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1 Introduction

One of the most interesting brane configuration to have been discovered in the last two
decades is probably the supertube. In its original incarnation [1], the supertube is a moving
D2 brane in which D0 branes and F1 strings are dissolved. What makes this D2 brane
special is the fact that the D0 and F1 densities satisfy a relation that allows the D2 brane to
have an arbitrary shape that can follow any closed curve in the eight dimensions transverse
to the F1 and yet remain supersymmetric [2]. The eight Killing spinors preserved by the
supertube are exactly the same as the common Killing spinors of its “electric” components:
the D0 branes and F1 strings.
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The fact that there are supersymmetric string theory configurations determined by ar-
bitrary continuous functions might appear unexpected, especially if one is used to thinking
about the supersymmetries preserved by infinite, flat branes at angles. Nevertheless, one
can dualize the supertube into a fundamental string that carries an arbitrary left-moving
momentum profile, and supertubes of various shapes are simply dual to various ways of
putting BPS momentum modes on the fundamental string [3, 4].

Another interesting feature of supertubes is that, in the duality frame in which the
electric charges are those of D1 and D5 branes, the back-reacted supertube solution can
be made into a smooth geometry [5–8]. Moreover, since this solution can be put in an
asymptotically AdS3 × S3 × T 4 geometry, the back-reacted supertube geometries can be
related to various half-BPS microstates of the D1-D5 CFT, and the entropy of the half-BPS
D1-D5 system can be reproduced by counting the smooth horizonless supertube configu-
rations [6, 9–11]. This has led to the conjecture by Mathur that similar physics will be
at work in the three-charge D1-D5-P system, and therefore the entropy of the D1-D5-P
black hole will come from string and brane configurations that do not have a horizon and
have unitary scattering in the same region of moduli space in which the classical black
hole exists (see [12–16] for reviews). When such configurations are smooth, horizonless
solutions of supergravity, they are often referred to as microstate geometries because they
represent microstates of the black hole both semi-classically and through the AdS/CFT
correspondence. It is reasonable to expect that many of the microstates of the black hole
will be dual to geometries that involve Planck-scale details that go beyond the validity of
the supergravity approximation. On the other hand, it is hoped that, within the validity
of the supergravity approximation, one can find a suitably dense, representative sample of
microstate geometries that will not only give a semi-classical picture of the microstates but
also yield some of the thermodynamic details of the full system and perhaps even reproduce
the entropy of the black hole. Many such configurations have been constructed, both in
supergravity and using non-back-reacted branes, but so far the entropy of the back-reacted
configurations is not of the same order as that of black holes with similar charges [17, 18].

One of the common features of the geometries and brane configurations constructed
so far is that they depend either on a finite number of parameters, or they come from
putting arbitrarily-shaped supertubes in various three-charge geometries and thus depend
on several functions of one variable. However, two of the authors have recently proposed [19]
that there may be BPS string configurations that depend on functions of two variables,
and these potentially have much more entropy than that of the the systems constructed
so far. It is our purpose in this paper to present evidence that such brane configurations
do indeed exist and that they preserve the same supersymmetries as those of the D1-D5-P
black hole and are determined by several functions of two variables. We will refer to such
objects as superstrata.1

In section 2 we describe exactly how and why superstrata can be constructed as smooth,
1
8 -BPS solutions that depend upon two variables. In section 3 we summarize how one can

1For picture of what is intended here, see the Strata Tower http://www.dezeen.com/2008/05/13/strata-

tower-by-asymptote/ or Corkscrew Peak http://www.summitpost.org/corkscrew-peak/617471
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obtain and analyze the supersymmetries in a supertube transition. We have also included
a much more systematic development of this process in the appendix. In section 4 we
combine two such supertube transitions to make the “double bubbled” superstratum and
examine its supersymmetry structure and substantiate the physical description of section 2.
We then make some final remarks in section 5.

2 The physical description of superstrata

To understand our approach to establishing the existence of superstrata it is important
to recall some of the defining properties of supertubes and the methods by which one can
establish the existence of these arbitrary-shaped, supersymmetric configurations.

In string theory it is easy to create many species of two-charge, 1
4 -BPS states by a simple

superposition of compatible D-branes, momentum states or other solitons. Each charge
component is 1

2 -BPS and compatibility means that the 1
2 -BPS supersymmetry projectors

for each charge commute with one another so that the two components do not interact.
The resulting object is not really a new fundamental object in string theory, and without
string corrections and back-reaction it is really only a marginally bound superposition of
the two components. The transition to a supertube fuses these two components into a new
fundamental bound state and this is achieved by giving the system an additional dipole
moment and angular momentum in a transverse direction, so that the entire configuration
follows a new and arbitrary profile transverse to the original progenitor configuration.

The resulting object is still a 1
4 -BPS state but very close to the supertube the su-

persymmetry is locally enhanced to 1
2 -BPS. In other words, if the supertube profile were

straight and the configuration were a flat sheet then it would be exactly 1
2 -BPS with the

preserved supersymmetries depending on the orientation of the sheet. For an arbitrary
supertube profile the 16 local supersymmetries depend upon the direction of the tangent
to the profile, but there is always a set of 8 common supersymmetries that are preserved
independent of the profile, and these supersymmetries are precisely those of the original
two-charge system before the supertube transition. Thus one of the hallmarks of the su-
pertube transition that distinguishes it from the progenitor two-charge superposition is the
emergence of this local 1

2 -BPS structure.
Every two-charge system has a supertube transition, and they can all be related by

dualities. However, the physics underlying the supertube transition and the way the local
1
2 -BPS structure emerges is different in different duality frames. One of the simplest super-
tubes has D0 and F1 “electric” charges dissolved in a rotating D2-brane [1]. The 1

2 -BPS,
near-tube limit is simply an infinite, flat D2-brane and the easiest way to understand the
emergence of the 16 supersymmetries in this limit is to consider the M-theory uplift, in
which the entire object a boosted 1

2 -BPS M2-brane and the D0 and F1 charges correspond
to momentum and winding around the eleventh dimension. As the orientation of the su-
pertube changes, the set of 16 supersymmetries varies but there is a common subset of 8
supersymmetries that is preserved, independent of the orientation of the D2-brane. This
subset of eight supersymmetries is precisely the common set of supersymmetries of the
electric (F1 and D0) charges of the underlying system.

– 3 –
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Figure 1. The D1-P or F1-P supertube profile and a typical local neighbourhood.

There is another very important feature of the supertube transition: In some dual-
ity frames it “puffs up” the brane by adding one dimension to the object but in other
duality frames it does not. For example, the original D0-F1 system is intrinsically (1 + 1)-
dimensional but the added dipole charge puffs it up to a (2 + 1)-dimensional D2 brane.
Similarly, the D1-D5 system has codimension 4, but adding the KKM dipole charge “smears
it out” into a codimension 3 object. On the other hand, from the perspective of M-theory
the puffing up of the D0-F1 system to a D2 brane is simply a matter of tilting and boost-
ing the (2 + 1)-dimensional M2 brane and there is no gain of dimension: In M-theory it
is always a configuration of codimension 8. This is because the D0 charge is actually a
momentum charge from the eleven-dimensional perspective, and tilting and boosting the
brane momentum simply re-orients the surface and the momentum to create the dipole
charge and angular momentum. This seems to be a general pattern: If one of the electric
charges is a momentum then the corresponding supertube has the same codimension as
the original object but if neither of the electric charges is a momentum then the super-
tube transition necessarily adds an extra dimension to the object, puffing it up so that the
codimension of the brane configuration decreases by one.

There are two basic approaches to establishing the existence of supertubes. First there
are direct methods using either the Dirac-Born-Infeld (DBI) action or using supergravity.
For example, for D0-F1 supertubes one can use the DBI action of a rotating D2 brane and
induce the D0 and F1 charges using world-volume fields, or one can go to the T-dual of
this supertube in which it is a D1 string with a momentum profile. Alternatively, one can
show that there exists a BPS supergravity solution for any supertube profile. Moreover, in
the D1-D5 duality frame, this solution is smooth. Both the DBI and the smooth D1-D5
supergravity descriptions yield the supersymmetry structure described above. However,
the problem with these direct methods is that they are usually difficult to implement
because they involve analyzing the totality of the supertube or constructing a complicated
supergravity solution.

There are are also indirect, “local” methods that can be used to argue that a certain
type of supertube exists. In this approach one imagines cutting the supertube into very
small pieces, or zooming in very near some point of the tube. Each such bit of the super-
tube will look, locally, like an infinite flat brane and will be a 1

2 -BPS fundamental object.

– 4 –
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However, as the tangent to the supertube profile changes, the set of preserved supersym-
metries will also change. The critical question is then whether there is a subset of common
supersymmetries within all the sets of locally-preserved supersymmetries. Put differently,
the generic situation is that if one takes a brane and tilts it or puffs it up with some
dipole charge, then there are no common supersymmetries that are preserved by both the
original brane and the tilted or puffed up brane: The supersymmetries at different points
on the profile are generically completely incompatible. The remarkable thing that distin-
guishes the supertube from the generic brane is that there is indeed a subset of common
supersymmetries within the sets of locally-preserved supersymmetries and, by definition,
this subset of common supersymmetries is independent of direction of the tangent to the
supertube profile.

The important point is that if one can establish that each infinitesimal bit of the su-
pertube preserves some set of supersymmetries, and there is a common subset of these
supersymmetries that are preserved by all the bits of supertube, then these separate super-
tube bits are mutually BPS and so do not interact with each other. This strongly suggests
that they can be strung together to form a supersymmetric, continuous profile of arbi-
trary shape. This perspective thus provides a local argument as to why the complicated
supergravity configurations can, in fact, exist.

Our purpose in this paper is to apply the supertube process twice in succession (hence
“double-bubbling”) and then use the supersymmetry analysis in a local argument to show
that, in string theory, there exist fundamental bound-state configurations of branes that
carry three electric charges, have several dipole moments, preserve 4 supersymmetries, and
are determined by a two-dimensional surface arbitrarily-embedded in R4 × S1.

These 1
8 -BPS configurations, which we refer to as superstrata, can be thought of as

being made of bits of infinite, flat two-dimensional surfaces, each bit preserving 16 super-
symmetries, of which 4 supersymmetries are common to all the bits, and are the same
as the 4 supersymmetries common to BPS objects carrying each of the the three electric
charges of the superstratum. As the local argument implies, the fact that all the bits of the
superstratum are mutually 1

8 -BPS means that the force between various bits of different
orientation will be zero and so one should be able to assemble them into a superstratum
whose shape is given by five arbitrary functions of two variables.

