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1 Introduction

Witten diagrams [1] provide us with the means for calculating correlation functions [2] of
strongly coupled conformal field theories with a gravity dual [3, 4]. However, in spite of
significant progress [5–8], such calculations are in general quite cumbersome to perform. As
it stands, the state of the art is the computation of four point functions involving different
kinds of exchanged fields in type IIB supergravity1 [12–15], and a stress-tensor three point
function [16]. The latter constitutes an especially heroic effort, due to the complicated
tensor structures required for conformal invariance of the three-point function [17, 18].

Such calculations are usually performed in coordinate space. An obvious question is
whether changing basis could lead to simplifications. The first guess is momentum space,
but this doesn’t lead to any major simplifications - perhaps the reason is simply that such
a transformation does not take into account the symmetries of AdS space, but only of its
boundary. As it turns out that a more appropriate basis does exist: instead of the Fourier
transform one should really be working with the Mellin transform [19–21]

The Mellin transform is very natural from a conformal field theory perspective. To see
this consider the four-point function of a scalar fields Oi of conformal dimension ∆i. By
using the OPE in the 12 channel say, we can write

〈O∆1(x1)O∆1(x2)O∆1(x3)O∆1(x4)〉

=
∫

dc
2πi

g(12)(34)(c)
∫

ddx 〈O(x1)O(x2)φh+c(x)〉 〈φh−c(x)O(x3)O(x4)〉+ . . . (1.1)

where the . . . represent contributions of fields with spin appearing in the OPE, φh±c is a
scalar field of unphysical dimension h ± c, and g(12)(34)(c) contains the information about
which scalar fields appear in the OPE, through its pole structure. The three point functions
appearing above are uniquely fixed by conformal symmetry, say

〈O∆1(x1)O∆2(x2)O∆3(x)〉 = C∆1,∆2,∆3

3∏
i<j

(xi − xj)−2∆̃ij (1.2)

with e.g. ∆̃12 = 1
2(∆1 + ∆2 −∆3) and C∆1,∆2,∆3 is a constant which contains information

about the dynamics. Therefore the integral becomes

〈O(x1)O(x2)O(x3)O(x4)〉 =
∫

dc
2πi

g(12)(34)(c)C∆1,∆2, h+cC∆3,∆4, h−c

(x1 − x2)−(∆1+∆2−(h+c))(x3 − x4)−(∆3+∆4−(h+c))

∫
ddx

4∏
i=1

(x− xi)−δi + . . . (1.3)

with

δ1 =
1
2

(∆1 + h+ c−∆2), δ2 =
1
2

(∆2 + h+ c−∆1),

δ3 =
1
2

(∆3 + h− c−∆4), δ2 =
1
2

(∆4 + h− c−∆3), (1.4)

1See also the works [9–11] where correlators of currents are calculated in certain limits.
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To perform the x integral in (1.3) the standard procedure is to introduce Schwinger
parameters to exponentiate the denominators. The x integration becomes trivial, and the
Schwinger integrations can be performed via Symanzik’s star formula [22], as we discuss in
appendix B. The net result is that

π−d/2
∫

ddx
4∏
i=1

(x− xi)−δiΓ(δi) =
∫

dδij
4∏
i<j

Γ(δ̃ij)(xi − xj)−2δ̃ij (1.5)

where the n(n − 3)/2 independent parameters δ̃ij satisfy the constraints
∑

i 6=j δ̃ij = δj .
In this way, we have passed from integrations in coordinate space to integrations in the
Mellin space.

Generically, any conformal field theory correlation function of scalars with dimensions
∆i can be written in the Mellin representation as [19]:

A(x1, x2, . . . , xn) =
N

(2πi)
1
2
n(n−3)

∫
dδij M(δij)

n∏
i<j

Γ(δij)(xi − xj)−2δij . (1.6)

The normalization constant N will be fixed later. The object M(δij) is the Mellin ampli-
tude, which depends on a set of n(n− 3)/2 parameters δij equal in number to the number
of independent cross-ratios.2 These parameters satisfy the constraints∑

j

δij = ∆i, δii = 0 (1.7)

which may be solved by introducing a set of d-dimensional vectors ki satisfying

− k2
i = ∆i,

∑
i

ki = 0 (1.8)

in terms of which δij = ki · kj . It is also useful to introduce the “Mandelstam invariants”

si1i2...ip = −

(
p∑

m=1

kim

)2

=
p∑

m=1

∆im − 2
∑
ik<il

δikjl , (1.9)

which imply for instance sij = −(ki + kj)2 = ∆i + ∆j − 2δij .
Mellin amplitudes have very simple analytic properties. The scalar four-point function

for instance, has an infinite set of simple poles in the s-channel at s12 = ∆k − sk + 2n,
where ∆k, sk are the conformal dimension and spin respectively of a field appearing in the
OPE, and n is a positive integer. The residues of the satellite poles, that is those with
n 6= 0, are completely fixed by conformal symmetry in terms of the leading n = 0 pole.
Further, validity of the OPE requires factorisation: the residue of the leading pole splits
into the product of two factors, one pertaining only to fields 12 and the other to fields 34.

