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flat space limit of AdS/CFT. We show that the unitarity of the S-Matrix, ie the optical

theorem, can be derived by studying the behavior of the OPE and the conformal block

decomposition in the flat space limit. When applied to perturbation theory in AdS, this

gives a holographic derivation of the cutting rules for Feynman diagrams.

To demonstrate these facts we introduce some new techniques for the analysis of con-

formal field theories. Chief among these is a method for conglomerating local primary

operators O1 and O2 to extract the contribution of an individual primary O∆,` in their

OPE. This provides a method for isolating the contribution of specific conformal blocks

which we use to prove an important relation between certain conformal block coefficients

and anomalous dimensions. These techniques make essential use of the simplifications that

occur when CFT correlators are expressed in terms of a Mellin amplitude.
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1 Introduction

Exact theories of quantum gravity should be formulated in terms of gauge invariant observ-

ables associated to the boundary of spacetime. In flat spacetime, the only such observable

is the S-Matrix, so a theory of quantum gravity in flat space will be a theory that computes

scattering amplitudes holographically. Since AdS/CFT [1–3] provides a non-perturbative

description of AdS theories via a dual CFT, one can obtain the bulk S-Matrix from a flat

space limit of AdS. This defines a holographic theory for flat space using a sequence of

CFTs with increasing central charge. The introduction of the Mellin amplitude [4, 5] for
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CFT correlation functions has led to progress [6–10] along these lines, and in particular, we

recently argued [9] that bulk locality can be understood by showing how the meromorphy

of the Mellin amplitude1 leads to an analytic S-Matrix. The purpose of the present work is

to demonstrate how the unitarity of the S-Matrix can be derived directly from the unitarity

of the CFT. Specifically, we will derive the usual optical theorem

− i(T − T †) = T †T (1.1)

and cutting rules for the 2-to-2 scattering amplitude of massless scalars at a non-perturbative

level from the conformal block decomposition and the operator product expansion of

the CFT.

Before we outline the derivation, let us first comment on how the standard, manifestly

unitary definition of the S-Matrix can be applied in AdS/CFT. The S-Matrix is usually

defined as the overlap between in and out states

Sαβ = 〈αin|βout〉 (1.2)

where α and β are multi-particle states composed of asymptotically well-separated, exactly

stable particles. From this point of view, unitarity arises as a consequence of the complete-

ness of the in and out bases, and all of the structure of scattering is encoded in the fact

that these bases are different. In the interaction picture we write the S-Matrix as

Sαβ = 〈αfree |S|βfree〉 where S = T
{
ei

∫∞
−∞HI(t)dt

}
(1.3)

and T is the time ordering symbol. The unitarity of the S-Matrix follows automatically

from the unitarity of the S operator.

All of these statements have simple analogs when we take the flat space limit of

AdS/CFT. The key is to realize that global AdS behaves likes a cavity or finite sized

‘box’ [11], so to obtain the S-Matrix we need only setup the correct experiment and then

take the size of the box to infinity. As originally discussed in [12, 13] and recently revisited

in [9, 14, 15], one can setup initial states corresponding to incoming particles by acting with

CFT operators, and then measure the outgoing particles with final state operators after

exactly one scattering event has occurred. Since we want to scatter finite energy particles

in the vanishing curvature limit of AdS, we need to study bulk states with energy E so that

ER→∞ as the AdS length scale R→∞. An elementary feature of the AdS/CFT corre-

spondence is that AdS global time corresponds to radial quantization ‘time’ in the CFT,

as pictured in figure 1. This means that time translations in the bulk of AdS are generated

by the dilatation operator D in the CFT, so bulk scattering amplitudes involve CFT states

of dimension very large compared to 1, but very small compared to the central charge.

In other words, to compute scattering amplitudes using AdS/CFT we setup an in-state

by smearing with CFT operators at an initial “dilatation time”, we evolve the state with

the dilatation operator D for a time πR, and then we measure the result at a final time.

1We reviewed aspects of CFT physics and the Mellin amplitude in our recent companion paper [9], and
we discussed them in detail in [7], so we urge interested readers to consult these references for a review.
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Figure 1. This figure shows how the AdSd+1 cylinder in global coordinates corresponds to the
CFTd in radial quantization. The time translation operator in the bulk of AdS is the dilatation
operator in the CFT, so energies in AdS correspond to dimensions in the CFT. A scattering process
in the bulk can be set up by acting with smeared CFT operators at an initial and final time that
are separated by πR. In the large N limit, a product of n single-trace CFT operators creates an
n-particle scattering state in the bulk.

Now it is easy to imitate the usual interaction picture. When studying CFT operators

and states with dimension small compared to the central charge N2, we can separate the

dilatation operator into D = D0 + 1
NDI . Bulk perturbation theory and bulk scattering

amplitudes can be computed using equation (1.3) with

Sαβ = lim
R→∞

〈αfree |SR|βfree〉 where SR = T

{
exp

[
i

∫ πR
2

−πR
2

DI(t)dt

]}
(1.4)

where now the states α and β are created by products of single trace operators, as discussed

in [9, 14, 15]. From this point of view, the unitarity of the S-Matrix is a direct consequence

of the unitarity of the CFT. This description of scattering also immediately explains the S-

Matrix results of [16], namely that to first order in perturbation theory, the bulk S-Matrix

is just the matrix of anomalous dimensions 〈α|DI |β〉.
While this procedure looks familiar from the point of view of the bulk, the setup of

equation (1.4) does not appear very natural in the CFT, nor is it convenient to use for

computations. Fortunately, in [9] we proved a conjecture of Penedones [6] that gives an

extremely simple formula for the S-Matrix written directly in terms of the Mellin amplitude

for CFT correlators. This formula also leads to a nearly trivial relationship between the

conformal block decomposition of a CFT correlator and the S-Matrix in the flat space

limit. Let us now briefly review the conformal block decomposition, which can be viewed

as a consequence of unitarity in the CFT.
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In any theory whatsoever, one can insert the operator 1 as a sum over states |α〉〈α|,
giving

A4(xi) =
∑

α

〈O1(x1)O2(x2)|α〉〈α|O3(x3)O4(x4)〉 (1.5)

in the case of a 4-pt correlation function. In theories with symmetry one can make further

progress by organizing the states |α〉 into irreducible representations of the symmetry group.

In flat spacetime, this means that one can use Poincaré invariance to break the sum into

states of definite energy, invariant mass, and angular momentum and then integrate over

the overall momentum of the state. In a CFT, we can organize the states |α〉 of definite

dimension and angular momentum into primaries and descendants, where the descendant

states can all be represented via actions of the translation operator Pµ on a primary state.

If we organize the sum in equation (1.5) so that all descendants are grouped together with

their defining primary, we have the conformal block decomposition [17–20]

A4(xi) =
∑

∆,`

P∆,`B
`
∆(xi) (1.6)

of the CFT correlator, where the P∆,` are fixed numerical coefficients encoding dynamical

information about the theory. The conformal blocks B`
∆(xi) are the universal functions that

represent the contribution of a given primary and its descendants to the 4-pt correlator;

these functions also depend on the dimensions ∆i of the external operators Oi, and were

recently given in Mellin space in [4, 5, 9] for CFTs of arbitrary spacetime dimension.

The conformal block decomposition can also be viewed as a consequence of the operator

product expansion, and this is where its power lies. The OPE says that we can write the

product of two operators as a sum

O1(x1)O2(x2) =
∑

∆,`

c12
∆,`b

12
∆,`(x1, x2, x)O∆,`(x) (1.7)

where the universal 3-pt function b12
∆,` is fixed by conformal symmetry. If we use the OPE

twice inside a 4-pt correlator, then we can express that correlator as a sum over CFT 2-pt

functions with coefficients c12
∆,`c

34
∆,`. But since local CFT operators are isomorphic to CFT

states, this can also be viewed as a sum over all the states in the theory, as in the conformal

block decomposition. In other words, the OPE implies that

P∆,` = c12
∆,`c

34
∆,` (1.8)

We have derived the well-known fact that the 3-pt correlators in a CFT in principle deter-

mine all the n-pt correlation functions in the theory.

The rest of this paper will be concerned with making these ideas computationally

useful and relating them to the S-Matrix. The key to putting the OPE to work is pictured

in figure 2; we will refer to the process depicted in the bubble at the top of this figure as

conglomerating operators Oa and Ob into a double trace operator [OaOb]n,`. This makes

it possible to use k-pt correlation functions to determine lower point correlators involving

– 4 –
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Figure 2. This figure shows how one can conglomerate k−2 CFT operators in an k-pt correlation
function to obtain a 3-pt function, and then use these 3-pt functions to determine some contributions
to the conformal block decomposition of a 4-point correlator. This procedure makes it possible to
use one order in perturbation theory to say something about the next; it is precisely analogous to
the way that the optical theorem permits the calculation of the imaginary part of the S-Matrix
using a phase space integral over the product of lower point scattering amplitudes.

multi-trace operators. In particular, we can use information about the correlators at one

order in perturbation theory to compute terms in the conformal block decomposition at

the next order, as pictured in the second step of figure 2.

So how do we implement this conglomeration procedure? Naively, one might proceed

by defining the double trace primary operator as a linear combination of terms of the

very schematic form ∂xO1∂
yO2. Then, by imposing that the special conformal generator

annihilates the sum, one finds relations for the coefficients. By itself, this is a rather involved

combinatorially exercise; some partial results were obtained in [6, 21], and for completeness

we give a recursion relation for the coefficients in the case of a general double trace primary

operator in appendix C. However, it turns out that determining these coefficients is actually

the easy part, because to use these coefficients to compute correlators involving a double

trace primary [O1O2]n,` we also need to differentiate a CFT correlator involving O1 and

O2 a total of 2n+ ` times. This procedure is very cumbersome, especially at large n and `.

Fortunately there is a better method that exploits the simple properties of the Mellin

representation for CFT correlators. Instead of differentiating single trace operators, we can

integrate them against simple ‘wavefunctions’ that conglomerate the single-trace operators

into the desired double-trace state. To form an operator of dimension ∆ and spin ` from

two single trace operators inside a correlator, we write

〈O∆,`(x) . . . 〉 =

∫
ddx1d

dx2f∆,`(x, x1, x2)〈O1(x1)O2(x2) . . . 〉 (1.9)
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Figure 3. This figure indicates how the sum over k-trace operators with dimension ∆ turns into
a phase space integral over k-particle states with center of mass energy ∆/R in the flat spacetime
limit of AdS/CFT.

where ‘. . . ’ indicate any other local operators that may appear in the correlator. The

wavefunction f∆,`, which we will determine in section 2, has only power law dependence

on the differences between the coordinates. Because of the simplicity of f∆,`, when we

represent CFT correlators as Mellin amplitudes, the integrals in equation (1.9) can be

done immediately using the Symanzik star formula, which one can view as the Mellin-

space analog of the formula for the Fourier transform of eip·x. We will also see how to use

these methods to extract the coefficient of an individual conformal block from the Mellin

amplitude. In section 2 we will derive these techniques and use them to obtain some new

results about CFTs, and then in section 3 we will also make essential use of this technology

in our derivation of unitarity. It seems likely that these techniques can be usefully applied

far afield from our discussion of the flat space limit of AdS/CFT.

The process of conglomerating operators at one order in perturbation theory and then

combining the results to give information about the next order should remind the reader

of the way that the optical theorem

− i(T − T †) = T †T (1.10)

computes the imaginary part of the S-Matrix. In section 3 we will show that in fact,

the conformal block decomposition as computed along the lines of figure 2 reduces to the

imaginary part of the S-Matrix in the flat space limit of the bulk AdS theory dual to

the CFT.

To derive the optical theorem, we need to show that the sum over k-trace operators

in the conformal block decomposition reduces to a phase space integral over k-particle

states, as pictured in figure 3 for k = 2. We explain this essentially kinematical fact in

section 3.3. One might also wonder whether all operators that can be exchanged in the

conformal block decomposition are really k-trace operators, and what role is played by the

operators dual to unstable particles. The S-Matrix connects in and out states composed

of exactly stable particles, and so scattering amplitudes between unstable particles are not

well-defined and do not appear in the unitarity relation. The qualitative difference between

stable and unstable particles emerges only in the flat space limit, when the original primary

operators dual to unstable particles get lost on the sea of multi-trace operators with which

they mixes. We saw an explicit example of this phenomenon in [9], where we obtained a

Breit-Wigner resonance from the flat space limit of AdS/CFT.

– 6 –
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This also means that the small black holes that can occur as intermediate configurations

in scattering processes are not literally states in the theory, since they too are unstable.

Thus there are no ‘small black hole operators’ being exchanged in the conformal block

decomposition, and we are not missing any contributions when we formulate unitarity

purely in terms of stable multi-particle states.

The conformal block decomposition provides an expression for the exact 4-point corre-

lator, but the left hand side of the optical theorem only involves the imaginary part of the

S-Matrix. Another way of saying this is that in general, the optical theorem does not pro-

vide sufficient information to fully determine the next order in perturbation theory, because

the real part of the S-Matrix cannot be uniquely computed. But this means that when

we use the OPE as pictured in figure 2, we must be missing terms that correspond to the

real part of the S-Matrix! The missing terms can be most easily understood by looking at

the one-loop example in figure 4. In the conformal block decomposition of the 4-point cor-

relator computed by this loop diagram, when double-trace operators are exchanged there

are terms that correspond to ‘cuts at the edge of the diagram’. These combine the 3-point

functions of mean field theory (ie the CFT correlators that follow from a free theory in

AdS) with interacting 3-point functions, as pictured on the left and right sides of figure 4.

We will prove that in the flat space limit, these terms in the conformal block decomposi-

tion only contribute to the real part of the S-Matrix, and so they drop out of the optical

theorem. These edge cuts identically represent the part of the S-Matrix that is non-trivial

to reproduce using dispersion relations.

Interestingly, the proof that these edge cuts only contribute to the real part of the

S-Matrix requires an identity first conjectured in [22], which amounts to the statement

that the edge cut terms are total derivatives. Alternatively, the conjecture says that the

OPE coefficients cn,` = c̄n,` + δcn,` for these edge cuts satisfy

c̄n,`δcn,` =
1

4

∂

∂n

(
c̄2
n,`γ(n, `)

)
, (1.11)

where γ(n, `) is the anomalous dimension of the double trace operator [O1O2]n,` of dimen-

sion ∆1 + ∆2 + 2n+ `+ γ(n, `), and c̄n,` and δcn,` are respectively the infinite N value and

finite N corrections to cn,`. We will precisely state and prove this statement and a rele-

vant generalization at a non-perturbative level in section 2.3 by using the conglomeration

techniques discussed above.

