes from

the SU(5) stack, and the breaking into the standard model comes from fluxes living on the

brane. In the quiver models we study, on the other hand, the branes wrap zero size cycles,

and the breaking into factors happens due to α′ corrections, which modify the stability

conditions of the branes from those at large volume. So an essential distinction is that

the models in [11–15] live in a regime where α′ corrections can be ignored, while these α′

corrections are essential for us. A related important difference with the models that we

analyze in this paper is that generally one does not want the orientifold to intersect the

quiver locus, while this is unavoidable (and desirable) in realistic F-theory GUT models.

Previous works [16, 17] deal with the IIB/F-theory embedding of dPk singularities

with k > 3, which are non-toric. In addition to the toric vs. non-toric distinction, a more

important difference with these studies is whether one looks for the singular locus in Kähler

or complex structure moduli space. We consider singularities in the Kähler moduli space of

the ambient space, which are then inherited by the Calabi-Yau hypersurface. It is certainly

possible, and necessary in the case of non-toric singularities, to obtain the singularity from

a degeneration of the Calabi-Yau hypersurface, appearing at particular loci in the complex

structure moduli space of the Calabi-Yau. One advantage of our choice is that we gain a

way of formulating the search in purely combinatorial terms. Thus, the analysis can be

performed on a computer, and allows us to find a plethora of possible embeddings.

Another difference with previous studies is that we discuss in detail flavor D7 branes.

This introduces a number of complications, which we analyze in section 3, but it is necessary

if one wants to embed many of the semi-realistic models in the literature (see [18] for the

state of the art).

Branes at toroidal orbifolds (see [19] for a review with further references), while su-

perficially very different from the models that we consider in this paper, can in fact often

be incorporated into our framework, as we discuss further in section 7.2. Along the same

lines, the topic of landscape scans for realistic physics has been explored in detail in the

context of intersecting branes on toroidal orbifolds [20–25]. These papers focus on the
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open string sector, while we focus on the closed string sector. Doing a combined search

would definitely be desirable, and ties together nicely with the question of general F-theory

embeddings discussed in section 7.1.

Embedding procedure and layout of this paper

The embedding prescription we propose proceeds in four steps:

1. One first finds an embedding of the singularity into a compact Calabi-Yau (or F-

theory base, in which case one can skip step 3 below). Rather than searching for the

singular point in the Calabi-Yau itself, we search for a curve of singularities in an

ambient toric space. By dimensional counting the Calabi-Yau hypersurface intersects

the curve of singularities at a point. We describe how to do this in some particular

examples in section 2.

In addition to just looking for particular models, we can use our method to get an

idea of how generic it is to find semi-realistic singular loci in the landscape of Calabi-

Yau spaces. We do such a scan in section 6, focusing on the list of models produced

by Kreuzer and Skarke [10].

2. Once we have the geometry, we introduce branes. The discussion of the local model

at the quiver locus is most easily given in terms of quiver representations, while global

considerations such as tadpole cancellation are most easily studied in terms of the

algebraic geometry of sheaves. We thus need a dictionary between both languages.

We review the known results for the gauge nodes in section 3, and extend them to

also cover flavor branes.

3. Tadpole cancellation forces us to introduce orientifolds. In section 4 we review how

orientifolds can be introduced into our class of constructions, and how to construct

the resulting quotient of the Calabi-Yau.

4. The quotient constructed in the previous step can be used as a basis for a F-theory

compactification. One advantage of lifting to F-theory is that this automatically

takes care of the 7-brane tadpoles. Formulating the discussion in this way also allows

for easy generalization to compactifications in which the quiver sector is only locally

weakly coupled. An important constraint is that the discriminant reproduces the

local flavor structure close to the quiver theory. We illustrate how to satisfy this

constraint in a particular example in section 5.

We summarize our results in section 7, together with some technically simple but

physically interesting extensions of our work.

2 Global embedding of toric singularities

We now describe how a given local toric singularity is embedded in a compact Calabi-Yau

manifold. This provides constraints on which local geometries can be realized in a global

model. After a brief general discussion in section 2.1, we illustrate the method with a few
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examples. The first and simplest local geometry is C3/Z3, and is studied in section 2.2. In

section 2.3 we consider the embedding of the hyperconifold Y 3,0, which can also be seen

as two C3/Z3 singularities joined by a collapsed P1. After these warm-up examples, in

section 2.4, we analyze the main example in this paper, denoted (dP0)
3. In the spirit of

the Toric Lego construction [7], this geometry is obtained by joining three copies of C3/Z3.

We assume some rudimentary knowledge of the basics of toric geometry, good refer-

ences are [26–28] and the excellent recent book [29]. The discussion in sections 2.2 to 2.4

is technical. We encourage those readers who are not interested in the details to proceed

directly to the discussion in section 3, after a quick overview of our method in section 2.1.

2.1 Generalities

Toric Calabi-Yau varieties are necessarily non-compact [26]. Unfortunately, this makes a

direct toric description of the compact Calabi-Yau embedding impossible. Nevertheless,

Calabi-Yau spaces can be obtained as hypersurfaces (or, more generally, complete intersec-

tions) in ambient toric varieties (which are compact, and thus not Calabi-Yau) associated

to reflexive1 polytopes. A famous example is the quintic Calabi-Yau threefold as a degree

5 hypersurface in the toric space P4.

In this paper we focus on Calabi-Yau spaces which are constructed in the above way. In

order to make the discussion concrete, we restrict ourselves to the list of Calabi-Yau hyper-

surfaces constructed by Kreuzer and Skarke [10], although the discussion can be generalized

with little effort to the case of complete intersections in toric spaces, see section 7.2.

In order to introduce singularities, we have two possibilities:

• Specialize the embedding equation to be singular. For example, take the quintic at

the conifold point. The singular loci can, in principle, be read off from the Picard-

Fuchs equations. But actually doing so is computationally difficult unless h21 is very

small. Moreover, identifying the position and type of singularities can be a difficult

computational problem.

• Leave the embedding equation generic but make the ambient toric variety singular.

The type of the singularities is then determined by the singularities in the ambient

toric varieties, which can be read off by the comparatively simple combinatorics of

the toric fan.

Since it is computationally much easier, we follow the second approach in this paper and

construct curves of singularities in the ambient toric variety that then intersect the Calabi-

Yau hypersurface in points. Our general search strategy follows from the following simple

observation: consider a reflexive polytope ∇ describing the ambient toric space A∇. Let

us denote by F2 the toric diagram describing our local Calabi-Yau singularity X.2 Now

assume that∇ has F2 as one of its two-dimensional faces, i.e., the toric fan for X is included

1In technical terms, we consider crepant partial resolutions of Fano toric varieties. This condition ensures

that a generic Calabi-Yau threefold hypersurface is a smooth manifold.
2We remind the reader that every toric, non-compact, Calabi-Yau threefold can be completely specified

by a two-dimensional convex diagram, called the toric diagram. We will see explicit examples below.
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as a 3d cone in ∇. This implies that there is a patch of A∇ that looks like X × C∗. Now,

if we consider a Calabi-Yau hypersurface, due to simple dimension counting we expect

the hypersurface to intersect the curve of singularities at a copy of X. Once we find a

candidate ambient space A∇ we can compute the topology of the divisors in F2, and make

sure that they agree with what one expects from the local structure of X. Since we have a

toric description of the whole setup, this can be done straightforwardly and we show this

explicitly in some of the examples below. The search strategy is then rather obvious, and

easily implemented on a computer: we go through the 473,800,776 [10] reflexive polytopes

in 4d, and compare each of the 2d faces of each polytope with the toric diagram of the

singularity that we wish to embed.

A similar argument would apply if we search for two-dimensional faces containing the

toric diagram for the singularity, in such a way that the local geometry can be partially

resolved to the geometry of interest. The (dP0)
n examples with n > 1 that we study below

provide for an illustration of this idea: upon partial resolution they give rise to local C3/Z3

singularities. Although we will not focus much on this possibility in this paper, it is a

consistent search strategy, and leads to interesting models.

As a technical remark, let us emphasize that since we are interested in singular spaces

the cones in our fan are not necessarily simplicial. It is nevertheless technically easier to

work with spaces with at most orbifold singularities. Thus, in our examples we perform a

partial resolution, and then make sure that the blown-up cycles can be contracted to zero

size by moving in Kähler moduli space without making the volume of the whole Calabi-Yau

space vanish.

Once we have the local geometry embedded in a compact Calabi-Yau manifold we can

turn to the open string sector and the inclusion of D-branes. Before we do so in sections

3 and onwards, however, we illustrate the embedding procedure in some simple examples.

These examples are obtained by performing the scan over reflexive polytopes mentioned

above. In order to make the discussion as clear as possible we have hand-picked some

particularly simple reflexive polytopes having the singularities that we want to analyze.

We leave the exhaustive scan over 4d reflexive polytopes to section 6.

2.2 dP0 →MdP0

We start by considering the embedding of a particularly simple example of a local geometry,

namely C3/Z3 with the Z3 orbifold action on the C3 coordinates (x, y, z) given by

(x, y, z)→ (ωx, ωy, ωz), ω = e2πi/3. (2.1)

The C3/Z3 singularity can be described as the singular limit of the local P2 Calabi-Yau

geometry, that is, the total space of the OP2(−3) bundle. P2 is a del Pezzo surface, known

in this context as dP0, hence our notation.3 When the dP0 surface is contracted to zero

size we obtain the C3/Z3 orbifold. We embed this local singularity into an elliptic fibration

over P2, which we call MdP0 .

3Note that dP0 is also referred to as a del Pezzo surface of degree 9. We follow the physics tradition and

denote by dPk a del Pezzo surface of degree d = 9− k.
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Figure 1. The polytope for dP0, or equivalently, the toric diagram for the (resolved) C3/Z3. The

particular assignment of labels to the vertices follows from the ones in the global embedding.

The three-dimensional toric variety C3/Z3 has a very simple description in terms of

a toric diagram, see figure 1. By lifting the toric diagram into its corresponding 3d cone

by adding an extra coordinate, we have that the coordinates of the vertices in a particular

coordinate system are given by v1 = (0,−1, 1), v2 = (−1, 0, 1) and v3 = (1, 1, 1). The

interior point of the diagram is also important, and we denote it by v6 = (0, 0, 1). We can

associate a (complex) coordinate xi to each vi, where xi = 0 gives the divisor Di. Hence,

to each vertex in the toric diagram we associate a 4-cycle in the non-compact Calabi-Yau

manifold, and the 2-cycles are given by the lines connecting the vertices. In the singular

C3/Z3 case we remove the v6 ray, and the singular point in C3/Z3 is represented by the

interior face of the polytope. These coordinates of the vertices vi satisfy the linear relation

v1 + v2 + v3 − 3v6 = 0. Turning the coefficients of the relation into charges under a C∗, we

thus obtain a gauged linear Σ model given by the gauge symmetry

(x1, x2, x3, x6)→ (λx1, λx2, λx3, λ
−3x6). (2.2)

We embed this local geometry in the Calabi-Yau hypersurface MdP0 in the resolved

weighted projective space P4
[1:1:1:6:9]. This Calabi-Yau threefold is also known as the toric

elliptic fibration over P2 with Hodge numbers (h11, h21) = (2, 272) [30–32]. To understand

how the local geometry of the resolved C3/Z3 singularity is embedded in MdP0 , we describe

the latter as a hypersurface in a four dimensional toric variety AdP0 . The ambient space

AdP0 has an associated reflexive polytope with coordinates

x1 x2 x3 x4 x5 x6

0 −1 1 0 0 0

−1 0 1 0 0 0

2 2 2 −1 0 2

3 3 3 0 −1 3

(2.3)

Notice how the polytope has a face in the (•, •, 2, 3) plane given by the diagram in figure 1,

which we recognize as the toric diagram of dP0. This is thus a candidate embedding of our

desired local singularity, as we verify in more detail momentarily.