In the paper [21], the Mellin formalism was used to study CFT correlation functions
computed in the AdS/CFT context, with promising results. For instance, contact interac-
tions have simply polynomials as their Mellin amplitudes, in contrast to the complicated

2As long as this number is smaller than n × d, the number of maximally independent components of

n-dimensional vectors.
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D-functions which appear in coordinate space. Even the dreaded stress-tensor exchange
diagram reduces to a simple rational function for the case of minimally coupled mass-
less scalars. The simple analytic properties of Mellin amplitudes also make clear which
operators are propagating throughout a given Witten diagram: double-trace operators
corresponding to the fusion of external legs are captured by the explicit gamma func-
tions in the Mellin representation, whereas single-trace operators and their descendants
corresponding to internal lines or bulk-to-bulk propagators, appear as simple poles of the
Mellin amplitude,.

In this paper we continue to investigate the properties of AdS/CFT correlation func-
tions in the Mellin representation. We shall do this on two fronts. Firstly by evaluating
higher point amplitudes in purely scalar theory, that is, where no other fields other than
scalars propagate in a Witten diagram. Secondly by computing correlation functions of
operators with spin such as currents and stress-tensors. In both cases it will be invalu-
able to use the embedding formalism [23–25]. The main idea is to think of AdSd+1 space
as embedded in flat Minkowski space Md+2, with metric ηMN . AdS coordinate vectors
XM satisfy X ·X = −R2 whereas AdS boundary coordinates PM are defined by P 2 = 0,
P ' αP, α > 0. With the two-pronged approach of using embedding formalism and Mellin
transforms, the computation of correlation functions simplifies dramatically.

1.1 Summary of results

An intriguing possibility raised by the work of [21] is the existence of Feynman rules for
Mellin amplitudes. Indeed, the Mellin amplitude for a scalar four point function in φ3

theory takes the simple form

M4 '
+∞∑
n=0

(
V 2

∆,n

s12 −∆− 2n
+

V 2
∆,n

s13 −∆− 2n
+

V 2
∆,n

s14 −∆− 2n

)
(1.10)

The vertex V∆,n essentially describes the three point function of two scalars and a descen-
dant field at level n. The above is remarkably similar to a flat space scattering amplitude,
and indeed it becomes one for high enough energies as compared to the dimensions ∆.
In this work we shall present strong evidence that at least for scalar theory, it is possible
to write down a set of Feynman rules for Mellin amplitudes. More precisely, we compute
5-pt, 6-pt and even a 12-pt diagram in scalar theory and check that the rules hold. These
calculations also allow us to read off the vertices V when more than one descendant fields
are involved. In φ3 theory we need at least three internal lines (bulk-to-bulk propaga-
tors) to see three descendant fields interacting, and in φ4 theory we need four such lines.
Our computations are consistent with the existence of a set of Feynman rules for Mellin
diagrams, which are given in the following.

Conjecture (Feynman rules for Mellin amplitudes). Consider a tree-level Witten
diagram involving only scalar fields, consisting of a set of external (bulk to boundary)
and internal (bulk to bulk) lines, and vertices connecting them. The corresponding Mellin
amplitude is constructed as follows:
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• To every line associate momentum kj. Momentum of external lines satisfy −k2
i = ∆i.

Momentum conservation must hold for the whole amplitude, and at every vertex.

• To every internal line corresponding to a scalar of conformal dimension δk, assign
an integer nk and a propagator:

1
2nj !Γ(1 + δj + nj − h)

−1
+k2

j + (δj + 2nj)
(1.11)

• In g(m)φm theory, the vertex connecting lines with dimension ∆i, integers ni, is given
by

V ∆1...∆m

[n1,...,nm] = g(m) Γ
(∑

i ∆i − 2h
2

)( n∏
i=1

(1− h+ ∆i)ni

)
(1.12)

F
(m)
A

(∑n
i=1 ∆i−2h

2
, {−n1,. . .,−nm}, {1+∆1−h,. . ., 1+∆m−h}; 1,. . ., 1

)
where (a)m is the Pochhammer symbol and F

(m)
A is the Lauricella function of m

variables3

• The Mellin amplitude is obtained by summing over all non-zero integer ni.

If this conjecture is correct, then correlation functions in the purely scalar sector are
completely solved at tree level (other kinds of interactions, such as those including deriva-
tives, can be easily included [21]). A proof of these rules will require a better understanding
of how lower-point Mellin amplitudes are combined into higher point ones.

An important result in this work, is a simplified formalism for the calculation of corre-
lation functions of objects with indices, such as currents and stress-tensors. We shall find
that the bulk to boundary propagators of these objects can be written as certain differential
operators DMA acting on scalar propagators. For instance the three-point current Mellin
amplitude MM1M2M3

3 may be written schematically as

MM1M2M3
3 = DM1A1DM2A2DM3A3M̃A1A2A3 . (1.13)

The D operators act as projectors, taking the reduced Mellin amplitude M̃ onto a confor-
mally invariant subspace. As such, the reduced Mellin amplitude M̃ is dramatically simpler
then the full amplitude. In particular its tensorial structure is essentially the same one that
would appear in a flat space scattering amplitude, upon certain identifications. This sim-
plification holds for arbitrary n-point functions, of fields with arbitrary spin. In particular,
in this paper we shall carry out as an example the calculation of a four-current Witten
diagram involving current exchange in Yang-Mills theory. With some more work, the four-
point function of the stress-tensor should be obtainable, since the difficulties involved are
essentially the same that are involved in a flat space scattering calculation.