The direct approach to finding these superstrata would be to assemble various types
of branes in string or M-theory, find the supersymmetries preserved by these configura-
tions, and vary over all types of branes and all values of the brane densities until one finds
a configuration that preserves the same Killing spinors irrespective of two orientations.
While this may indeed be possible, it is a technically formidable problem. Our approach,
using the doubling of the supertube transition, or double-bubbling, has several advantages
in that it first enables us to identify what the charges and dipole charges of such a su-
perstratum should be, and then determine the conditions these must satisfy in order for
the superstratum to have an arbitrary shape. Having achieved this, one then has a good
starting point for tackling the far more strenuous and difficult supergravity analysis and
solution. We will defer the latter to a subsequent paper.

Our starting point will be the D1-D5-P system familiar in the three-charge black hole
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story. We use this duality frame because it will lead to a smooth configuration. The first
supertube transition will involve adding a dipole moment and angular momentum to take
original D1-D5-P system to a three-charge two-dipole charge supertube.2 The shape of this
generalized supertube is determined by a set of profile functions of one variable. As one
approaches the location of the tube, the supergravity solution has a curvature singularity.
If one now zooms in on this three-charge two-dipole charge supertube, or considers the
infinite supertube limit, one finds that this infinite tube preserves eight supersymmetries,
out of which four are the common supersymmetries associated with the component electric
charges. Since the infinite, flat supertube preserves 8 supersymmetries, it should be a
superposition of two mutually-BPS branes and this is most easily seen in the D1-D5-P
duality frame.

To make the first supertube transition of the D1, D5 and P electric charges one first
partitions the momentum between the D1 and D5 systems to obtain separate D1-P and
D5-P systems. Each of these then undergoes a supertube transition to objects we will refer
to as D1-P and D5-P supertubes. The details of these transitions will be given later, for
now it suffices to know that the D1-P and D5-P supertubes still carry the original charges
but acquire angular momentum and D1 and D5 dipole moments respectively. A cartoon
of the D1-P supertube is given in figure 1. If z denotes the original common direction
of the D1 and D5 branes, and θ is the coordinate along the new supertube profile in R4

then the entire configuration now lies along a curve in the (z, θ)-plane. We will denote
the manifold consisting of the common direction of the D1 and D5 branes and the four
transverse dimensions byM5 and to keep things simple this manifold will be either R4×S1

or R5 depending on whether we compactify the original brane direction or not. The three-
charge supertube thus has codimension 4 and is defined by a curve, γ, in M5. The D1
(or D5) electric and dipole charges are then simply the z and θ components of the total
number of D1 (or D5) branes. This geometric description immediately implies that the
dipole and electric charges are related by:

Q1

Q5
=

d1

d5
⇔ Q1 d5 = Q5 d1 , (2.1)

and this is precisely the relation required by either solving the DBI action or by requiring
the absence of closed time-like curves in supergravity.

It is important to remember that in making this supertube transition we have fused
some of the momentum with the D1 branes and some of the momentum with the D5 branes.
The result is parallel D1-P and D5-P supertubes that are each fundamental locally-1

2 -BPS
objects and together preserve eight supersymmetries locally. Indeed, the generalized “su-
pertube bit” is simply a boosted and tilted superposition of D1 and D5 branes. At this
point it also becomes clear why the three-charge supertube has a curvature singularity:

2This is dual to a configuration that was originally constructed in the D4-D0-F1 duality frame [20] as

a solution of the Born-Infeld action of a D6 brane of arbitrary shape. The complete solution has fluxes on

the world-volume that induce D4, D0 and F1 electric charges and a D2 dipole charge that is related to the

other charges. The corresponding supergravity solution is the same as that of a black ring with only two

dipole charges and the relation between the dipole and other charges emerges from the requirement that

the supergravity solution is free of closed timelike curves [21].
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this is simply the curvature singularity of a solution of superposed D1 and D5 branes
in supergravity.

It is also equally evident how to make a second supertube transition that fuses the
coincident D1-P and D5-P supertubes described above into a new fundamental object that
locally preserves 16 supersymmetries: One applies a second supertube transition that in-
volves adding a KKM dipole charge and angular momentum. Locally, this is the same
as the standard supertube transition of the D1-D5 system. It is important to remember
that this transition decreases the codimension of the system, and because the D1-D5 com-
mon direction shrinks smoothly to zero at the KKM profile, the resulting configuration is
smooth [6, 7]. Hence, the puff-up into a codimension-three object completely resolves the
singularity of the D1-D5 system.

To be more specific, let ẑ denote the common direction of the D1 and D5 branes before
puffing up and recall that there is, locally, a patch, U , of R4 transverse to the branes (see
figure 1). The smooth solution is obtained by introducing a KKM dipole charge along
a closed path, γ̂, in U and smearing the D1 and D5 charge along this path. We will
parametrize the curve, γ̂, by an angle, ψ, so the puffed up brane is a codimension 3 object
that sweeps out the (ẑ, ψ)-plane. The resulting object is now described by the curve, γ̂, in
U and the three-dimensional transverse geometry in U in the neighborhood of a point on
γ̂, appears, at first sight, to be singular. However, it is a Kaluza-Klein monopole and if
the ẑ direction is compactified with the proper periodicity then the KKM fiber shrinks to
zero at a certain profile in R4 in such a way that the resulting geometry is smooth.

The second supertube transition thus has two very important effects: First, it com-
pletes the fusion of the D1-D5-P system into a true bound state by fusing the D1-P and
D5-P supertubes into a single, locally 1

2 -BPS object. Secondly, it resolves the singularity of
the generalized three-charge supertube through a KKM puffing at every point, ẑ, along the
original profile, γ, of the first generalized supertube. This second supertube transition puffs
the configuration up by one dimension along another arbitrary curve, γ̂ẑ, whose profile can
depend upon ẑ. Thus the resolution of the singularity allows the first (arbitrary-shaped)
three-charge supertube profile to be replaced by a freely choosable curve, γ̂ẑ, at every point
of the original profile: In other words, the original three-charge supertube can be puffed
up into a two-dimensional sheet, or stratum that has codimension 3 in M5. Moreover,
since the profile of the second puff up is freely choosable at every point of the original
profile, the resulting sheet, or stratum, is defined by a freely choosable function, ~F (v1, v2),
of two variables into the M5. This map defines the superstratum and it will be a smooth,
1
8 -BPS configuration that emerges from “double bubbling.” The solution is locally 1

2 -BPS
but globally has the electric charges of, and the same supersymmetries as, the D1-D5-P
system and carries several dipole charges corresponding to transverse D1 and D5 branes
and KK-Monopoles.

The foregoing argument and lays out precisely the construction that leads to the su-
perstrata and the process is depicted in figure 2. However, to substantiate the claim that
superstrata can have a completely arbitrary two-dimensional shape and still preserve four
supersymmetries, we need to complete the “local argument” and show that each locally-flat
two-dimensional surface bit that makes a superstratum preserves 16 supersymmetries, and

– 7 –
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Figure 2. The double bubbling of the D1-D5-P system. There are two ways to obtain a super-
stratum: The D1 and P can fuse into a D1-P supertube spiral (red dotted line), and the D5 and P
can fuse into a D5-P spiral (blue continuous line). The spirals can then fuse into a superstratum.
Alternatively the D1-D5 can fuse into a D1-D5-KKM tube (violet straight supertube), which upon
adding momentum can start shaking and become a superstratum.

that collectively the bits preserve a common subset of four supersymmetries. This will be
done in the next two sections. Once this is established, it follows that all the surface bits
are mutually BPS and hence non-interacting and therefore they can be combined make
a complete two-dimensional superstratum. Of course, to fully establish the existence of
a superstratum we either need to find a Born-Infeld-like description or to construct its
complete supergravity solution. We leave this somewhat daunting task for future work.

3 Supertube transitions

3.1 Supersymmetries and supertubes in general

We will consider several examples of supertube transitions and their effect upon the struc-
ture of the supersymmetries. If Q1, Q2 are the original electric charges corresponding to
some branes and d1 and J are the dipole charge and angular momentum of the supertube
configuration, then we will use the following canonical notation to denote the supertube

– 8 –
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construction: (
Q1 (x)
Q2 (y)

)
→

(
d1 (zψ)
J (ψ)

)
, (3.1)

where x, y, z and ψ are some subsets of coordinate directions along which the branes are
wrapped or the momentum is directed. The coordinate, ψ, will generically indicate the
new direction associated with the supertube.

Our purpose here is to find the supersymmetries preserved by the supertubes by con-
structing a one-parameter family of projectors whose null spaces intersect over and define
the subspace of supersymmetries that are preserved by the particular supertube configu-
ration.

There is a standard procedure for computing the required supersymmetry projectors:
One starts with the projectors appropriate to the electric charges, Q1 and Q2 and uses
carefully selected rotation matrices that tilt and boost the brane configuration along the
supertube directions. The end result is a projector that satisfies three conditions: (i) It
must be a linear combination of projectors for all the underlying branes and momenta, (ii) it
must define a 1

2 -BPS state (for fixed x, y, z and ψ) and so have sixteen null vectors, and (iii)
it must be a linear combination of the original projectors associated with the electric branes.

The first condition simply stipulates that the supertube has the required brane con-
stituents and the second condition implies that the infinite planar supertube is 1

2 -BPS and
preserves 16 supersymmetries. If the orientation, ψ, of the supertube varies then the set of
sixteen supersymmetries also varies, however the last condition guarantees that no matter
how the orientation varies the supertube will always preserve the original eight common
supersymmetries associated with the electric charges and so the supertube can have an
arbitrary profile and still be a 1

4 -BPS state.
It turns out that these constraints are enough to determine the requisite projectors for

a supertube configuration and so we will use this approach to derive all the projectors we
need. A more formal and precise derivation of the validity of our projectors can be found
in the appendix where we also summarize the dictionary that defines the 1

2 -BPS projectors
associated with each and every type of brane charge.

3.2 A simple example: the F1-P system

To illustrate some basic properties of the supertube transition, we consider the F1-P system.
This system is described in considerably more detail in appendix A.2.1.

The starting point is a certain number of fundamental strings stretched in the x1-
direction. These fundamental strings preserve half of the supersymmetries, namely those
that obey

ΠF1Q = 0 , (3.2)

where
ΠF1 =

1
2

(1 + Γ01σ3) , (3.3)

and σ3 is the third Pauli matrix which acts on the doublet of Majorana-Weyl supercharges
of the type II superstring theory.

– 9 –
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To generate the F1-P system, we consider an arbitrary transverse direction, denoted by
ψ, and T-dualize the system along a direction in the (x1, ψ)-plane that makes an angle, α,
with the x1-axis. Under this T-duality, the system remains 1

2 -BPS. It is not very important
in this discussion whether the direction along which we T-dualize is compact or not. If it
is not compact, what we are doing is not a symmetry of the theory but it can be viewed
as a solution-generating operation.