In order to establish that the above Calabi-Yau hypersurface is indeed the resolution

of a compact Calabi-Yau variety with a C3/Z3 singularity, a few more details have to be
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` ·D x1 x2 x3 x4 x5 x6

`1 1 1 1 0 0 -3

`2 0 0 0 2 3 1

Table 1. Mori cone for the ambient space in which MdP0
, an elliptic fibration over P2, is defined as

a hypersurface. Note that the Mori cones for the ambient toric variety, AdP0 , and the Calabi-Yau

manifold, MdP0
, are identical in this case, unlike the examples in sections 2.3 and 2.4.

checked. Since the ambient space has to account for the local singularity of interest, there

exist in general many Calabi-Yau phases realizing the local geometry, depending on how

the singularity is resolved [33, 34]. Given a particular resolution of the ambient singularity,

corresponding to a fine triangulation of the associated polytope, we compute the Mori cone,

that is, the cone in H2(AdP0 ,Z) = H2(MdP0 ,Z) = Z2 spanned by holomorphic curves. For

AdP0 there is a unique fine triangulation,4 resulting in the Mori cone given in table 1. The

fan of the ambient toric variety for this unique triangulation is spanned by the 9 generating

cones

F(AdP0) =
〈
〈x1x2x4x5〉, 〈x1x2x4x6〉, 〈x1x2x5x6〉, 〈x1x3x4x5〉, 〈x1x3x4x6〉,
〈x1x3x5x6〉, 〈x2x3x4x5〉, 〈x2x3x4x6〉, 〈x2x3x5x6〉

〉
.

(2.4)

The Stanley-Reisner ideal for this triangulation is

SR(AdP0) = 〈x1x2x3, x4x5x6〉. (2.5)

The Kähler cone of MdP0 , which is the dual of the Mori cone for MdP0 , agrees with the

Kähler cone of the ambient space AdP0

K(AdP0) = K(MdP0) =
{
D ∈ Cl(MdP0)

∣∣∣ D · `i > 0 , i = 1, 2
}

= span
{
V (x1), V (x6) + 3V (X1)

}
.

(2.6)

As we will see in sections 2.3 and 2.4 it is in general not the case that the Kähler cones (and

hence the Mori cones) agree between the ambient space and the Calabi-Yau hypersurface,

but for this simple example they do.

We can use this information to write down the hypersurface equation of the Calabi-Yau

manifold. Since the entries for each of the Mori generators also gives the scaling behavior

of the xi homogeneous coordinate under the corresponding C∗ in table 1, we find that

x25 = x34 + x4x
4
6f12(x1, x2, x3) + x66g18(x1, x2, x3) (2.7)

This is indeed the Weierstrass form of an elliptic fibration over P2. Note that the generic

toric fiber of the ambient space AdP0 is the weighted projective plane P2
[3:2:1]. It is a

4In general the global geometry have multiple fine triangulations, each of which gives rise to a different

Calabi-Yau manifold, once the hypersurface condition has been imposed. As we will see in sections 2.3

and 2.4, it is not always the case that all Calabi-Yau phases preserve the local structure of the partially

resolved singularity one would like to embed.
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general fact for such toric fibrations that the Calabi-Yau hypersurface is automatically in

Weierstrass form, which is often used for computational simplicity. This particular Calabi-

Yau hypersurface has also been used for Large Volume Scenario models in type IIB flux

compactifications [35].

We now parametrize the Kähler form ω(t) by t1 and t2 ≥ 0, that is,

ω = t1V (x1) + t2(3V (x1) + V (x6)). (2.8)

In these coordinates, the volume of MdP0 is∫
MdP0

ω3 = 3t21t2 + 9t1t
2
2 + 9t32 . (2.9)

The volumes Vol(Di) = 1
3∂ti Vol(MdP0) of the dual 4-cycles are

τ1 = 2t1t2 + 3t22

τ2 = t21 + 6t1t2 + 9t22 .
(2.10)

In order to see the local geometry, we would like to identify the contracting dP0. Clearly,

this is the divisor D6 ⊂ MdP0 associated to the additional ray required to refine the face

fan (the most coarse triangulation) to the smooth resolution. That this is indeed a dP0

surface is illustrated by the Chern numbers∫
D6

c21(TD6) = 9,

∫
D6

c2(TD6) = 3. (2.11)

Its volume is given by ∫
D6

ω2 = t21 , (2.12)

so we can indeed contract D6 to zero volume by sending t1 → 0 while the Calabi-Yau

volume stays finite as long as we keep t2 finite.

2.3 The hyperconifold Y 3,0 →MY 3,0

The previous example serves as a good introduction to our methods, but it is too simple

— it is a well-known fact that one can contract a del Pezzo surface in a Calabi-Yau to

zero size. In this section we present an example with a non-del Pezzo singularity. This

geometry serves as a simple illustration of the techniques in a slightly more involved case

than the one studied in the previous section. However, this example is not particularly

useful as a perturbative IIB orientifold background since it does not have a Z2 involution

acting on the ambient polytope. Hence, we will not try to put an open string sector on it

in coming sections.

Let us consider a local model with two sectors, each of which is locally C3/Z3. This

local geometry, described by the toric diagram in figure 2, is the Z3 orbifold of the conifold,

also known as the Y 3,0 singularity. A possible global embedding of the local geometry is
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Figure 2. Y 3,0 resolved into two dP0’s separated by a P1. We have skewed the perspective slightly

to ease visualization. The actual position of the points in the two-dimensional plane can be obtained

by forgetting the last two coordinates in the polytope in eq. (2.13).

given by the reflexive polytope with vertices

x1 x2 x3 x4 x5 x6 x7 x8 x9

0 0 1 0 −1 0 0 0 0

0 0 1 −1 0 2 1 0 1

−1 0 2 2 2 2 2 2 1

0 −1 3 3 3 3 3 3 1

(2.13)

Notice that in order to resolve a Z2 singularity appearing when compactifying the local

singularity, we have to include an extra point (x9) along the edge given by x2 and x6,

in addition to the two points that were added to the polytope that was used to describe

MdP0 . The resulting Calabi-Yau manifold, MY 3,0 , has Hodge numbers (h11, h21) = (5, 215).

The number of Kähler deformations can be accounted for in following way. One Kähler

modulus measures the volume of the curve resolving Y 3,0 → C3/Z3 × C3/Z3. There are

another two Kähler moduli measuring the volumes of the two exceptional P2s. In the

global embedding, the elliptic fiber (which may or may not be realized in a given phase)

contributes one additional Kähler modulus. Finally, the above mentioned divisor, D9,

associated to the point x9, gives the last modulus in the Calabi-Yau manifold.

We find seven different fine star triangulations of this polytope, two of which give rise to

an elliptic fibration. Four of the remaining five triangulations reproduce the triangulation

of the local geometry given in figure 2. We focus on one of the latter four triangulations. In

this case, unlike the aforementioned elliptic fibration MdP0 → P2, the actual Mori cone of

the Calabi-Yau hypersurface MY (3,0) is strictly smaller than the Mori cone of the ambient

space AY (3,0) , because some of the curves in AY (3,0) do not lie in MY (3,0) .

Let us show this in detail. The chosen triangulation gives rise to a fan spanned by the

following 19 cones

F(AY (3,0)) =
〈
〈x1x2x3x4〉, 〈x1x2x3x9〉, 〈x1x2x4x5〉, 〈x1x2x5x9〉, 〈x1x3x4x8〉,
〈x1x3x5x7〉, 〈x1x3x5x8〉, 〈x1x3x6x7〉, 〈x1x3x6x9〉, 〈x1x4x5x8〉,
〈x1x5x6x7〉, 〈x1x5x6x9〉, 〈x2x3x4x8〉, 〈x2x3x5x8〉, 〈x2x3x5x9〉,
〈x2x4x5x8〉, 〈x3x5x7x9〉, 〈x3x6x7x9〉, 〈x5x6x7x9〉

〉 (2.14)
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and its Stanley-Reisner ideal is

SR(AY (3,0)) =
〈
x2x6, x2x7, x4x6, x4x7, x4x9, x8x9, x6x8, x7x8, x1x2x8,

x3x4x5, x1x7x9, x3x5x6, x1x2x3x5, x1x3x5x9
〉

(2.15)

reproducing the local geometry given in figure 2; for example, x7 = x8 = 0 has no solution.

In other words, the associated variety D̂7 ∩ D̂8 = ∅5 is empty instead of the expected

codimension two. The Mori cone for AY (3,0) , given the above triangulation 2.14, is then

given by

ˆ̀· D̂ x1 x2 x3 x4 x5 x6 x7 x8 x9 K

ˆ̀
1 1 0 0 0 0 −2 1 0 3 −3

ˆ̀
2 0 0 1 1 1 0 0 −3 0 0

ˆ̀
3 0 0 1 0 1 1 −3 0 0 0

ˆ̀
4 0 1 −1 0 −1 0 3 0 −2 0

ˆ̀
5 0 −1 −2 0 −2 0 0 3 2 0

(2.16)

The Kähler cone of AY (3,0) , which is the dual of the Mori cone, is then given by

K(AY (3,0)) =
{
D̂ ∈ Cl(AY (3,0))

∣∣∣ D̂ · ˆ̀i > 0 , i = 1, . . . , 5
}

= span
{
D̂1, D̂4, 2D̂1 + D̂6, 3D̂4 + D̂8, 3D̂2 + 3D̂4 + D̂8

}
.

(2.17)

There are a few intersections of coordinate hyperplanes that do intersect in the ambient

space, but not on the Calabi-Yau hypersurface MY (3,0) . These are the surfaces S ∈ AY (3,0)

with

S ∈
{
D̂1 ∩ D̂7, D̂1 ∩ D̂8, D̂2 ∩ D̂8, D̂7 ∩ D̂9

}
. (2.18)

Furthermore, the following intersections MY (3,0) ∩ C with curves C ∈ AY (3,0) are empty:

C ∈
{
D̂1 ∩ D̂3 ∩ D̂5, D̂1 ∩ D̂3 ∩ D̂9, D̂1 ∩ D̂5 ∩ D̂9, D̂2 ∩ D̂3 ∩ D̂5, D̂3 ∩ D̂5 ∩ D̂9

}
. (2.19)

From (2.16) it follows that neither ˆ̀
4 nor ˆ̀

5 can be Mori cone generators of MY (3,0) , because

they are contained in D̂3∩D̂5∩D̂9 and D̂2∩D̂3∩D̂5, respectively. Systematically eliminating

the curves that do not intersect the Calabi-Yau threefold MY (3,0) leaves us with the Mori

cone for MY (3,0) ,

` ·D x1 x2 x3 x4 x5 x6 x7 x8 x9 K

`1 = ˆ̀
1 1 0 0 0 0 −2 1 0 3 −3

`2 = ˆ̀
2 0 0 1 1 1 0 0 −3 0 0

`3 = ˆ̀
3 0 0 1 0 1 1 −3 0 0 0

`4 = ˆ̀
3 + ˆ̀

4 0 1 0 0 0 1 0 0 −2 0

`5 = 1
3(ˆ̀

4 + ˆ̀
5) 0 0 −1 0 −1 0 1 1 0 0

(2.20)

5We write D̂i for the divisor {xi = 0} ⊂ AY (3,0) and Di for the corresponding divisor {xi = 0} ⊂MY (3,0) .
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We next identify the curves generating the Mori cone (corresponding to facets of the

Kähler cone) of MY (3,0) . We do this by comparing their Chow cycle with the Chow 1-cycles

of the form Di ∩Dj ∩MY (3,0) . One finds that

`1 = D3 ∩D6 ∩MY (3,0) = D5 ∩D6 ∩MY (3,0)

`2 = D4 ∩D8 ∩MY (3,0)

`3 = D6 ∩D7 ∩MY (3,0)

`4 = 1
3

(
D3 ∩D9 ∩MY (3,0)

)
= 1

3

(
D5 ∩D9 ∩MY (3,0)

)
`5 = D3 ∩D5 ∩MY (3,0) .

(2.21)

From the Mori cone, we construct the (dual) Kähler cone by finding linear combinations

of the generators D1, . . . , D9, such that in the coordinates given by the corresponding

columns, we get the five standard basis vectors of Z5. One particular choice allows us to

parametrize the Kähler form ω(t) by ti =
∫
`i
ω ≥ 0, as

ω = t1D1 + t2D4 + t3 (2D1 −D2 +D6) + t4D2 + t5 (3D4 +D8) . (2.22)

Note in particular that t5 measures the volume of the P1 that resolves the Y 3,0 to dP 0×dP 0.