The outline of the paper is as follows. In section 2 we derive our technique for con-

glomerating operators and apply it to some useful examples, obtaining a few new results

along the way, including the infinite N conformal block coefficients in arbitrary spacetime

dimensions and the generalized derivative relation indicated in equation (1.11). In section 3

we show how the unitarity of the S-Matrix follows from the conformal block decomposition,

as we briefly outlined above, and we give a full one-loop example. Finally in section 4 we

conclude with a discussion of the implications and opportunities for further work.
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[OχOχ]

[OχOχ] [OψOψ]

[OψOψ]

1 λg λ g 1λg

Figure 4. This figure provides a schematic depiction of how a 1-loop Witten diagram in AdS
decomposes via the conformal block decomposition in the dual CFT. For illustrative purposes, the
bulk theory has both a λ

4φ
2χ2 and a g

4χ
2ψ2 interaction. The dashed lines indicate ‘cuts’; the central

cut, highlighted in purple, provides the familiar imaginary contribution to the optical theorem in
the flat space limit. The conformal block decomposition also includes the ‘edge cuts’ on the left and
right, which have no analog in discussions of the cutting rules. These edge cuts are very important
in order to obtain the full correlator, but in the flat space limit they only contribute to the real
part of the S-Matrix, and so they drop out of the optical theorem.

2 Conglomerating operators

The goal of this section will be to understand how to ‘conglomerate operators’ in order to

combine a pair of local primary operators into a third composite operator that appears in

the OPE of the first two. We will also be able to use these techniques to extract specific

terms from the conformal block expansion.

2.1 Basics

Before we see how the conglomeration process works, let us first review a few basic facts

about CFT operators. We have written out the full conformal algebra in equation (C.1) in

the appendix, but for our present purposes it will suffice to consider the commutation rela-

tions of the dilatation operator D, the momentum generator Pµ, and the special conformal

generator Kµ. These take the form

[D,Pµ] = Pµ, [D,Kµ] = −Kµ, [Pµ,Kν ] = −2(ηµνD + iMµν) (2.1)

– 8 –
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The crucial feature to notice is that Pµ and Kµ act as raising and lowering operators with

respect to the dimension, which is the eigenvalue of D. Unitary CFTs have lower bounds on

the allowed dimensions of operators, so this means that after some number of applications

of Kµ any state of definite dimension will be annihilated. A state that is annihilated by Kµ

is called a primary state, and the operator that creates this state is referred to as a primary

operator. All states of definite dimension and angular momentum can be classified as either

primaries or descendants of a primary. Since the momentum Pµ = i∂µ, descendants are

just derivatives of primaries.

Let us begin with some very concrete examples in mean field theory (ie the dual of a

free theory in AdS), where all correlators are determined by the 2-pt functions of single-

trace primaries, which are the operators dual to the fields in AdS. Given two single-trace

primary scalar operators O1 and O2, one can form double-trace primaries [O1O2]n,` which

will have dimension ∆1 + ∆2 + 2n+ ` and spin `. The most trivial example is O1O2, which

is primary and has n = ` = 0. But we can also form the operator

∆2(∂µO1)O2 −∆1O1(∂µO2) (2.2)

One can check using the conformal algebra that this operator is primary. A slightly more

complicated example is the operator given by the linear combination

∆1

2∆1 + 2− d(∂2O1)O2 − ∂µO1∂
µO2 +

∆2

2∆2 + 2− dO1(∂2O2) (2.3)

which is also primary, and has n = 1, ` = 0. In appendix C we present a recursion relation

that completely determines the appropriate coefficients for any double-trace primary with

arbitrary n and `. At large n, the double trace primary operators approach a one-to-one

correspondence with the space of 2-particle states in d+ 1 dimensions, a fact that will be

important later on.

A very natural question follows: given an n-pt CFT correlator involving O1(x1)

and O2(x2), how do we extract an (n − 1)-pt correlator with the double trace primary

[O1O2]n,`(x0)? We could proceed by using derivatives as above, but this quickly becomes

extremely cumbersome. Furthermore, when we move beyond the mean field theory limit,

all operators will pick up anomalous dimensions, and when these become large it is difficult

to define precisely which operator we intend when we write [O1O2]n,`(x0). So instead of

using derivatives, let us try to use an integral over a wavefunction f∆,`, and define

[O1O2]n,`(x0) =

∫
ddy1d

dy2f∆1+∆2+2n+`,`(x0, y1, y2)O1(y1)O2(y2) (2.4)

This applies to the mean field theory case, but for general CFTs we can use dimensions ∆

other than ∆1 +∆2 +2n+`. Now we need to determine the wavefunction f∆,`. Fortunately,

this can be easily accomplished with the introduction of so-called shadow operators. For

any primary scalar operator O of dimension ∆, we wish to find a shadow operator Õ of

dimension d−∆ so that

〈O(x)Õ(y)〉 = δd(x− y) (2.5)

– 9 –
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If we simply define

Õ(x) ≡
∫
ddy

O(y)

(x− y)d−2∆
(2.6)

then one can check that the desired identity is satisfied. Now we can use these shadow

operatos to compute the wavefunction f∆,`. As a warm-up, assume that ` = 0. If we

compute the correlator of both sides of equation (2.4) with Õ1(x1)Õ2(x2) then we find that

f∆,`=0(x0, x1, x2) ∝ (x12)∆1+∆2−2d+∆

(x01)∆−∆1+∆2(x02)∆−∆2+∆1
(2.7)

where xij = xi−xj . We did not even need to do any integrals to compute this wavefunction,

because the 3-pt correlator of scalar primaries is determined uniquely up to an overall

constant.

Before we make use of this result, let us first generalize it to the case where ` > 0. For

this purpose, it will be simpler and more elegant to use the embedding formalism [23, 24],

where we can use the machinery that was developed and nicely explained in [25]. The basic

idea of this formalism is extremely simple — since the conformal group in d dimensions is

SO(d, 2), it is most natural to use coordinates that transform in the fundamental represen-

tation of this group. Thus we will represent each coordinate xi with a d + 2 dimensional

vector Pi, constrained so that P 2
i = 0 and identified projectively so that Pi ∼ λPi for real

λ > 0. These coordinates correspond to the null cone that is the asymptotic limit and

boundary of AdS when it is regarded as a hyperbola in a d + 2 dimensional embedding

space. If we use light cone coordinates for the Pi and choose the specific normalization

P+
i = 1, we find

(P+
i , P

−
i , P

µ
i ) = (1, x2

i , x
µ
i ) (2.8)

This means that the inner product of the Pi is

2Pi · Pj = P+
i P

−
j + P−i P

+
j − P

µ
i Pjµ = (xi − xj)2 (2.9)

Conformal transformations of the xi simply act as fundamental SO(d, 2) transformations

on the Pi. We will normalize the 2-pt functions of single-trace scalar primary operators so

that

〈O(P1)O(P2)〉 =
C∆

P∆
12

(2.10)

where P12 = 2P1 · P2 and the normalization

C∆ ≡
Γ(∆)

2πhΓ(∆− h+ 1)
(2.11)

with 2h = d, the spacetime dimension of the CFT. As shown in [25], the correlators

of operators with spin can be described in the embedding formalism as polynomials in

auxiliary d + 2 dimensional vectors Zi which soak up the tensor indices of the spinning

operators. We will only make use of the simplest examples from [25], such as the 3-pt

– 10 –
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function of two scalar primaries and a spin ` primary

ZA1 . . . ZA`

〈
O1(P1)O2(P2)OA1...A`

∆,` (P3)
〉

=
(
c12

∆,`

)
T∆,`

∆1,∆2
(Z,P3;P1, P2) (2.12)

where T∆,`
∆1,∆2

(Z,P3;P1, P2) ≡ ((Z · P1)P23−(Z · P2)P13)`

P
∆1+∆2−∆+`

2
12 P

∆2+∆−∆1+`
2

23 P
∆+∆1−∆2+`

2
31

(2.13)

Note that the universal function T∆,`
∆1,∆2

is fixed by symmetry, while the 3-pt function

coefficient c12
∆,` provides dynamical information about the theory. The auxiliary coordinates

Zi are taken to have the property that Zi · Pi = 0, and correlators must have a ‘gauge

invariance’ under Zi → Zi + αPi for any α. One can see immediately that the scalar-

scalar-spin-` correlator satisfies this gauge condition.

We can use these results to determine the general wavefunction f∆,`. The operator

O∆,` is defined by

ZA1 . . . ZA`OA1...A`
∆,` (P0) =

∫
ddP1d

dP2

[
ZA1 . . . ZA`f

A1...A`
∆,` (P0, P1, P2)

]
O1(P1)O2(P2)

(2.14)

If we again take the correlator of both sides with the product of shadow fields Õ1(P1)Õ2(P2)

then we find the result

ZA1 . . . ZA`f
A1,...,A`
∆,` (P0, P1, P2) =

1

Nf
∆,`

T∆,`
d−∆1,d−∆2

(Z,P0;P1, P2) (2.15)

defined in terms of the universal function from equation (2.12), where Nf
∆,` is a normaliza-

tion factor that we will determine later. Note that this wavefunction also depends on the

spacetime dimension d and the dimensions ∆1 and ∆2, although we have suppressed this

dependence in the notation. One could continue on and use the results of [25] to obtain

wavefunctions involving several operators with spin, but for our purposes equation (2.15)

will be sufficient. Now let us see how to use this result to compute interesting 3-pt functions

and to extract the coefficients in the conformal block decomposition.

2.2 Using conglomeration

The intuition we used above to introduce conglomeration was perturbative. In general, our

conglomeration procedure can be understood in terms of the operator product expansion.

Isolating a single term in the OPE, we can write

O1(P1)O2(P2) = c12
∆,`;OPEb

12
∆,`(P1, P2)O∆,`(P1) + . . . (2.16)

where the ‘. . .’ contain all the other operators in the OPE, including the descendants of

O∆,`. If we compute the correlator of both sides with O∆,`(P0) all of the terms in the

ellipsis vanish, and we relate the three-point correlator to the OPE coefficient multiplied

by the normalization of the OPE and the operator O∆,`. For example, in the notationally
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simple case ` = 0, we define b12
∆,0 = P

−∆b+
∆
2

12 and so we find that

〈O∆,0(P0)O1(P1)O2(P2)〉 = c12
∆,`;OPEP

−∆b+
∆
2

12 〈O∆,0(P0)O∆,0(P1)〉. (2.17)

When O∆,0 is normalized to give a two-point function P−∆
01 , then we have

c12
∆,` = c12

∆,`;OPE (2.18)

using the definition of the 3-point correlator in equation (2.12). Conglomeration makes it

possible to extract both 3-point correlators and OPE coefficients.

Before proceeding to calculate we need to set the normalization. We will use a con-

vention such that the general 2-point correlator of O∆,` with itself is [25]

〈O∆,`(Z1, P1)O∆,`(Z2, P2)〉 =
((Z1 · Z2)(P1 · P2)− (Z2 · P1)(Z1 · P2))`

P∆1+∆2+2n+2`
12

, (2.19)

where we have effectively defined the operator O∆,` by conglomeration in equation (2.14).

Now we can determine the normalization of the wavefunctions Nf
∆,` in equation (2.15) by

demanding

〈O∆,`O∆,`〉 =

∫
ddPif∆,`(Pa;P1, P2)f∆,`(Pb;P3, P4) 〈O1(P1)O2(P2)O1(P3)O2(P4)〉 ,

(2.20)

where we have suppressed the dependence of f∆,` on the auxiliary variables Zi for nota-

tional simplicity. One could also set the normalizations in terms of the conformal block

decomposition. This follows because

∫
ddP1d

dP2f∆,`(P0;P1, P2)B∆′,`′(Pi) ∝ δ(∆−∆′)δ`,`′ . (2.21)

If the result is non-vanishing it can be used to fix the normalization of the wavefunctions;

this also means that we can use conglomeration to uniquely identify terms in the conformal

block decomposition.

Finally, let us consider what happens if there is more than one operator with the di-

mension, angular momentum, and global charges of O∆,`. If there are many such operators,

they can certainly mix with each other, so they can only be differentiated based on their

correlation functions. By applying conglomeration to different correlators, such as

〈O1O2O1O2〉 , 〈O1O2O3O4〉 , 〈O3O4O3O4〉 (2.22)

we can extract all the information we need to separate the operator O∆,` that couples to

O1 and O2 from the operator O′∆,` which has a 3-pt function with O3 and O4. This may

be relevant for more complicated CFTs.
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Now that our wavefunctions are normalized, we can compute 3-point correlators via

∫
ddP1d

dP2f∆,`(P0;P1, P2) 〈O1(P1)O2(P2)O3(P3)O4(P4)〉 = 〈O∆,`(P0)O3(P3)O4(P4)〉 .
(2.23)

If there is no operator or operators O∆,` in the OPE of O1 and O2 then the result will be

zero. This procedure is most tractable when the correlators are expressed in terms of the

Mellin amplitude M(δij) [4–7, 9], so that

〈O1(P1)O2(P2)O3(P3)O4(P4)〉 =

∫ i∞

−i∞
[dδ]M(δij)

4∏

i<j

Γ(δij)P
−δij
ij . (2.24)

The reason is that the only dependence on the Pij is in the form of a power-law, and

the projective integrals over the Pi that we find when we conglomerate can be easily

accomplished using the Symanzik star formula, which states that

∫
ddP

n∏

i=1

Γ(li)(−2Pi · P )−li = πh
∫

[dδ]
n∏

i<j

Γ(δij)P
−δij
ij (2.25)

where the δij integration variables are constrained by
∑n

i 6=j δij = li. Note that when

n = 3 this means that the Mellin space integration variables δij on the right hand side are

completely fixed, so there are no integrals to do. One can think of this very useful formula

as the analog of the Fourier transform of eip·x in momentum space.

We will first make use of this technology to determine the conformal block decom-

position of mean field theory in any number of dimensions. This simple result has been

obtained for d = 2 and d = 4 in [22], but we are not aware of it appearing anywhere in the

literature for the case of general d. The relevant correlator is simply

〈O1(P1)O2(P2)O1(P3)O2(P4)〉 =
C∆1C∆2

P∆1
13 P

∆2
24

(2.26)

To extract the conformal block decomposition for ` = 0 and ∆ = ∆1 + ∆2 + 2n, we simply

need to integrate

∫
ddP3d

dP4
1

P
2d−∆1−∆2−∆

2
34 P

∆1+∆−∆2
2

04 P
∆+∆2−∆1

2
03

× C∆1C∆2

P∆1
13 P

∆2
24

. (2.27)

We can apply the Symanzik star formula of equation (2.25) to the integrals over P1 and P2.

In both cases the constraints completely determine the integrals over the δij , and we find

π2hΓ(−n)Γ (h−∆1) Γ (h−∆2) Γ (−h+ n+ ∆1 + ∆2)

Γ(∆1)Γ(∆2)Γ (h+ n) Γ(2h− n−∆1 −∆2)

(
C∆1C∆2

Pn12

P∆1+n
01 P∆2+n

02

)
, (2.28)

where as usual 2h = d. The coefficient outside the parentheses is c̄12
∆,0N

f
∆,0.
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In the limit that n approaches a non-negative integer, the above expression is singular.