3The definition is given in equation (4.23). Also, see references [26–28].
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The usage of the embedding formalism also clarifies the requirements of conformal
invariance. Consider for instance the current three-point amplitude,〈

JM1(P1)JM2(P2)JM3(P3)
〉

(1.14)

where all PMi
i are d+2 dimensional vectors which square to zero. To get the d-dimensional

amplitude we must pull back the Mi indices to µ indices in d dimensions. This only makes
sense if the Mi indices are transverse [24] , that is, if:

Pi,Mi

〈
JM1(P1)JM2(P2)JM3(P3)

〉
= 0 (1.15)

for any i. This requirement strongly constrains the form of the amplitude. There are
essentially two building blocks

XMk
ij =

(
PMk
i

Pi · Pk
−

PMk
j

Pj · Pk

)
(1.16)

IMiMj = ηMiMj −
P
Mj

i PMi
j

Pi · Pj
, (1.17)

which satisfy PMk
XMk
ij = PMiI

MiMj = PMjI
MiMj = 0. From these we can construct the

tensorial structure of any conformally invariant amplitude. In our example, we find that
the amplitude must take the form〈

JM1(P1)JM2(P2)JM3(P3)
〉
∝ aXM3

12 X
M2
13 X

M1
12 + b

(
XM3

12

IM1M2

P1 · P2
+ perms

)
(1.18)

which is correct [18]. However, the reasoning is more general, and it applies to any n-point
amplitude of any integer spin field.

The layout of this paper is as follows. In the next section we set up our formalism,
describing in detail the embedding formalism, and the form of the bulk-to-bulk and bulk-to-
boundary propagators that will be used throughout the paper. In section 3 we review some
of the results of [21], computing the Mellin amplitude corresponding to a scalar four-point
function in φ3 theory. This will serve as the starting point and motivation for computing
higher point amplitudes, in the quest to understand whether Mellin amplitudes can be
described by a set of Feynman rules. In sections 4 and 5 we compute five and six-point
amplitudes respectively. The form of the amplitudes is consistent with the Feynman rules
we described previously, and we read off the general cubic vertex involving three descendant
fields, given in terms of the Lauricella function of three arguments. In section 7 we turn our
attention to correlators of spin-1 fields. We start by reproducing in a much simpler fashion
several computations which have appeared previously in the literature: namely correlators
〈JOO〉, 〈JJJ〉 and a current exchange diagram in scalar theory. Putting all the ingredients
together we are able to explicitly compute a current 4-point function. We finish with a
brief discussion of our results and prospects for future work.

Note Added. While this work was being completed, we became aware of the work of [29]
which partially overlap with some of our results. We thank the authors for granting us
access to an early version of their manuscript.
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2 Preliminaries

2.1 Embedding formalism

Throughout this paper we shall make strong use of the embedding formalism. In this
formalism, AdSd+1 space is seen as a curved surface embedded in flat Minkowski space
Md+2. The Minkowski space metric is denoted ηMN , and it is written as

ds2 = −dX+dX− + δmndXmdXn. (2.1)

That is, we describe the first two directions with lightcone coordinates. AdS coordinate
vectors XM satisfy X ·X = −R2 whereas AdS boundary coordinates PM are defined by
P 2 = 0. We are also free to perform rescalings P → αP, α > 0, and as such amplitudes
M(Pi) satisfying conformal invariance should also scale: M(Pi) → α∆M for some ∆. To
fix notation we choose

• Pi - fixed boundary points.

• Qi - boundary points integrated over.

• Xi - AdS bulk coordinate.

We will also set throughout the rest of this paper the AdS radius to one. Dependence on
this quantity can be recovered by dimensional analysis. Useful parameterizations of AdS
and its boundary are

XA(xa) =
1
x0

(1, x2
0 + x2, xµ), PM (xµ) = (1, y2, yµ). (2.2)

where xµ is a d-dimensional vector and x2 = xµxµ. In this way we have for instance:

Pij ≡ −2Pi · Pj = (yi − yj)2 (2.3)

−2P ·X =
1
x0

(x2
0 + (x− y)2). (2.4)

Objects with indices TA1... are tensors in AdS if they satisfy XA1TA1... = 0 [24, 30]. To
implement this transversality condition one may use the projector

UAB = ηAB +XAXB. (2.5)

It is also useful to know how to write such d+ 2 tensors in terms of d-dimensional ones. In
other words, we need to be able to pull-back M indices to µ indices, and this is achieved
by use of the objects

ζMµ (P ) =
∂PM (yµ)
∂yµ

, ϕMa (X) =
∂XM (xµ)

∂xa
. (2.6)

Because of the constraints X2 = −1, P 2 = 0, we necessarily have ζµ(P )·P = ϕa(X)·X = 0.
Using the parameterization of AdS and its boundary given in (2.2), we find the following