In these coordinates, the volume of MY (3,0) is∫
M

Y (3,0)

ω3 = 54t31 + 36t21t2 + 90t21t3 + 243t21t4 + 108t21t5 + 6t1t
2
2 + 36t1t2t3+

108t1t2t4 + 36t1t2t5 + 48t1t
2
3 + 270t1t3t4 + 108t1t3t5 + 351t1t

2
4+

324t1t4t5 + 54t1t
2
5 + 3t22t3 + 9t22t4 + 3t22t5 + 9t2t

2
3 + 54t2t3t4+

18t2t3t5 + 81t2t
2
4 + 54t2t4t5 + 9t2t

2
5 + 8t33 + 72t23t4 + 27t23t5+

198t3t
2
4 + 162t3t4t5 + 27t3t

2
5 + 168t34 + 243t24t5 + 81t4t

2
5 + 9t35 . (2.23)

The volumes Vol(Di) = 1
3∂ti Vol(Y (3,0)) of the dual 4-cycles are

τ1 = 54t21 + 24t1t2 + 60t1t3 + 162t1t4 + 72t1t5 + 2t22 + 12t2t3 + 36t2t4+

12t2t5 + 16t23 + 90t3t4 + 36t3t5 + 117t24 + 108t4t5 + 18t25

τ2 = (2t1 + t3 + 3t4 + t5)(6t1 + 2t2 + 3t3 + 9t4 + 3t5)

τ3 = 30t21 + 12t1t2 + 32t1t3 + 90t1t4 + 36t1t5 + t22 + 6t2t3 + 18t2t4+

6t2t5 + 8t23 + 48t3t4 + 18t3t5 + 66t24 + 54t4t5 + 9t25

τ4 = 3(3t1 + t2 + 2t3 + 4t4 + 3t5)(9t1 + t2 + 4t3 + 14t4 + 3t5)

τ5 = (6t1 + t2 + 3t3 + 9t4 + 3t5)
2 .

(2.24)

We note that all of the nef divisors corresponding to the rays of the Kähler cone have

nonzero volume away from the origin of the Kähler cone. In addition, by construction, the

divisors D7 and D8 do shrink on two distinct walls of the Kähler cone. Their volumes are

Vol
(
D7

)
=

∫
D7

ω2 = t23, Vol
(
D8

)
=

∫
D8

ω2 = t22 . (2.25)

Hence the volumes of the divisors D7 and D8, respectively, vanish when we shrink the two-

cycles `2 and `3, and the two resulting singularities collide when we set t5 = 0. Nevertheless,

the volume of the total Calabi-Yau stays finite as long as t1 > 0.
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The Two Shrinking Divisors. We want to better understand the geometry of the

divisors D7 and D8 on MY (3,0) . Since MY (3,0) ⊂ AY (3,0) is cut out by a section of the

anticanonical bundle, we have to

1. Identify the corresponding divisors D̂7, D̂8 ⊂ AY (3,0) of the ambient space as 3-

dimensional toric varieties.

2. Pull back the anticanonical bundle, K∇, on AY (3,0) to D̂7, D̂8.

3. Identify the divisors D7, D8 ⊂ MY (3,0) as a generic zero section of the pulled-back

anticanonical bundle.

The divisor x8 = 0 is particularly simple to describe, so we start with this case. From the

fan eq. (2.14) one can easily identify D̂8 = P2×P1 ⊂ AY (3,0) on the ambient space. In

order to pull-back the anticanonical bundle, we note that

−K∇ =

9∑
i=1

O
(
AY (3,0) , D̂i

)
∼ 2O

(
AY (3,0) , D̂2

)
+O

(
AY (3,0) , D̂9

)
(2.26)

Using this choice of linear equivalence class, one easily finds the pull-back (−K∇)
∣∣
D̂8

=

OP2×P1(0, 1). A generic section of OP1(1) is a single point, therefore

D8 =
{
z = 0

∣∣∣ z ∈ H0
(
D̂8, (−K∇)

∣∣
D̂8

)}
= P2 . (2.27)

Identifying the other divisor x7 = 0 is somewhat more technical because D̂7 is not just

a product of projective spaces. However, as with any toric divisor, it is again a toric variety.

Here, it turns out to be the variety corresponding to the face of the lattice polytope

∇7 = conv
{
y1, . . . , y5

}
= conv

{
(0, 0, 1), (0, 1, 0), (−3, 2, 0), (3,−2,−1), (−2, 1, 0)

}
.

(2.28)

D̂7 is a toric fibration over P1 with generic fiber P2, but its total space is a singular variety.

Using eq. (2.26), one then identifies6

(−K∇)
∣∣
D̂7

= O
(
D̃5) . (2.29)

It is now easy to identify the toric divisor V (y5). Again, one finds a smooth projective

plane, that is

D7 = D̂7 ∩ Y (3,0) = D̃5 = P2 . (2.30)

2.4 (dP0)
3 →M(dP0)

3

In order to embed a C3/Z3 singularity such that the local sector is placed away from the

orientifold plane requires three copies of the C3/Z3, or (dP0)
3. The local singularity is

described by the toric diagram in figure 3. A simple ambient toric variety A(dP0)
3 giving

6We denote the divisors yi = 0 in D̂7 by D̃i.
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Figure 3. Local model for (dP0)
3
.

rise to the desired local singularity can be constructed by the relatively simple reflexive

polytope with integral points

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11

0 0 1 0 −1 0 0 0 0 1 2 1

0 0 1 −1 0 2 1 0 1 0 0 0

−1 0 2 2 2 2 2 2 1 2 2 1

0 −1 3 3 3 3 3 3 1 3 3 1

(2.31)

or equivalently, the following GLSM data:

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11

C∗1 1 0 0 0 0 0 0 0 0 1 −2 3

C∗2 0 1 0 0 0 0 0 0 0 0 1 −2

C∗3 0 0 1 0 0 0 0 0 −1 0 −1 1

C∗4 0 0 0 1 0 0 0 0 1 −3 2 −1

C∗5 0 0 0 0 1 0 0 0 0 −3 2 0

C∗6 0 0 0 0 0 1 0 0 −2 0 −1 2

C∗7 0 0 0 0 0 0 1 0 −1 −1 0 1

C∗8 0 0 0 0 0 0 0 1 0 −2 1 0

(2.32)

The Calabi-Yau hypersurface M(dP0)
3 in this ambient toric variety has Hodge numbers

(h11, h21) = (8, 158).

This polytope admits 236 different fine star triangulations. Out of these, 30 are com-

patible with the partial resolution we wish to perform, and out of these 30 we obtain 4

compatible with the Z2 involution structure. One of these triangulations is described by
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the fan below:

F(A(dP0)
3) =

〈
〈x0x1x2x8〉 , 〈x0x1x2x11〉 , 〈x0x1x3x4〉 , 〈x0x1x3x11〉 , 〈x0x1x4x8〉 ,

〈x0x2x3x7〉 , 〈x0x2x3x9〉 , 〈x0x2x4x6〉 , 〈x0x2x4x7〉 , 〈x0x2x5x6〉 ,
〈x0x2x5x8〉 , 〈x0x2x9x10〉 , 〈x0x2x10x11〉 , 〈x0x3x4x7〉 , 〈x0x3x9x10〉 ,
〈x0x3x10x11〉 , 〈x0x4x5x6〉 , 〈x0x4x5x8〉 , 〈x1x2x3x7〉 , 〈x1x2x3x9〉 ,
〈x1x2x4x6〉 , 〈x1x2x4x7〉 , 〈x1x2x6x8〉 , 〈x1x2x9x11〉 , 〈x1x3x4x7〉 ,
〈x1x3x9x11〉 , 〈x1x4x6x8〉 , 〈x2x5x6x8〉 , 〈x2x9x10x11〉 , 〈x3x9x10x11〉 ,
〈x4x5x6x8〉

〉
(2.33)

corresponding to the following Stanley-Reisner ideal:

SR(A(dP0)
3) =

〈
x1x5, x1x10, x3x8, x7x8, x8x9, x8x10, x8x11, x4x11, x5x11,

x6x11, x7x11, x3x5, x3x6, x4x9, x4x10, x5x7, x6x7,

x7x9, x7x10, x5x9, x6x9, x6x10, x5x10, x0x1x6, x0x1x7,

x0x1x9, x0x6x8, x2x4x8, x0x9x11, x2x3x11, x2x3x4,

x2x3x10, x2x4x5, x0x1x2x3, x0x1x2x4
〉
.

(2.34)

The Mori cone of the ambient space is then given by:

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 K

ˆ̀
1 0 0 1 1 1 0 0 −3 0 0 0 0 0

ˆ̀
2 0 0 −1 0 −1 0 1 1 0 0 0 0 0

ˆ̀
3 1 0 0 0 0 −2 1 0 3 0 0 0 −3

ˆ̀
4 0 −1 1 1 0 0 0 0 0 −3 0 2 0

ˆ̀
5 0 1 0 0 0 0 0 0 0 0 1 −2 0

ˆ̀
6 0 0 −1 −1 0 0 0 1 0 1 0 0 0

ˆ̀
7 0 1 0 0 0 1 0 0 −2 0 0 0 0

ˆ̀
8 0 −1 1 0 1 0 −3 0 2 0 0 0 0

ˆ̀
9 1 0 0 0 0 0 0 0 0 1 −2 3 −3

(2.35)

Notice that, while the Mori cone itself is 8-dimensional, we need 9 generators in order to

span the whole cone of effective curves. In other words, the Mori cone is not a simplicial

cone.

Some of the curves in the Mori cone for A(dP0)
3 are not contained in the Calabi-Yau

hypersurface M(dP0)
3 , and in order to obtain the Mori cone for the Calabi-Yau hypersurface

we need to eliminate these curves. The curves actually contained in M(dP0)
3 then generate

a smaller cone, which often equals the Mori cone of the hypersurface. An observation that

is useful in order to do this systematically is that:

−K∇ ∼ 3O(A(dP0)
3 , D̂0). (2.36)

From this fact we can easily obtain which curves are not in the Calabi-Yau hypersur-

face. For instance, since ˆ̀
4 is contained in D̂1 ∩ D̂9, and x0x1x9 is in the Stanley-Reisner
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ideal (2.34), ˆ̀
4 is not contained in the Calabi-Yau hypersurface. Proceeding systematically,

one finds

` ·D x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 K

`1= ˆ̀
1 0 0 1 1 1 0 0 −3 0 0 0 0 0

`2= ˆ̀
2 0 0 −1 0 −1 0 1 1 0 0 0 0 0

`3= ˆ̀
3 1 0 0 0 0 −2 1 0 3 0 0 0 −3

`4= ˆ̀
4 + ˆ̀

5 0 0 1 1 0 0 0 0 0 −3 1 0 0

`5= ˆ̀
5 0 1 0 0 0 0 0 0 0 0 1 −2 0

`6= ˆ̀
6 0 0 −1 −1 0 0 0 1 0 1 0 0 0

`7= ˆ̀
7 0 1 0 0 0 1 0 0 −2 0 0 0 0

`8= ˆ̀
7 + ˆ̀

8 0 0 1 0 1 1 −3 0 0 0 0 0 0

`9= ˆ̀
9 1 0 0 0 0 0 0 0 0 1 −2 3 −3

`10=
1
2(ˆ̀

4 + ˆ̀
8 + 3ˆ̀

6 + 3ˆ̀
2 + 2ˆ̀

1) 0 −1 −1 0 0 0 0 0 1 0 0 1 0

(2.37)

The 8-dimensional Mori cone of the hypersurface has 10 rays, so it is even less simplicial

than the Mori cone of the ambient space. Its dual, the Kähler cone of the Calabi-Yau

threefold M(dP0)
3 , is an 8-dimensional cone generated by 29 rays!