Ultimately, we are interested in extracting double-trace operators whose dimensions are

exactly given by integer n, and thus one might be concerned about whether we are really

able to regulate this singularity. For the reader who is interested in such subtleties, we

will show in appendix A the details of how we choose our regulator. For the more casual

reader, however, the idea of the following derivation is relatively simple: once we look at the

physically normalized operator, the singularity in the three-point function cancels against

a singularity in the normalization factor, so that the physical three-point function is finite.

In practice in the following, this cancellation of singularities will take the form Γ(−n)/Γ(0),

which we will take to be (−1)n

n! .2 To fix the normalization factor, we can conglomerate again

to compute the 2-pt function of [O1O2]n,0.

In fact, it is worthwhile to pause and note that beginning with any 3-pt function we

can conglomerate O1 and O2 to obtain a 2-pt function. This relates the coefficient c12
∆,0

that sets the size of the 3-point correlation to a coefficient c∆,`
2 in a 2-point correlator. To

compute the relation, we multiply the 3-pt function by f∆,` and integrating over P1 and

P2 to obtain the 2-pt function

c∆,0
2 =

c12
∆,0

Nf
∆,`

π2hΓ(0)Γ
(
h− ∆+∆1−∆2

2

)
Γ(∆− h)Γ

(
h− ∆+∆2−∆1

2

)

Γ(h)Γ
(

∆+∆1−∆2
2

)
Γ
(

∆+∆2−∆1
2

)
Γ(d−∆)

. (2.29)

We see that there is again a singularity of the form “Γ(0)”. If the correlator that we are

computing is of the form in equation (2.20), then we must have c∆,`
2 = 1, in which case we

find the very useful fact

Nf
∆,0 = c12

∆,0

π2hΓ(0)Γ
(
h− ∆+∆1−∆2

2

)
Γ(∆− h)Γ

(
h− ∆+∆2−∆1

2

)

Γ(h)Γ
(

∆+∆1−∆2
2

)
Γ
(

∆+∆2−∆1
2

)
Γ(d−∆)

. (2.30)

Note that this is a non-perturbative result, and is not restricted to mean field theory.

Now we can incorporate the normalization Nf
∆,0 and compute the desired conformal

block coefficient for mean field theory. As we discussed near equation (1.8), the coefficient

is simply

(
c̄12
n,0

)2
= C∆1C∆2

(∆1)n(∆2)n (1 + ∆1 − h)n (1 + ∆2 − h)n
n! (h)n (∆1 + ∆2 − 2h+ 1 + n)n (∆1 + ∆2 − h+ n)n

, (2.31)

where we recall that the Pochhammer symbol (a)b = Γ(a + b)/Γ(a), and the spacetime

dimension in the CFT is 2h. In appendix B, we generalize this method to arbitrary spin

conformal blocks in the scalar four-point function. The integrals can also be performed in

this case, with just a bit more book-keeping to track the various terms that appear when

we expand the degree ` polynomial in f∆,`. This gives the resulting compact form for the

conformal block coefficients in mean field theory (ie a free scalar theory in AdS, or a CFT

2Briefly, one can precisely regulate the Γ(0) and Γ(−n) singularities by taking the dimensions ∆,∆′ of
the conglomerated operators [O1O2]∆,0 and [O3O4]∆′,0 to differ until physical quantities are calculated.
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at infinite N):

(
c̄12
n,`

)2
=

C∆1C∆2(−1)`(∆1 − h+1)n(∆2 − h+1)n(∆1) +̀n(∆2) +̀n

`!n!(`+h)n(∆1+∆2+n− 2h+1)n(∆1+∆2+2n+`− 1)l(∆1+∆2+n+`− h)n
.

(2.32)

This result matches that of [22] in the cases they considered, namely that of 2-dimensional

and 4-dimensional CFTs with ∆1 = ∆2 normalized without the factor of C∆1C∆2 .

2.3 Further applications

While extracting the OPE coefficients of double-trace operators in the infinite N theory

is a useful example of conglomeration, its full power comes from the fact that it is an

essentially non-perturbative technique, and one can use it to extract the coefficient of an

arbitrary operator in the OPE. Thus, if we know all the four-point functions of a set of

operators, O1,O2,O3,O4, then we can conglomerate O1O2 to make an operator [O1O2]∆,`
of arbitrary dimension ∆ and spin `, with ∆ a free parameter. We do not need to know ∆

a priori. Rather, the result of conglomerating will give vanishing OPE coefficients except

at the values of ∆ for which there actually is a corresponding operator in the O1O2 OPE.

We will now turn to examples where we look at the connected four-point functions of the

theory and use conglomerating methods to extract information about specific conformal

blocks. Mellin space is an essential tool in this study, since by construction it organizes

the connected correlators into contributions of definite powers of the Pij ’s. Correlators can

then be integrated against the wavefunctions simply by repeated application of Symanzik’s

star formula.

In this subsection, we will first discuss general results on the application of the wave-

functions to connected four-point functions, in particular how to extract both OPE coeffi-

cients and anomalous dimensions. We will then turn to the application of these results to

specific AdS models. A direct consequence of our methods will be the proof of an important

derivative relation, discovered empirically in [22], between OPE coefficients and anomalous

dimensions of double-trace conformal blocks:

c̄12
n,`δc

12
n,` =

1

4

∂

∂n

((
c̄12
n,`

)2
γ(n)

)
, (2.33)

where c̄12
n,` are the infinite N OPE coefficients of double-trace conformal blocks and δc12

n,`

are the differences between the exact OPE coefficients and the infinite N OPE coefficients.

In general, this formula is true only to leading order in perturbation theory, but as we will

explain in detail, for a certain class of contributions it actually holds exactly.

2.3.1 OPE coefficients from connected diagrams

Consider the Mellin amplitude for a four-point function 〈O1O2O3O4〉, and let ∆a = ∆1 =

∆2 while ∆b = ∆3 = ∆4. The four-point function has only two independent Mellin
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variables, which we can choose to be δ ≡ 2(∆a − δ12), γ ≡ 2(δ14 + δ12 −∆a)

A4(Pi) = 〈O1(P1)O2(P2)O3(P3)O4(P4)〉 → M1234(δ, γ). (2.34)

One can think of δ in analogy with the mandelstam invariant s, and so when we look

in the s-channel, the angular momentum information will be carried by the γ variable.

Conglomerating O1O2 to produce [O1O2]∆,` involves integrating the correlation function

against our wavefunction f∆,`. Mellin space is ideally suited for this integration, since

its form is already a decomposition of the correlator into powers of Pij ’s, for which the

wavefunction integrations just involve a repeated use of Symanzik’s star formula. Thus,

one obtains a general formula for the three-point function of [O1O2]∆,` with O3,O4, of the

form in equation (2.12) with coefficient

c34
∆,` =

∫
dδdγ

(2πi)2
M1234(δ, γ)H∆,`(δ, γ), (2.35)

[O1O2]∆,` defined this way still has to be normalized, for which one must calculate its

two-point function as we discussed in the ` = 0 case near equation (2.30). In general

this is singular, and must be regulated by instead calculating the two-point function

〈[O1O2]∆,`[O1O2]∆′,`〉 with ∆ 6= ∆′. One then takes ∆ → ∆′ at the end of the calcu-

lation, and then only in physically normalized three-point function coefficients. In order

for the result to be non-zero, we must have an∞/∞ behavior as ∆ approaches its physical

value. We will see shortly that this occurs only at values of ∆ for which there is a pole in

the Mellin integrand, as we should expect on the general grounds discussed in [7, 9].

To avoid unwieldy formulae, we will focus on the special case where the connected

four-point function in question contains only conformal blocks of spin-0, for instance corre-

sponding to s-channel scalar exchange in AdS, and leave the general case to appendix B.2.

Then, the Mellin amplitude does not depend on γ, and the four-point amplitude takes

the form

A4(Pi) =

∫
dδdγ

(2πi)2

(−1)

4

M(δ)Γ(∆a − δ
2)Γ(∆b − δ

2)Γ2(−γ
2 )Γ2( δ+γ2 )

P
∆a− δ2
12 P

∆b− δ2
34 (P13P24)−

γ
2 (P14P23)

δ+γ
2

. (2.36)

We can obtain from this the 〈[O1O2]∆,0O3O4〉 three-point function by conglomerating O1

and O2 together:

A3(Pi) =
1

Nf12
∆,0

∫
dP1dP2

P
d−∆a−∆

2
12 P

∆
2

01P
∆
2

02

A4(Pi). (2.37)

This may be evaluated by applying Symanzik’s integral twice, which introduces two new

Mellin variables (two from the P1 integration, and none from the P2 integration). However,

three of these integrations are purely kinematic, in that M does not depend on them, and

so can be done independently of M(δ). Fortunately, performing first the dγ integration,

all three of them take the form of Barnes’ Lemmas, and can be computed in closed form.
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We arrive at

A3(Pi) =
(−1)π2h

4Nf12
∆,0

Γ2(h− ∆
2 )Γ2(∆

2 )

Γ(h)Γ(2h−∆)Γ(∆)

1

P
∆
2

03P
∆
2

04P
−∆

2
+∆b

34

×
∫

dδ

2πi
Γ

(
δ

2
−∆

2

)
Γ

(
∆a−

δ

2

)
Γ

(
δ

2
−h+

∆

2

)
Γ

(
∆b−

δ

2

)
M(δ). (2.38)

So we have obtained a simple formula for the OPE coefficients in this special case where

` = 0 and the Mellin amplitude is independent of γ

c34
∆,0 =

−π2h

4Nf12
∆,0

Γ2(h− ∆
2 )Γ2(∆

2 )

Γ(h)Γ(2h−∆)Γ(∆)
(2.39)

×
∫

dδ

2πi
Γ

(
δ

2
− ∆

2

)
Γ

(
δ

2
− h+

∆

2

)
Γ

(
∆a −

δ

2

)
Γ

(
∆b −

δ

2

)
M(δ).

One can obtain the normalization Nf12
∆,0 from equation (2.30), which can be computed

term-by-term in perturbation theory if such a series is available. We give the general

formula for these OPE coefficients with arbitrary ` and a γ-dependent Mellin amplitude in

appendix B.2.

2.3.2 Conformal block coefficients

Let us discuss an application of this formalism to the extraction of conformal block coeffi-

cients and anomalous dimensions of double-trace operators at leading order in perturbation

theory for a simple AdS theory. Such examples were studied in [16, 22, 26], where different

methods were used. While [16, 26] found a fairly simple method for extracting anomalous

dimensions, the calculation of conformal block coefficients remained cumbersome, to say

the least. We will begin with the decomposition of the four-point function into double-trace

conformal blocks at leading order in 1/N , although we will see later that this decomposition

also has a non-perturbative interpretation:

A4 =
∑

n

P1(n)B∆n(xi) +
1

2
P0(n)γ(n)

∂

∂n
B∆n(xi), (2.40)

where P0(n) = c̄12
n,0c̄

34
n,0 and P1(n) = c12

n,0δc
34
n,0 are, respectively, the infinite N and correction

terms to the double-trace conformal block coefficients. The partial derivative with respect

to n brings down logarithms, since B∆n in position space contains terms with xi’s to

the n-th power. When we conglomerate the four-point function with ∆ = ∆n, we pick

up the contribution from a specific double-trace operator. We will see later that this

form is appropriate for the study not just of the leading order in perturbation theory,

but furthermore for non-perturbative corrections to a large, important class of conformal

block contributions that we will refer to as “cuts through the edge of a diagram”. Thus,

the reader should keep in mind that although the specific examples we will compute in

this section are perturbative, the general formulae we obtain will be applicable for gaining

non-perturbative information about the CFT.
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The extraction of OPE coefficients in the presence of anomalous dimensions is a bit

subtle. Let us therefore begin with a conceptually simpler case, where ∆a ≡ ∆1+∆2
2 and

∆b ≡ ∆3+∆4
2 are unrelated to each other. Then, O1O2 and O3O4 do not have any of the

same double-trace operators in their leading order OPE, so no anomalous dimensions will

appear in the four-point function at this order. From equations (2.39) and (2.29), we find

the following expression for P1:

P1(n) =
−1

4Γ(0)

G(∆a+n)︷ ︸︸ ︷
Γ4(∆a + n)

Γ(2(∆a + n))Γ(2∆a + 2n− h)
(2.41)

×π2

∫
dδ

2πi
M(δ)

Γ
(
δ
2 −∆a − n

)
csc
(
π
(
δ
2 −∆a

))
Γ
(
δ
2 + ∆a + n− h

)

Γ
(
δ
2 −∆a + 1

)
Γ
(
δ
2 −∆b + 1

)
sin
(
π
(
δ
2 −∆b

)) .

Because of the singular Γ(0)−1 prefactor, when we perform the δ integral by contour inte-

gration, we can discard any residues that are non-singular when n is an integer. This is a

great simplification, because the only such contributions are those poles at

δ

2
= ∆a +m, m = 0, . . . , n, (2.42)

where there is a pole from both the csc term and the first Γ function in the integrand. These

residues are in one-to-one correspondence with the residues of the following equivalent, but

simpler, integral, where the Γ−1(0) has been cancelled:

P1(n) =
−1

4

G(∆a + n)

sin (π (∆a −∆b))
π

∫
dδ

2πi
M(δ)

Γ
(
δ
2 −∆a − n

)
Γ
(
δ
2 + ∆a + n− h

)

Γ
(
δ
2 −∆a + 1

)
Γ
(
δ
2 −∆b + 1

) (2.43)

For any specific Mellin amplitude of the form M(δ), this formula for the OPE coefficients is

relatively simple to use, since now for any n it is just a finite sum of non-singular residues.

2.3.3 Anomalous dimensions and the derivative relation

We will now generalize the results in the previous section to include cases with anomalous

dimensions. This will requires addressing the subtlety mentioned above. To see the issue

explicitly, recall that the perturbative three-point function for two single-trace operators

O1,O2 of dimension ∆a with a double-trace operator of dimensions ∆+γ(∆) takes the form

A3 =
c̄12
n,0 + δc12

n,0

P∆a
12

u
∆+γ(∆)

2 (2.44)

=
1

P∆a
12

(
u

∆
2

(
c̄12
n,0 + δc12

n,0 + c̄12
n,0

1

2
γ(∆) log u+ . . .

))
,

where u ≡ P12
P01P02

. The problem is that the position-dependence of a three-point function

from a Mellin amplitude is completely fixed, and cannot contain any logarithms. This

is because at any finite order in perturbation theory, the anomalous dimensions naively

appear to break the conformal invariance, and it is only the resummation of all order of
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the logarithms that reproduces a conformally invariant correlation function with the new,

shifted dimensions of operators.