– 7 –
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Figure 1. A Witten diagram involving scalar fields.

useful identities:

ζµ(y) · P (y′) = y′µ − yµ, (2.7a)

ζµ(y) ·X(x) =
1
x0

(xµ − yµ), (2.7b)

ϕ0(x) · P (y) =
1
2

(y − x)2 − x2
0

x2
0

(2.7c)

ϕµ(x) · P (y) =
1
x0

(yµ − xµ) (2.7d)

ζµ(x) · ζν(y) = ηµν (2.7e)

ϕa(x) · ϕb(x) = gab. (2.7f)

ϕµ(x) · ζν(y) =
1
x0
ηµν (2.7g)

In the following we will label indices that are to be contracted with ζMµ as M,N,P, . . .,
whereas “AdS” indices will be labelled A,B,C . . .. This provides a practical distinction
between boundary and bulk indices, although in the embedding formalism no such distinc-
tion exists.

2.2 Boundary-bulk propagators

In the AdS/CFT correspondence, conformal correlation functions can be calculated via
Witten diagrams [1]. A typical diagram is shown in figure 1.

Such a diagram is made up of three ingredients, namely external lines which connect
to the boundary of AdS, internal lines, and vertices. The vertices are simple to write
down and are easy to read off from the gravitational lagrangian. External lines are bulk-
to-boundary propagators, propagating some field perturbation inserted on the boundary
into the bulk, and internal lines are bulk-to-bulk propagators. To compute the amplitude
we write down a propagator for each line, and integrate over all possible positions of the
interaction vertices. In the following we shall give expressions for these propagators in the
embedding formalism. Consider first the case where the perturbation corresponds to a

– 8 –
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scalar operator of conformal dimension ∆i. Then the propagator can be written as

Ei(P,X) =
Ci

(−2P ·X)∆i
=

1
2πhΓ(1 + ∆i − h)

∫ +∞

0

dti
ti
t∆i
i e2tiP ·X . (2.8)

Here i is shorthand notation for denoting the field in question and its conformal dimension,
and the constants are

Ci =
Γ(∆i)

2πhΓ(1 + ∆i − h)
, h ≡ d/2. (2.9)

It is easy to check using our expression (2.4) that this reduces to the usual bulk-to-boundary
propagator

Ei(P,X) '
(

x0

x2
0 + (y − x)2

)∆i

. (2.10)

However, the most convenient expression to use is the Schwinger parameterized form ap-
pearing on the right of (2.8), and this will be the one we will be using throughout this paper.

Now consider the bulk-to-boundary propagator of a spin-1 field. Such a propagator
takes the form:4

EMA
i (P,X) =

1
2πhΓ(1 + ∆i − h)

∫ +∞

0

dti
ti
t∆i
i JMA e2tiP ·X . (2.11)

That is, it is given by the product of some tensor structure, to propagate indices, and the
scalar propagator of a field of dimension ∆i. For a Yang-Mills field we will have ∆i = d−1,
but we shall keep it arbitrary for now. Requiring transversality of the tensor structure both
in AdS and at its boundary fixes JMA:

PMJ
MA = JMAXA = 0 ⇒ JMA = ηMA − PAXM

P ·X
(2.12)

The tensor JMA is a projector, as may be easily checked. It serves the two-fold purpose
of making transverse in X objects which contract it on the right, and transverse in P

objects which contract it on the left. The reader may check that the propagator written
above reduces to the right one for a spin-one field upon the use of the identities (2.7). In
fact, using JMA, we can write down the bulk-to-boundary propagator for a field of any
spin - we just multiply several JMA together and symmetrize appropriately its indices to
get the right representation. In particular we can do this to obtain the bulk-to-boundary
propagator of the graviton. Before we do this however, we notice that there is an alternative
representation of the propagator which will be very useful by using the identity:∫

dt
t
t∆
PAXM

P ·X
e2tP ·X =

∫
dt
t
t∆

(−2 t)
∆

PAXM e2tP ·X (2.13)

= −
∫

dt
t
t∆

PA

∆
∂

∂PM
e2tP ·X , (2.14)

we can write EMA
i (P,X) = DMA

∆ Ei(P,X) with the operator

DMA
∆ ≡ ηMA +

1
∆
PA

∂

∂PM
≡ ηMA +

1
∆
PA∂M1 . (2.15)

4Our normalization differs from that of [7] by a factor of d− 1.
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Similarly, for the spin-2 case, we can also write the bulk-to-boundary propagator in terms
of an operator acting on the scalar propagator:

EM1M2AB
i (P,X) =DM1M2AB

2,∆ Ei(P,X), (2.16)

DM1M2A1A2
2,∆ = ηM1A1ηM2A2 +

1
∆
(
ηM1A1PA2∂M2 + 1↔ 2

)
+

PA1PA2

∆(∆ + 1)
∂M1∂M2

Once again, in applications we should take ∆ = d in the above.