To make the discussion more manageable, we will restrict ourselves to the 5-dimensional

subspace

span
{
D0, D1, D2, D3 +D4, D7

}
(2.38)

of the 8-dimensional Kähler moduli space. In section 4.3, this will turn out to be the

h11+ (M(dP0)
3) = 5-dimensional subspace of orientifold-invariant Kähler moduli, but for the

purposes of this section we can just take it to be a simplifying assumption. When intersected

with this subspace, the Kähler cone is generated by the 8 divisor classes

ω ∈ span R≥
{
D0, D1 −D2 + (D3 +D4), D1 −D2 + 2(D3 +D4) +D7,

3D1 − 3D2 + 3(D3 +D4) +D7, − 3D2 + 3(D3 +D4) +D7,

−D2 + (D3 +D4), −D2 + 2(D3 +D4) +D7

} (2.39)

A particular patch of the (non-simplicial) Kähler cone that will be useful in the following

can be parametrized as

ω = t0D0 + t1
(
D1 −D2 + (D3 +D4)

)
+ t2

(
D1 −D2 + 2(D3 +D4) +D7

)
+

t3
(
3D1 − 3D2 + 3(D3 +D4) +D7

)
+ t4

(
− 3D2 + 3(D3 +D4) +D7

) (2.40)

With respect to this Kähler class, the volume of the invariant divisors D7 and D6 +D9 '
D0 − 3(D3 +D4)− 2D7 is

Vol(D7) =

∫
D7

ω2 = t21, Vol(D6 +D9) =

∫
D6+d9

ω2 = 2t22, (2.41)
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and the volume of the Calabi-Yau is

Vol
(
M(dP0)

3

)
=

∫
M

(dP0)
3

ω3

= 36t30 + 198t20t1 + 330t0t
2
1 + 183t31 + 234t20t2 + 792t0t1t2 + 660t21t2

+ 474t0t
2
2 + 792t1t

2
2 + 316t32 + 594t20t3 + 1980t0t1t3 + 1650t21t3

+ 2376t0t2t3 + 3960t1t2t3 + 2376t22t3 + 2970t0t
2
3 + 4950t1t

2
3

+ 5940t2t
2
3 + 4950t33 + 108t20t4 + 360t0t1t4 + 300t21t4 + 432t0t2t4

+ 720t1t2t4 + 432t22t4 + 1080t0t3t4 + 1800t1t3t4 + 2160t2t3t4

+ 2700t23t4 + 54t0t
2
4 + 90t1t

2
4 + 108t2t

2
4 + 270t3t

2
4 + 9t34.

(2.42)

Hence, at t1 = 0 the dP0 surface D7 shrinks and at t2 = 0 the two dP0 surfaces D6 and D9

shrink simultaneously, see figure 3. Furthermore, the toric curves D2 ∩ D3 and D2 ∩ D4

separate D7 from D9 and D7 from D6, respectively. Their volume is

1

2
Vol

(
D2 ∩ (D3 +D4)

)
= t3 + t4. (2.43)

Therefore, if we set t1 = t2 = t3 = t4 = 0, the three C3/Z3 singularities from shrinking

D6, D7, and D9 collide and produce an enhanced (non-orbifold) singularity. As long as t0
stays finite, the Calabi-Yau threefold is of finite volume in these limits.

3 Adding D-branes to the model

So far we have only discussed the closed string sector, but realistic models also require the

specification of an open string sector. There are two main ingredients in the open string

sector of type IIB compactifications: D-branes giving the gauge dynamics, and orientifolds

canceling the tadpoles. We will postpone the discussion of orientifolds to section 4, and

deal with the systematic incorporation of D-branes in this section.

We will assume that we have a consistent (i.e., tadpole-free) local model of branes

at singularities, described in terms of a quiver gauge theory. In order to view this local

model as part of a global model we need to give a description of the fractional branes and

flavor branes in terms of the geometry of the global model. In order to keep our discussion

concrete, we will focus on a particular model on the C3/Z3 singularity.

The C3/Z3 MSSM. The model that we will use to illustrate our discussion was originally

introduced in [4] as a toy model for the MSSM. We reproduce it in figure 4. Notice that in

this quiver we have both gauge groups and flavor groups. The gauge groups are obtained

by introducing fractional branes on the C3/Z3 singularity. In order to analyze the physics

of branes at this singularity, it is convenient to have the dimer model for C3/Z3. This is

given by the honeycomb periodic lattice, shown in figure 5.

Despite focusing on the previous example — which is all we need for our chosen toy

models (dP0)
n — we will formulate the discussion in general terms, and it will be applicable

to any singularity with at least one contracting 4-cycle. Models with no contracting 4-cycles

– 17 –



J
H
E
P
1
0
(
2
0
1
2
)
1
3
2

6
3

UR

DR DR

QL

U(3)

U(1)HUU(2)

L
HD

E

Figure 4. A toy model for the MSSM, from [4]. The filled dark dots denote gauge groups, while

the white dots denote global symmetry groups, coming from non-compact D7 branes. The labels

on the arrows denote with which MSSM field they should be identified.

Figure 5. Dimer model for branes at the C3/Z3 singularity, given by the periodic honeycomb

lattice (we have only shown a few cells). The labels on the faces of the dimer model indicate which

gauge factor in figure 4 they correspond to.

(La,b,a geometries, or C3/(Z2×Z2)) can also be interesting for model building purposes, see

for example [36, 37]. They cannot support standard-model-like structures, though, so we

omit their detailed description, although it should be possible to give a description quite

similar to the one below. In the context of the Toric Lego such supersymmetry breaking

sectors can be incorporated into a GMSB model [7], and the total model can then be

analyzed using the techniques below.

We review the large volume description of gauge branes in section 3.1. This construc-

tion is well known in the literature [38–47]. We will follow the convention of describing the

branes by elements in the derived category of coherent sheaves. This description differs

from the more conventional one in physics (a brane with a vector bundle on top) by some

subtleties that will not matter much in our analysis, except for a factor of
√
K∨S relating

the sheaf and the bundle [48, 49], with KS the canonical class of the divisor wrapped by

the brane. Accordingly, we will distinguish the sheaf E from its associated vector bundle

FE = E ⊗
√
K∨S .7

7When S is not Spin we have that FE is not an honest bundle. Nevertheless all the formulas for physical

quantities are well defined, as it is manifest from the sheaf description of the brane. This is one reason why

we will prefer the “sheafy” description.
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To our knowledge a similar systematic dictionary between the quiver and large volume

languages has not been given for the kind of flavor branes and singularities that we are

interested in. We give the first steps in this direction in section 3.2, by obtaining some of

the charges of the flavor branes by imposing the right quiver structure. It would certainly

be interesting to give a general and complete dictionary for flavor branes at the same level

as that for gauge branes, but we do not attempt to do so in this paper.

3.1 Blowing up the fractional branes

Space-time filling D-branes on a IIB compactification on a smooth Calabi-Yau X are de-

scribed by objects in the bounded derived category of coherent sheaves on X, generally

denoted by Db(X). We will not review this here, and instead refer the reader to [43] for a

nice review. This category can be thought of as the set of branes in the B-model. As such,

it does not depend on where we are in Kähler moduli space, and in particular it can also

describe branes at the singular quiver point.

Such a description is not necessarily the most suitable one at every point in moduli

space. Close to orbifold points, for example, a more convenient description of D-brane

states can be given in terms of quiver representations, and in the toric case dimer models.

The information describing the D-brane is in this case encoded in the ranks of the gauge

nodes, and the vevs of the bifundamentals. Nevertheless, as mentioned above, the cate-

gorical description of branes is valid everywhere in moduli space, and thus one expects an

equivalence between the respective categories. In particular cases such a correspondence

can be proven, one of the most celebrated such results being the one by Bridgeland, King

and Reid [50], which states that:

DG(M) = Db(M̃/G) , (3.1)

with M typically C3 in physical applications, and G a finite subgroup of SU(d), d =

dim(M). The term of the left represents the branes in C3 together with an action under

G (an equivariant structure), i.e., the ordinary description of branes on orbifolds, while

the term on the right represents the category of coherent sheaves on the resolution of the

orbifold M/G.

We will be interested in continuing the quiver description to large volume in cases

where the singularity is not of orbifold type, and not necessarily a contracting del Pezzo

surface either. In this case there are only partial results, the most useful for us being the

method proposed in [47], which we proceed to review now.

3.1.1 The Ψ map

Let us start by describing in terms of the global geometry the fractional branes giving

the gauge group. That is, we want to obtain the exceptional collection that describes

the fractional branes at large volume. The basic technology we need for doing this was

described in [47]. Notice that the exceptional collection for a local C3/Z3 singularity is

well-known, and has been obtained by other methods [38, 40–43]. In particular it is an

orbifold, and as such falls into the class studied by [50], who give the explicit functor
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Figure 6. Relevant perfect matchings for the C3/Z3 dimer model. We have omitted one of the

internal perfect matchings.

between the large volume and quiver categories. We have chosen to compute the basis of

fractional branes using the Ψ map [47] since this method works for any toric singularity

with a compact 4-cycle.

The first step in constructing the Ψ map consists of determining the perfect matchings

of the dimer model, and their interpretation in terms of divisors of the local geometry.

There are 5 perfect matchings of the honeycomb lattice in figure 5, of which 2 are reference

matchings — associated with the interior point of the toric diagram, or equivalently with

the compact P2 — and the other three correspond to the exterior points of the toric

diagram. We show this structure in figure 6.

From the perfect matchings in figure 6 we can reconstruct the geometry, as explained

in [51–53]. In particular, to each external perfect matching we can associate a non-compact

divisor of the C3/Z3 geometry, i.e., the D1, D2, D3 divisors in figure 1. This is done as

follows: notice that each edge in the dimer has a natural orientation (going from the white

node to the black node, for example). Given this orientation, it makes sense to consider

pi − p0 as a closed oriented cycle in the dimer. The cycle is obtained by superposing the

edges belonging to pi with the edges belonging to p0, with the understanding that edges

belonging to both perfect matchings “annihilate” each other. This operation defines a

(p, q) cycle on the T 2 where the dimer model is defined. Taking this (p, q) as a point in the

integer lattice, the convex hull of the resulting set of points turns out to be the diagram

for the toric geometry giving rise to the dimer. For our particular example, we obtain the

following winding numbers:

p0 − p0 = (0, 0) p1 − p0 = (1, 1) p2 − p0 = (−1, 0) p3 − p0 = (0,−1) . (3.2)

By comparison with figure 1 we thus obtain the following identification between perfect

matchings and external divisors:

(p0, p1, p2, p3) ∼ (D6, D3, D2, D1) . (3.3)

We can now proceed to describe the exceptional collection obtained from the Ψ map

in our particular example. Let us take as our reference fractional brane the gauge factor

denoted by “1” in figure 5. In order to obtain the exceptional collection we construct an
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Figure 7. Allowed open paths giving the elements of the exceptional collection associated to the

Beilinson quiver for C3/Z3, taking p0 as a reference matching.

open (allowed [47]) path in the dimer from 1 to 2 and another from 1 to 3. The paths

we have chosen are depicted in figure 7. The exceptional collection giving the Beilinson

quiver is then determined by the crossing of the open paths with the perfect matchings. In

our conventions, and taking into account the relation (3.3) between perfect matchings and

divisors we obtain:8

P = (OP2 ,OP2(D3),OP2(D3 +D1)) . (3.4)

Taking into account linear equivalence of divisors on the P2, and simplifying notation a

bit, we end up with:

P = (O,O(1),O(2)) , (3.5)

which is a well-known projective basis for the derived category of branes on P2.

In order to identify the physical fractional branes from the collection (3.5) we still need

to work a little bit more, and dualize P .9 That is, the collection that describes the physical

fractional branes is not (3.5), but rather the following related collection:

E = (E1, E2, E3) . (3.6)

Constructing the objects of the collection E is non-trivial, but thankfully their Chern

character is much more easily computed. We have the basic relation:

ch(Ei) = (S−1)ji ch(Pj) . (3.7)

8Our notation departs slightly from the conventions in [44, 46, 47]. We denote the collection (3.4)

P = {Pi} since it is a collection of projective objects in the del Pezzo case [45], and we will reserve the

symbol Ei for the fractional branes in C3/Z3 themselves. E∨i will then denote the dual of the sheaf Ei in

the ordinary sense (for example ci(E∨) = (−1)ici(E)).
9Technically, what we are doing here is constructing the fractional branes in terms of projective objects

by mutation, and taking Chern characters. We refer the reader interested in the details to the nice exposition

in [45].
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The matrix S is defined as follows:

Sij = dim Hom(Ei, Ej) = H0(P2, E∨i ⊗ Ej) . (3.8)

Since Ei are line bundles on a toric variety, it is easy to compute S just by counting sections:

S =

1 3 6

0 1 3

0 0 1

 . (3.9)

The inverse matrix S−1 is thus given by:

S−1 =

1 −3 3

0 1 −3

0 0 1

 . (3.10)

Plugging this matrix into (3.7), we obtain:

ch(E∨1 ) = 1

ch(E∨2 ) = −2 +H +
1

2
H2

ch(E∨3 ) = 1−H +
1

2
H2 .

(3.11)

A simple check of this expression is that if we add up the Chern characters of the three

D-branes we get H2. Due to the Chern-Simons coupling on the worldvolume of the branes,

we have that this induces precisely one unit of D3-brane charge (there are also well known

curvature contributions to the charge, but they do not contribute here). This agrees with

the expected result that the quiver with all ranks equal represents the theory on a single

D3 probing the singularity.