To find the supercharges that are preserved after the T-duality, we (trivially) rewrite
the projector in components parallel and perpendicular to the direction of the T-
duality axis:

ΠF1 =
1
2

(1− sinα(cosαΓ0ψ − sinαΓ01)σ3 + cosα(cosαΓ01 + sinαΓ0ψ)σ3) . (3.4)

T-duality parallel to fundamental strings converts them into momentum, and the supersym-
metries preserved by momentum are determined by the same projector as for fundamental
strings but without the σ3. Thus the projector we get after the T-duality is simply:

ΠF1-P =
1
2

(1− sinα(cosαΓ0ψ − sinαΓ01)σ3 + cosα(cosαΓ01 + sinαΓ0ψ)) (3.5)

and this describes the projector for the bound state of momentum along the T-duality axis
with some fundamental strings in the orthogonal direction. By construction, this projector
describes a 1

2 -BPS system.
If we start with N coincident fundamental strings, the resulting system has (F,P)-

charges given by (w, n) = (N sin2 α,N cos2 α) in the x1-direction, and (F,P)-charges
(d, J) = (N sinα cosα,N sinα cosα) in the ψ-direction.

The remarkable feature of this new system is that it preserves a fixed set of eight
supercharges regardless of the choice of the direction ψ and the angle α. For α = 0 we
have momentum in the x1-direction, and for α = π/2 we have fundamental strings in the
x1 direction, so the eight supercharges are the same as the eight supercharges preserved by
parallel fundamental strings and momentum in the x1-direction. Indeed, we can write

ΠF1-P = sinα(sinα− cosαΓ1ψ)ΠF1 + cosα(cosα+ sinαΓ1ψ)ΠP , (3.6)

which clearly demonstrates that the common supersymmetries of a marginal bound state
of fundamental strings and momentum in the x1-direction are always preserved.

For all this to work it is crucial that the amount of F1-string charge and momentum
is correlated with the angle α. Without this correlation the configuration would have no
remaining supersymmetry.

By gluing together pieces of fundamental strings and momentum that locally look like
the above F1-P system, we can make a 1

4 -BPS F1-P supertube which is the S-dual of the
D1-P supertube shown in figure 1.

3.3 Bubbling the D1-D5 system

Consider the bubbling(
D1 (0z)

D5 (01234z)

)
→

(
KKM (01234ψ; z)

P (ψ)

)
. (3.7)
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In this configuration the special direction of the KKM lies along the common direction,
z, of the D1-D5 system and after bubbling the charges and KKM dipole are distributed
along the closed curve parametrized by ψ. This is therefore a true “puffing up” in that the
configuration has gained an extra dimension defined by ψ.

Before bubbling, the electric projectors are (see the appendix for details):

ΠD1 =
1
2

(
1l + Γ0zσ1

)
, ΠD5 =

1
2

(
1l + Γ01234zσ1

)
, (3.8)

and these two projectors commute. Bubbling combines these and adds a momentum part,
Γ0ψ, and a KKM part, Γ01234ψ.

One can then show that the bubbled projector can be written in either of the three
following ways

Π =
1
2

(
1l + Γ0z

(
cosβ σ11l + sinβ Γzψ

)(
cosβ 1l− sinβ σ1Γ1234zψ

))
(3.9)

=
1
2

(
1l + cos2 β Γ0zσ1 + sin2 β Γ01234zσ1 + sinβ cosβ

(
Γ0ψ − Γ01234ψ

))
(3.10)

= cosβ
(

cosβ 1l− sinβ σ1Γzψ
)

ΠD1 + sinβ
(

sinβ 1l + cosβ σ1Γzψ
)

ΠD5 . (3.11)

The first expression, (3.9), shows the underlying rotations and middle expression, (3.10),
shows that the projector is, indeed, a combination of the projectors for component branes.
The second term in (3.9) squares to 1l and is traceless, and hence Π preserves sixteen
supersymmetries. The third expression, (3.11), shows that these sixteen supersymmetries
include the eight supersymmetries in the common nullspace of ΠD1 and ΠD5. Note that
these expressions are very similar to the expressions obtained for the F1-P system described
above, as they should be because the two systems are dual to one another.

Thus this projector has a sixteen-dimensional null space that depends upon the orien-
tation of the supertube through the appearance of Γψ. The projectors, ΠD1 and ΠD5, are
independent of Γψ and so their eight-dimensional common null space is independent of the
supertube orientation and shape. As a result, if the supertube is an infinite flat sheet then
ψ has a constant orientation and it is 1

2 -BPS but if the supertube has a varying orientation,
or shape, then it is still a 1

4 -BPS configuration.

3.4 Bubbling the D1-P and D5-P system

In the D1-P and D5-P systems, one of the electric charges is a momentum and so the
bubbling to a supertube does not “puff up” the supertube because the final supertube con-
figuration has the same dimension as the original electric configuration. The supertube is
rather a “superhelix,” and the tilt and boost of the electric charges along a transverse direc-
tion, θ, convert some of the D-brane charge into dipole charge and some of the momentum
into angular momentum. Thus we have:(

D1 (0z)
P (z)

)
→

(
d1 (0θ)
J (θ)

)
,

(
D5 (01234z)

P (z)

)
→

(
d5 (01234θ)

J (θ)

)
. (3.12)
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Indeed, there is an underlying tilt angle, α, that determines how the charges are realigned
after tilting:

Q1 = QD1,z = QD1 cosα , d1 = QD1,θ = QD1 sinα , (3.13)

Q5 = QD5,z = QD5 cosα , d5 = QD5,θ = QD5 sinα , (3.14)

QP = QP,z = P sinα , Jθ = Pθ = P cosα . (3.15)

Note that (3.15) differs from the first two equations essentially because the momentum is
perpendicular to the branes just as we had in the F1-P system. Notice that Pθ here should
be thought of as the momentum in the negative θ-direction.

The fundamental projectors associated with this system are:

ΠD1 =
1
2

(
1l + Γ0zσ1

)
, ΠD5 =

1
2

(
1l + Γ01234zσ1

)
, ΠP =

1
2

(
1l + Γ0z

)
. (3.16)

The projectors associated with these two supertube transitions are

Π̂D1 =
1
2

(
1l + Γ0z

(
cosασ11l + sinαΓzθ

)(
cosα 1l− sinαΓzθ

))
(3.17)

=
1
2

(
1l + cos2 αΓ0zσ1 + sin2 αΓ0z + sinα cosαΓ0θ

(
1l− σ1

))
(3.18)

= cosα
(

cosα 1l + sinασ1Γzθ
)

ΠD1 + sinα
(

sinα 1l− cosασ1Γzθ
)

ΠP , (3.19)

and

Π̂D5 =
1
2

(
1l + Γ0z

(
cosαΓ1234 σ1 + sinαΓzθ

)(
cosα 1l− sinαΓzθ

))
(3.20)

=
1
2

(
1l + cos2 αΓ01234zσ1 + sin2 αΓ0z + sinα cosαΓ0θ

(
1l− Γ1234 σ1

))
(3.21)

= cosα
(

cosα 1l + sinασ1Γzθ
)

ΠD5 + sinα
(

sinα 1l− cosασ1Γzθ
)

ΠP , (3.22)

where ΠD1, ΠD5 and ΠP are given in (3.13), (3.14) and (3.15).
In both of these equations, the middle expressions show that the projectors are a com-

bination of the appropriate component parts. The second term in each of (3.17) and (3.20)
squares to 1l and is traceless, and hence each projector preserves sixteen supersymmetries.
The expressions (3.19) and (3.22) show that each of these new projectors can be expressed
in terms of the original projectors of the D1-P system or D5-P systems respectively. The
projectors ΠD1, ΠD5 and ΠP all commute with one another and are independent of Γθ and
so their nullspaces are independent of the supertube orientation and shape. As a result, if
the supertube is an infinite flat sheet then θ has a constant orientation and the supertube
is 1

2 -BPS but if the supertube has a varying orientation, or shape, then it is still a 1
4 -BPS

configuration.

4 Double bubbling

4.1 The transition to the three-charge supertube

We now consider the D1-D5-P system and consider it to be a superposition of the D1-P
and the D5-P systems considered above with the momentum partitioned into two parallel
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parts, P = P (1) +P (2) associated with the two different sets of branes. The first supertube
is then obtained by tilting and boosting both sets of branes in exactly the same manner:(

D1 (0z)
P (1) (z)

)
→

(
d1 (0θ)
J (1) (θ)

)
,

(
D5 (01234z)
P (2) (z)

)
→

(
d5 (01234θ)
J (2) (θ)

)
. (4.1)

The charges of the system are then given by (3.13)–(3.15) and the angular momentum is
similarly decomposable into two parts, J = J (1) + J (2).

Locally, the picture of these supertubes is one where D1 and D5 branes are tilted and
have some momentum in the transverse direction. The momentum has to be distributed
in such a way that the D1 and D5-branes remain parallel, so locally the split in momenta
between the D1 and D5-branes is not arbitrary but determined by the ratio of the tensions
of the D1 and wrapped D5-branes.

This produces a three-charge, two-dipole-charge supertube that follows the trajectory
defined by θ. It preserves the supersymmetries defined by the projectors Π̂D1 and Π̂D5

defined in (3.17)–(3.22). Note that, unlike the projectors in (3.8), Π̂D1 and Π̂D5 do not
commute. However their commutator is proportional to Π̂D1 − Π̂D5 and so they commute
on their common null space and thus define eight compatible supersymmetries.3 However,
these expressions depend upon Γθ and so the eight-dimensional common nullspace depends
upon the supertube orientation. On the other hand, (3.19) and (3.22) show that these
projectors can be expressed in terms of the projectors of the D1-D5-P system, (3.16), and
the common nullspace of Π̂D1 and Π̂D5 includes the four supersymmetries of the D1-D5-
P system that lie in the common nullspace of the projectors (3.16). Thus the generic
configuration is still 1

8 -BPS.

4.2 A basis change

It is convenient to define new gamma matrices:

Γẑ = cosαΓz − sinαΓθ , Γθ̂ = sinαΓz + cosαΓθ . (4.2)

In this new basis one has:

Π̂D1 =
1
2

(
1l + cosαΓ0ẑ σ1 + sinαΓ0θ̂

)
(4.3)

Π̂D5 =
1
2

(
1l + cosαΓ01234ẑ σ1 + sinαΓ0θ̂

)
. (4.4)

This shows that the projectors of the three-charge, two dipole charge supertube are simply
a combination of the fundamental brane projectors along the (ẑ, θ̂) directions.