2.3 Bulk-to-bulk propagators

Next we consider the bulk-to-bulk propagators. These are associated with internal lines in
Witten diagrams. For ease of notation, we will henceforth denote the conformal dimension
of fields propagating in these internal lines by a lower case δ, and dimensions of fields on
external lines by a capital ∆. Then, for a scalar field of dimension δ, the bulk-to-bulk
propagator GBB(X,Y ) can be written in the embedding formalism as

GBB(X1, X2) =
∫ +∞

−i∞

dc
2πi

fδ,0(c)
∫
∂AdS

dQ
∫
d̃2sc e

2sQ·X+2s̄Q·Y (2.17)

with
fδ,0(c) ≡ 1

2π2h[(δ − h)2 − c2]
1

Γ(c)Γ(−c)
, d̃2sc ≡

ds
s

ds̄
s̄
sh+cs̄h−c (2.18)

It is remarkable that this can be seen as the product of two boundary to bulk propagators
of states with unphysical conformal dimensions h±c, glued together by the integration over
the boundary point Q and over c. Bulk to bulk propagators of fields with spin will have
the same structure as we shall see shortly. The fact that the dependence of the propagator
on X and Y factorises simplifies calculations a great deal, since then an n-point amplitude
can be obtained by appropriately gluing lower-point amplitudes. In particular, this allows
one to ultimately reduce an n-point amplitudes to a gluing of three point amplitudes,
analogously to (but not quite) BCFW [31] recursion relations.

The bulk-to-bulk propagator for a spin-one field is written in a similar fashion to the
spin-zero case [32]:

GABBB(X1, X2) = (2.19)∫ +∞

−i∞

dc
2πi

fδ,1(c)
∫
∂AdS

dQ
∫

ds
s
sh+c

(
DMA
h+c e

2sQ·X1
)
ηMN

∫
ds̄
s̄
s̄h−c

(
DNB
h−c e

2s̄Q·X2
)

with

fδ,1 = fδ,0
h2 − c2

(δ − h)2 − c2
, δ = d− 1 (2.20)

and DMA
∆ the operator defined previously in (2.15). Finally, the bulk-to-bulk graviton

propagator can be obtained by the replacements [32]

fδ,1 → fδ,2 = fδ,0 [(h+ 1)2 − c2] (2.21)

DMA → DM1M2A1A2 (2.22)

ηMN → EM1M2,N1N2 (2.23)
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Figure 2. Scalar three-point function.

with E given by

EM1M2N1N2 ≡
1
2

(ηM1N1ηM2N2 + ηM1N2ηM2N1)− 1
d
ηM1M2ηN1N2 . (2.24)

The appearance of d instead of d+ 2 in the above will be explained in section (5). For now
it is sufficient to notice that in order to get the correct d dimensional index structure we
must have E of this form.

3 Warm-up: 3 and 4-point scalar correlation functions

3.1 3-point vertex

Now that we have expressions for all the propagators, we are ready to compute some
amplitudes. We will see that using both the embedding formalism and the Schwinger
parameterized form of the propagators naturally leads to the appearance of the Mellin
transform of the amplitudes, as well as simplifying considerably the calculations.

As a warm-up, consider first a simple theory of massive scalars in AdSd+1 interacting
via a cubic potential:

Sφ =
∫

dd+1x
√
g

∑
i

1
2

(∂φi)2 +
1
2
m2
iφ

2
i +

g

3!

(∑
i

φi

)3
 . (3.1)

The conformal dimension of the operatorOi dual to φi is then ∆i = h±
√
h2 +m2

i . We start
by calculating a scalar three point function, described by the Witten diagram of figure 2.
To each leg connected to the boundary we associate a boundary to bulk propagator Ei.
We are then instructed to integrate over the interaction point in the bulk of AdS, so that
the overall amplitude is given by

A(1, 2, 3) ≡ 〈O1(P1)O2(P2)O3(P3)〉 = g

∫
AdS

dX E1(P1, X)E2(P2, X)E3(P3, X),

= gE3

∫ +∞

0

3∏
i=1

dti
ti
t∆i
i

∫
AdS

dX exp (2(t1P1 + t2P2 + t3P3) ·X) (3.2)
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with E3 =
∏3
i=1

Ci
Γ(∆i)

. To proceed we use the result (A.1), whereupon we obtain

A(1, 2, 3) = g πh E3 Γ
(∑n

i ∆i−2h
2

)∫ 3∏
i=1

dti
ti
t∆i
i exp (−t1t2P12 − t1t3P13 − t2t3P23) . (3.3)

with Pij ≡ −2Pi · Pj . The integrals may be directly performed by doing a change of
variables,

t1 =
√
m3m2

m1
, t2 =

√
m3m1

m2
, t3 =

√
m1m2

m3
. (3.4)

obtaining

A(1, 2, 3) =
πh

2
g Γ

(∑3
i ∆i − 2h

2

)
E3

3∏
i=1

∫
dmi

mi
m
δjk

i e−miPjk (3.5)

where it should be understood that if i = 1, jk = 23, etc, and

δ12 =
∆1 + ∆2 −∆3

2
, δ23 =

∆2 + ∆3 −∆1

2
, δ13 =

∆1 + ∆3 −∆2

2
. (3.6)

The integrations are now trivial and one obtains

A(1, 2, 3) =
πh

2
g Γ

(∑3
i ∆i − 2h

2

)
E3

3∏
i<j

Γ(δij)(Pij)−δij (3.7)

In general, we define the normalization constant in (1.6) by

N ≡ πh

2

n∏
i=1

Ci
Γ(∆i)

. (3.8)

In this particular case, this gives for the three-point Mellin amplitude:

M3 = g Γ

(∑3
i ∆i − 2h

2

)
≡ V ∆1,∆2,∆3

[0,0,0] (3.9)

The notation for the vertex V will become clear later on. For the practical purpose of com-
puting the Mellin amplitude, we need not worry about the overall normalization constant
N , since to restore it, one can simply include a factor Ci/Γ(∆i) for each external leg. As
such we will for the most part omit it from our calculations.