In our particular case we want to introduce fractional branes of different ranks, in

particular we want to consider the object:

EMSSM = E1 + 2E2 + 3E3 . (3.12)

The Chern-Simons coupling for a D7-brane described by a sheaf E wrapping a divisor S is

given by:

SC.S. =

∫
C×R3,1

C(RR) ∧ ch(E) ∧

√
Td(TS)

Td(NS)
, (3.13)

with C(RR) = C0 +C2 + . . . the formal sum of RR fields, and TS, NS refer to the tangent

and normal bundles of S in the Calabi-Yau X. The Todd class Td(TS) of S is defined as

follows:

Td(TS) = 1 +
1

2
c1(TS) +

c1(TS)2 + c2(TS)

12
. (3.14)
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For example, in the particular case of P2, we have:

Td(TP2) = 1 +
3

2
H +H2 , (3.15)

with H the hyperplane class.

We can encode this charge information into the charge vector:

ΓE = [S] ch(E)

√
Td(TS)

Td(NS)
, (3.16)

with [S] the class Poincare dual to S. In what follows we will often forget the distinction

between cohomology classes and divisors, in order to lighten the notation, and we will omit

the space-time part of the charge.

Computing the induced D5 and D3 charges from (3.16), (3.11) and the facts that

NS|S = DS |S = O(−3H), c(TS) = (1 +H)3:

ΓE1 = [S] ∧
(

1 +
3

2
H +

5

4
H2

)
ΓE2 = [S] ∧

(
−2− 2H − 1

2
H2

)
ΓE3 = [S] ∧

(
1 +

1

2
H +

1

4
H2

)
,

(3.17)

so we get the total charge:

ΓEMSSM
= ΓE1 + 2ΓE2 + 3ΓE3

= [S] ∧ (H +H2) .
(3.18)

We see that we have a total non-vanishing induced D5 charge, and also the expected

induced D3 charge. The induced D5 charge signals a tadpole, since it is supported on a

2-cycle with a compact dual cycle given in this case by the P2 itself. We need to cancel

this tadpole by introducing extra ingredients into our configuration in the form of flavor

D7 branes. We will do this in section 3.2.

A subtlety in the definition of the D3 charge. In the discussion above we have

taken the usual conventions in the exceptional collection literature. Unfortunately there is

a subtlety that is important in physics applications of these formulas: what we ordinarily

call a D3 brane (defined as the object mutually supersymmetric with respect to a large

volume D7 brane) has

ΓD3 = −[pt] , (3.19)

with [pt] the class of a point in the Calabi-Yau, instead of ΓD3 = [pt], as one may guess at

first. An easy way to show this is by noticing that the expression for the central charge of

a D7 with support on S at large volume, given by:

Z(D7) =

∫
X
e−(B+iJ) ∧ Γ ∼ −1

2

∫
S
J ∧ J , (3.20)
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is a large negative number. Taking the sign as in (3.19) gives a central charge with the

same sign:

Z(D3) =

∫
X
e−(B+iJ) ∧ (−[pt]) = −1 , (3.21)

and thus both objects preserve the same supersymmetry.10

The simplest way of taking this issue into account is simply to multiply by −1 the

Chern characters that we found above for the fractional branes. This does not change the

quiver, but now the charges of the fractional branes add up to minus the class of a point.

The Chern characters for the objects in the exceptional collection are thus given by:

ch(E1) = −1

ch(E2) = 2−H − 1

2
H2

ch(E3) = −1 +H − 1

2
H2 .

(3.22)

and the corresponding charges by:

ΓE1 = [S] ∧
(
−1− 3

2
H − 5

4
H2

)
ΓE2 = [S] ∧

(
2 + 2H +

1

2
H2

)
ΓE3 = [S] ∧

(
−1− 1

2
H − 1

4
H2

)
.

(3.23)

3.1.2 Computing the spectrum

Given two branes, described by sheaves E ,F on the divisors S and T , embedded on the

Calabi-Yau by the maps i : S ↪→ X, j : T ↪→ X respectively, we have that the spectrum of

strings between them is expected to be counted by [49]:

Ext•(i∗E , j∗F) . (3.24)

Ext groups are typically hard to compute, but luckily in the cases that we are dealing with

the calculation simplifies. For two D7 branes wrapping the same divisor, one has that [45]:

ExtiX(i∗E , j∗F) = ExtiS(E ,F)⊕ Ext3−iS (F , E) . (3.25)

If one is just interested in computing indices the calculation simplifies further:∑
(−1)i dim ExtiX(i∗E , j∗F) =

∑
(−1)i dim ExtiS(E ,F)−

∑
(−1)i dim ExtiS(F , E)

= χ(E ,F)− χ(F , E) .

(3.26)

10The negative sign also follows from duality and a familiar fact in the heterotic string: in order to cancel

the heterotic tadpole in a K3×T 2 compactification without switching instantons on the gauge bundle, one

needs to introduce 24 mobile NS5s. Dualizing to F-theory, these branes appear as 24 mobile D3s. The D3

tadpole created by these branes is canceled by the D3 charge induced by the curvature couplings of the 24

7-branes wrapping the base K3 in F-theory. Choosing the (standard) Chern-Simons coupling for D7s as

in (3.13) then forces us to set ΓD3 = −[pt].
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where we have used Hirzebruch-Riemann-Roch in the last line, and χ(E ,F) is defined as:

χ(E ,F) =

∫
S

ch(E∨) ch(F) Td(TS) . (3.27)

In the case in which we have a couple of D7 branes intersecting transversely over a

curve C, the calculation of the Ext groups also simplifies [49]:

Exti+1(i∗E , j∗F) = H i(S, F∨E ⊗ FF ⊗
√
KC) (3.28)

for i < 2, and 0 otherwise. If we are interested in purely computing indices, the result can

again be expressed in terms of integrals of characteristic classes:∑
(−1)i dim Exti(i∗E , j∗F) =

∫
C

ch(F∨F ⊗ FE) . (3.29)

It is illuminating and useful to rewrite the formulas above as follows. Define the

antisymmetric Dirac-Schwinger-Zwanziger (DSZ) product as:

〈ΓE ,ΓF 〉 =

3∑
n=0

∫
X

(−1)n Γ
(2n)
E ∧ Γ

(6−2n)
F , (3.30)

where Γ(k) denotes the part of the form Γ of degree k. Then it is an easy exercise to check,

given the index formulas above, that∑
(−1)i dim Exti(i∗E , j∗F) = 〈ΓE ,ΓF 〉 . (3.31)

Notice that in our context the 6-form part of Γ plays no role, since its magnetic dual, the

0-form, is always absent. We will thus often ignore the 6-form part without further notice

in any computation of chiral quantities.

As an illustration, the quiver for our example can now be reconstructed easily using

(3.30) and the charges in (3.23):

〈ΓE1 ,ΓE2〉 =

〈
[S] ∧

(
−1− 3

2
H

)
, [S] ∧ (2 + 2H)

〉
(3.32)

=

∫
S

(
(−3

2
H) ∧ 2[S]− 2H ∧ (−[S])

)
(3.33)

= 6

(
3

2
− 1

)∫
S
H2 (3.34)

= 3 , (3.35)

and similarly 〈ΓE1 ,ΓE3〉 = −3, 〈ΓE2 ,ΓE3〉 = 3.

3.2 Flavor D7 branes

Looking to the MSSM quiver in figure 4, we see that there are three basic flavor D7 branes

we can consider, classified by to which fractional branes they couple to. In particular, in

figure 4 we have a rank 6 stack coupling to E3 and E2 (but not E1), a rank 3 stack coupling
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only to E3 and E2, and finally a rank 0 stack (which we have not drawn), coupling only to

E2 and E1. We will denote them respectively as F6, F3 and F0. Our task is to promote F3i

to geometrical objects in the Calabi-Yau background.

We can obtain a first piece of information by imposing that the right bifundamentals

exist between the gauge and flavor branes. Given that we are computing intersection

numbers, we will only obtain in this way a restricted amount of information about ΓFi .

Let us make this explicit by parametrizing:

ΓFi = ai[DH ] + bi[DH ]2 , (3.36)

where the only thing we need to know about [DH ] is that [DH ]|P2 = H. Looking to figure 4,

we have to impose that:

〈ΓE1 ,ΓF3〉 = 1 , (3.37)

which implies〈
[S] ∧

(
−1− 3

2
H

)
, [DH ] ∧ (a3 + b3[DH ])

〉
=

(
−3

2
a3 + b3

)∫
S
H2 = 1 . (3.38)

Similarly, 〈ΓE2 ,ΓF3〉 = 0 implies:

〈[S] ∧ (2 + 2H) , [DH ] ∧ (a3 + b3[DH ])〉 = 2 (a3 − b3) = 0 . (3.39)

These two equations together imply that:

ΓF3 = [DH ] ∧ (−2− 2[DH ]) . (3.40)

The third condition 〈ΓE3 ,ΓF3〉 = −1 is now automatic, since
∑

i ΓEi = 0 (up to a 6-form),

and the DSZ product is linear.

We can proceed similarly for ΓF6 and ΓF0 , obtaining:

ΓF6 = [DH ] ∧
(

1 +
3

2
[DH ]

)
(3.41)

ΓF0 = [DH ] ∧
(

1 +
1

2
[DH ]

)
(3.42)

We now lift this local information to global information. As an illustration, we will

embed our local system into the compact Calabi-Yau in section 2.2, namely an elliptic

fibration over P2. In doing this, global tadpoles with charge in the non-compact divisors

will not be canceled, but we will ignore this effect momentarily, coming back to it later.

Recall from section 2.2 that D6 described our local P2. It is also easy to see that D1|D6 = H,

for example by computing the triple intersection number D1 ·D1 ·D6 = 1 in the Calabi-

Yau. In order to emphasize the fibration structure of the threefold, we will relabel our

coordinates

(s, t, u, x, y, z) ≡ (x1, x2, x3, x4, x5, x6) . (3.43)
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From table 1, we see that (s, t, u) are the coordinates of the P2, located at z = 0 ∩ X3.

Similarly, the elliptic curve is the hypersurface in the P2,3,1 described by (x, y, z).

A generic D7 brane F on our global embedding can be described by:

ΓF = [aDs + bDz] ∧ (r + cDs + dDz) ∧
(

1− 1

2
(aDs + bDz)

)
, (3.44)

with a, b, c, d, r ∈ Z, and the last term comes from expanding
√

Td(TD)/Td(ND) (here

D ≡ aDs+bDz). We have ignored 6-form terms, as usual. Notice that the divisor aDs+bDz

will in general have more two-forms than those induced from the ambient space, so we could

add further 4-form terms (an example is Ds itself). Nevertheless, since the DSZ product

is taken in X, it will not see these, so we have set them to 0. We want the flavor branes to

look like ordinary D7 branes away from the singularity, so we impose r = a = 1:11

ΓF = [Ds + bDz] ∧
(

1 +

(
c− 1

2

)
Ds +

(
d− b

2

)
Dz

)
. (3.45)

Using the restrictions Ds|Dz = H, Dz|Dz = −3H:

ΓF |Dz = (1− 3b)H ∧
(

1 +

(
c− 3d− 1− 3b

2

)
H

)
. (3.46)

From here it is easy to read the global information given by the quiver. We find that:

ΓF6 = [Ds] ∧ (1 + (3d6 + 2)[Ds] + d6[Dz]) ∧
√
TDs

NDs

ΓF3 = [Ds +Dz] ∧ (1 + 3d3[Ds] + d3[Dz]) ∧

√
T (Ds +Dz)

N(Ds +Dz)

ΓF0 = [Ds] ∧ (1 + (3d0 + 1)[Ds] + d0[Dz]) ∧
√
TDs

NDs
.

(3.47)

Notice that there is certain ambiguity, and with what we have said so far one can only

fix c− 3d, but not c and d individually. We have reflected this ambiguity in the unknown

coefficients di ∈ Z.

3.3 D5-brane tadpole

Our original motivation for introducing flavor branes was that D5 brane charge was not

canceled with the desired assignment of ranks for the gauge groups, and this induced a

tadpole. As a consistency check, let us now verify that the local tadpole cancels once we

introduce the flavor branes.