4.3 The double-bubbled superstratum

The goal is now to combine the transition in section 3.3 with that described in sections 3.4
and 4.1. The “quick and dirty” way to achieve this is to essentially replace ΠD1 and ΠD5

3In section A.3 of the appendix we construct a commuting set of projectors for this three-charge, two-

dipole-charge supertube configuration and find that using these instead of bΠD1 and bΠD5 leads to the same

final result.
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in (3.11) with Π̂D1 and Π̂D5. Since the fundamental branes associated with three-charge,
two-dipole-charge supertube are tilted and lie along the ẑ-direction, one must also replace
the Γz’s in (3.11) with Γẑ’s. The resulting candidate projector is:

Π̂ = cosβ
(

cosβ 1l− sinβ σ1Γẑψ
)

Π̂D1 + sinβ
(

sinβ 1l + cosβ σ1Γẑψ
)

Π̂D5 . (4.5)

Note that β and α are independent rotation angles.
While well motivated, this form of the projector has not been rigorously established,

because we have applied the equation for the new projector of a supertube transition (given
in equation (A.39)) to two non-commuting projectors Π̂D1 and Π̂D5, whereas up to now
the projectors were built out of commuting projectors. In the appendix we present a more
detailed analysis of the system in which we find its commuting projectors and obtain the
superstratum projector rigorously; the final result is exactly the one in (4.5).

One can now expand and simplify in a number of ways. One such instructive form is:

Π̂ =
1
2

{
1l + Γ0

[
sinαΓθ̂ + cosαΓẑ

(
cosβ σ11l + sinβ Γẑψ

)(
cosβ 1l− sinβ σ1Γ1234ẑψ

)]}
.

(4.6)
Again the second term in this equation squares to 1l and is traceless, and hence Π̂ pre-
serves sixteen supersymmetries. In addition, (4.5) shows that the nullspace of Π̂ contains
the common nullspace of Π̂D1 and Π̂D5 while (3.19) and (3.22) show that this common
nullspace contains the common nullspace of ΠD1, ΠD5 and ΠP . In other words, the six-
teen supersymmetries preserved by Π̂ contain the four supersymmetries of the D1-D5-P
system and these four supersymmetries are independent of the tilt angles, (α, β), and of
coordinates, (θ, ψ).

The superstratum is therefore a two-dimensional sheet swept out by (ẑ, ψ) and locally
preserves the sixteen supersymmetries defined by Π̂. However as the directions θ and
ψ vary there is always a set of four supersymmetries common to all the local pieces of
the superstratum and so all these pieces are mutually BPS and non-interacting and so one
should be able to assemble them into a complete 1

8 -BPS superstratum that has an arbitrary
two-dimensional shape.

We have thus completed the local argument that strongly suggests that our conjectured
superstratum should exist as a regular solution in string theory.

5 Conclusions

We have shown that there should exist a completely new set of 1
8 -BPS bound states of

D-branes, namely, superstrata. These have three electric charges and globally preserve 4
supersymmetries while locally appear to be 1

2 -BPS objects preserving 16 supersymmetries.
Moreover, they have a KKM dipole charge whose world-volume wraps a codimension-three
surface, and hence their back-reaction should yield smooth supergravity solutions. The
shape of the superstrata in five dimensions is determined by five functions of two variables,
and since superstrata have the same charges as the D1-D5-P black hole their back-reaction
will describe microstates of this black hole in the same regime of parameters where the
black hole exists. The fact that these microstate geometries depend on functions of two
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variables leads us to expect that they will be able to account for vastly more entropy than
ordinary supertubes, whose shapes only depend upon functions of one variable.

The new bound states should describe particular degrees of freedom of the D1-D5-P
system, which one may hope to be able to see either by studying the appropriate microscop-
ics or by relating normalizable modes of the supergravity solution, when it is constructed,
to the various expectation values of the dual theory (as was done for simpler systems
in [22, 23]). While the second method may indeed yield interesting physical information, it
is unlikely that one will be able to describe microscopically the superstrata using the non-
Abelian degrees of freedom of the D1-D5-P system, essentially because one of the dipole
charges corresponds to a KK-monopole, and describing systems with dipole charges whose
tension scales like 1/g2

s (KK-monopoles of NS5 branes) using brane non-Abelian degrees of
freedom is equivalent to proving confinement [24].

While the arguments in this paper strongly suggest that superstrata exist, there are
still some serious calculations to be done to prove their existence. Of course, ideally one
should construct a fully-back-reacted supergravity solution that depends on five functions
of two variables and has the charges and the dipole charges indicated in this paper. In fact,
two special limits of this would-be solution have already been constructed in the literature.
As we explained in section 2 and illustrated in figure 2, the superstrata can be thought
as coming from a smooth D1-D5 supertube with a KKM dipole charge to which one adds
momentum-carrying modes that break the isometry along the common D1-D5 direction. A
perturbative solution in which one unit of momentum is added to the smooth D1-D5 super-
tube was constructed in [25], and the rather non-trivial matchings that insured the existence
of that solution make us confident that more complicated superstratum solutions exist.

A second highly-non-trivial supergravity solution that can be thought of as a limit of
a superstratum was obtained in [26] by spectrally-flowing a supertube of arbitrary shape.
The resulting solution depends non-trivially both on the common D1-D5 direction4 and
on one of the angles in the base, but this dependence is “the same” in that this solution
is a superstratum whose function of two variables only depends on their sum but not on
their difference. Given the existence of these non-trivial limit solutions, and given that the
physical description provided in this paper gives a rather precise description of its charges
and dipole moments, we believe the complete construction of the supergravity superstratum
solution to be within reach.

There are, however, some potential issues that might arise in this construction. First,
our local argument is based upon the fact that BPS bits of the stratum will not interact,
since they are mutually BPS, and so can be assembled at will into the superstratum. This
is not exactly true: multi-charge BPS configurations do interact if they are not mutually
local and must satisfy bubble equations or integrability conditions that constrain their
locations. However, we do not expect this to be a problem because there is still freedom to
adjust some of the electric charge and angular momentum densities so as to accommodate
the freedom to adjust the relative locations of the bits of superstratum. Put differently, we

4Consequently this represents a supersymmetric solution of six-dimensional ungauged supergravity [27]

that does not descend to five dimensions.

– 15 –



J
H
E
P
1
0
(
2
0
1
1
)
1
1
6

expect any such conditions not to emerge as restrictions on the shape but to constrain, for
a given shape, certain integrals of the charge and angular-momentum densities (much as
one finds for wiggly supertubes in bubbling solutions [18]).

Another delicate issue that might constrain the superstrata is the fact that one must
compactify the common D1-D5 direction, ẑ, and have a properly quantized coefficient of
the potential along this U(1) fiber in order to smooth out the geometry using the KK
monopole. This works beautifully for the usual D1-D5 configuration where ẑ is simply the
coordinate along a compactification circle. For superstrata, the coordinate ẑ parametrizes
a curve of arbitrary shape and so there may be an issue in making the KKM construction
smooth on such a geometry. Once again we suspect that this will not present a problem
because the process of adding charges and smearing them out includes some choices of
charge density functions and this geometric issue should simply amount to selecting the
KKM density distribution so that it is a fixed integer along the curve defined by ẑ.

We raise these issues to show that the complete proof of the existence of superstrata as
microstate geometries still requires some further work. Indeed, the supergravity solutions
corresponding to superstrata will be extremely interesting. One should recall that, from
the six-dimensional perspective, the smooth geometry created by the D1-D5 supertube is
simply a non-trivial cycle in the three-dimensional homology of the space-time and that the
usual supertube profile represents fluctuations of this 3-cycle that depend upon functions
of one variable. The superstratum will thus represent the much richer and more extensive
space of two-dimensional fluctuations of this 3-cycle. We are thus very optimistic about
these new solutions and the role that we expect them to play in black-hole thermodynamics.

The local construction of the superstrata has revealed some particularly satisfying
properties. First, they seem to be the most natural fundamental bound-state constituent
of a three-charge black hole. The two-charge supertube is a simple fusion of two elec-
tric charges to form a fundamental bound object and much of the work of Mathur and
collaborators has shown how these objects naturally carry the entropy of the two-charge
system. Once one has a three-charge system we now find that there is a very natural
“double bubbling” that leads to a fundamental, bound object that carries all three charges
and by very good fortune these configurations depend upon functions of two variables.
While supertubes and generalized supertubes may account for some of the entropy of the
three-charge black hole, they are not really fundamentally three-charge objects whereas the
new superstratum is precisely such an object and should carry far more entropy.5 We find
it remarkable that such an object emerges precisely when the three-charge entropy seems
to require it and its doubly remarkable that this object can be represented in terms of a
microstate geometry.

In this paper, we studied the possibility of a particular two-fold supertube transition
of the D1-D5-P system. Namely, at the first stage of the transition, the D1 and P charges

5A generalization of the “free supergravity estimate” of [17] to the D1-D5-P system suggests that the

entropy that one can maximally obtain from supergravity should behave as ∼ c3/4L
1/4
0 for large L0 (using

two-dimensional CFT notation), which would still be smaller than the Cardy result ∼ c1/2L
1/2
0 . It will

be interesting to see whether superstrata respect this entropy bound, or can evade it because of their

non-perturbative dipole charges.
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are transformed into a tilted D1-P system and the D5 and P charges into a tilted D5-P
system. Then, at the second stage, these tilted D1-P and D5-P systems are puffed up into
a superstratum. However, since the D1, D5 and P charges can be dualized into each other,
at the first stage we could have also considered the possibility of the D1 and D5 charges
forming a supertube with KKM dipole charge, which in turn could have also participated in
the second transition. It is not clear whether such different patterns of two-fold supertube
transitions give the same final result, and if not, whether the resulting configuration could
still source a smooth geometry. We leave further investigations into such dynamical issues
for future research.
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A Detailed analysis of the projectors for double bubbling

In this appendix, we develop and study the projectors for double bubbling in detail. Most
of the arguments about the supersymmetry of supertubes in various duality frames can
be found in the original papers [1–3], but here we try to give a general picture that is
independent of the duality frame used to describe the supertube. In A.1, we summarize the
1
2 -BPS projectors for various branes and solitons and explain, via examples, how to combine
them to construct BPS states with given charges. In A.2, we derive the projector (A.43)
for generic supertube transitions where a combination of two electric charges transforms
into a new configuration with new dipole charge. In A.3, we use this result to construct the
projector for the double bubbling, namely the two-fold supertube transition. In A.4, we
explain the relation between the projector derived here and the one used in the main text.

Our convention for the ten-dimensional Clifford algebra are that {Γµ,Γν} = 2ηµν , with
ηµν = (−+ · · ·+) and we define Γµ1...µk ≡ Γ[µ1 · · ·Γµk]. We also define the ten-dimensional
helicity operator by Γ∗ ≡ Γ0...9, with Γ2

∗ = 1l.
In type II superstring theory, there are two ten-dimensional Majorana-Weyl super-

charges, Q and Q̃, each of which will be described in terms of 32 component spinors satis-
fying Majorana and helicity constraints. In type IIA they have opposite helicity, Γ∗Q = Q

and Γ∗Q̃ = −Q̃, while in type IIB they have the same helicity, Γ∗Q = Q and Γ∗Q̃ = Q̃.
We will also think of these supersymmetries as belonging to a doublet: Q =

(QeQ ) that
has 2× 32 = 64 components and the Pauli σ-matrices will be thought of as acting on the
doublet label Q. This means that the helicity projector, Γ∗, is equivalent to the action of
σ3 in the type IIA theory and 1l2 in type IIB. We will understand that the σ matrices and
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the identity matrix, 1l2, are implicitly tensored with the action of the gamma matrices, Γµ,
and that 1l32 is implicitly tensored with the action of the σ-matrices.