However, we are actually in a position to get around this difficulty very easily with the
use of the results we have just obtained above. While there were no anomalous dimensions
for ∆a and ∆b unrelated, in the limit of ∆b → ∆a we should be able to see logarithms
reappear. The important physical point to note however is that now there is no difference
between the double-trace operator with dimension 2∆a + 2n and the one with dimension
2∆b + 2n, so the physical three-point function will be the sum of both of these P1(n)’s.
As one can see from the csc(π(∆a −∆b)) prefactor in eq. (2.43), each of these P1(n)’s is
singular in this limit. But, this singularity exactly cancels in their sum, and the subleading
(finite) term in the three-point function contains a logarithm! Evaluating this explicitly,
we find the sum of the two three-point functions as ∆b → ∆a is

1

P∆a
12

lim
∆b→∆a

(
p1(n)u∆a+n + (∆b ↔ ∆a)

)

=− 1

4P∆a
12

lim
∆b→∆a

((
∂

∂∆a
− ∂

∂∆b

)
u∆a+nG(∆a+n)

∫
dδM(δ)

Γ
(
δ
2−∆a−n

)
Γ
(
δ
2 +∆a+n−h

)

Γ
(
δ
2−∆a+1

)
Γ
(
δ
2−∆b+1

)
)

= − 1

4P∆a
12

∂

∂n

(
u∆a+nG(∆a + n)

∫
dδM(δ)

Γ
(
δ
2 −∆a − n

)
Γ
(
δ
2 + ∆a + n− h

)

Γ
(
δ
2 −∆a + 1

)
Γ
(
δ
2 −∆b + 1

)
)
. (2.45)

Comparing this to the expected form of the three-point function in eq. (2.45), we see that

we have derived a simple formula for the anomalous dimensions γ(n) and OPE coefficients

p1(n) when ∆a = ∆b:

P0(n)γ(n) = −1

2
G(∆a + n)

∫
dδM(δ)

Γ
(
δ
2 −∆a − n

)
Γ
(
δ
2 + ∆a + n− h

)

Γ
(
δ
2 −∆a + 1

)
Γ
(
δ
2 −∆b + 1

) ,

P1(n) =
1

2

∂

∂n
P0(n)γ(n). (2.46)

This proves the relation between OPE coefficients and anomalous dimensions that was

found empirically in [22]. While we have focused in this section on cases with only spin-0

conformal blocks, the proof in fact generalizes straightforwardly to any spin. The reason is

that this result depended only on two properties of our expression for the OPE coefficients:

first, that only the singular residues in eq. (2.42) survive the Γ−1(0) prefactor, and second,

that these residues depend only on ∆a through the combination ∆a + n, except for the

factor Γ
(
δ
2 −∆a + 1

)
Γ
(
δ
2 −∆b + 1

)
that is symmetric in (∆a ↔ ∆b). This allowed us

to exchange a derivative ∆a for one in n, since ∂
∂∆a

derivatives acting on this symmetric

factor are cancelled by the ∂
∂∆b

derivative.

2.3.4 Example computations

Let us now apply this formula to some concrete examples. The simplest possible AdS

interaction that affects only scalar conformal blocks is a λφ4 interaction, which corresponds

to a Mellin amplitude that is just a constant. Let us now apply this formula to some

concrete examples. The simplest possible AdS interaction that affects only scalar conformal

blocks is a λφ4 interaction, which corresponds to a Mellin amplitude that is just a constant.
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Then, the anomalous dimension is simply

γ(n) ∝ G(∆a + n)
n∑

m=0

(−1)m+n

(n−m)!(m!)2
Γ(2∆a + n+m− h)

∝ 1
(
c̄12
n,0

)2

(h)n(2∆a + n− 2h+ 1)n(2∆ + 2n)−h
(∆a + n)2

1−h(2∆a + n− h)n
, (2.47)

where we have used the expression for the infinite N OPE coefficients from eq. (2.31) and

dropped an overall n-independent prefactor. This quantity was computed using alternate

methods in [16], whose results can be seen to agree with that above.

Next, let us turn to λ
4φ

2χ2, which has different fields on the left and right and is one

of the contact interactions in figure 4. We will compute the OPE coefficients δcφφ2∆χ+2n,0

at first order in λ; these will be useful ingredients when we study an example of the

optical theorem in section 3.4. In this case, we apply equation (2.39) to the trivial Mellin

amplitude M = λ4 ≡ λπ
h

2 Γ(∆Σ − h)
∏4
i=1

C∆i
Γ(∆i)

. We can normalize the wavefunction fφφ∆,0

by using equation (2.30) with the mean field theory c̄χχ2∆χ+2n,0. For the normalization of

the wavefunction we find

Nfχχ
∆,` =

π2hΓ(0)Γ
(
h− ∆

2

)2
Γ(∆− h)

Γ(h)Γ
(

∆
2

)2
Γ(2h−∆)

× C∆χ(∆χ)n (1 + ∆χ − h)n√
n! (h)n (2∆χ − 2h+ 1 + n)n (2∆χ − h+ n)n

(2.48)

where ∆ = 2∆χ + 2n corresponds to the dimension of [OχOχ]n,0 to first order in pertur-

bation theory. To apply equation (2.39) we need only integrate using Barnes’ Lemma,

giving

δcφφ∆,0 = λ4
(−1)n+1Γ(−n+ ∆φ −∆χ)Γ4(∆χ + n)Γ(∆χ + ∆φ + n− h)Γ(2∆χ + n− h)

2n!C∆χΓ(2∆χ + 2n)Γ(∆φ + ∆χ − h)Γ(2∆χ + 2n− h)(∆χ)n(∆χ − h+ 1)n

×
√
n!(h)n(2∆χ + n− 2h+ 1)n(2∆χ + n− h)n (2.49)

We can use this coefficient and the equivalent one with φ → ψ, to compute one-loop

conformal block coefficients, as pictured in figure 4. This will be useful for verifying the

unitarity relation in the flat space limit when we come to section 3.4.

3 S-matrix unitarity from CFT unitarity

In this section we will derive the optical theorem

− i
(
T − T †

)
= T †T (3.1)

for 2-to-2 scattering of massless scalars by analyzing the conformal block decomposition in

the flat spacetime limit of the dual AdS theory. The derivation will occur in several steps.

First, in section 3.1 we review our recent result from [9], where we showed that in the flat

space limit of AdS/CFT, conformal blocks correspond to delta functions in the center of
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mass energy with a definite angular momentum `. This means that

∑

∆,`

P∆,`B
`
∆(δij)

R→∞−→ S ∝ P√s,`C
(h−1)
` (cos θ) (3.2)

We will carefully compute the phase in the normalization of the blocks in order to precisely

identify their imaginary parts. Then in section 3.2 we will compute the left-hand side of

equation (3.1) in terms of the conformal block decomposition. Terms in the conformal

block decomposition that we call ‘edge cuts’ only contribute to the real part of the S-

Matrix;3 these edge cuts are pictured in figure 5 and also shown in a perturbative example

in figure 4. The conformal block coefficients are simply products of OPE coefficients, so

that schematically

P√s,` =
(
c̄L√s,` + δcL√s,`

)(
c̄R√s,` + δcR√s,`

)
(3.3)

In this expression, the edge cuts are simply the terms that involve the mean field theory

OPE coefficients c̄√s,`. To prove that the edge cuts drop out of the optical theorem we will

make essential use of the relations we derived in section 2.3 for the double-trace conformal

block coefficients and their anomalous dimensions.

The central cuts pictured in figure 5 do contribute to the imaginary part of the S-

Matrix, so it remains to show that these are equal to the right hand side of the optical

theorem. The central cuts are exactly the conformal block coefficients given by the product

of interacting OPE coefficients, so we have that

−i
(
T − T †

)∣∣∣√
s,`

=
∑

O∆,`

∆≈R
√
s

δc12
∆,`δc

34
∆,` (3.4)

But the right hand side is already in a form that can be interpreted as the right hand side of

optical theorem, T †T . It only remains to argue that the OPE coefficients are proportional

to scattering amplitudes, and that the sum over exchanged operators corresponds to a phase

space integral over multi-particle states. The OPE coefficients δc∆,` can be computed by

conglomerating k+ 2-point correlators into 3-point correlators involving k-trace operators,

and these k-trace operators provide a basis for scattering states in the flat space limit [15].

We will show in section 3.3 that the sum over k-trace operators becomes a phase space

integral over k-particle states in the flat space limit of AdS [15], as depicted in figure 3,

so that

∑

O∆,`

∆≈R
√
s

δc12
∆,`δc

34
∆,`

R→∞−→
∞∑

k=1

∫ k∏

i=1

ddqi
(2π)d2Ei

δd+1 (p1 + p2 − Σiqi)M12→kM∗34→k (3.5)

This will complete the derivation of the optical theorem. Finally, in section 3.4 we show

how this logic applies in a complete one-loop example.

3We will refer to the left-hand side of equation (3.1) as the imaginary part of the S-Matrix, although in
fact it can be complex if the in and out states are distinct.
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3.1 Conformal blocks in the flat space limit of AdS/CFT

The conformal block decomposition will be crucial to our proof of the unitarity of the

holographic S-matrix. As we discussed in the introduction, a conformal block corresponds

to the exchange of a particular state in the CFT, and in perturbation theory conformal

blocks sum up to give the various different cuts of Feynman diagrams. So, we will first

review the flat-space limit of conformal blocks from [9], paying close attention to the phase

in the normalization of the result. It was shown there that the flat-space limit of a block

is proportional to a δ function in the center of mass energy. We explicitly performed the

transformation between the Mellin amplitude and the S-Matrix [6, 9]

T (sij) = lim
R→∞

1

N

∫ i∞

−i∞
dα eααh−∆ΣM

(
δij = −R

2sij
4α

)
,

N =
πhR

n(1−d)
2

+d+1

2

n∏

i=1

C∆i

Γ(∆i)

n=4−→ 2−5π−3hR3−2h
4∏

i=1

1

Γ(∆i + 1− h)
, (3.6)

where ∆Σ ≡ 1
2

∑
i ∆i for half the sum of the external dimensions. Alternately, one can

argue based on general principles as follows. Conformal blocks are just the contribution

to the four-point function (or n-point functions, more generally) from complete irreducible

representations of the conformal group. Consider a conformal block whose primary has

dimension ∆. The primaries are the lowest weight states of the representation, i.e. those

annihilated by the generators Ki of special conformal transformations. There is a one-

to-one mapping of AdS states to CFT states, as well as of generators of the conformal

algebra to generators of AdS isometries, which in the flat space limit is just the Poincaré

algebra. Furthermore, special conformal generators in the flat-space limit become the

momentum operators [15, 16]. Thus, all states in the conformal block map onto a complete

irreducible representation of the Poincaré group that has center-of-mass energy
√
s = ∆/R.

Consequently, in the flat-space limit, the conformal block can contribute only at this value

of s. Its angular dependence is further constrained by symmetry to be the appropriate

polynomials in cos θ, which are Legendre polynomials in d = 3 and Gegenbauer polynomials

C
(h−1)
` (cos θ) more generally.

To read off the normalization, it is simplest to use the inverse of eq. (3.6), because

integrating over delta functions is very easy. So we compute

M(δij)
δij�1

= N
∫ ∞

0

dβ

β
e−ββ∆Σ−hT

(
sij = −4β

δij
R2

)
(3.7)

and input the form for T (sij) required by symmetry:

T (sij) = A∆,`δ(s−∆2/R2)C
(h−1)
` (cos θ). (3.8)

The integration over β is then trivial to perform:

N−1M(δij)
δij�1

=

[
A∆,`

(
∆2

4

)∆Σ−h−1
R2

4

]
(−δ12)h−∆Σe

∆2

4δ12C
(h−1)
` (cos θ) (3.9)

– 22 –



J
H
E
P
1
0
(
2
0
1
2
)
0
3
2

This result should be compared to the large δij limit of the conformal blocks themselves.

They are fixed up to an overall normalization by conformal invariance, and we will nor-

malize them in accordance with our definitions from previous sections, so that

B`
τ (δij) =

eπi(h−τ+1)
(
eiπ(δ+τ−2h) − 1

)

2πi

Γ(∆)Γ(∆− h+ 1)

Γ4
(

∆
2

) Γ
(
τ−δ

2

)
Γ
(

2h−τ−2`−δ
2

)

Γ
(
∆a − δ

2

)
Γ
(
∆b − δ

2

)P`,τ (δij),

(3.10)

where we define ∆1 = ∆2 = ∆a and ∆3 = ∆4 = ∆b. Here, τ = ∆ − ` is the twist of the

conformal block and P`,τ (δij) is a Mack polynomial [4, 9]. For ` = 0, it is just P0,∆ = 1.

We will need only the large δij limit of the block, with δij ∝ sij :

P`,τ (δij)
δij�1

= g`,τ (−δ12)`C
(h−1)
` (cos θ), (3.11)

where the proportionality constant g`,τ is real and g0,∆ = 1. Expanding B`
τ (δij) at large

δij and ∆, we obtain the approximation

N−1B`
τ (δij)

δij�1
= π3h−1 g`,τ∆2−h(−1)`∏4

i=1 Γ(∆i + 1− h)
23+2∆R2h−3(−δ12)h−∆Σe

∆2

4δ12C
(h−1)
` (cos θ)

×
(
i− cot

(π
2

(2δ12 − 2∆a + τ)
))

sin(πδ12) sin(π(δ12 −∆a + ∆b)).

(3.12)

Because of the sin and cot factors, this does not strictly speaking have a well-defined large

δ12 limit. However, if we smooth over an O(1) region of δ12, the last line averages out to

−i cos(π(∆a −∆b)) + sin(π(∆a + ∆b − τ))

2
. (3.13)

As an aside that will be relevant shortly, note that for the double-trace operators τ =

2∆a + 2n+ ` and τ = 2∆b + 2n+ `, this simplifies further to

− ie(−1)`+1iπ(∆a−∆b) and − ie(−1)`iπ(∆a−∆b), (3.14)

respectively. Thus we have obtained the overall normalization coefficient for the flat space

limit of the conformal blocks
[
A∆,`

(
∆2

4

)∆Σ−h−1
]

=
π3h−125+2∆R2h−5∆2−h
∏4
i=1 Γ(∆i + 1− h)

(3.15)

×
(−i cos(π(∆a −∆b)) + sin(π(∆a + ∆b − τ))

2

)

Note that both terms inside the parentheses appear to be even functions when we switch

∆a ↔ ∆b. However, in the special case where the conformal block is a double-trace

operator, it is important to note that when we make this switch we must take τ from

2∆a + 2n to 2∆b + 2n, as was already made manifest in equation (3.14). Thus we observe
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Figure 5. This figure depicts how the ‘edge cuts’, which correspond to the terms in the conformal
block decomposition involving free propagation, only contribute to the real part of the bulk S-
Matrix, while other operator exchanges contribute to both the real and the imaginary pieces of the
S-Matrix in the flat space limit of AdS/CFT.

the crucial fact that the imaginary part of the coefficient for double-trace operators remains

even under ∆a ↔ ∆b, while the real part is odd.