11Since the cycle Dz is the one wrapping the contracting four-cycle, away from the singularity the D7

wraps a divisor of the form raDs, which in the local geometry C[x, y, z]/Z3 is described by a polynomial

in x, y, z of degree ra. An ordinary flavor brane is described by a linear polynomial (x = 0, say), so we

set ra = 1. Since both r and a are integers, and the relative sign is conventional, we are free to choose

r = a = 1.
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We denote the curves Poincare dual to Ds and Dz by `s and `z, respectively. These

curves are defined in homology by `s · Ds = `z · Dz = 1 and `s · Dz = `z · Ds = 0. By

comparing with curves of the form Di ·Dj , we find that

`z = Ds ·Ds

`s = Ds · (3Ds +Dz) .
(3.48)

D5 tadpole cancellation requires that all D5 brane charge is supported on a 2-cycle

that does not intersect any compact 4-cycle. Since the compact 4-cycle in the non-compact

geometry is Dz, we need all of our D5 charge to be supported on `s.

Recall from (3.45) that a general flavor D7 brane F has a charge vector:

ΓF = [Ds + bDz] ∧
(

1 +

(
c− 1

2

)
Ds +

(
d− b

2

)
Dz

)
. (3.45)

The D5 charge is given by the 4-form part of (3.45):

Γ
(D5)
F =

(
c− 1

2

)
Ds ·Ds +

[(
c− 1

2

)
b+

(
d− b

2

)]
Ds ·Dz + b

(
d− b

2

)
Dz ·Dz

=

[
d+ b

(
c− 3d− 1 +

3b

2

)]
`s + (1− 3b)

(
c− 3d− 1− 3b

2

)
`z

(3.49)

where in the second line we have used (3.48), and the fact that Dz · Dz = 9`z − 3`s. As

one may have expected, the `z charge is precisely the 4-form term in the restriction of the

flavor brane charge to Dz (recall (3.46)).

Using this last observation, and (3.40)–(3.42) it is easy to compute the contribution of

the flavor branes to the compact D5 tadpole; in our case:

Γ
(D5)
F = 6 Γ

(D5)
F6

+ 3 Γ
(D5)
F3

=

(
6d6 + 3d3 +

3

2

)
`s + 3`z .

(3.50)

The fractional branes can be dealt with similarly. A general fractional brane can be

written as:

ΓE = Dz ∧ (a+ bDs) . (3.51)

The D5 brane charge is thus given by bDs · Dz = b(`s − 3`z). Using the charges given

in (3.23), we then find that:12

Γ
(D5)
E = 3 Γ

(D5)
E3 + 2 Γ

(D5)
E2 + Γ

(D5)
E1 = `s − 3`z . (3.52)

And as we see, this cancels the `z part of (3.50), leaving:

Γ
(D5)
F + Γ

(D5)
E =

(
6d6 + 3d3 +

5

2

)
`s . (3.53)

12There is a slight clash of notation here. Notice that [S] in (3.23) refers to Dz, not Ds.
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Let us point out that global tadpole cancellation requires all D5 charge to vanish,

once we embed the local geometry into a compact model. This is clearly not possible

in (3.53), since di ∈ Z, but this is clearly a shortcoming of this particular (oversimplified)

embedding, which, as we will see, has problems even at the level of canceling D7 brane

charge. In general cases where the D7 sector admits a consistent embedding we expect the

equation analogous to (3.53) to admit solutions.

4 Type IIB orientifolds

Next we turn to the study of various orientifold involutions, anticipating the D-brane/open

string sector required for the gauge theory/matter, and how to up-lift this to F-theory. We

will mostly follow the generalization of Sen’s original work connecting type IIB orientifolds

and F-theory [54–56], as can be found in [57–59].

4.1 Generalities

With the inclusion of the open string sector, and the associated D-brane charge, we need

to construct the orientifold model from the Calabi-Yau manifold in which the local geom-

etry was embedded, in order to satisfy the various tadpole conditions. The choice of the

orientifold involution σ has to be made such that the fixed point set left invariant under σ

gives a divisor which when wrapped by the orientifold plane leads to tadpole cancellation.

For the D7-brane charge this corresponds to

8DO7− = DD7 (4.1)

in conventions of the double cover, i.e., counting each D7 and its image separately.

One possible type of orientifold involution that will be of particular interest to us is a

permutation symmetry acting on the coordinates of the ambient space,

σ : (x0, . . . , xn)↔ (xσ(0), . . . , xσ(n)) , (4.2)

where xσ(i) refers to the coordinate which xi is mapped to under the orientifold involution

σ. The points in the fixed locus are defined by:

(x0, . . . , xn) = g[(xσ(0), . . . , xσ(n))] , (4.3)

where g is a gauge transformation of the underlying gauged sigma model.

The reader may wonder whether (4.2) is a well defined action on the toric ambient

space, since it is not obvious that it commutes with the gauge action. That this is the case

can be argued in general as follows. Start from the fact that the generators of the Mori

cone give a basis for the U(1) generators of the GLSM, with charges of the divisors given

by the intersection numbers between the divisor and the Mori cone generator. Now assume

that we have a permutation involution σ, (4.2), of the toric fan. In terms of the GLSM,

this induces a Z2 permutation of the columns. We now argue that this permutation of the

columns of the GLSM can be undone by a permutation of the rows.
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Calling `i the Mori cone generators, and Dj the toric divisors, one has that `i ·Dj =

σ(`i) · σ(Dj). Since this is an involution of the fan we have that σ(`i) = `k, i.e. one of

the original charges. Another way of saying this is that the permutation involution is

a permutation of the generators of the Mori cone, if we choose the involution to be an

involution of the fan. Thus the permutation of the columns can be undone by (i.e., it is

equivalent to, since we are in Z2) a permutation of the rows.

From here it is easy to see that the permutation orbifold is well defined. We need

to show that, for any gauge transformation g1 of the GLSM, g2 ≡ σg1σ is another gauge

transformation of the GLSM. Looking to the coordinates, it is easy to convince oneself

that σg1σ induces the action on the Mori cone given above, and thus an action on the

charge vector which amounts to a relabeling.

Given any Z2 action on the coordinates of the ambient space, (4.2) or otherwise, we

can construct the quotient space by constructing the set of coordinates invariant under the

orientifold action, and imposing any relations that follow tautologically from the definition

of the invariant coordinates in terms of the original coordinates. There will be no con-

straints between the invariant coordinates in our examples below, but they can appear in

general, as the following example shows. Consider the C2/Z2 orbifold, with orbifold action

on the x1, x2 coordinates of C given by:

(x1, x2)→ (−x1,−x2) . (4.4)

Invariant coordinates are given by a = x21, b = x22, c = x1x2. It is easy to convince oneself

that any invariant polynomial can be constructed out of these coordinates, so a, b, c generate

the ring of functions on the quotient. Due to their definition, the constraint between the

coordinates is given by:

ab = c2 . (4.5)

We thus reproduce the well-known fact that C2/Z2 is alternatively described as the hyper-

surface (4.5) in C3.

4.2 Sign orientifolds: MdP0

In section 3 we have described in large volume terms the flavor and color branes in our

local model. As a result of this analysis, we found that the total D7 brane charge in the

embedding of C3/Z3 into MdP0 is given by (recall (3.47)):

QD7 = 9Ds + 3Dz ∼ Dy . (4.6)

Notice that this charge is concentrated on a divisor which does not intersect Dz, consistent

with local tadpole cancellation. In order to cancel the resulting global tadpole while keeping

a supersymmetric model, we need to introduce a O7− orientifold. The MdP0 embedding

is too simple, so cannot introduce the orientifold without also perturbing the local model,

but it serves as a good stepping stone to the more realistic model in section 4.3.
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In view of the relations (4.1) and (4.6), we cancel the tadpoles by wrapping an orien-

tifold on Dy, and adding extra branes on top of Dy. This is easy to achieve by quotienting

the space by the involution:

(s, t, u, x, y, z)→ (s, t, u, x,−y, z) . (4.7)

This involution also acts on the equation defining the Calabi-Yau hypersurface, and we

should make sure that the involution and the Calabi-Yau are compatible. The most general

Calabi-Yau hypersurface in the ambient space is given by (ignoring the Z2 action for a

moment):

y2 + a1xyz + a3yz
3 = x3 + a2x

2z2 + a4xz
4 + a6z

6 , (4.8)

where an is a homogeneous polynomial of order 3n on the s, t, u variables. If we now

impose invariance under (4.7), the fixed locus is indeed at Dy. It is easy to see that this

involution is compatible with the equation (4.8) defining the Calabi-Yau hypersurface if

we set a1 = a3 = 0. The gauge invariance of the background forces us to consider also the

following Z2 actions:

(s, t, u, x, y, z)→ (s, t, u, x, y,−z) (4.9)

(s, t, u, x, y, z)→ (−s,−t,−u, x, y, z) . (4.10)

The second involution has no fixed points, since {s = t = u = 0} is in the Stanley-Reisner

ideal (2.5), but the first involution has fixed points at {z = 0} ∼ Dz. In order to cancel

the charge coming from this component of the orientifold, according to (4.1), we need to

wrap extra D7 branes on Dz, the cycle supporting the gauge sector. This will render a

consistent model, but not the one that we wanted to embed.

4.3 Permutation orientifolds: M(dP0)
3

With hindsight, the fact that the model in the previous section required important modifi-

cations to the open string sector is not too surprising. The orientifold that we chose leaves

all divisors classes invariant, and thus typically will project down some unitary gauge fac-

tors to symplectic or orthogonal subgroups, in addition to identifying nodes in the quiver.

What we want is an involution that exchanges the gauge sector with a copy somewhere

else in the Calabi-Yau, without the orientifold intersecting the gauge sector.

In this section we discuss a simple extension of the model of the previous section that

achieves this. In fact, we have already encountered a suitable geometry: it is the M(dP0)
3

geometry we discussed in section 2.4.13 We show the action of the involution on the local

geometry in figure 8. The induced Z2 action on M(dP0)
3 is given by:

(x0, x1, . . . , x10, x11)↔ (x0, x1, x2, x4, x3, x10, x9, x7, x11, x6, x5, x8) . (4.11)

13The hyperconifold in section 2.3 also has an involution of the local geometry. Unfortunately this

involution does not extend to the global embedding MY 3,0 that we chose. M(dP0)
3 also has the advantage

of having a divisor mapped to itself under the orientifold involution, and which could thus be interesting

from the point of view of generating non-perturbative superpotentials.
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Figure 8. Local geometry for the model in this section. The orientifold involution acts by reflection

on the dashed blue line. We have partially resolved the singularity into three separated C3/Z3

singularities. We have also indicated the position of the coplanar divisors in (2.31).

According to the discussion in section 4.1, this action can equivalently be seen as an action

on the Mori cone generators (2.35):

(ˆ̀
3, ˆ̀

5, ˆ̀
6, ˆ̀

8)↔ (ˆ̀
9, ˆ̀

7, ˆ̀
2, ˆ̀

4) (4.12)

with ˆ̀
1 fixed.

Identifying the monomials invariant under involution (4.11) we obtain the quotient

map

(x0, · · · , x11)→ (z0, · · · , z8)
= (x0, x1, x2, x3x4, x5x10, x6x9, x8x11, x7, x3x9x

2
10x11 + x4x

2
5x6x8) .

(4.13)

Notice in particular that the contracting dP0 on which we want to put our gauge sector is

now given by z5 = 0.

The points in the fixed locus satisfy:

(x0, x1, . . . , x10, x11) = g[(x0, x1, x2, x4, x3, x10, x9, x7, x11, x6, x5, x8)] , (4.14)

where g is a gauge transformation of the GLSM (2.32), in other words an element of (C∗)8.
Condition (4.14) can be seen to be equivalent to:

x8x
2
5x4x6 = x3x

2
10x9x11 , (4.15)

and thus the fixed locus is in the divisor class

DO7 = −D2 +D3 +D4 . (4.16)

Notice that, as one may guess by looking to figure 8, the orientifold locus does not intersect

the cycle on which we are wrapping our branes, even in the ambient space. Take for

example the dP0 coming from the x6 = 0 divisor. If this cycle intersected the orientifold

locus, from (4.15) this would imply that x3x
2
10x9x11 = 0, but notice that all of x6x3, x6x10,
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x6x9 and x6x11 are in the Stanley-Reisner ideal (2.34), and thus x3x
2
10x9x11 6= 0 when

x6 = 0.

One interesting subtlety that appears in this example, and not in the examples studied

in [57–59], is the following. Notice that we constructed 9 invariant coordinates, but the

dimension of the Mori cone before the involution was 8. We also constructed the action

on the Mori cone generators in (4.12), and we saw that it permutes 8 generators in pairs.