A.1 Supersymmetry algebra and projectors for branes

The supercharges preserved by various fundamental branes and solitons satisfy

ΠQ = 0, Π =
1
2

(1 + P ), (A.1)

where the matrices, P , are given by [28–30]:

PP = Γ01 PF1 = Γ01σ3

P IIA
NS5 = Γ012345 P IIB

NS5 = Γ012345σ3

P IIA
KKM(12345;6) = Γ012345σ3 = Γ6789 P IIB

KKM(12345;6) = Γ012345 = Γ6789

PD0 = Γ0iσ2 PD1 = Γ01σ1

PD2 = Γ012σ1 PD3 = Γ0123iσ2

PD4 = Γ01234iσ2 PD5 = Γ012345σ1

PD6 = Γ0123456σ1 (A.2)

From these conditions, one can reverse-engineer the supersymmetry algebra. For ex-
ample, one can show that the F1 condition in (A.2) means that we have the following terms
on the right hand side of the Q,Q† anticommutator:

1
2
{Q,Q†} = PµΓ0µ + τF1Q

F1
µ Γ0µσ3 , τF1 =

1
2πα′

, (A.3)

where QF1
µ corresponds to the charge of fundamental strings.

One can show this as follows. If we have straight fundamental strings at rest, the
supersymmetry algebra (A.3) becomes

1
2
{Q,Q†} = M + qiΓ0iσ3, τF1Q

F1
µ ≡ (0,q) (A.4)

The charge vector q measures the tension of the fundamental string, including the direction
and multiplicity. Now, assume that the supercharge Q also satisfies:

ΠQ = 0, Π =
1
2

(
1 +

qi
|q|

Γ0iσ3

)
, (A.5)

corresponding to fundamental strings along the direction q
|q| . Equivalently, one has:

Π′Q = Q, Π′ ≡ 1−Π =
1
2

(
1− qi
|q|

Γ0iσ3

)
. (A.6)

The superchage Q satisfies the following relation:

1
2
{Q,Q†} =

1
2
{Π′Q, (Π′Q)†} =

1
2

Π′{Q,Q†}Π′

=
1
4

(
1− qi
|q|

Γ0iσ3

)
(M + qiΓ0iσ3)

(
1− qi
|q|

Γ0iσ3

)
= (M − |q|)Π′, (A.7)
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which vanishes for a BPS configuration of mass M = |q|. So, the supercharge, Q, sat-
isfying (A.6) is preserved in this F1 configuration. As one can see from (A.5), half the
eigenvalues of Π are 1 and the other half are 0 and so half the components of Q survive
the projection (A.5), and hence the state satisfying (A.3) is 1

2 -BPS.
The essential point is that (A.4) becomes the projector (A.5) precisely on the BPS

states and, conversely the supersymmetry algebra must be compatible with the projectors
that define 1

2 -BPS states.
In this manner, one can determine the supersymmetry algebra for more general con-

figurations to be:

1
2
{Q,Q†} =

{
PµΓ0µ+τF1Q

F1
µ Γ0µσ3+τD1Q

D0Γ0iσ2+τD2Q
D2
µ1µ2

Γ0µ1µ2σ1+· · · (IIA)

PµΓ0µ+τF1Q
F1
µ Γ0µσ3+τD1Q

D1
µ Γ0µσ1+τD3Q

D3
µ1µ2µ3

Γ0µ1µ2µ3iσ2+· · · (IIB)

(A.8)

where τDp = (2π)−p(α′)−(p+1)/2g−1
s .

Another instructive exercise is to derive the linear combination of supersymmetries
that vanishes on states with particular combinations of charges. This then describes the
BPS bound states with those charges. For a bound state of F1(1) and D1(1) at rest,6 the
anticommutator, (A.8), is simply:

1
2
{Q,Q†} = M + τF1Q

F1
1 Γ01σ3 + τD1Q

D1
1 Γ01σ1. (A.9)

Just as we saw in (A.7), it is easy to show that (A.9) vanishes if Q satisfies

ΠF1D1Q = 0, ΠF1D1 =
1
2
[
1 + Γ01(cosβ σ3 + sinβ σ1)

]
, tanβ =

τD1Q
D1
1

τF1QF1
1

, (A.10)

provided that the mass is equal to M =
√

(τF1QF1
1 )2 + (τD1QD1

1 )2. The angle β is a
“mixing angle” between F1 and D1. It is again easy to see that this F1-D1 bound state is
1
2 -BPS.

Similarly, a D1 brane with charge vector q, boosted transverse to its world-volume
with momentum p, such that q · p = 0, is also 1

2 -BPS, and satisfies(
1 +

pi
M

Γ0i +
qi
M

Γ0iσ1

)
Q = 0, M =

√
p2 + q2. (A.11)

The mass, M , obtained from this BPS condition is indeed the mass of an object with rest
mass |q| boosted to have momentum p.

We can also derive this result by directly boosting a D1-brane in a transverse direction.
Starting with the projector ΠD1 = 1

2(1+Γ01σ1) for a D1-brane in the x1 direction, boosting
in the x2-direction amounts to replacing

Γ0 → cosh ξΓ0 − sinh ξΓ2. (A.12)

6As in the main body of this paper, the parentheses after a configuration label denotes the spatial

directions they wrap, for example, F1(i) means a fundamental string wrapped along xi.
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The resulting projector does not look like (A.11) but can be brought in that form as
follows. First multiply ΠD1 on the left by Γ0, then perform the substitution (A.12), and
finally multiply the projector once more on the left by −Γ0/ cosh ξ. The result is precisely
of the form (A.11) with p/M = tanh ξ and q/M = 1/ cosh ξ.

The examples above were all 1
2 -BPS states. Configurations with less supersymmetry

can be studied in precisely the same manner. For example, if we have D1(1) and D5(16789),
the supersymmetry algebra has:

1
2
{Q,Q†} = M + q1Γ01σ1 + q5Γ016789σ1. (A.13)

The preserved supersymmetry, Q, satisfies

Π1Q = Π5Q = 0 (A.14)

where

Π1 =
1
2

(1 + Γ01σ1), Π5 =
1
2

(1 + Γ016789σ1), [Π1,Π5] = 0 (A.15)

and we assumed that q1, q5 > 0. Because Π1 and Π5 commute, the two conditions in (A.14)
are equivalent to the single condition

Π15Q = 0, Π15 = 1− (1−Π1)(1−Π5) =
1
4

(3 + Γ01σ1 − Γ6789 + Γ016789σ1), (A.16)

or, equivalently,

Π′15Q = Q, Π′15 = 1−Π15 = Π′1Π′5 =
1
4

(1− Γ01σ1 + Γ6789 − Γ016789σ1). (A.17)

Now, from the supersymmetry anticommutator, (A.13), one can derive

1
2
{Q,Q†} =

1
2

Π′15{Q,Q†}Π′15 = (M − q1 − q5)Π′15 . (A.18)

This vanishes for the BPS mass, M = q1 + q5. The fact that tr(Π′15) = 1
4 tr(1l) means that

this is a 1
4 -BPS state.

A.2 The generic supertube transition

A general supertube transition takes the form:(
Q1 (x)
Q2 (y)

)
→

(
d1 (zψ)
J (ψ)

)
, (A.19)

where x, y, z and ψ are some subsets of coordinate directions along which the branes are
wrapped or the momentum is directed. The coordinate ψ indicates the new direction as-
sociated with the supertube. The supersymmetry preserved by the configuration after the
transition depends upon the orientation of the ψ direction as one goes along the brane. If
we zoom in on a point on the supertube, the tube can be locally thought of as straight and
we can determine the supersymmetry preserved at that point by the methods above. The
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Figure 3. The zoom-in near an F1-P supertube profile

supertube has the following properties: (i) 16 supersymmetries are preserved at each point
along ψ, and (ii) these 16 symmetries differ from point to point but they all share a common
subset of eight supersymmetries and these are the same eight supersymmetries that are
preserved by the original charge configuration before the transition. From these require-
ments, it is straightforward to derive a general formula for the supersymmetry projector
after the supertube transition for general charges Q1, Q2 in (A.19).

A.2.1 An example: the F1-P system

In order to derive the supersymmtry projector for the general supertube transition (A.19),
we begin with a simple example, the F1-P system, where we know the detailed physics
of the supertube transition [3] and can construct the projector from the knowledge of the
configuration. We will also take a different approach to the one in the main body of this
paper.

Consider the F1-P system in which w fundamental strings are wound along z and n

units of momentum are directed along the same z direction. We take z to be a compact
direction with periodicity 2πRz. The projectors associated with these charges are:

ΠF1(z) =
1
2

(1 + Γ0zσ3), ΠP (z) =
1
2

(1 + Γ0z), [ΠF1(z),ΠP (z)] = 0. (A.20)

It is easy to see that supercharge Q annihilated by ΠF1(z) and ΠP (z) describes a 1
4 -BPS

state.
We now make wish to make a supertube transition:

w

n

(
F1(z)
P (z)

)
→ d

J

(
f1(ψ)
J (ψ)

)
. (A.21)

For this system, the fundamental bound state is a string with a momentum wave on
it [4], which can be thought of as the result of a supertube transition that adds an extra F1
dipole charge and an extra angular momentum along the ψ direction [3]. In the new bound
state the string world-sheet extends along a curve parametrized by ψ as a function of the
original world-sheet direction, z, and carries J units of momentum along ψ. In particular,
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if ψ = z tanα the shape of the string is a helix moving up (or down, depending the signs
of charges) along its axis, just like the barber’s pole, as depicted in figure 3a. By studying
such circular traveling waves on strings using the Nambu-Goto action or by looking at the
corresponding supergravity solutions [3], one finds that the charges w, n and the dipole
charges d, J satisfy the relation:

nw = Jd , (A.22)

and that the angular momentum J and the radius of the ψ circle are related by:

J = 2πR2
ψτF1d . (A.23)

Note that this relation implies that the local “angular momentum density” (propor-
tional to J/R2

ψ),7 must be equal to the local dipole charge density, and hence be constant
along the profile; we discuss this in more detail below (around equation (A.36)). This
relation can also be understood as coming from requiring the Killing spinors of the super-
tube bit to be the same as those of its electric (F1 and P) charges. Adding dipole charges
shifts these Killing spinors, and so does adding angular momentum; however if (A.23) is
satisfied the shifts cancel each other and the Killing spinors become again those of the
electric charges. This can also be seen from supergravity analysis of the near-supertube
solution [21].