3.2 4-point exchange diagram

Now let us tackle an example where there is an intermediate state being exchanged in the
bulk. We consider a four point amplitude of operators Oi and dimension ∆i, i = 1, . . . , 4,
where a scalar of conformal dimension δ is being exchanged in the “s-channel”. The Witten
diagram is shown in figure 3. Let us denote the corresponding amplitude by Is. There are
now two three point interactions happenning at pointsX1, X2, over which we must integrate
over. The amplitude is written

Is = g2

∫
AdS

dX1

∫
AdS

dX2E1(P1, X1)E2(P2, X1)GBB(X1, X2)E3(P3, X2)E4(P4, X2). (3.10)
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Figure 3. Scalar exchange diagram.

Figure 4. Four-point amplitudes result from gluing a pair of three-point amplitudes.

As we’ve seen in section 2.3 the dependence of the bulk-to-bulk propagator on X1, X2

factorises, and the amplitude becomes

Is =
∫ +i∞

−i∞

dc
2πi

fδ(c)
∫
∂AdS

dQA(P1, P2, Q+)A(Q−, P3, P4). (3.11)

with

A(P1, P2, Q+) = g

∫ +∞

0

dt1
t1

dt2
t2

ds
s
t∆1
1 t∆2

2 sh+c

∫
AdS

dX1 e
2(t1P1+t2P2+sQ)·X1 , (3.12)

A(P3, P4, Q−) = g

∫ +∞

0

dt3
t3

dt4
t4

ds̄
s̄
t∆3
3 t∆4

4 sh−c
∫

AdS

dX2 e
2(t3P3+t4P4+s̄Q)·X2 . (3.13)

These are simply three-point amplitudes, which we have already computed. This decom-
position is shown diagramatically in figure 4.

Since the bulk-to-bulk propagators always factorise in this way, any n-point amplitude
will be the result of gluing together several three point amplitudes. We need a useful
notation for denoting these, as they will occur often. We choose:

A∆i,∆j ,h±ck(Pi, Pj , Qi) ≡ A(i, j, c±k ). (3.14)

In case a given three point amplitude contains two Q′s then it will also depend on two c
parameters. To every boundary coordinate integration there will correspond a single c, so
that the above notation is consistent.
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To compute integrals such as the one in (3.11), the standard procedure is to introduce
Schwinger parameters to exponentiate the powers of Pij . These are the t and s parameters
appearing in the expressions for the propagators. In practice, we always start by first
performing the X integrations so that we are left with expressions of the form:

A(i, j, c±) = gi,j,c±

∫ +∞

0

dt1
t1

dt2
t2

ds
s
t∆1
1 t∆2

2 sh+c exp [−t1t2P12 + 2s(t1P1 + t2P2) ·Q] (3.15)

with

gi,j,c± ≡ g πh Γ
(

∆i + ∆j + (h± c)− 2h
2

)
. (3.16)

In the particular case at hand, if we write both 3-point amplitudes in this fashion it is easy
to see that the Q integral which must be performed is precisely of the form (A.5). We then
get

A4 = g2
(

2π3h
)∫ +i∞

−i∞

dc
2πi

fδ,0(c)
∫

d̃2sΓ
(

∆1 + ∆2 + c− h
2

)
Γ
(

∆3 + ∆4 − c− h
2

)
∫ 4∏

i=1

dti
ti
t∆i
i exp

[
− (1 + s2)t1t2P12 − (1 + s̄2)t1t2P34 − ss̄

′∑
(ij)

titjPij

]
. (3.17)

where the primed sum indicates we are summing over the “cross-links” 13, 14, 23, 24. We
can now use Symanzik’s star formula (which we review in appendix B), to show that the
amplitude Is can be written in the form (1.6), with a Mellin amplitude given by

M(δij) = 2
∫ +i∞

−i∞

dc
2πi

fδ,0(c) I(12, h, c)I(34, h,−c), (3.18)

with e.g.
I(12, h, c) = g1,2,c+

∫ +∞

0

ds
s
sh+c−

P′ δij (1 + s2
)−δ12 , (3.19)

The integrals can be evaluated in terms of gamma functions. Using the relations (1.9) to
express the δij parameters in terms of Mandelstam invariants we find

M(s12) =
g2

Γ
(

∆1+∆2−s12
2

)
Γ
(

∆3+∆4−s12
2

) ∫ +i∞

−i∞

dc
2πi

lh(c)lh(−c)
(δ − h)2 − c2

(3.20)

where we have defined

lh(c) =
Γ
(
h+c−s12

2

)
Γ
(

∆1+∆2+c−h
2

)
Γ
(

∆3+∆4+c−h
2

)
2Γ(c)