It is thus a little bit puzzling how one would get the 9 − 4 = 5 Mori cone generators

that one would need in order to construct the ambient fourfold where the base lives as a

hypersurface. Furthermore, it is easy to convince oneself that the zi coordinates do not

satisfy any identity.

This is resolved as follows. Notice that because the Mori cone is not simplicial, in order

to generate it we needed 9 effective curves, rather than 8 than dimension counting may

suggest. There is a linear relation between the Mori cone generators in (2.35) (this is easy

to verify for instance by computing the rank of (2.35) seen as a matrix), but interestingly,

once we quotient by the orientifold action, the linear relation no longer holds, and we

generate a new Mori cone generator, for a total of 5, as one expects. The ambient space

A(dP0)
3/Z2 of the quotient is then described by the set of Mori cone generators invariant

under (4.12):

z0 z1 z2 z3 z4 z5 z6 z7 z8

ˆ̀
1 ∼ ˇ̀

0 0 0 1 2 0 0 0 −3 1

ˆ̀
2 ∼ ˆ̀

6 ∼ ˇ̀
1 0 0 −1 −1 0 1 0 1 0

ˆ̀
3 ∼ ˆ̀

9 ∼ ˇ̀
2 1 0 0 0 −2 1 3 0 0

ˆ̀
4 ∼ ˆ̀

8 ∼ ˇ̀
3 0 −1 1 1 0 −3 2 0 0

ˆ̀
5 ∼ ˆ̀

7 ∼ ˇ̀
4 0 1 0 0 1 0 −2 0 0

(4.17)

Here we have denoted the Mori cone generators by ˇ̀
i, and we have also indicated where

they come from in the double quotient. The resulting space is a toric variety, given by the

polytope:

z0 z1 z2 z3 z4 z5 z6 z7 z8

1 0 0 0 6 2 3 −2 −6

0 1 0 0 9 3 5 −3 −9

0 0 1 0 2 1 1 0 −1

0 0 0 1 2 1 1 0 −2

(4.18)

and Stanley-Reisner ideal:

SR(A(dP0)
3/Z2

) =
〈
z1z4, z6z7, z6z8, z4z8, z5z8, z5z7, z4z7, z0z1z5,

z0z1z7, z0z5z6, z2z3z6, z2z3z8, z2z3z4, z0z1z2z3
〉
.

(4.19)

After the involution (4.12), the original Calabi-Yau equation P (xi) = 0 with degrees

deg(P ) = (0, 0, 3, 0, 0, 0, 0, 0, 3) (4.20)
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(see the K column in (2.35)) becomes an equation P̌ (zi) = 0 of degree

deg(P̌ ) = (0, 0, 3, 0, 0). (4.21)

On the other hand, the degrees of the anti-canonical class of A(dP0)
3/Z2 are given by:

deg(KA
(dP0)

3/Z2
) = (1, 0, 3, 0, 0) , (4.22)

and from here we easily deduce the anti-canonical class of the hypersurface B3={P̌ (zi)=0}:

deg(KB3) = deg(KA
(dP0)

3/Z2
)− deg(P̌ ) = (1, 0, 0, 0, 0) . (4.23)

We will verify in section 5.1 that this agrees beautifully with what one would expect from

Sen’s limit, similarly to the discussion in [58].

Rather than adding the flavor branes directly in the type IIB orientifold setting we

will find it more convenient to lift the above orientifold picture to F-theory, to which we

turn next.

5 Hybrid embeddings

Let us present a systematic method for embedding the previous configurations in F-theory.

Although F-theory adequately captures non-perturbative gs effects, naively it is ill-suited

for describing branes at singularities, which require non-perturbative α′ effects for a full

description. (Alternatively, if we want to describe fractional branes at large volume we

have to deal with anti-D7 branes in F-theory.)

The basic idea we use for overcoming this obstruction is the following: notice that

by local tadpole cancellation, the total D7-brane charge of the local configuration wraps

a cycle that does not intersect the collapsing cycle. Thus, at the level of cohomology

(what F-theory describes most naturally), the contracting cycle is generically far away

from the discriminant! From the point of view of F-theory, our quiver configurations are

then described by ordinary Calabi-Yau 4-fold compactifications at a very non-generic point

in their moduli space, where the discriminant intersects a singular point in the geometry.

This observation, while simple, is clearly very general. Let us illustrate how it works for

our working example M(dP0)
3 .

5.1 M(dP0)
3

We follow the techniques introduced in [57–59] to uplift IIB configurations to F-theory.

One starts with the threefold base B3 of the fourfold obtained by taking the Z2 quotient

of M(dP0)
3 , as constructed in section 4.3. In general, one can present a Calabi-Yau fourfold

elliptically fibered over a base B3 using a Weierstrass form:14

y2 = x3 + fxz4 + gz6 , (5.1)

14As it is conventional when writing elliptic fibrations, we denote the coordinates on the fiber by x, y, z.

We hope the reader will not get confused by the unrelated elliptic fibration and corresponding x, y, z

coordinates studied in section 3.2.
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with f a section of K−4B3 and g a section of K−6B3 . Taking Sen’s limit, one has that

f ∼ −3h2 + . . . (5.2)

with h = 0 the orientifold locus. In 4.3 we found that the orientifold locus in the Calabi-Yau

threefold is located at

√
h = x3x9x

2
10x11 − x4x25x6x8 = 0 (5.3)

with the square root encoding the fact that the Calabi-Yau threefold is the double cover

of B3, where h is most naturally defined. We thus have that:

h =
(
x3x9x

2
10x11 − x4x25x6x8

)2
=
(
x3x9x

2
10x11 + x4x

2
5x6x8

)2 − 4x3x4x6x9(x5x10)
2x8x11

= z28 − 4z3z
2
4z5z6 ,

(5.4)

which has degree (2, 0, 0, 0, 0) = deg(K
2
B3). Taking into account (5.2) and (4.23) this gives

the expected degree deg(K
4
B3) for f .

In addition to having constructed the Calabi-Yau fourfold itself, we want to go to a

point in moduli space where the flavor and gauge D7 branes have the right structure close

to the singularity. From the local analysis in section 3.2 (see in particular eqs. (3.47)) we

want the discriminant to degenerate as a rank 6 stack of branes wrapping the non-compact

divisor intersecting the collapsing dP0 on its hyperplane class (this stack will give rise to

F6), and a rank 3 stack wrapping the same non-compact divisor plus the collapsing dP0

itself (this stack will give rise to F3).

It is not hard to see that there are indeed locations in the moduli space of the elliptic

fibration such that the discriminant has this structure. In order to explicitly obtain these

loci it is easiest to work with the elliptic fibration in its Tate form [60]:

y2 + a1xyz + a3yz
3 = x3 + a2x

2z2 + a4xz
4 + a6z

6 , (5.5)

where the ai are sections of K−iB3 . In order to have a U(3) stack on z5 = 0 (the locus of the

contracting cycle, recall the map (4.13)), we impose the following degrees of vanishing [61]:

deg(a1) = 0 ; deg(a2) = 1 ; deg(a3) = 1

deg(a4) = 2 ; deg(a6) = 3 ,
(5.6)

with the notation meaning that close to the z5 = 0 locus, ai vanishes as z
deg(ai)
5 (. . .),

with the quantity in parenthesis generically non-vanishing. We find the following space of
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solutions:

a1 = c11z2z
2
4z5z6 + c12z8

a2 = z5
(
c21z

2
2z

4
4z5z

2
6 + c22z2z

2
4z6z8 + c23z3z

2
4z6
)

a3 = z5
(
c31z

3
2z

6
4z

2
5z

3
6 + c32z2z

2
4z6z

2
8 + c33z3z

2
4z6z8

+ c34z2z3z
4
4z5z

2
6 + c35z

2
2z

4
4z5z

2
6z8
)

a4 = z25
(
c41z

4
2z

8
4z

2
5z

4
6 + c42z

2
2z

4
4z

2
6z

2
8 + c43z

2
3z

4
4z

2
6

+ c44z2z3z
4
4z

2
6z8 + c45z

3
2z

6
4z5z

3
6z8 + c46z

2
2z3z

6
4z5z

3
6

)
a6 = z35

(
c61z

6
2z

12
4 z

3
5z

6
6 + c62z

3
2z

6
4z

3
6z

3
8 + c63z

3
3z

6
4z

3
6

+ c64z
2
2z3z

6
4z

3
6z

2
8 + c65z2z

2
3z

6
4z

3
6z8 + c66z

4
2z

8
4z5z

4
6z

2
8

+ c67z
3
2z3z

8
4z5z

4
6z8 + c68z

2
2z

2
3z

8
4z5z

4
6 + c69z

5
2z

10
4 z

2
5z

5
6z8

+ c6,10z
4
2z3z

10
4 z

2
5z

5
6

)
,

(5.7)

with the cij arbitrary coefficients parametrizing the complex structure moduli space. It is

a straightforward calculation to verify that the discriminant restricted to z5 = 0 has the

local form:

∆

z35

∣∣∣
z5=0

= z64z
3
6f(z0, z1, z2, z3, z7, z8) . (5.8)

With f a section ofO(3) (here, and it what follows, the line bundles are over P2 = {z5 = 0}).
In order to see this, notice that, when restricted to z5 = 0, the divisors Di = [{zi = 0}]
become:

(D0, D1, D2, D3, D4, D5, D6, D7, D8)|z5=0 = (O,O,O(1),O(1),O(1),O(−3),O,O,O) .

(5.9)

Notice in particular that (4.23) and (4.17), imply that KB3 = D8, and thus KB3 |z5=0 = O,

or in other words the geometry is locally Calabi-Yau, as we expected. Since ∆ is a section

of K
12
B3 , and thus trivial when restricted to z5 = 0, and we have split off a factor of z35z

6
4z

3
6 ,

which is locally a section of O(3 · (−3) + 6 · 0 + 3 · 1) = O(−3), we conclude that f is

a section of O(3), or in other words a cubic polynomial on the local coordinates of the

contracting P2.

It is natural to associate the U(6) flavor stack with z4 = 0. One may be tempted to

interpret the z36 factor in (5.8) as the non-compact part of the U(3) stack. This is not

correct, though: notice from (5.9) that D6 becomes trivial when restricted to z5 = 0, so

z6 is effectively a non-zero constant. Another way of seeing this is by recalling that the

hypersurface defining B3 is in the same class as z30 = 0, and z0z5z6 is in the Stanley-Reisner

ideal (4.19) of A(dP0)
3/Z2

.

The non-compact part of the U(3) stack must then come from f , and so we learn that

generically the U(3) part of the flavor symmetry is broken in this embedding, since f does

not generically vanish to cubic order. This could be desirable for model building purposes,

but one can also tune coefficients to locally recover the symmetry. One way of achieving

this is to impose the vanishing degrees (5.6) for the coordinate z2 (so, in particular, the
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discriminant behaves as ∆ = z32
(
. . .
)
). In this way we have a U(3) singularity at z2 = 0,

which by (5.9) will intersect the contracting locus at a P1. We can do this by choosing

coefficients in (5.7) as follows:

c23 = c33 = c43 = c44 = c64 = c65 = c68 = 0 (5.10)

keeping the rest of the cij arbitrary.

6 Mapping the landscape of singularities

So far we have described how to analyze each embedding individually. In order to find

actual examples, one needs to scan over a large class of toric ambient spaces, comparing

their two dimensional faces to our desired target geometry. We will focus our efforts on the

set of Calabi-Yau threefolds constructed by Kreuzer and Skarke [10], containing 473,800,776

reflexive polytopes. We refer to this set of Calabi-Yau manifolds as the KS landscape in

what follows. Doing an exhaustive scan of such a big dataset requires the systematic use

of computers; in section 6.7 we give a short overview of the computer tools we developed

for performing this task.

The following set of questions, though by no means exhaustive, gives a flavor of how

singular the landscape is. Summarizing the results, it is very simple to find singular Calabi-

Yau spaces (including very singular Calabi-Yau spaces). Even relatively complicated Toric

Lego models can be found in rather large numbers.