3.2 The imaginary part of the S-matrix

Let us use the tools we have developed to derive the optical theorem. As we saw in the

previous section, when we take the flat space limit of the conformal block decomposition

of the 4-pt correlator we find

T12→34(sij) =
∑

∆,`

P∆,`

[
A∆,`δ

(
s−∆2/R2

)
C

(h−1)
` (cos θ)

]
(3.16)

The normalization factor A∆,` was obtained in equation (3.16), and P∆,` is the full confor-

mal block coefficient.

In general, all operators O∆,` with the charge of O1O2 can contribute to this sum, and

so for each dimension ∆ we can write

P∆,` = c12
∆,`c

34
∆,`
∗

(3.17)

We have expressed the conformal block coefficients in terms of CFT 3-pt functions by

using the OPE, as discussed in section 2.2. Now we would like to isolate the double-trace

operators [O1O2]n,` and [O3O4]n,`. These operators play a special role because they are

present even when the bulk theory is free, and so they are responsible for the ‘1’ when we

write S = 1 + iT . In the special case of these operators, we can write

c12
n,` = c̄12

n,` + δc12
n,` (3.18)

where c̄12
n,` is the 3-pt function coefficient corresponding to a free bulk theory and δc12

n,` is

the change in this coefficient due to interactions. We will use a similar notation for c34
n,`,

although note that [O1O2]n,` and [O3O4]n,` will, in general, have different dimensions and
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so give distinct conributions. Now we can write the conformal block coefficients for these

operators as

Pn,` = c̄12
n,`c̄

34
n,` +

(
c̄12
n,`δc

34
n,` + δc12

n,`c̄
34
n,`

)
+ δc12

n,`δc
34
n,` (3.19)

If the operators O1 and O2 are the same as O3 and O4, then the first term corresponds

exactly to the ‘1’ part of the S-Matrix, and otherwise it is absent. The final term comes

purely from interactions, and actually combines two different pieces, one involving the

exchange of [O1O2]n,` and the other involving the exchange of [O3O4]n,`. However, the

terms in parentheses are precisely the edge cuts pictured in figure 5. They combine free

propagation on one side with interactions on the other, and are associated with poles in

the Γ functions from the Mellin integrand rather than poles in the Mellin amplitude itself.4

Let us show that these edge cuts drop out of the imaginary part of the S-Matrix.

Assume for simplicity that we are dealing with real scalar fields, so all bulk couplings are

real; the generalization to complex couplings is straightforward. Now the OPE coefficients

are real, and i(T † − T ) = 2Im(T ). Furthermore, in any physical process in the flat-space

limit, there will be a finite resolution much greater than the AdS curvature scale, which

we can incorporate through a resolution function fε(s, s0) narrowly peaked on s = s0.

Taking the flat-space limit of the conformal block decomposition and integrating against

this resolution, the edge cuts contribute as

Tε ∝ −i
∑

n,`

fε((2∆a+2n)2/R2, s0)c̄12
n,`δc

34
n,`e
−iπ(−1)`∆abC

(h−1)
` (cos θ)+(1, 2,∆a↔3, 4,∆b)

(3.21)

where Tε indicates the finite resolution and we have used our computation of the normal-

ization factors A∆,`, defining ∆ab ≡ (∆a −∆b) for convenience. Only the phase of A∆,` is

relevant here, so we have discarded a real overall coefficient. We are primarily interested

in the imaginary piece of T for unitarity, but it will be enlightening to keep track of both

its real and imaginary pieces. We will now use our formula from equation (2.43) for the

OPE coefficients. This is specific to ` = 0, but the generalization of the following step to

4This definition of “edge cuts” as any term with a c̄ factor should be intuitively reasonable, but we can
also more rigorously connect it to bulk diagrammatics. For any diagram, we can formally label all internal
field lines by φ

(I)
i ’s, which are distinct from the external fields φ

(E)
i . This is just a relabeling and does

not change the Mellin amplitude itself. However, it is now manifest that “cuts through the middle of the
diagram” are any conformal blocks for operators made of internal fields φ

(I)
i , and “cuts through the edge

of the diagram” are any conformal blocks for operators made of external fields φ
(E)
i . Since φ

(E)
i ’s never

appear as internal lines, such a diagram is not sensitive to any lower order corrections to their conformal
blocks, and must take the form of a leading correction, i.e.

A ⊃ c̄12
n,`δc

34
n,`B2∆a+2n + δc12

n,`c̄
34
n,`B2∆b+2n, (3.20)

plus a possible 1
2
(c̄12)2γ12

∂
∂n
B2∆a+2n term if [O1O2]n,` = [O3O4]n′,`. This is a long-winded way of saying

that in this labeling, it is manifest that “edge cuts” are exactly equivalent to terms that contain c̄12 or
c̄34. However, c̄’s are exactly identified as the parts of the OPE coefficients that are zero-th order in any
bulk couplings, and this characterization of them is completely unaffected by our formal relabeling of the
fields. This proves the claim. Furthermore, since φ

(E)
i ’s never appear as internal lines, there will be no poles

corresponding to them in the Mellin amplitude itself — all their poles appear solely in the Γ functions in
the definition of the Mellin integrand. This indicates that the appropriate non-perturbative definition of
edge cuts is contributions to correlators from the poles in these Γ functions.
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non-zero spins is straightforward:

T `=0
ε ∝

[∑
n

fε((2∆a + 2n)2/R2, s0)
−ie−iπ∆abG(∆a + n)

sin(π∆ab)

∫
dδM(δ)

Γ
(
δ
2
−∆a − n

)
Γ
(
δ
2

+ ∆a + n− h
)

Γ
(
δ
2
−∆a + 1

)
Γ
(
δ
2
−∆b + 1

)
+
∑
n

fε((2∆b + 2n)2/R2, s0)
−ieiπ∆abG(∆b + n)

sin(−π∆ab)

∫
dδM(δ)

Γ
(
δ
2
−∆b − n

)
Γ
(
δ
2

+ ∆b + n− h
)

Γ
(
δ
2
−∆a + 1

)
Γ
(
δ
2
−∆b + 1

) ]

∝ G

(√
s0R2

4

)∫
dδM(δ)

Γ

(
δ
2
−
√

s0R2

4

)
Γ

(
δ
2

+
√

s0R2

4
− h
)

Γ
(
δ
2
−∆a + 1

)
Γ
(
δ
2
−∆b + 1

) . (3.22)

The two conformal blocks have combined to give the integral in brackets times a real

coefficient!

The case where ∆a = ∆b can be considered as a limiting case of ∆a 6= ∆b, and so is

included in our proof above. However, one can still ask how the imaginary piece cancels

technically in this case, since there are no longer two different conformal blocks from the

left and right side of the diagram to cancel against each other. The resolution of this issue

is that this is exactly the situation where the derivative relation equation (2.33) is satisfied.

Therefore, each conformal block contributes exactly as a total derivative:

A4 =
∑

n,`

∂

∂n

((
c̄12
n,`

)2 1

2
γ(n, `)B∆n,`(xi)

)
. (3.23)

The imaginary piece of the conformal block coefficient eq. (3.13) is smooth as an analytic

function in n, and so when we take the flat-space limit the sum becomes an integral over

a total derivative, and therefore it vanishes.

Next we need to explain why the only contributions to equation (3.17) are from k-

trace operators dual to states composed of stable bulk particles. As we mentioned in

the introduction, although unstable particles can be included in the perturbative cutting

rules, the S-Matrix is only a well-defined unitary transformation between states made up

of exactly stable particles. Thus the operator Oχ dual to an unstable particle χ in AdS

will not appear in the optical theorem, and it must make a vanishing contribution to the

conformal block coefficients in the flat space limit of AdS. This follows because Oχ will

mix very quickly with the multi-trace operators into which it can decay; roughly speaking,

if χ has a lifetime τ , then it will only exist for a time of order τ/R, so its contribution

in the flat space limit will go to zero. We saw this effect in the concrete example of a

bulk µφ2χ theory in [9], where we derived the Breit-Wigner resonance behavior from a

re-summed Mellin amplitude. In that case, for any finite AdS scale R the single χ mode

gave a finite contribution, but Oχ itself became negligible as R → ∞, as it was replaced

by the continuum of 2φ states. Another familiar manifestation of this fact is that the delta

function resonance from a stable particle is infinitely sharper, and therefore infinitely taller,

than the smooth resonance from an unstable particle. So while dropping the single mode

corresponding to a stable particle would completely erase its delta function resonance,

dropping an unstable particle mode has a negligible effect on the S-Matrix. In summary:

only operators dual to stable particles make an appearance in equation (3.17).

Finally, we will complete the argument by showing that the sum over k-trace operators

in equations (3.16) and (3.17) becomes a d+ 1 dimensional k-particle phase space integral.
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3.3 Sums over operators as integrals over phase space

To complete our derivation of the optical theorem and of Cutkosky’s ‘cutting rules’, we

need to show that the sum over the exchange of all k-trace operators turns into a phase

space integral over k-particle states in the flat space limit of AdS/CFT, as pictured in

figure 3.

We can understand this by noting that in the large N limit, the space of states created

by single-trace CFT operators is isomorphic to the Fock space of free particle states in

AdS. This follows from the fact that in AdS/CFT, the Hilbert spaces of the two theories

are identical. For example, if we quantize a free scalar field in AdS [15, 27–29], we find

φ(t, ρ,Ω) =
∑

n,l,J

φnl(t,Ω, ρ)anlJ + φ∗nlJ(t,Ω, ρ)a†nlJ (3.24)

while the dual CFT operator can be quantized in terms of the same creation and annihi-

lation operators, a†nlJ and anlJ , as

O(t,Ω) =
∑

n,l,J

1

NOnlJ

(
eiEn,ltYlJ(Ω)anlJ + e−iEn,ltY ∗lJ(Ω)a†nlJ

)
(3.25)

We gave the explicit wavefunctions and normalizations in [15], but the crucial point is

physical and independent of the details. As is well known, particles in AdS behave as

though they are in an IR-regulating cavity with a size set by the AdS length R. Thus for

finite R, the spectrum of k-trace states behaves like the discrete spectrum of k-particle

states in a box of size R. When we take the flat space limit R → ∞, the discrete modes

approach a continuum, and we recover the usual k-particle Lorentz invariant phase space

when we sum over these modes. An explicit analysis of the wave functions φn,` confirms

this intuition [15], and the standard AdS quantization above reduces to the flat space

quantization of a free field in spherical coordinates. Since from AdS/CFT we know that

the hilbert spaces of AdS particles and CFT states are identical, we can conclude that by

summing over a complete set of particle states we are also summing over all possible CFT

operators.

As a concrete example, in [16] one of us considered this process in detail for the case

of double trace operators and 2-particle states. There it was shown that the state created

by a double-trace operator [O1O2]n,`,J can be expressed as

|n, `, J〉 =
|2p| d−2

2

(2π)d
√

2RE

∫
dp̂Y`J(p̂)

∫
ddqf(q)|q + p〉|q − p〉 (n� 1) (3.26)

where the state |k〉 is a one-particle state with momentum k, and the labels J denote

various angular momentum quantum numbers. The important point is that for primary

double-trace operators, the function f(q) is fixed to be a Gaussian with width
√
E/R. This

means that in the flat space limit where n = ER we obtain precisely the `th partial wave

corresponding to a 2-particle state with center of mass energy E.
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As we have discussed above, the coefficient of the conformal blocks B∆,` at a dimension

∆ can be computed by summing over the squares of appropriately normalized 3-pt functions

〈O1O2O1O2〉 =
∑

`,J

(
c12
n`J

)2
Bn,` where c12

n`JT
n,`,J
∆1,∆2

= 〈O1(P1)O2(P2)|n, `, J〉 (3.27)

If we write the double-trace states |n, `, J〉 using equation (3.26), then in the flat space limit

we can sum over the angular momentum quantum numbers `, J while fixing the dimension

n ≈ ER at the center of mass energy of the scattering process, as measured in AdS units.

This returns us from the spherical to the plane wave basis, giving

∑

`,J

(
c12
ER,`,J

)2 →
(
|2p| d−2

2

(2π)d
√

2RE

)2 ∫
dp̂dp̂′

∑

`,J

Y`J(p̂)Y ∗`J(p̂′)c12
ER (p,−p) c12

ER
∗ (
p′,−p′

)

=

∫
dd~ka

(2π)d2|ka|
dd~kb

(2π)d2|kb|
δd+1(PCoM − ka − kb)

∣∣c12
ER(ka, kb)

∣∣2 (3.28)

where the new 3-pt function coefficient c12
ER(ka, kb) in the plane wave basis can be re-

interpreted as the square of the flat space scattering amplitude for 12 → ab, and PCoM is

the d + 1 dimensional center of mass momentum. To complete this re-interpretation, the

external states must also be plane wave scattering states. Plane waves with energy ω and

velocity v̂ are created by acting with [9, 14]

|ω, v̂〉 =
2∆Γ(∆)R

d−3
2

(2π)h+1C∆(Rω)∆−1

∫ τ

−τ
dteiωtO(t,−v̂)|0〉 (3.29)

Thus c12
ER(ka, kb) can only be interpreted as a scattering amplitude when the operators O1

and O2 are normalized and integrated in this way.

We should emphasize that the emergence of a d + 1 dimensional phase space integral

from the sum over operators is essentially kinematic. It follows as a consequence of the

structure of the conformal algebra as it reduces to the Poincaré algebra in the flat space

limit of AdS/CFT, as we discussed in [15]. In particular, this means that if we instead

study superconformal field theories, then we will instead be taking the flat space limit of

the superconformal algebra. Since the spacetime geometry follows from the algebra, in the

future one should be able to obtain higher dimensional phase space integrals corresponding

to decompactifying bulk dimensions from the flat space limit of superconformal theories.

3.4 A complete one-loop example

Now let us put the pieces together and understand how the optical theorem applies to the

one-loop amplitude for 2φ→ 2ψ in a theory with couplings λ
4φ

2χ2 and g
4χ

2ψ2, as pictured

in figure 6. We could just as easily treat φ4 theory, but we have introduced three fields in

order to separate out the various different contributions to the one-loop amplitude.

We computed the relevant one-loop Mellin amplitude in [9] and verified that it has

the correct flat space limit. We also explained how branch cuts arise from the coalescence

of poles in the flat space limit, and verified that the discontinuity across the branch cut
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φ

φ

χ

χ

ψ

ψ

λ g
φ

φ

ψ

ψ

λ g

2∆χ + 2n
∞∑

n=0

N∆χ(n)=

Figure 6. This figure shows how the one-loop example studied in section 3.4 can be computed by
using the Kallen-Lehmann representation in the bulk of AdS, as discussed in [9]. In this way one
can write the product of propagators in the loop as a sum over tree-level exchanges with different
bulk masses, or CFT dimensions. The conformal block decomposition of this Witten diagram was
indicated in figure 4.

is correctly reproduced. Let us now summarize the method and results. To compute a

certain class of loop amplitudes, one can use the fact that in position space in the bulk

of AdS

G∆1(X,Y )G∆2(X,Y ) =
∑

n

a∆1,∆2(n)G∆1+∆2+2n(X,Y ), where (3.30)

a∆1,∆2(n) =
(h)n

2πhn!