Consider a very small part of the helix, as shown in figure 3b. Let the size of the
square we are focusing on be (2πRψ/M)× (2πRz/N) for some very large integers M and
N . We can think of the strings in this small square as straight lines in a small region on the
(ψ, z)-plane. Let the angle between this string and the z axis be α (see figure 3b). Because
the string is wrapped d/N times along the ψ direction of length 2πRψ/M and w/M times
along the z direction of length 2πRψ/N , the angle α satisfies

tanα =
d
N ·

2πRψ
M

w
M ·

2πRz
N

=
dRψ
wRz

=

√
n/Rz

2πwRzτF1
, (A.24)

where in the third equality we used the relations (A.22) and (A.23).
Let the angle between the momentum vector carried by the string and the ψ axis be

β (see figure 3b). The (ψ, z) components of the momentum carried by the entire helix is
(−J/Rψ, n/Rz). So, the momentum carried by the piece of strings in the small square is
(pψ, pz) = (− J

MNRψ
, n
MNRz

). So, the angle, β, between the momentum vector carried by
the string bit and the ψ axis satisfies:

tanβ =
n/(MNRz)
J/(MNRψ)

=
nRψ
JRz

=

√
n/Rz

2πwRzτF1
. (A.25)

7Technically the angular momentum density is J/R while the quantity J/R2 is the linear momentum

density around the supertube, or simply the angular speed. Thus what we refer to as “angular momentum

density,” ρJ , is really the momentum density along the tube and should perhaps be more consistently

denoted by ρp, but this could lead to notational confusion with ρP and so we will persist with the mild

abuse of terminology in calling this quantity an angular momentum density and denoting it by ρJ .
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Figure 4. Boosting and rotating to obtain the desired F1-P configuration

In the last equality we used the relations required by the dynamics of the string, (A.22)
and (A.23). Comparing this with (A.24) we see that β = α and hence these dynamical
conditions require that the momentum be perpendicular to the direction of the string, i.e.,
the string is boosted transverse to its world-sheet.

Based on this physical picture, we will construct the supersymmetry projector for this
configuration. Starting from strings sitting at rest and extending along z (figure 4a), we
boost them along the negative ψ-direction (figure 4b). We then rotate them in the (ψ, z)
plane by angle −α to get to the desired configuration (Fig 4c). The projector for F1(z)
boosted along the negative ψ direction (figure 4b) is given by:

ΠF1(z)-P(ψ) =
1
2

(
1− sin γ Γ0ψ + cos γ Γ01σ3

)
. (A.26)

Here, γ is related to the ratio of the P(ψ) charge and the F1(z) charge as

tan γ =
(momentum P(ψ))

(F1(z) charge)
for the configuration of figure 4b. (A.27)

The magnitudes of F1 and momentum charges in figure 4b are equal to those in the config-
uration shown in figure 4c, because they are related to each other by rotation. Therefore,

tan γ =

√
(pψ)2 + (pz)2

τF1 · (length of F1)
=

√(
1

MN
n
Rz

)2 +
(

1
MN

J
Rψ

)2
τF1

√(
w
M

2πRz
N

)2 +
(
d
N

2πRψ
M

)2 =

√
(n/Rz)2 + (J/Rψ)2

2πτF1

√
(wRz)2 + (dRψ)2

.

(A.28)

Using the relations (A.22) and (A.23), it is easy to show that this is equal to (A.24) and
thus γ = α = β.

By rotating the projector (A.26) (with γ = α) by angle −α in the (ψ, z)-plane, we get
the projector after the supertube transition:

Πst =
1
2

[
1− s(cΓ0ψ − sΓ01) + c(cΓ01 + sΓ0ψ)σ3

]
, (A.29)

where s = sinα and c = cosα. The fact that tr(Πst) = 1
2 tr(1l) means that this projector

preserves 16 supersymmetries. These supersymmetries depend upon the angle α as well as
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the ψ direction in space and hence the position along the string. However, note that (A.29)
can also be written as:

Πst = c(c+ sΓzψσ3)ΠF1(z) + s(s− cΓzψσ3)ΠP (z). (A.30)

This implies that the projector Πst always preserves the set of eight supersymmetries that
are preserved by the original two projectors ΠF1(z) and ΠP (z), independent of position
along the ψ curve.

Although we started by working with a circular ψ curve, our local analysis is valid also
for an arbitrary curve parametrized by ψ embedded in the R8 transverse to the original
direction, z. Such a curve in R8 can be parametrized by seven functions. Furthermore, we
can change the angle α along the curve. Note that α can be expressed in terms of the local
charge densities, as follows. The momentum along z carried by the part of the string in
our small square is

pz =
n

Rz
· 1
MN

=
n

MNRz
. (A.31)

So, the local momentum density per unit area is

ρP =
pz

(2πRz/N)(2πRψ/M)
=

n

(2πRz)2Rψ
(A.32)

Similarly, the F1(z) charge carried by the same string bits and the local F1(z) charge
density are computed as

qF1 = τF1 · 2πRzw ·
1

MN
=

2πwτF1Rz
MN

, ρF1 =
qF1

(2πRz/N)(2πRψ/M)
=
wτF1

2πRψ
. (A.33)

Comparing these with (A.24), it is easy to see that the angle α can be written as

tanα =
√

ρP
ρF1

. (A.34)

So, varying α corresponds to varying the ratio of charge densities along the curve. However,
one cannot change all the charge densities completely freely: It is easy to show that the
dynamical relation (A.22) implies the following relation:

ρPρF1 = ρJ ρf1, (A.35)

where

ρJ =
J

(2πRψ)2Rz
=
d τF1

2πRz
, ρf1 =

d τF1

2πRz
(A.36)

are the P(ψ) and F1(ψ) densities.
Because the dipole and the angular momentum densities ρf1 and ρJ are constant along

the curve, the relation (A.35) means that the product of the charge densities, ρPρF1, should
be constant along the curve. Taking this constraint into account, we have a supertube
parametrized by 7 + 1 = 8 functions in total.
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A.2.2 The formula for the projector

Based on the previous example with projectors (A.29) and (A.30), we can construct the
projector for the general supertube transition (A.19). Let the commuting projectors for
the original electric charges corresponding to the left hand side of (A.19)) be:

Π1 =
1
2

(1 + P1), Π2 =
1
2

(1 + P2), [Π1,Π2] = 0. (A.37)

Because Π1,2 are projectors and they commute, P1,2 satisfy

P 2
1 = P 2

2 = 1, [P1, P2] = 0. (A.38)

For each of Π1,2 to preserve sixteen supersymmetries, and for them together to preserve
eight supersymmetries, we require trP1 = trP2 = tr(P1P2) = 0. Based on the expres-
sions, (A.29) and (A.30), take the following ansatz for the projector after the supertube
transition:

Πst =
1
2

[
1 + (c1Γ0ψ + s1P1)Γ0ψ(c2Γ0ψ + s2P2)

]
,

=
1
2

(
1 + s1c2P1 + c1s2P2 + c1c2Γ0ψ + s1s2P1Γ0ψP2

) (A.39)

where ci = cos θi, si = cos θi, and θi=1,2 are some angles to be determined. From the second
expression in (A.39), we can see that the state annihilated by Πst has the original electric
charges and momentum along ψ, which is the correct feature for the projector after the
supertube transition.

The matrix Πst given in (A.39) is not, in general, a projector. However, if one has

{Γ0ψ, P1} = {Γ0ψ, P2} = 0 (A.40)

then it can be shown that Π2
st = Πst and thus Πst is a projector. We will assume (A.40)

henceforth. For Πst to preserve 16 supersymmetries, it is sufficient to assume that
tr(Γ0ψP1P2) = 0. In the example (A.20), where P1 = Γ01σ3 and P2 = Γ01, all these
conditions are indeed satisfied.

The most important requirement that our candidate projector (A.39) should satisfy is
that it annihilates the supercharges annihilated by the original projectors (A.37). For this,
note that (A.39) can be brought to the following form:

Πst =
1
2

[
1− sin(θ1 + θ2) + cos(θ1 + θ2)Γ0ψ + (. . . )Π1 + (. . . )Π2

]
. (A.41)

To derive (A.41), we first (anti)commute Pi appearing in (A.39) to the right of Γ0ψ and
then re-express them in terms of Πi. So, for Πst to annihilate supercharges annihilated by
Πi, we need

θ1 + θ2 =
π

2
mod 2π. (A.42)
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If we set θ1 = π
2 + α, θ2 = −α, then (A.39) reduces to

Πst =
1
2

[
1 + (−sΓ0ψ + cP1)Γ0ψ(cΓ0ψ − sP2)

]
=

1
2

[
1 + c2P1 + s2P2 − scΓ0ψ + scΓ0ψP1P2

]
, (A.43)

where c = cosα, s = sinα.
From the general formula (A.43), we can read off how the system of two electric

charges associated with P1 and P2 undergoes a transition into a supertube configuration
with momentum along ψ and a dipole charge, d, associated with Pdip = Γ0ψP1P2. Note
that, for a general supertube transition, this expression for Pdip means that, unlike the F1-
P system, the dipole component of the supertube configuration is not generically obtained
from a tilt and boost of the original projectors.

The supertube with F1-P charges (A.29) corresponds to taking P1 = Γ01σ3, P2 =
Γ01, Pdip = Γ0ψσ3. The supertube with D1-D5 charges in (3.7) corresponds to taking
P1 = Γ0zσ1, P2 = Γ01234zσ1, Pdip = Γ01234ψ. The D1-P and D5-P supertubes in (3.12)
correspond to taking P1 = Γ0zσ1, P2 = Γ0z, Pdip = Γ0ψσ1 and P1 = Γ01234zσ1, P2 = Γ0z,
Pdip = Γ01234ψσ1, respectively.

Just as in the F1-P example, the supertube can be along an arbitrary curve transverse
to the direction of the original electric charges. Along such an arbitrary curve, one can
also vary the angle, α, which is related to the ratio of the densities of the original electric
charges via:

tanα =
√
ρ2

ρ1

, (A.44)

where ρ1 and ρ2 are the densities of the original electric charges. Equation (A.44) is a
generalization of the relation (A.34). As for the F1-P supertube, the product of the charge
densities, ρ1ρ2, is constant along the curve, and this comes again from requiring that the
supersymmetries be the same as those of the electric charges.

As a side note, we would like to remark that one could write down a more general
Ansatz than (A.39) by including other terms that can be constructed out of Pi and Γ0ψ,
namely Γ0ψPi and P1P2. However, if we require that we generate only one type of charge
other than the original electric charges (corresponding to Pi) and momentum along ψ

(corresponding to Γ0ψ), then (A.43) is the most general projector. Another interesting fact
is that the supertube projector in equation (A.39) can be written as:

Πst = U−1Π0U, Π0 =
1
2

(1 + Γ0ψ), U = exp
(
θ1
4

[P1,Γ0ψ] +
θ2
4

[P2,Γ0ψ]
)
, (A.45)

and hence changing the angle α can be thought as giving rise to a rotation in the spinor
space.