6.1 How singular is the KS landscape?

One of the most important questions one may try to answer concerns to what degree is the

landscape singular. In our framework we attempt to answer this question by counting the

number of interior points of the two dimensional faces of the 4d polytopes. Locally, each of

this interior points corresponds to a zero-size 4-cycle. Naturally, whether this 4-cycle has

zero size or not depends on where we are in the Kähler cone of the Calabi-Yau hypersurface,

and a priori it may be the case that we cannot contract the 4-cycle without sending the

whole Calabi-Yau to zero size. Nevertheless, as we have seen in the examples in section 2,

it seems to be possible to contract many four cycles even in relatively complex examples.

According to this philosophy, we scanned the KS landscape counting the number of

internal points in each of the two-dimensional faces. The result is displayed in figure 9.

One particularly remarkable feature of figure 9 is its smoothness. Despite the finite

sample size, introducing some noise as we go towards low frequencies, it does definitely

look like the singularity structure follows a well defined probability distribution. It would

be interesting to see whether this structure persists as we consider other datasets (natural

generalizations are higher dimensional reflexive polytopes). We leave this as an empirical

observation for the moment.

The distribution of interior points peaks at 0 interior points, but it is rather common

having just a few interior points. For reference, in table 2 we include the number of two

dimensional faces with less than 10 interior points.
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Figure 9. Number of two dimensional faces in the KS landscape having the given number of

interior points.

Interior points Number of faces

0 18,348,252,546

1 1,160,340,121

2 364,176,255

3 188,901,035

4 82,981,171

5 56,180,491

6 44,224,288

7 23,299,165

8 18,939,629

9 17,560,669

Table 2. Number of two dimensional faces with less than 10 interior points.

6.2 Singularities vs. Hodge numbers

From the combinatorial formula [62] for the Hodge numbers of toric hypersurfaces

h11(X) = #(∇)− 4− 1−
∑

codim(ν)=1

Int(ν) +
∑

codim(ν)=2

Int(ν)Int(ν∗)

h21(X) = #(∆)− 4− 1−
∑

codim(δ)=1

Int(δ) +
∑

codim(δ)=2

Int(δ)Int(δ∗)
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h11h21

50 50

100 100

150 150

200 200

250 250

300 300

350 350

400 400

450 450

500 500

0 0
1 1
3 3

10 10

30 30

100 100

246 246

Figure 10. Maximal number of integral points on a single 2-face for each Hodge number pair.

it is clear that the number of internal points in various faces of the polytope is related

to the Hodge numbers of the Calabi-Yau hypersurface. In figure 10, we plot the number

of internal points by Hodge numbers. The plot shows no mirror symmetry. In fact, the

number of internal points is mostly related to h11 only.

6.3 The most singular polytope

A natural question is how singular can we make the space. This has been partially answered

above, by studying the interior point structure of the KS landscape. In this section we

focus explicitly on the most singular polytope that we found. Here we define most singular

as the polytope containing the two-dimensional face with the largest number of interior

points. From figure 10 we see that this is the rightmost manifold which has Hodge numbers

(491, 11). This most singular polytope Σ is defined by the following vertices:

v1 v2 v3 v4 v5

1 −1 1 1 1

1 1 −2 1 1

1 1 1 −6 1

1 1 1 1 −83

(6.1)

In particular, its most singular two-dimensional face is defined by v1, v4 and v5, and it has

246 integral points. Locally, it defines a C3/(Z84 × Z7) singularity. In fact, all 10 of the

two dimensional faces of this polytope are of the form C3/(Zp × Zq), with

{(p, q)} = {(84, 3), (84, 7), (7, 3), (7, 3), (84, 2), (3, 2), (3, 2), (7, 2), (7, 2), (1, 1)} . (6.2)
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Singularity Number of faces

dP0 6,438,735

dP1 33,073,205

dP2 60,732,256

dP3 17,085,648

Table 3. Local del Pezzo singularities.

a) b)

Figure 11. a) Toric diagram for a L(a,b,a) singularity. The particular example shown is L(2,4,2).

b) Toric diagram for Y (p,q). We have shown Y (3,2).

Let us remark in passing that the Calabi-Yau manifold X obtained from Σ is both ellip-

tically and K3 fibered, and thus gives an interesting background for studying heterotic/F-

theory duality. It was in fact studied in [63], where it was found that compactifying

F-theory on X gives rise to a 6d theory with gauge group G = E17
8 × F 16

4 ×G32
2 × SU(2)32

and nT = 193.15

6.4 Toric del Pezzo singularities

Calabi-Yau spaces with del-Pezzo singularities are of particular interest to model build-

ing [4, 6, 11–15, 18, 42]. The results of a scan for two dimensional faces being the toric

diagrams of del Pezzo singularities is displayed in table 3.

Note that some care is required in interpreting the results in table 3. While the results

denote two-dimensional faces which correspond precisely to the toric diagrams for del Pezzo

surfaces, there is a much larger number of faces that contain the del Pezzo diagrams. If

one has one such face containing a del Pezzo singularity, a series of small resolutions of the

singularity may leave behind precisely the desired del Pezzo. A similar caveat applies to

the rest of the discussion in this section.

6.5 Y (p,q) and L(a,b,a) cones

The L(a,b,a) family of local toric singularities generalizes the conifold and the SPP singulari-

ties (these geometries belong to the general L(a,b,c) family [64, 65], which also comprises the

Y (p,q) geometries below). The generic toric diagram for one such singularity is displayed in

figure 11a, it has vertices at (0, 0), (0, 1), (a, 1) and (b, 0). We choose the convention a ≤ b.

15We would like to thank W. Taylor for a remark about this point.
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Figure 12. Plot of the number of local L(a,b,a) geometries in the KS landscape. L(0,1,0) is just a

copy of flat space, so we have omitted it from the plot.

These singularities find a particularly nice model building use in the context of

metastable supersymmetry breaking, see for example [36, 37]. We have performed an

exhaustive scan over the KS landscape for these singularities, with the results shown in

figure 12.

Notice that very singular L(a,b,a) singularities tend to have either a ≈ b, i.e. they

are roughly orbifolds of the conifold, or b ≈ 0, in which case are geometries of the form

C2/Zn × C.

A related large class of local singularities that we studied are the Y (p,q) cones [66–

68]. They can also play an important role in the local model building approach (see for

example [69] for applications to metastable supersymmetry breaking) and also in N = 1

AdS/CFT. We show the corresponding toric diagram in figure 11b. We have collected the

results of the exhaustive scan for these singularities in table 4.

6.6 Toric Lego models

Our original motivation in approaching the problem of finding global embeddings was to

see whether there was any obstruction to the existence of global embeddings for Toric Lego

singularities. As representative examples, we have performed exhaustive scans for a model

consisting of three dP0 sectors (given by the toric diagram in figure 8), and one three sector

model (dP0 + dP0 + dP1) considered previously in [7], which we reproduce in figure 13 for

convenience.

For the model in figure 8 we found 41,799 polytopes having that toric diagram as one

of their two-dimensional faces, and 292,691 polytopes has figure 13 as one of their two

dimensional faces.16

16We did not check how many of these polytopes respect the Z2 permutation involution described in

section 4.3. As we describe in the conclusions, those polytopes not compatible with the involution could

still work as embeddings in a more intrinsically F-theoretical approach.
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q = 0 1 2 3 4 5 6 7 8 9 10 11

Y 2,q 12175355 33073205

Y 3,q 203038 531568 311508

Y 4,q 13123 14868 19772 10553

Y 5,q 200 672 357 632 351

Y 6,q 114 129 171 130 167 129

Y 7,q 20 38 35 38 35 38 35

Y 8,q 14 19 20 19 20 19 20 19

Y 9,q 3 5 5 5 5 5 5 5 5

Y 10,q 2 3 3 3 3 3 3 3 3 3

Y 11,q 0 0 0 0 0 0 0 0 0 0 0

Y 12,q 1 1 1 1 1 1 1 1 1 1 1 1

Table 4. Number of local Y p,q cones. No Y p,q spaces with p > 12 were found.

Figure 13. Three sector (dP0 + dP0 + dP1) model considered in [7].

6.7 Computer implementation

The scans performed above were done on a 2.5 GHZ Intel Core 2 Duo, with 4 GB of 667

MHz DDR2 SDRAM (MacBook Pro), using PALP [70] to generate the polytopes and some

custom C code to analyze the polytopes for particular singularities. The code is available

at the address http://cern.ch/inaki/scan.tar.gz together with the results of the scan.

The whole scan was completed in 4 days, with the two cores running in parallel.

In order to analyze the resulting set of polytopes, we used Sage [71], and in particular

its toric varieties package [72].

7 Conclusions and generalizations

In this paper we have provided a prescription for how to find global realizations of local

models of gauge and matter content in which D-branes are placed at toric singularities. In

particular, we focus on hypersurfaces in four dimensional toric varieties, using the complete

classification of such a class of ambient spaces [10]. The global models are then either
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given in terms of type IIB orientifolds on compact Calabi-Yau manifolds or by considering

a Calabi-Yau four-fold elliptically fibered over a compact three-dimensional base. Our

construction provides a large class of models in which we can explore further important

issues such as moduli stabilization in flux compactifications on type IIB orientifolds. In

this way, our results link the rich literature on models at local toric singularities (see

e.g. [5, 18, 73, 74]) with that of the wealth of results on moduli stabilization (see [35, 75–

78] for some of the classical results, and [79–85] for some interesting recent developments).

These models also present a way of embedding local singularities into the very large class

of backgrounds appearing in F-theory. As opposed to the usual F-theory construction of

GUTs, in our construction the MSSM sector comes from a very singular region, which

cannot be described in F-theory. This, of course, does not preclude the bulk F-theory to

have some interesting dynamics of its own.

In our discussion of the landscape, we found that singularities in the Calabi-Yau are

generic. One can of course blow up to a smooth manifold, but since this breaks part of

the symmetry once we have branes around, one expects that configurations with branes at

singularities are dynamically preferred [86]. It is then an interesting and natural question

to explore what happens in very singular manifolds. Our work provides some tools for

analyzing this question in the context of toric geometries.

Finally, we have focused on the tools and the generic discussion. We hope to come

back to the construction of realistic models using the techniques presented in this paper.

7.1 More general F-theory bases

While in this paper we have proceeded mostly along the traditional IIB route, it is clear that

one can directly construct many bases of elliptically fibered fourfolds having the required

structure for the construction in this paper to apply. Let us assume that we construct the

basis B3 as a hypersurface in an ambient toric space A∇,17 described by a polytope ∇ (this

setup has been recently analyzed in [87–89]). Then we require that:

1. ∇ has a two-dimensional face describing the singularity that we want to embed.

2. The restriction of KB3 , the canonical class of B3, to the contracting locus is trivial.

The first condition follows from the same arguments as in section 2.1. The second condition

is slightly more subtle, and encodes the fact that in the neighborhood of the singularity

there are no orientifolds. This is the case in many of the examples in the literature. Condi-

tion 2 then ensures that close to the singularity the space is Calabi-Yau, as in section 5.1.

This last condition can easily be modified if one wants local models with orientifolds. One

just has to compute the canonical class of the base after the involution, similar to the

computation that we did in section 4.3.

7.2 Complete intersections and toroidal orbifolds

It would be interesting to extend our searches to the more general class of complete in-

tersection Calabi-Yau manifolds (CICYs) in a toric variety. Unfortunately, the complete

17The extension to complete intersections proceeds very similarly to that in section 7.2.
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classification of higher dimensional toric ambient spaces (n > 4, with n the complex dimen-

sion) is unknown, though partial results are known for n = 5 and n = 6 [90]. While this

implies that it is at present not possible to carry out a complete search for the most general

class of Calabi-Yau manifolds, our construction, and in particular the general discussion in

section 2.1, carries over straightforwardly to the case of CICYs, mutatis mutandis.

Consider a n-dimensional reflexive polytope∇, together with some nef partition, giving

a three-dimensional Calabi-Yau space MX as a complete intersection on A∇, the toric space

associated to ∇. Assume that we find that the toric diagram for the local toric Calabi-

Yau X in which we are interested appears as one of the two-dimensional faces of ∇, or

equivalently, the toric fan for X is embedded as a three-dimensional cone in ∇. Then

A∇ has a local patch of the form X × (C∗)n−3, and the set of hypersurfaces defining the

complete intersection will generically give rise to a copy of X embedded in MX .

This observation allows one to study toroidal orbifolds using our methods. The only

requirement is being able to describe the toroidal orbifold of interest as a complete inter-

section in an ambient toric variety. We refer the reader to the nice recent paper [91] for

a careful analysis of how, and in which cases, it is possible to realize toroidal orbifolds as

CICYs.
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