. (3.21)

The Mellin-Barnes integral can be exactly evaluated in terms of a hypergeometric 3F2

function [21]:

M(s12) =
1
2

g2

s12 − δ

Γ
(

∆1+∆2+δ−h
2

)
Γ
(

∆3+∆4+δ−h
2

)
Γ(1 + δ − h)

(3.22)

3F2

(
2−∆1 −∆2 + δ

2
,
2−∆3 −∆4 + δ

2
,
δ − s12

2
;
2 + δ − s12

2
, 1+δ −h; 1

)
.
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It is more useful for us however, to write the amplitude in a different fashion. Since the
integral must lead to a meromorphic of s12, we can write the result as a Laurent series
in s12. The poles of this function are found by examining when the c integration contour
gets pinched between two poles of the integrand. We can choose the contour such that this
happens when c = δ−h and s12 = δ+ 2n, with n a positive integer. Then it is easy to find

M(s12) =
+∞∑
n=0

P δn
s12 − δ − 2n

V ∆1,∆2,δ
[0,0,n] V ∆3,∆4,δ

[0,0,n] + . . . . (3.23)

The dots represent polynomial contributions to the amplitude, but as it happens, in this
particular case they are vanishing, as can be checked by computing the amplitude exactly,
and the sum of poles is therefore the full amplitude. We have defined the vertices and
propagator normalization,

V ∆1,∆2,∆3

[0,0,0] = g Γ

(∑3
i ∆i − 2h

2

)
, (3.24)

V ∆1,∆2,∆3

[0,0,n1] = V ∆1,∆2,∆3

[0,0,0]

(
1− 1

2

3∑
i

∆i + ∆3

)
n1

(3.25)

P δn = [2n! Γ (1 + δ − h+ n)]−1 (3.26)

with the help of the Pochhammer symbol (a)m = Γ(a + m)/Γ(a). The interpretation of
this expression is clear: the Mellin amplitude is an infinite sum of products of three point
vertices and a propagator. The sum runs over the propagating fields, which include a field
with conformal dimension δ and its “descendants”, with dimension δ+2n. From the above
one reads off the three point Mellin amplitude of two fields of dimensions ∆1,∆2, and one
such descendant to be simply V ∆3,∆4,δ

[0,0,n] . In particular for n = 0 this reduces to the three
point Mellin amplitude we previously computed.

This result suggests a set of Feynman rules for Mellin amplitudes, where to each
internal line in a Witten diagram one associates an infinite sum of propagating fields (one
primary and an infinite set of descendants), to each vertex one associates a factor V ∆1,∆2,∆3

[m,n,p] ,
and for each line a normalization factor which is the inverse of Γ(1 + ∆i + n − h). These
are of course nothing but the Feynman rules we conjectured in the introduction section.
However, right now we do not yet know the form of the general vertex, which can involve up
to three “descendants”. In principle its form is directly fixed by kinematic considerations
alone, that is, by conformal symmetry. In practice, to proceed we shall extract this vertex
by evaluating higher point amplitudes. This provides a simple way of reading off the vertex,
and will also act as a cross-check on our proposed Feynman rules.

Firstly we consider a five point amplitude. In such a diagram there is a vertex con-
necting two internal lines, and from it we will be able to read off V ∆1,∆2,∆3

[0,n,p] . We will also
explicitly see that these Feynman rules still work there. Finally, the full vertex may be
obtained by considering a 6-point amplitude. We shall see how the latter can be written
as a product of three propagators and associated vertices, and read off V ∆1,∆2,∆3

[m,n,p] .
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Figure 5. A five-point Witten diagram in scalar theory.

4 Scalar higher-point amplitudes

4.1 5-point amplitude

Consider the Witten diagram of figure 5, for a five point amplitude in cubic theory. The
amplitude is given by5

A5 = g3

∫ 5∏
i

dti
ti
t∆i
i

∫ +i∞

−i∞

dc1dc2

(2πi)2
fδ1(c1)fδ2(c2)

∫
d̃2s1d̃2s2∫

∂AdS

dQ1dQ2

∫
AdS

dX1dX2dX3 exp
[
2X1 · (t1P1 + t2P2 + s1Q1) +

2X3 · (t3P3 + t4P4 + s2Q2) + 2X2 · (t5P5 + s̄1Q1 + s̄2Q2)
]
.