A.3 Double bubbling

Here we consider two successive supertube transitions in which a system of three electric
charges first undergoes a supertube transition and produces two dipole charges, which, in
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turn, undergo a supertube transition and produce another dipole charge. We then use the
methods developed above to derive the corresponding supersymmetry projectors.

A.3.1 First supertube transition

Consider the supertube transition of the following three electric charges: D1(z)
D5(1234z)
P (z)

 . (A.46)

The supersymmetry projectors for this configuration are:

Π1 =
1
2

(1 + Γ0zσ1), Π2 =
1
2

(1 + Γ01234zσ1), Π3 =
1
2

(1 + Γ0z) . (A.47)

Each of these projectors preserve 16 supersymmetries, they commute with one another
and together they leave four common supersymmetries unbroken. Later it will be useful
to consider a fourth projector:

Π4 =
1
2

(1 + Γ01234z) . (A.48)

If Π1,2,3Q = 0, then it follows that Π4Q = 0. The projector, Π4, corresponds to
KKM(1234z; θ), where θ is an arbitrary direction in the transverse space. Even if we
added such a KKM to the D1-D5-P system it would not break further supersymmetry, but
we focus on the case with the three original electric charges (A.46) without a fourth one.

From the supergravity analysis [31–33], it is known that a three-charge system (A.46)
can contain a supersymmetric black ring that has three dipole charges, corresponding to
D5(1234θ), D1(θ), and KKM(1234θ; z), where θ is the direction of the ring. This black ring
can be thought of as a black supertube with three dipole charges, and both the near-ring
limit [21] and the general solution have four supersymmetries. However, here we consider
the special situation where there is no KKM dipole charge, and the supertube has three
charges and two dipole charges:

N1

N2

N3

 D1(z)
D5(1234z)
P (z)

 →
n1

n2

J

d5(1234θ)
d1(θ)
J (θ)

 (A.49)

where Ni, ni, J are quantized numbers of charges.
Our first goal is to derive the supersymmetry projector for this supertube by using the

properties of this configuration known from the DBI [20] and the near-tube supergravity
descriptions [21]. Our analysis will closely parallel the analysis of the previous subsection,
where we derived the projector for the F1-P supertube based on the known properties of
the configuration.

This kind of supertube transition (A.49) has been studied by the DBI action in [20]
and it was observed that the following relations hold among charges:

N1

n2
=
N2

n1
=

J

N3
. (A.50)
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Figure 5. The straight D1-D5-P tube configuration.

The same relations can also be derived by the analysis of the supergravity black ring
solution; the first relation is necessary for the absence of closed time-like curves while the
second relation follows if we require that the configuration locally preserve one quarter of
the supersymmetry. The angular momentum J and the radius Rθ of the ring are related
by [20]:

J = 2πR2
θ (n1τD5V4 + n2τD1) , (A.51)

where (2π)4V4 is the 4-volume of the 1234 directions that are wrapped by the D5 branes.
This relation can be thought of as generalization of (A.23).

One can do the local analysis as in section A.2.1 by zooming in onto a very small
region near a point along the round supertube, where the D1-branes and D5-branes can be
thought of as straight. However, in order not to complicate the discussion and formulae,
we will simply work with a straight supertube and keep in mind that it can be replaced by
a local analysis near an arbitrary supertube. The final formulae will be in terms of ratios
of quantities and are only locally valid.

If the condition (A.50) is met, then the D1-branes and D5-branes are parallel with
each other in the (θ, z) plane and at an common angle, α3, with the z axis where

tanα3 =
n2Rθ
N1Rz

=
n1Rθ
N2Rz

. (A.52)

The configuration of the D1 and D5 branes is shown in figure 5. Furthermore, these
D1’s and D5’s are moving in the direction perpendicular to their world-volume with total
momentum

(pθ, pz) =
(
− J

Rθ
,
N3

Rz

)
. (A.53)

So, this supertube can locally be viewed as a D1-D5 system tilted and boosted transverse
to its world-volume, which is a 1

4 -BPS state; see figure 5.
To derive the projectors for this tilted-and-boosted D1-D5 system, we follow a similar

path to that of section A.2 to derive the projector for the F1-P system. Namely, we
begin by considering a configuration with D1(z), D5(1234z), and P(θ) charges; namely,
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the branes are aligned with the z direction and have momentum along the θ direction. We
first construct the projectors for this configuration aligned with the z- and θ-axes. Then,
we will simply rotate the configuration in the (θ, z) plane and obtain the desired projectors
for the tilted-and-boosted D1-D5 system.

As we discussed in the main text, one can view the whole process as two separate
supertube transitions of the D1-P and D5-P systems, so that the end result is two locally-
parallel and marginally bound supertubes. If we simply boost the D1 and D5 projectors
of (A.47) in the −θ direction then we trivially get the two commuting projectors:

Π̃D1(z)-P(θ) =
1
2

(1 + aΓ0zσ1 + bΓzθ) , Π̃D5(01234z)-P(θ) =
1
2

(1 + aΓ01234zσ1 + bΓ1234zθ) ,

(A.54)

where a2 − b2 = 1. To convert these into the canonical forms of projectors, as in (A.2),
from which we can read off the component charges, we multiply the first one by Γ0zσ1 and
the second one by Γ01234zσ1 and rescale by a−1 to obtain the projectors:

ΠD1(z)-P(θ) =
1
2

(1 + c2Γ0zσ1 + s2Γ0θ) , ΠD5(01234z)-P(θ) =
1
2

(1 + c2Γ01234zσ1 + s2Γ0θ) ,

(A.55)

where the angle, α2, is related to the boost by c2 = 1
a , s2 = b

a . However, the problem with
these projectors (A.55) is that they no longer commute with each other, even though they
are equivalent to the original set of projectors (A.54). Since they are equivalent to (A.54)
they do commute on their common null space as do the projectors in (4.3) and (4.4).

The resolution of this dilemma is to consider instead the following more general class
of projectors:

Π(0)
1 =

1
2

(1 + c1c2Γ0zσ1 + s1s2Γ01234zσ1 + c1s2Γ0θ − s1c2Γ01234θ),

Π(0)
2 =

1
2

(1 + s1s2Γ0zσ1 + c1c2Γ01234zσ1 − s1c2Γ0θ + c1s2Γ01234θ),

[Π(0)
1 ,Π(0)

2 ] = 0, ci = cosαi, si = sinαi, i = 1, 2,

(A.56)

where the angles, α1,2, will be determined below. Note that, as desired, these projectors
commute with each other. On the other hand, they now contain Γ01234θ terms, which
correspond to KKM(01234θ; z) charges and may seem unwanted. However, these terms
are actually acceptable if the charges represented by Π(0)

1 and the ones represented by Π(0)
2

add up to the charges that we want in the system. Namely, the Γ01234θ terms cause no
problem at all if the net KKM(01234θ; z) charge vanishes.

There are several reasons for considering this more general class of projectors. The most
important one is that if one is to decompose the boosted D1-D5 system, which preserves 8
supersymmetries, into two sub-systems with commuting projectors, each of which preserves
16 supersymmetries, then the charges of these sub-systems are not those of a boosted D1
and a boosted D5, as one may naively expect. Actually, to get commuting projectors in
the canonical form determined by (A.2), one finds that one must include a Γ01234θ term
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which corresponds to a KKM(1234θ; z) charge. We can derive this as follows. If we dualize
the D1(z)-D5(1234z)-P(θ) system by Tzθ12, S, Tθ13-dualities, we can convert it into D2(23),
D2(14), D2(13). Then, after an SO(2)12 × SO(2)34 rotation, we can go to a frame only
with D2(1′4′) and D2(2′3′). These two stacks of D2-branes are mutually BPS and their
projectors commute, and hence are the one-charge subsystems of our two-charge system.
If we take each sub-system and SO(2)12 × SO(2)34 rotate it back, it now has D2(24) in
addition to D2(23), D2(14), D2(13). If we further dualize it back to the D1-D5-P frame,
we obtain two mutually BPS sub-systems, each having KKM(1234θ; z) charge in addition
to the original D1(z), D5(1234z) and P(θ) charge. Hence, from this perspective, having an
extra KKM(1234θ; z) charge is a necessity, not an option.

Another way to arrive at the projectors above is to ask what are the most general
commuting projectors with the charges of the system. Clearly the the projectors can contain
Γ0zσ1, Γ01234zσ1 and Γ0θ because they respectively correspond to the D1(z), D5(1234z)
and P(θ) charges. However, one can also add Γ01234θ (corresponding to KKM(1234θ; z)),
which commutes with the other charges, as long as the KKM charge of the total system is
zero. Hence, our goal is to decompose the 1

4 -BPS D1(z)-D5(1234z)-P(θ) system into two
mutually BPS sub-systems each of which is 1

2 -BPS, whose projectors commute, and whose
KKM charges sum up to zero.

Yet another heuristic way of thinking of our choice of projector is that it is the most
general projector carrying these charges that does not, at leading order in rotations, involve
a direct mix of the D1 and D5 sub-systems. The most general projector is obtained by
taking four arbitrary coefficients, ai, for the gamma matrices on the right-hand side of one
of the projectors. To be a projector one must have

∑
i a

2
i = 1 and so there is a three-

parameter family. However, if one excludes the direct rotation of the D1 system into the
D5 system at first order, and requires the two projectors to commute, one arrives at the
result in (A.56)

We now fix the angles, α1,2, in terms of the physical parameters. Each of the projectors
Π(0)
i corresponds to a 1

2 -BPS sub-system with four kinds of charges, D1(z), D5(1234z), P(θ)
and KKM(1234z; θ). We require that the total charges of the combined system satisfy:

M1c1c2 +M2s1s2 = q1, M1s1s2 +M2c1c2 = q2,

M1c1s2 −M2s1c2 = −p, −M1s1c2 +M2c1s2 = 0.
(A.57)

Here q1 = τD1Q
D1
z , q2 = τD5Q

D5
z , and p is momentum. The masses, M1,2, are those of

the two 1
2 -BPS sub-systems that are mutually BPS. The last equation in (A.57) is the one

that sets the total KKM charge to zero. From (A.57), we can derive

cos(α1 + α2) =
q1 − q2
M−

, sin(α1 + α2) = − p

M−
,

cos(α1 − α2) =
q1 + q2
M+

, sin(α1 − α2) =
p

M+
,

M± ≡M1 ±M2 =
√
p2 + (q1 ± q2)2 .