(∆1 + ∆2 + 2n)1−h(∆1 + ∆2 + n− 2h+ 1)n
(∆1 + n)1−h(∆2 + n)1−h(∆1 + ∆2 + n− h)n

.

This allows a Kallen-Lehmann type representation [30] for the loop amplitude as a sum over

tree level exchanges with dimensions 2∆χ + 2n, as indicated in figure 6. Taking N∆χ(n) =

a∆χ,∆χ(n) and using the diagrammatic rules from [9] we find the Mellin amplitude for this

diagram is

M1−loop(δij) = λg
∑

n

N∆χ(n)M2∆χ+2n(δij) (3.31)

where M∆(δij) is the Mellin amplitude for a tree level exchange of a bulk field dual to an

operator of dimension ∆. It is

M∆(δij) =
∑

m

Rm
δ − (∆ + 2m)

, (3.32)

where δ = 2∆φ − 2δ12 and ∆ = 2∆χ + 2n in our case. The residue Rm is [6, 7, 9]

Rm = − 1

(4πh)3

Γ(∆φ − h+ ∆
2 )Γ(∆ψ − h+ ∆

2 )

Γ(∆φ − h+ 1)2Γ(∆ψ − h+ 1)2
×
(
1−∆φ + ∆

2

)
m

(
1−∆ψ + ∆

2

)
m

m!Γ(∆− h+ 1 +m)
(3.33)

and it can be easily computed using the diagrammatic rules from [7–10].

The particular decomposition in equation (3.31) is very useful for several reasons. First

of all, to compute the flat space limit of the loop amplitude we need only know the flat

space limit of M∆(δij). But this is simply the flat space scattering amplitude corresponding
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to the tree-level exchange of a particle of mass (2∆χ+ 2n)/R. In this limit, the sum over n

becomes an integral and we can take the large n limit of N∆χ(n) to find the loop amplitude

M1−loop(s) = λg

∫ ∞

0
dn

N∆χ(n)

s− (2∆χ + 2n)2
where N∆χ(n) ≈ 2

(4π)hΓ(h)
n2(h−1) (3.34)

Another useful feature of equation (3.31) is that it can be immediately related to the

conformal block decomposition. As we discussed in [9], conformal blocks and tree-level

AdS exchanges have identical poles and residues in the Mellin amplitude; they differ only

in their asymptotic behavior at large δij . This means that we can immediately read off the

coefficients in the conformal block decomposition of the correlator corresponding to this

1-loop Mellin amplitude in the [OχOχ]n,0 channel, it is

M4(δij) ⊃
∑

n

P2∆χ+2n ×B2∆χ+2n,0(δij) (3.35)

where

P2∆χ+2n = λgN∆χ(n)
(
π

1
2
−3h4−∆χ−n−2

)
(3.36)

×Γ
(

∆
2

)3
Γ
(
∆ψ − ∆

2

)
Γ
(
∆φ − ∆

2

)
Γ
(
∆ψ + ∆

2 − h
)

Γ
(
∆φ + ∆

2 − h
)

Γ (∆ψ + 1− h)2 Γ (∆φ + 1− h)2 Γ
(

∆+1
2

)
Γ (∆ + 1− h)

with ∆ ≡ 2∆χ + 2n, and we have taken ` = 0 because the coefficient of all the blocks

with ` > 0 vanish. The normalization here follows from the relative definition of the Mellin

amplitude for a bulk exchange and the normalization of the conformal blocks, which is most

easily determined by relating the residues at their poles. Finally, one can also see [9] from

equation (3.34) that the discontinuity across the branch cut in the flat space amplitude is

just given by the residue of the pole in this equation, which is

disc
[
M1−loop

]
= λg

N∆χ

(√
s

2

)

4
√
s

. (3.37)

This formula appears on the left-hand side of the optical theorem, as the imaginary part

of the scattering amplitude. It remains to see how this is reproduced by the right hand

side of the optical theorem.

To compute the right-hand side of the optical theorem and check equality, we need

to apply our conglomeration procedure to compute the OPE coefficients that determine

N∆χ(n). Fortunately, we did this calculation in section 2.3.4 and found the OPE coeffi-

cient δcφφ2∆χ+2n for the operator [OχOχ]n,0 in the product Oφ × Oφ. One can verify using

equation (2.49) that (
δcψψ2∆χ+2n

)(
δcφφ2∆χ+2n

)
= P2∆χ+2n (3.38)

using the expression we computed in equation (3.36). This provides a very non-trivial test

of the conglomeration technique. We can also interpret the product of OPE coefficients in
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terms of a 2-particle phase space integral in the flat space limit. By definition, we have that

cφφn`JT
n,`,J
∆φ,∆φ

= 〈Oφ(P1)Oφ(P2)| 2∆χ + 2n, `, J〉 (3.39)

If we apply equation (3.29) to the Oφ operators, then we see that at large n, the constant

cφφn`J can be interpreted as a flat space scattering amplitude between two φ particles in

plane wave states and a 2χ particle state in the spherical wave state of equation (3.26).

So each OPE coefficient can be interpreted as a tree-level scattering amplitude for 2φ →
2χ and 2ψ → 2χ, respectively, and in the flat space limit equation (3.38) becomes the

optical theorem.

4 Discussion

Although it has been clear for some time that the S-Matrix is the only exact observable in

flat space quantum gravity, it has remained somewhat mysterious what sort of holographic

theory [31–33] might compute it. A true theory should do more than just output scattering

amplitudes, it must also provide an understanding of how fundamental principles such as

bulk locality and quantum mechanics emerge. This would appear to be an especially

difficult problem if one tries to obtain a holographic theory that ‘lives’ directly on the null

boundaries of flat spacetime, where notions such as time and distance can only have a

limited meaning.

We have argued that the flat spacetime limit of AdS/CFT may provide the theory

that we have been looking for. In [9] we derived a formula conjectured by Penedones [6]

that relates the Mellin amplitude [4, 5] for n-pt CFT correlators to the flat space S-Matrix.

This formula expresses the S-Matrix as a simple integral transform of the Mellin amplitude,

which itself must be a meromorphic function restricted to have only simple poles on the real

axis. The clearest way to understand flat spacetime locality from a holographic perspective

is via the analyticity properties of the S-Matrix. This strongly suggests that the most

natural way to understand locality may be in terms of the very restricted analytic structure

of the Mellin amplitude combined with some set of assumptions about the spectrum of the

CFT, as described in [22].

In the present work we have shown that the operator product expansion and conformal

block decomposition of CFTs encodes unitarity in a form that appears very similar to the

usual optical theorem for the S-Matrix, as pictured in figure 2. By taking the flat space limit

of the AdS/CFT duality we showed that one can derive the optical theorem directly from

these unitarity relations for the case of 2-to-2 scattering of massless scalar particles. In the

perturbative case this reduces to the usual cutting rules for Feynman diagrams. We also saw

something subtle and interesting occur with the spectrum — in the flat space limit, CFT

operators dual to unstable particles must decouple from the unitarity relation. It would

be interesting to understand this phenomenon better, and to explain it without having to

appeal to bulk reasoning. To give a vaguer and more ambitious-sounding summary, one

might say that we have shown how to derive bulk quantum mechanics from the quantum

mechanics of the holographic dual.
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To make these derivations possible we developed technology to conglomerate many

local operators together into a single composite operator. To enact this conglomeration we

used smearing functions f∆,` that we labeled ‘wavefunctions’ because, via the operator-state

corresopndence, these functions also extract definite states from the CFT. The relative

simplicity of our formalism was made possible through use of the Mellin amplitude for

CFT correlators. Since the Mellin representation depends on position space kinematics

through specific power-laws, it accords naturally with the structure of the conglomerating

wavefunctions, which have the power-law behavior of CFT 3-pt correlators. Perhaps in the

future the logic will be reversed; one might attempt to derive the Mellin amplitude as the

representation where these wavefunctions behave most naturally.

We also gave a schematic argument that the usual Dyson series for the S-Matrix can be

constructed in AdS using the dilatation operator, and that at first order it gives rise to the

prescription for the S-Matrix in terms of the anomalous dimension matrix that was given

in [16]. In [9] we derived Penedones formula for the S-Matrix using essentially the same

wavepacket setup that was originally described in [12, 13] and further examined in [14,

15]. Thus we have given at least a rough explanation why all three of these holographic

formalisms for computing the bulk S-Matrix agree, although we view the formula in terms

of the Mellin amplitude as by far the most elegant and physical.

The impediment to formulating a general proof of the optical theorem for any n-pt

scattering amplitude with particles of arbitrary spin seems to be mostly technical. The

requisite CFT technology to describe higher-spin particles [20, 25] and higher-point confor-

mal blocks has not been fully developed, so we lack the necessary CFT ingredients. Note

that the fact that sums over k-trace operators reduce to k-particle phase space integrals is

essentially kinematic, following from the structure of the conformal algebra when applied

to large dimension operators. Thus in the future one should be able to show how super-

conformal theories give rise to higher dimensional phase space integrals corresponding to

extra dimensions that decompactify in the flat space limit.

Perhaps it would be appropriate to mention here that some of the standard lore con-

cerning n-pt correlators seems a bit misleading, and that this becomes very apparent when

it is re-stated in terms of the bulk S-Matrix. CFTs are often viewed as extremely con-

strained theories, and the statement is often made that all CFT correlators are completely

determined by the 3-pt correlators. In 2-dimensions where there is an infinite dimensional

symmetry algebra this may be a very powerful point, but in higher dimensions it is rather

trivial. In particular, the flat space limit of this statement is the trivial claim that once we

know the 2-to-k scattering amplitudes for all k, we know the entire S-Matrix.

We have mentioned this point in order to emphasize that higher correlation functions

in CFTs are very non-trivial and are worthy of investigation. Higher-point conformal

blocks have rarely been discussed, but we would require such objects in order to formulate

S-Matrix unitarity beyond four particles. It would be interesting to develop techniques for

handling them. Another reason to study higher-point correlators is to understand Hawking

radiation, which produces large multiplicity final states that can be understood in terms

of the properties of correlators involving a large number of single-trace operators. The flat

space limit of AdS/CFT turns the bootstrap program for CFTs into the S-Matrix program,
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so focusing solely on the 4-pt correlators of single-trace operators would be like restricting

the study of scattering amplitudes to 2-to-2 processes. We hope that our portrait of the

holographic S-Matrix suggests new directions for future investigation.

The AdS/CFT correspondence [1–3] has proved to be an extremely important and

fruitful discovery. One perspective on this correspondence views it as a very large com-

pendium of exact dualities between various CFTs and other models of quantum gravity,

often in the form of Superstring Theories or M-Theory. A complementary perspective in-

volves placing an arbitrary effective field theory in Anti-deSitter space and computing the

correlation functions of bulk fields as they approach the boundary [16, 34]. The correlators

of this ‘effective conformal theory’ will approximate those of a CFT to very good accu-

racy [22], with errors suppressed by powers of operator dimensions divided by the cutoff

in AdS units [16]. The search for a non-perturbative completion to a gravitational EFT in

AdS space translates into the question of whether there exists an exactly defined CFT that

approximately reproduces the boundary correlators of the AdS effective theory. Similarly,

we can UV complete a gravitational EFT in flat spacetime if we can find a sequence of

CFTs of increasing central charge whose spectrum and correlators approximate those of

the EFT in the flat space limit of AdS.

In other words, although it may be extremely challenging to actually find a non-

perturbative completion for a given gravitational effective field theory, anyone can use

AdS/CFT to correctly formulate the question. This means that one can obtain robust re-

sults about quantum gravity by modeling the correlators of low-dimension operators using

bulk effective field theory, and then using the bootstrap approach [17, 19, 20, 25, 26, 35–39]

to constrain correlators that involve operators of larger dimension. Since dimensions in

the CFT correspond to bulk energies, one can obtain information about processes at

trans-Planckian energies in AdS. In [9] we used Hawking evaporation to make a prediction

for the conformal block decomposition of 4-pt correlators. If one can derive this generic

behavior from CFT dynamics by using the bootstrap, then quantum gravity may be

accessible to mortals.

Should we view a holographic description as the final word on quantum gravity in a par-

ticular class of spacetimes? The legalistic answer may be yes, but it seems that holographic

descriptions such as AdS/CFT do not readily yield information about the physics behind

horizons, and we might hope that such questions are not entirely ill-defined. It seems

reasonable to assume that if we could do experiments on black holes in a large enough

laboratory, we would see unitary evaporation, with intrinsic errors that decrease as we

increase the size of our detector. This suggests that it may be worth looking [40] for an ap-

proximation scheme beyond effective field theory that encodes both locality and its demise.
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A Conglomerating operators: regularization details

Here, we will describe in more detail our regularization procedure for conglomerating op-

erators. Let us return to eq. (2.28), but keeping ∆ arbitrary:

c̄12
∆,0N

f
∆,0 = π2hΓ(∆1+∆2−∆

2 )Γ (h−∆1) Γ (h−∆2) Γ
(
−h+ ∆+∆1+∆2

2

)

Γ(∆1)Γ(∆2)Γ
(
h+ ∆−∆1−∆2

2

)
Γ(2h− ∆+∆1+∆2

2 )
(A.1)

To fix the normalization, we want to conglomerate operators again to obtain a two-

point function. As we will see in a moment, it is necessary to regulate by both taking the

dimension ∆′ of the second operator in the two-point function to be arbitrary and also to

define it as a function of two positions P5 and P5′ that we will take to be equal in physical

quantities. That is, we will calculate the two-point function

〈O∆,0(P0)O∆′,0(P5, P5′)〉 (A.2)

where

O∆′,0(P5, P5′) =
1

Nf
∆′,0

∫
ddP1d

dP2
1

P
2d−∆1−∆2−∆′

2
12 P

∆2+∆′−∆1
2

15 P
∆1+∆′−∆2

2
25′

O1(P1)O2(P2)

(A.3)
Then, combining (2.28) and (A.3), a straightforward application of Symanzik’s star formula
demonstrates that

〈O∆,0(P0)O∆′,0(P5, P5′)〉 =

∫
ddP1d

dP2
P

∆′+∆1+∆2−2d
2

12

P
∆1+∆′−∆2

2
15 P

∆2+∆′−∆1
2

25′


 C∆1

C∆2
P

∆−∆1−∆2
2

12

P
∆+∆1−∆2

2
01 P

∆+∆2−∆1
2

02




=
C∆1
C∆2

P
∆+∆1−∆2

2

05′ P
∆+∆2−∆1

2
05 P

∆′−∆
2

55′

,

×
c̄12
∆,0

Nf
∆′,0

π2hΓ(∆′−∆
2 )Γ(h− ∆+∆2−∆1

2 )Γ(h− ∆+∆1−∆2

2 )Γ(∆− h)

Γ(h)Γ(∆+∆1−∆2

2 )Γ(∆+∆2−∆1

2 )Γ(2h−∆)
.

(A.4)

where we have taken the limit ∆′ → ∆ in places where it does not produce singulari-

ties. Now, let us calculate the inner product of the states corresponding to O∆,0(P0) and

O∆′,0(P5, P5′) in the usual way in radial quantization by taking x0 → 0 and x5, x
′
5 → ∞

and rescaling by the appropriate powers. As we take ∆′ → ∆, this inner product has the

interpretation of a normalization, so this fixes Nf
∆,0 as in eq. (2.30), but with “0” replaced

by ∆′−∆
2 :

Nf
∆,0 = c12

∆,0

π2hΓ(∆′−∆
2 )Γ

(
h− ∆+∆1−∆2

2

)
Γ(∆− h)Γ

(
h− ∆+∆2−∆1

2

)

Γ(h)Γ
(

∆+∆1−∆2
2

)
Γ
(

∆+∆2−∆1
2

)
Γ(d−∆)

. (A.5)

Finally, putting together eq. (A.1) and (A.5) to obtain the physical quantity c12
∆,0, we may
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take ∆′ = ∆1 + ∆2 + 2n and ∆ = ∆1 + ∆2 + 2n + ε and safely take the limit ε → 0, for

which we obtain the finite result of eq. (2.31).

B Conglomerating operators: spinning conformal blocks

We will extend the calculation in section 2 to general spin. The general form of three- and

two-point functions of primaries is

〈[O1O2]2n+`(P1)[O1O2]2n+`(P2)〉 = C2n+`
2 (−2)`

((Z1 · Z2)(P1 · P2)− (Z2 · P1)(Z1 · P2))`

P∆1+∆2+2n+2`
12

,

〈O1(P1)O2(P2)[O3O4]2n+`(P3)〉 = C2n+`
3

((Z3 · P1)P23 − (Z3 · P2)P13)`

P−n12 P∆2+n+`
23 P∆1+n+`

31

. (B.1)

The general spin smearing functions are again just three-point functions with shadow fields:

[O1O2]n,`(P0) = A

∫
dP1dP2

((Z0 · P1)P20 − (Z0 · P2)P10)`

P d−∆1−∆2−n
12 P∆1+n+`

02 P∆2+n+`
01

O1(P1)O2(P2). (B.2)

We will be interested in conglomerating O1 and O2 in order to obtain spinning oper-

ators in their OPE. While this procedure works for extracting a general operator, it will

be interesting to apply this to special cases as well. In particular, our first application will

be to the theory at infinite N , where the only operators that arise in the OPE are the

double-trace operators.

B.1 Conglomerating operators: disconnected four-point function

Since the only operators to consider in this case are the double-trace operators, we will label

them by their indices n, `, where ∆ = ∆1+∆2+2n+`; i.e. we will use the notation [O1O2]n,`
rather than [O1O2]∆,`. It will also be convenient to define ∆a = ∆1+∆2

2 . To extract the

N =∞ three-point function of [O1O2]n,` with O1,O2, we integrate the smearing function

against the disconnected diagram:

〈[O1O2]n,`(P0)O1(P3)O2(P4)〉 =
1

Nf
n,`

∫
dP1dP2

((Z0 · P1)P20 − (Z0 · P2)P10)`

P d−2∆a−n
12 P∆1+n+`

02 P∆2+n+`
01

C∆1C∆2

P∆1
13 P

∆2
24

.

(B.3)

To do this integral directly is more complicated than the ones we have encountered, because

the contraction vector Z0 for the indices of the spinning field acts like an additional point.

To perform this integral more simply we can use the fact [20, 25] that the three-point

function of scalars with a spin-` field has to be made out of powers of the tensor

C0AB = ZA0 P
B
0 − ZB0 PA0 , (B.4)

and the correlator can be written (P3·C0·P4)`

P
a03
03 P

a04
04 P

a34
34

. In particular, the correlation functions have

the gauge symmetry F (Pi, Zi + αiPi) = F (Pi, Zi). Thus, one way to make this constraint
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manifest and simplify the calculation is just to pick a gauge.5 Of course, we have to decide

what gauge to choose. Seemingly natural choices like Zi · Pi and Zi · Zi are not helpful,

since they are already satisfied in any gauge. The next best thing seems to be Zi · Pj for

one of the other j’s.

How much does this simplify the computation of the OPE coefficient? Let us take the

gauge where Z0 · P4 vanishes. Now, any time we get contributions from a positive power

of Z0 · P4, we can drop them. So far, this does not use any knowledge of the final form

of the correlation function other than the fact that it is gauge-invariant; for any Z0, we

can always re-obtain the full gauge-invariant result by calculating in this gauge and then

restoring gauge invariance by taking Z0 → Z0+αP0, α = −Z0·P4
P0·P4

, which is simply the gauge

transformation that took Z0 · P4 = 0, and which clearly reintroduces the gauge-invariant

P3 · C0 · P4.

Having fixed a gauge, we can continue with the computation. The smearing integral

to perform is

(
−1

2

)`∑

k

(
`

k

)
(−1)`−k

∫
dP1dP2

P k1zP
`−k
2z

P d−2∆a−n
12 P∆2+n+k

01 P∆1+n+`−k
02 P∆1

13 P
∆2
24

, (B.10)

5In order to gauge-fix the Zi’s, we should first decide what these abstract objects look like. They are
clearly not regular points like Pi’s in the boundary theory, because they satisfy Zi · Pi = 0, but Zi 6= Pi
(otherwise the CABi ’s would vanish). Let us imagine for a moment however what they would look like if
they were, so Zi projects down to the point zi. Then, Zi · Pi = 0 implies

(zi − xi)2 = 0. (B.5)

Obviously, in Euclidean space this requires zi = xi, which we do not want. Without loss of generality, let’s
take xi = 0. Then, we need

z2
i = 0. (B.6)

Now we see that zi should simply be a point on the boundary with complexified coordinates. So, in general,
we need

zi = xi + qi, q2
i = 0. (B.7)

This also makes it very explicit why taking Zi to be one of the Pj ’s in order to simplify the integrals is not
allowed. We can work out how the gauge transformation Z → Z + αP acts on q:

Z = (1, z2, zµ) = (1, x · (x+ 2q), xµ + qµ)
Z→Z+αP−→ (1 + α, x · ((1 + α)x+ 2q), (1 + α)xµ + qµ)

∼=
(

1, x ·
(
x+ 2

q

1 + α

)
, xµ +

q′µ

1 + α

)
. (B.8)

In the last line, we have used the fact that P ’s project down to boundary points by rescaling P+ → 1.
Thus, the effect of the gauge transformation on Z is written in terms of q very simply:

Z → Z + αP ⇔ q → q′ =
q

1 + α
. (B.9)
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where Piz = −2Pi · Z0. Focusing on individual terms, we compute

B`k ≡
∫
dP1dP2

P k1zP
`−k
2z

P d−2∆a−n
12 P∆2+n+k

01 P∆1+n+`−k
02 P∆1

13 P
∆2
24

=

∫
dP1P

k
1z

P∆1
13 P

∆2+n+k
01

∫
[dδ0zdδ1zdδ4z]

Γ(−δ0z)Γ(−δ1z)Γ(−δ4z)P
δ0z
0z P

δ1z
1z P

δ4z
4z

Γ(−(`− k))

(∆1 + n+ `− k)δ0z(d− 2∆a − n)δ1z(∆2)δ4z

I(∆1 + n+ `− k + δ0z, d− 2∆a − n+ δ1z,∆2 + δ4z), (B.11)

where we have introduced the notation

I(a, b, c) ≡
∫
ddP2

1

P a02P
b
12P

c
24

= χ(a, b, c)Ea14,0E
b
04,1E

c
01,4, Eij,k ≡

(
Pij

PikPjk

) 1
2

,

χ(a, b, c) ≡ πhΓ
(
a+b−c

2

)
Γ
(
b+c−a

2

)
Γ
(
c+a−b

2

)

Γ(a)Γ(b)Γ(c)
. (B.12)

The δiz’s satisfy the constraint δ0z+δ1z+δ4z = `−k, and the arguments of the I function get

shifted since we have eliminated 3 δ̃ij variables by using the constraints, δ̃04+δ̃14 = ∆2+δ2z,

etc. Now, the only poles that survive our gauge choice are δ0z = δ4z = 0, so δ1z = ` − k,

and we have

B`k =

∫
dP1P

`
1zχ(∆1 + n+ `− k, d− 2∆a − n+ `− k,∆2)(d− 2∆a − n)`−k

P∆1
13 P

h+n+`
01 P∆1+∆2+n−h

04 P h−∆1−n
14

=
χ(∆1 + n+ `− k, d− 2∆a − n+ `− k,∆2)χ(h+ n+ `, h−∆1 − n,∆1 + `)

P∆2+n
04 P∆1+n+`

03 P−n34

P `3z

×(d− 2∆a − n)`−k(∆1)` (B.13)

Somewhat remarkably, performing the sum over k obtains a relatively simple result for the
three-point function:

〈O1(P3)O2(P4)[O1O2]2n+`(P0)〉 = c̄12
n,`

(P3 · Z0)`

P∆2+n
04 P∆1+n+`

03 P−n34

,

c̄12
n,` =

C∆1
C∆2

Nf
n,`

π2hΓ(−n)Γ(h−∆1)Γ(h−∆2)Γ(−h+ 2∆a + n+ `)

Γ(h+ n+ `)Γ(∆1)Γ(∆2)Γ(2h− 2∆a − n)
.

(B.14)

This indeed is the correct form of the three-point function in Z0 · P4 = 0 gauge.

Having obtained the three-point function, we next need to conglomerate again in or-

der to determine the two-point function and thus the normalization of [O1O2]2n+`. The

smearing integral we have to compute is

〈[O1O2]2n+`(P0)[O1O2]2n′+`(P5)〉 =
c̄12
n,`

Nf
n,`

∫
dP3dP4

(Z5 · P3P45′ − Z5 · P4P35)`

P d−2∆a−n′
34 P∆2+n′+`

35 P∆1+n′+`
45′

×(Z0 · P3P04 − Z0 · P4P03)`

P∆2+n+`
04 P∆1+n+`

03 P−n34

, (B.15)
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where we have done the usual n 6= n′, 5 6= 5′ regularizations. We will take the gauge

P0 · Z5 = 0, P5 · Z0 = P5′ · Z0 = 0 (the second two are the same because P5 = P5′

everywhere except when they may give rise to P55′). Binomially expanding, we have

〈[O1O2]2n+`(P0)[O1O2]2n′+`(P5)〉 =

(
−1

2

)2` c̄12
n,`

Nf
n,`

∑̀

k

∑̀

k′

(−1)k+k′
(
`

k

)(
`

k′

)
B`kk′ ,

B`kk′ =

∫
dP3dP4

P k
′

3z′P
`−k′
4z′ P k3zP

`−k
4z

P d−2∆a−n′−n
34 P∆2+n′+k′

35 P∆1+n′+`−k′
45′ P∆2+n+`−k

04 P∆1+n+k
03

. (B.16)

We first perform the P4 integration, which results in the introduction of five new δ integra-

tion variables after imposing constraints. Four of them are forced to vanish by our gauge

choice, leaving a single variable that can be converted by the residue theorem into a sum:

B`kk′ =
∑

m

1

P−h+2∆a+n+n′+m
05′

∫
dP3

P `−m3z′ P `−m3z Pmzz′

P∆2+n′+k′

35 P∆1+n+k
03

(−1)m+1 (`− k)!(`− k′)!
m!(`− k −m)!(`− k′ −m)!

×χ(d− 2∆a − n′ − n+ 2`− k − k′ − 2m,∆1 + n′ + `− k′,∆2 + n+ `− k)

Ph−∆1−n′+`−k−m
03 Ph−∆2−n+`−k′−m

35′

×(d− 2∆a − n′ − n)2`−k−k′−2m. (B.17)

We can simplify this by taking P5′ → P5 in places where it will not lead to singularities,

which in particular is any place that does not have a n or n′ exponent. So, we can exchange

the powers of P35 and P35′ in the denominator for P h+n′+`−m
35 P−n35′ . But, then there are

no powers of k, k′ remaining in the Pij ’s, so we can complete the sum over them outside

the integral. We can furthermore take n → n′ in the prefactor, since this is needed as a

regulator only in the powers of Pij ’s. We thus obtain

〈[O1O2]2n+`(P0)[O1O2]2n′+`(P5)〉 =

c̄12
n,`

(−2)2`Nf
n,`

∞∑

m=0

πh(−1)m+1(`!)2Γ(h−n−∆1)Γ(h−n−∆2)Γ2(`+2n+2∆a−h)

m!Γ2(1+`−m)Γ(∆1+`+n)Γ(∆2+`+n)Γ(2h−2n−2∆a)Γ(m+2n+2∆a−h)

×
∫
dP3

P `−m3z P `−m3z′ Pmzz′

Ph+n−n′+`−m
03 P−n35′ P

h+n′+`−m
35 P−h+2∆a+n+n′+m

05′

. (B.18)

This last line is exactly of the form of Symanzik’s star formula:

∫
dP3

P `−m3z P `−m3z′ Pmzz′

P h+n−n′+`−m
03 P−n35′ P

h+n′+`−m
35 P−h+2∆a+n+n′+m

05′

=
(−1)`+m+1P `zz′(`−m)!χ(h+ n′ + `−m,h+ n− n′ + `−m,−n)

P 2∆a+2n′+`
05 Pn

′−n
55′

, (B.19)

where we have taken P5′ → P5 except inside P55′ as well as n→ n′ in some places that do

not lead to singularities. Putting everything together, we thus have

〈[O1O2]2n+`(P0)[O1O2]2n+`(P5)〉 = cn,`2

(
−1

2

)2` P `zz′

P 2∆a+2n+`
05

,
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cn,`2 =
c̄12
n,`

Nf
n,`

π2hΓ(0)(−1)ll!Γ(h−n−∆1)Γ(h−n−∆2)Γ(2l + 2n+ 2∆a−1)Γ(−h+ l + 2n+ 2∆a)

Γ(h+ l)Γ(l + n+ ∆1)Γ(l + n+ ∆2)Γ(2h−2n−2∆a)Γ(l + 2n+ 2∆a−1)
.

(B.20)

From equations (B.14) and (B.20), we can choose the normalization factor Nf
n,` to set a

canonically normalized two-point function coefficient, cn,`2 = 1. Then, we can read off the

OPE coefficient, which after some simplification is

(c̄12
n,`)

2 =
(−1)`C∆1

C∆2
(∆1 − h+ 1)n(∆2 − h+ 1)n(∆1)`+n(∆2)`+n

`!n!(`+ h)n(∆1 + ∆2 + n− 2h+ 1)n(∆1 + ∆2 + 2n+ `− 1)l(∆1 + ∆2 + n+ `− h)n
.