(A.58)

The physical charges, q1, q2 and p, are determined in terms of the quantized chargesNi, ni, J

(modulo the relation (A.50)) so that, after rotation in the (θ, z) plane, we end up with the
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desired diagonal D1-D5-P configuration shown in figure 5. We will do that a little later.
The two sub-systems have mass M1 and M2 and, since the two sub-systems are mutually
BPS, the mass of the total system is simply the sum: M1 +M2 =

√
p2 + (q1 + q2)2. This

is the correct mass of the D1(z)-D5(z1234) system with rest mass q1 + q2 boosted to have
momentum p in the θ direction.

Now we can obtain the desired projectors for the tilted-and-boosted D1-D5 system
shown in figure 5 by rotating the projectors (A.56) by an angle −α3 in the (θ, z) plane.
This is trivially accomplished by replacing Γz and Γθ in (A.56) by Γbz and Γbθ where:

Γbz ≡ c3Γz + s3Γθ , Γbθ ≡ c3Γθ − s3Γz . (A.59)

To summarize, the resulting projectors, Π̂i=1,2, are given by

Π̂i =
1
2

(1 + P̂i), (A.60)

with

P̂1 = c1c2Γ0bzσ1 + s1s2Γ01234bzσ1 + c1s2Γ0bθ − s1c2Γ01234bθ,
P̂2 = s1s2Γ0bzσ1 + c1c2Γ01234bzσ1 − s1c2Γ0bθ + c1s2Γ01234bθ. (A.61)

We now show that the angle α3 is actually fixed by the dynamical conditions (A.50)
and (A.51) to be:

α3 = α1 − α2. (A.62)

From (A.58), we see that

tan(α1 − α2) =
p

q1 + q2
. (A.63)

As mentioned before, the charges p, q1, q2 here are nothing but the P, D1 and D5 charges
in figure 5. They are computed in terms of the charges Ni, ni, J as follows:

p =
√

(pθ)2 + (pz)2 =
√

(N3/Rz)2 + (J/Rθ)2 = (J/Rθ)
√

1 + (n2Rθ/N1Rz)2,

q1 = τD1

√
(2πRzN1)2 + (2πRθn2)2 = 2πτD1RzN1

√
1 + (n2Rθ/N1Rz)2

q2 = τD5V4

√
(2πRzN2)2 + (2πRθn1)2 = 2πτD5RzV4N2

√
1 + (n2Rθ/N1Rz)2.

(A.64)

Here, p was computed simply by (A.53), and q1,2 were computed by considering the fact that
D1- and D5-branes are wrapped diagonally with winding numbers (N1, n2) and (N2, n1)
around a torus of radii Rz, Rθ. Also, in the last equalities, we used the relations (A.50).
If we substitute these relations (A.64) into the right hand side of (A.63) and use the
relations (A.50), (A.51) and (A.53), we obtain tanα3 = tan(α1 − α2), namely, (A.62)
follows.

The projectors (A.60) with parameters α1,2,3 satisfying the relation (A.62) always pre-
serve the four common supersymmetries of the original three-charge system. In particular,
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we can write the Π̂i in terms of the fundamental set of projectors, Π1,...,3 of (A.47), and
the additional derived projector, Π4 of (A.48):

Π̂1 =
1
2

[(1−cosφ)−sinφΓzθ]+(c3−s3Γzθ)(c1c2Π1+s1s2Π2)−(s3+c3Γzθ)(c1s2Π3+s1c2Π4),

Π̂2 =
1
2

[(1−cosφ)−sinφΓzθ]+(c3−s3Γzθ)(s1s2Π1+c1c2Π2)+(s3+c3Γzθ)(s1c2Π3−c1s2Π4),

where φ ≡ α1 − α2 − α3. Note that one needs the relation (A.62) to show that these
annihilate the supersymmetries of the original three-charge system. We may thus use this
condition of preserving the original supersymmetries as an alternative derivation of the
identity (A.62).

By using the relations (A.50), (A.51) and (A.58), we can derive the following relations
for the angles:

tanα3 = tan(α1 − α2) =
√

ρP
ρD1 + ρD5

, tan(α1 + α2) = −

√
ρP
(
ρD1 + ρD5

)
ρD1 − ρD5

, (A.65)

where

ρD1 =
τD1N1

2πRθ
, ρD5 =

τD5V4N2

2πRθ
, ρP =

N3

(2πRz)2Rθ
(A.66)

are the densities of the original electric charges D1(z), D5(z1234) and P(z), respectively,
and are easy to compute just as (A.33). So, the angles α1,2,3 are determined in terms of
the ratios of the electric charge densities. By varying these charge densities, we can vary
the angles α1,2,3 along the curve. However, we cannot freely vary the charge densities ρD1,
ρD5, ρP . Using the relations (A.50), it is easy to show that

ρD1ρP = ρd1ρJ , ρD5ρP = ρd5ρJ , (A.67)

where

ρd1 =
n2τD1

2πRz
, ρd5 =

n1τD5V4

2πRz
, ρJ =

J

(2πRθ)2Rz
=
n1τD5V4 + n2τD1

2πRz
(A.68)

are the charge densities of D1(θ), D5(θ1234) and P(θ), respectively. Because these dipole
charge densities ρd1 and ρd5 are constant along the curve, and furthermore the angular
momentum density ρJ is equal to their sum, the charge densities ρD1, ρD5, ρP are subject
to the constraint (A.67). Because (A.67) imposes two conditions on three densities, there
is 3− 2 = 1 parameter which we can vary along the ψ curve.

Much like for ordinary two-charge supertubes, the fact that the angular momentum
density is equal to the sum of the dipole charge densities insures that the shifts to the electric
Killing spinors brought about by the dipole charges and angular momentum cancel; this
can also be seen from supergravity analysis of the near-supertube solution [21].

The projectors Π̂1 and Π̂2 defined here are not the same as those defined in (3.17)–
(3.22). This is because the projectors constructed here actually commute whereas those
of (3.17)–(3.22) do not commute in general but commute on their common null space.
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This difference in the commutators is directly attributable to the fact that we introduced
the polarization angle, α1, and arranged the D1 projector to have KKM charge terms. Of
course, to be rigorous about the second supertube transition, one must use the commuting
projectors and the procedure outlined in the appendix section A.2.2. Nevertheless, as we
will see below, the projector we obtained in eq. (4.5) using noncommuting projectors is the
same as the one we obtain here using the rigorous procedure.

It is interesting to note that, just as in (A.45), the projectors (A.60) can be written
rather concisely as

P̂i = U−1
i Γ0θUi,

U1 = exp
(
α2 − π

2

4
[P1,Γ0θ]− α1

4
[P2,Γ0θ] +

α3

4
[P3,Γ0θ]

)
,

U2 = exp
(
α2

4
[P1,Γ0θ]−

α1 + π
2

4
[P2,Γ0θ] +

α3

4
[P3,Γ0θ]

)
,

P1 = Γ0zσ1, P2 = Γ0z1234σ1, P3 = Γ0z,

(A.69)

and hence can also be thought of as coming from a rotation in spinor space.

A.3.2 Second supertube transition — double bubbling

Locally, the supertube transition of the D1-D5-P system can be thought of as a tilted and
boosted D1-D5 system and the result is a 1

4 -BPS configuration. We found commuting
supersymmetry projectors, Π̂i, describing this system. Being simply a tilted and boosted
version of the D1-D5 system, this system can in principle undergo a second supertube
transition where it expands into new dipole charges. The projector after such a second
supertube transition is obtained simply by using the general formula (A.43). The result is

Π̂ =
1
2

(1 + s24P̂1 + c24P̂2 − s4c4Γ0ψ + s4c4Γ0ψP̂1P̂2), (A.70)

where c4 = cosα4, s4 = sinα4.
The angle α4 is not arbitrary but is fixed in terms of charge densities by the general

relation (A.44) that any supertube transition should obey. In (A.44), ρ1,2 are the densities
of the electric charges associated with the commuting projectors Π1,2 in (A.37), and are
proportional to the BPS masses for these projectors. The BPS masses for the commuting
projectors Π̂1,2 are equal to those for Π̂(0)

1,2, which are nothing but the M1,2 defined in (A.58).
Therefore, the relation (A.44) is

tan2 α4 =
M2

M1
=

tanα2

tanα1
, (A.71)

where, in the last equality, we used (A.57) and (A.64). So, the Π̂ defined in (A.70), along
with the condition (A.71), is the projector for the second supertube transition, or double
bubbling.
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A.4 The relation between projectors

A.4.1 Relating the projectors

We have carefully derived the projector (A.70) based on the commuting projectors Π̂1,2.
On the other hand, in the main text, we constructed the projector (4.5) based on non-
commuting projectors Π̂D1,D5 defined in (4.3) and (4.4) and we ignored the fact that Π̂D1

and Π̂D5 do not commute. The two “double bubbled” projectors that we have constructed
are not, a priori, guaranteed to be the same. However, by carefully comparing the explicit
expressions of the two projectors, we can straightforwardly check that the two projectors
are indeed identical with the following identification of parameters:

α = α2 − α1, cos(2β) = −tan(α1 − α2)
tan(α1 + α2)

, sin(2β) = − sin(2α4)
cos(α1 − α2)

. (A.72)

Note that the angle α4 is related to α1,2 by (A.71).

A.4.2 How many parameters do superstrata have?

For entropy-counting purposes, it is interesting to ask how much freedom one has in con-
structing a superstratum and in particular a flat superstratum. A priori, the superstratum
projector can depend on four angles α1,2,3,4 that appear in the projector (A.70), but in or-
der to preserve the same supersymmetries as the original branes these angles must be
related via (A.62) and (A.71). The projector we constructed in the main text, (4.5), also
depends on two angle parameters α, β, that can be related to the angles α1,2,3,4 by (A.72).
Hence it appears at first glance that the superstratum has two functions worth of degrees
of freedom.

Since the four angles can in turn can be re-expressed in terms of the densities of the
D1, D5 and P original electric charges through the relations (A.65) and (A.71), this would
imply that the three D1,D5 and P densities must satisfy one constraint. However, before the
second bubbling these densities must in fact satisfy two constraints (A.67), which imply that
D1 and the D5 densities must be proportional. It is unclear whether this proportionality
relation will also apply to a superstratum. One can argue that this relation comes from
requiring absence of closed time-like curves near the first-bubbled supertube profile [21],
and since the second bubbling has now removed the problematic region of spacetime the
superstratum does not have to satisfy this relation. One the other hand, from the point of
view of the DBI construction [20] this relation is an intrinsic feature of the three-charge two-
dipole charge supertube that undergoes the second bubbling to become a superstratum,
and hence one can argue that the superstratum will continue satisfying this relation.

The final answer to this question has to await a dynamical description of a superstratum
either via a supergravity solution or via a Born-Infeld-type analysis. The important point
is that the one or two density parameters that can vary along the superstratum, together
with the shape modes that give its embedding in M5, can be functions of both θ and ψ.
Hence the superstrata should be parameterized by several functions of two variables, and
probably have much more entropy than any other horizonless object with three charges
constructed so far.
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