(B.21)

B.2 Conglomerating operators: connected four-point function

Next, let us apply the conglomerating methods to connected four-point functions. Here, it

is more convenient to work with the Mellin representation of the four-point function, since

all position space integrations can be performed using Symanzik’s start formula. We will

use as our Mellin coordinates the variables

x = ∆a − δ12 =
δ

2
, y = δ14 =

γ + δ

2
, (B.22)

since our expressions will typically be more compact in terms of these variables than in

terms of δij ’s or δ, γ. The four-point function can then be written as

A4 =

∫
dxdy

M̃(x,y)︷ ︸︸ ︷
M(x, y)Γ(∆a−x)Γ(∆b−x)Γ2(x−y)Γ2(y)

1

P∆a−x
12 P∆b−x

34 (P13P24)x−y(P14P23)y
,

(B.23)

where M̃(x, y) is the reduced Mellin amplitude. We obtain the OPE coefficient by smearing

to produce a three-point function:

A3 =

∫
dP1dP2

((Z0 · P1)P20 − (Z0 · P2)P10)`

P d−2∆a−n
12 P∆a+n+`

02 P∆a+n+`
01

A4 (B.24)

We will again work in a gauge where Z0 · P4 = 0 in order to simplify the calculation. In

order to use Symanzik’s formula, we will binomially expand to obtain

A3 =

(
−1

2

)`∑

k

(
`

k

)
(−1)`−kB`k

B`k =

∫
dxdydP1dP2

M̃(x, y)P k1zP
`−k
2z

P∆a+n+k
01 P∆a+n+`−k

02 P d−∆a−n−x
12 P∆b−x

34 (P13P24)x−y(P14P23)y

(B.25)
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Performing the P1 integration first, using Symanzik’s formula, we obtain

B`k =

k∑

m=0

(
k

m

)
B`mk

B`mk =

∫
[dδ]dxdydP2M̃(x, y)

× P `−m2z Pm3z

P δ02+∆a+n+`−k
02 P δ03

03 P
δ04
04 P

δ23+y
23 P δ24+x−y

24 P δ34+∆b−x
34

×πh Γ(δ02)Γ(δ03)Γ(δ04)Γ(δ23)Γ(δ24)Γ(δ34)

Γ(∆a + n+ k)Γ(d−∆a − n− x)Γ(x− y)Γ(y)
. (B.26)

The P2 integration also follows from the application of Symanzik’s formula. The essential

structure of the result of conglomerating is therefore that it introduces a projection function

H(∆, `;x, y):

A3 =
P `3z

P∆a+n+`
03 P∆a+n

04 P∆b−∆a−n
34

∫
dxdyM(x, y)Γ(∆a − x)Γ(∆b − x)H(∆a + n, `;x, y),

(B.27)

where an important point is that H(∆, `;x, y) does not depend on ∆a or ∆b:

H(∆, `;x, y) = π2h

(
−1

2

)` ∑̀

k=0

k∑

m=0

(−1)`−k
(
`

k

)(
k

m

)
Γ(y)Γ(x− y)

×
∫
dδ04dδ34

Γ(δ04)Γ(δ34)Γ(∆− δ04)Γ(y − δ04 − δ34)Γ(x−∆− δ34)Γ(h+ k −m− x+ δ34)

Γ(k + ∆)Γ(x− δ04 − δ34)Γ(d−∆− x)Γ(h−∆ + δ04)Γ(h+ l −m+ ∆− x+ δ34)

×Γ(h−∆− y + δ04)Γ(h+ l −m− x+ δ04 + δ34)Γ(−h+m+ ∆ + x− δ04 − δ34). (B.28)

We do not have a nice closed-form expression for H(∆, `;x, y) in general like we do for the

special case of
∫
dyΓ(y)Γ(x− y)H(∆, 0;x, y) that appeared in section 2. It is possible that

such an expression exists and could be obtained with more effort, and could be useful for

extracting OPE coefficients for specific theories. In addition, one may perform the δ04 and

δ34 integrations above using the residue theorem in order to obtain H(∆, `;x, y) as a sum,

which could perhaps be useful in some situations for numeric computations.

C Double trace operators

The purpose of this appendix is to obtain a completely general recursion relation that

expresses double trace primary operators in terms of linear combinations of derivatives

acting on O1O2. The full conformal algebra is

[Mµν , Pρ] = i(ηµρPν − ηνρPµ), [Mµν ,Kρ] = i(ηµρKν − ηνρKµ),

[Mµν , D] = 0, [Pµ,Kν ] = −2(ηµνD + iMµν),

[D,Pµ] = Pµ, [D,Kµ] = −Kµ. (C.1)
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Primary operators are those annihilated by the special conformal generator Kµ, so that

[Kµ,O] = 0. We will work with operators that are eigenstates of D and the angular

momentum generators, so our double trace operators can be written as [O1O2]n,`. In what

follows we will generalize the computations of [6, 21].

C.1 Action of Kµ on T (k, l − k, u1, u2,m)

By contracting with traceless symmetric polarizations V , we can write the action of Kµ on

the double-trace operators in a particular basis. Let us follow the notation of [6] and write

a general operator of the desired form as

T (k, l − k, u1, u2,m) =

V α1...αlPα1 . . . PαkPµ1 . . . Pµm(P 2)u1O1Pαk+1
. . . PαlPµ1 . . . Pµm(P 2)u2O2. (C.2)

Then, the action of Kµ on this operator is as follows:

KµT (k, l − k, u1, u2,m) =

V ·
[
2u1(d− 2u1 − 2∆1)PµPα1 . . . PαkPµ1 . . . Pµm(P 2)u1−1O1(. . . )O2

−2(∆1 +m+ k + 2u1 − 1)



∑

αs

ηµαs

P
(s)
k−1︷ ︸︸ ︷

Pα1 . . . P̂αs . . . Pαk

Pm︷ ︸︸ ︷
Pµ1 . . . Pµm

+
∑

µs

Pk︷ ︸︸ ︷
Pα1 . . . Pαk

P
(s)
m−1︷ ︸︸ ︷

Pµ1 . . . P̂µs . . . Pµm


 (P 2)u1O1(. . . )O2

+2Pµ

(∑

s>r

ηαsαrP
(s,r)
k−2 Pm+

∑

s,r

ηαsµrP
(s)
k−1P

(r)
m−1+

∑

s>r

ηµsµrPkP
(s,r)
m−2

)
(P 2)u1O1(. . . )O2

+(1↔ 2, k ↔ l − k)] . (C.3)

Here, we have defined P
(i)
k , P

(i,j)
k as indicated, and (. . . )O2 indicates the O2 half of the

double-trace operator before the Kµ action. Performing the contractions with V and

symmetrizing, we can write the results in terms of

Tµ(k, l − k, u1, u2,m) =

V α2...αl
µ Pα2 . . . PαkPµ1 . . . Pµm(P 2)u1O1Pαk+1

. . . PαlPµ1 . . . Pµm(P 2)u2O2,

(C.4)
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where Vµ is also symmetric and traceless. Grouping like terms, we find

KµT (k, l − k, u1, u2,m) = 2u1(d− 2u1 − 2∆1)× Tµ(k + 1, l − k, u1 − 1, u2,m)

2u2(d− 2u2 − 2∆2)× Tµ(k, l − k + 1, u1, u2 − 1,m)

−2k(∆1 +m+ k + 2u1 − 1)× Tµ(k − 1, l − k, u1, u2,m)

−2(l−k)(∆2+m+l−k+2u2−1)× Tµ(k, l−k−1, u1, u2,m)

−2m(∆1 +m+ 2u1 − 1)× Tµ(k, l − k + 1, u1, u2,m− 1)

−2m(∆2 +m+ 2u2 − 1)× Tµ(k + 1, l − k, u1, u2,m− 1)

+m(m− 1)× T (k + 1, l − k, u1, u2 + 1,m− 2)

+m(m− 1)× T (k, l − k + 1, u1 + 1, u2,m− 2). (C.5)

Since we are demanding that the operator [O1O2]n,` =∑
a(k1, k2, u1, u2,m)T (k1, k2, u1, u2,m), be primary, we obtain an equation for the

coefficients:

0 = 2(u1 + 1)(d− 2u1 − 2− 2∆1)a(k1 − 1, k2, u1 + 1, u2,m)

+2(u2 + 1)(d− 2u2 − 2− 2∆2)a(k1, k2 − 1, u1, u2 + 1,m)

−2(k1 + 1)(∆1 +m+ k1 + 2u1)a(k1 + 1, k2, u1, u2,m)

−2(k2 + 1)(∆2 +m+ k2 + 2u2)a(k1, k2 + 1, u1, u2,m)

−2(m+ 1)(∆1 +m+ 2u1)a(k1, k2 − 1, u1, u2,m+ 1)

−2(m+ 1)(∆2 +m+ 2u2)a(k1 − 1, k2, u1, u2,m+ 1)

+(m+ 1)(m+ 2)a(k1 − 1, k2, u1, u2 − 1,m+ 2)

+(m+ 1)(m+ 2)a(k1, k2 − 1, u1 − 1, u2,m+ 2) (C.6)

Note that there are two terms here where the total spin has been incremented to ` + 1,

while in the remaining terms it has been decremented to `− 1. These two types of terms

must cancel amongst themselves. The two incremented terms imply the equation

0 = −2(k1 + 1)(∆1 +m+ k1 + 2u1)a(k1 + 1, k2, u1, u2,m)

−2(k2 + 1)(∆2 +m+ k2 + 2u2)a(k1, k2 + 1, u1, u2,m). (C.7)

This is very constraining, since it completely fixes the k-dependence of a. Making an ansatz

a(k, l − k, u1, u2, n− u1 − u2) = sn,l(k)b(u1, u2) (C.8)

we can solve for sn,l(k) uniquely:

sn,l(k) =
(−1)k

k!(l − k)!Γ(∆1 + n+ u1 − u2 + k)Γ(∆2 + n+ u2 − u1 + l − k)
. (C.9)

Note that this agrees with the results of [6] for the n = 0 case he computed. Substituting

this back into our constraint on a for the spin ` − 1 terms, we obtain an equation for
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b(u1, u2). After some simplification, this can be written

0 =
(n− u1 − u2)(1 + n− u1 − u2)b(u1 − 1, u2)

k(l − k + n− 1− u1 + u2 + ∆2)
+

(n− u1 − u2)(1 + n− u1 − u2)b(u1, u2 − 1)

(k − l)(k + n− 1 + u1 − u2 + ∆1)

−2(n−u1−u2)(n−1 + u1−u2 + ∆1)b(u1, u2)

k(k + n−1 + u1−u2 + ∆1)
+

2(n−u1−u2)(n−1−u1 + u2 + ∆2)b(u1, u2)

(l−k)(l−k + n−1−u1 + u2 + ∆2)

−2(u2 + 1)(−d+ 2(1 + u2 + ∆2))b(u1, u2 + 1)

k(l − k + n− 1− u1 + u2 + ∆2)
+

2(u1 + 1)(d− 2(1 + u1 + ∆1))b(u1 + 1, u2)

(k − l)(k + n− 1 + u1 − u2 + ∆1)

(C.10)

Because of the k-dependence of s(k), this has many terms that depend explicitly on k. But,

we have just proven that b(u1, u2) cannot have any k-dependence! Thus, we can multiply

through by all the terms in the denominators and collect coefficients by powers of k. This

gives us exactly three equations for b(u1, u2), one for each of 1, k, k2. It is straightforward

to check that one linear combination of these three equations vanishes, so in fact we obtain

only two equations. We can take linear combinations of the remaining two equations to

obtain two recursion relations, one that increments u1 and another that increments u2:

b(u1 + 1, u2) =
m ((1 +m)b(u1, u2 − 1)− 2(l +m− 1 + 2u1 + ∆1)b(u1, u2))

2(u1 + 1)(−d+ 2(1 + u1 + ∆1))

b(u1, u2 + 1) =
m ((1 +m)b(u1 − 1, u2)− 2(l +m− 1 + 2u2 + ∆2)b(u1, u2))

2(u2 + 1)(−d+ 2(1 + u2 + ∆2))
(C.11)

where we define m ≡ n − u1 − u2 for concision. This allows us to obtain the full solution

for a(k, l−k, u1, u2,m) for any n, l, up to a single overall normalization factor by beginning

with b(0, 0) and then recursively increasing the parameters u1 and u2.

C.2 Solving in the boundary case

Unlike in the case of sn,`(k), we are unaware of a full closed form solution for b(u1, u2).

However, the equations for b(u1, u2) simplify when u2 = 0 or u1 = 0, giving

b(u1 + 1, 0) =
−(m)(l +m− 1 + 2u1 + ∆1)b(u1, 0)

2(u1 + 1)(−h+ (1 + u1) + ∆1)
(C.12)

and similarly with 1→ 2. This has the simple solution

b(u1, 0) = (−1)u1
(∆1 + n+ `− 1)u1n!

2u1Γ(u1)Γ(n+ 1− u1)(∆1 − h)u1

(C.13)

when normalized so that b(0, 0) = 1.

C.3 Large u, n behavior of the coefficients

The solutions to the above recursion relations are seem to be very complicated in general.

However, we will look for simplifications at large n. Our first step will be to obtain an

recursion relation for just the diagonal elements, u1 = u2 ≡ u. This may be done by

moving along the diagonal and near-diagonal u1 = u2 − 1, solving only for these elements

and no others. Formally, we can take b(u, u) = bd(u), b(u− 1, u) = bo(u); then, eliminating
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bo(u) will give us our recursion relation for the diagonal elements bd(u). This may be easily

done by shifting the argument where necessary, and we find

0 = +u2bd(u)(−(2(∆1 + u)− d))(2(∆2 + u)− d)− 1

4
bd(u− 2)(n− 2u+ 1)4

+

(
d(1−2u)+

1

2
(2∆1+2l+2n+2u−4)(2∆2+2l+2n+2u−4)−2(2u−1)(l+n−1)+2u2

)

×1

2
bd(u− 1)(n− 2u+ 1)2. (C.14)

Now, we want to take the large u, n limit of this. At leading order in this limit, the

shifts in u make no difference and we simply find

0 ≈ n3(3n− 8u)bd(u), (C.15)

which implies that bd(u) is peaked around u = 3n
8 . To go to higher orders, we can expand

the shifts in u as derivatives. We further take u = 3n
8 + δ, with δ of O(1). The subleading

behavior of the recursion relation is

0 ≈ n3
(
4(23 + 3d+ 2l − 2(∆1 + ∆2)− 32δ)bd(δ)− 5nb′d(δ)

)
. (C.16)

This is a first-order ordinary differential equation, and is easily solved. It has a simple

approximate solution in terms of a Gaussian:

bd(δ) ∝ exp

(
−(δ − δ0)2

2σ2

)
,

σ2 =
5n

128
, δ0 =

23 + 3d+ 2l − 2(∆1 + ∆2)

32
. (C.17)

Thus we see that these coefficients are sharply peaked around u1 = u2 = 3n
8 for large n.
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