This looks quite complicated as it stands. However, we see that as expected from our
general arguments in the previous section, each Xi only couples to three coordinates coming
into a vertex, and so we can immediately write

A5 =g3

∫ +i∞

−i∞

dc1dc2

(2πi)2
fδ1(c1)fδ2(c2)

∫
∂AdS

dQ1 dQ2A(1, 2, c+
1 )A(3, 4, c+

2 )A(5, c−1 , c
−
2 ) (4.1)

Replacing the three point amplitudes for their Schwinger-parameterized expressions, we
have an integrand of the form

' exp
[
− t1t2P12 − t3t4P34

]
exp

[
2Q1 · (s1t1P1 + s1t2P2 + s̄1t5P5) +

2Q2 · (s2t3P3 + s2t4P4 + s̄2t5P5) + 2s̄1s̄2Q1 ·Q2

]
(4.2)

We now perform the Q integrals, first Q1 and Q2. Consequently the result appears to
break the symmetry of the diagram, but this will be restored later. The result is that the

5For economy of space we omit the external line normalization factors Ci/Γ(∆i), which are removed

anyway upon passage to Mellin space.
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integrand becomes the exponential of a polynomial quadratic in the Pi’s of the form

' exp
[
−
∑
i<j

QijtitjPij

]
(4.3)

Using Symanzik’s star formula we obtain the Mellin amplitude

M5 = g3
(

4πh
)∫ +i∞

−i∞

dc1dc2

(2πi)2
fδ1(c1)fδ2(c2) g1,2,c+1

g3,4,c+2
g5,c−1 ,c

−
2∫

d̃2s1d̃2s2

(
1 + s2

1 + s2
1s̄

2
1s̄

2
2

)−δ12 (1 + s2
2)−δ34

(
1 + s̄2

1

)−δ35−δ45
× (4.4)(

1 + s̄2
2 + s̄2

1s̄
2
2

)−δ15−δ25 (s1s̄1)−δ15−δ25−δ13−δ14−δ23−δ24 (s2s̄2)−δ35−δ45−δ13−δ14−δ23−δ24 .

To proceed we must compute the si integrals. The integrals of s1, s2 are simply performed
and result in more Gamma functions. Using the Mandelstam invariant representation of
the δij , the amplitude becomes

M5 = g3π4h

∫ +i∞

−i∞

dc1dc2

(2πi)2
fδ1(c1)fδ2(c2)

Γ
(
−s12+c1+h

2

)
Γ
(
−s34+c2+h

2

)
Γ
(

∆1+∆2−s12
2

)
Γ
(

∆3+∆4−s34
2

)Γ
(

∆5− c1− c2

2

)
(4.5)

Γ
(

∆3+∆4+c2−h
2

)
Γ
(

∆1+∆2+c1−h
2

)
Γ
(

∆3+∆4−c2−h
2

)
Γ
(

∆1+∆2−c1−h
2

)
∫

ds̄1

s̄1

ds̄2

s̄2
s̄h−c1−s121 s̄h−c2−s342

(
1+s̄2

1

)−δ35−δ45 (1+s̄2
2 + s̄2

1s̄
2
2

)−δ15−δ25(1+s̄2
1s̄

2
2

) s12−c1−h
2 .

Let us focus on the integral on the third line. After a change of variables into x = s̄2
1, y = s̄2

2

the integral becomes of the form

'
∫ +∞

0

∫ +∞

0

dx
x

dy
y
xayb(1 + x)c(1 + y + xy)d(1 + xy)e, (4.6)

with

a =
h− c1 − s12

2
, b =

h− c2 − s34

2
, c = −(δ35 + δ45),

d = −δ15 − δ25, e =
s12 − c1 − h

2
(4.7)

This integral possesses a large number of symmetries interchanging the exponents of the
various factors. Rescaling y → y/(1 + x) followed by x→ 1/x we obtain∫ +∞

0

∫ +∞

0

dx
x

dy
y
x−a+b−cyb(1 + x)−b+c−e(1 + y)d(1 + x+ y)e (4.8)

To compute this integral, first perform the change of variables

x→ x

1− x
, y → y

1− y
(4.9)
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whereupon the integral becomes∫ 1

0

∫ 1

0

dx
x

dy
y
x−a+b−cyb(1− x)−1+a(1− y)−1−b−d−e(1− xy)e

≡
∫ 1

0

∫ 1

0

dx
x

dy
y
xa1ya2(1− x)−a1+b1−1(1− y)−a2+b2−1(1− xy)a3 . (4.10)

The integral can be performed assuming Re(bk) > Re(ak) > 0, for k = 1, 2 using

3F2(a1, a2, a3; b1, b2; z) = (4.11)
2∏

k=1

Γ(bk)
Γ(ak)Γ(bk − ak)

∫ 1

0

∫ 1

0

dx
x

dy
y
xa1ya2(1− x)−a1+b1−1(1− y)−a2+b2−1(1− zxy)−a3

and so we obtain∫ ∫
(. . .) = Γ

(
c1−c2+∆5

2

)
Γ
(
c1+c2+∆5

2

)
Γ
(
−c1+h−s12

2

)
Γ
(
−c2+h−s34

2

)

×
3F2

(
{ c1−c2+∆5

2 , −c2+h−s342 , c1+h−s122 , {−c2+∆5+h−s12
2 }, c1+∆5+h−s34

2 }; 1
)

Γ
(
−c2+∆5+h−s12

2

)
Γ
(
c1+∆5+h−s34

2

) . (4.12)

The 3F2 hypergeometric function at argument z = 1 satisfies a number of identities, among
which

3F2(a1, a2, a3, b1, b2; 1) =
Γ (b1) Γ (b2) Γ (b1 + b2 − a1 − a2 − a3)

Γ (a1) Γ (b1 + b2 − a1 − a2) Γ (b1 + b2 − a1 − a3)
(4.13)

3F2(b1 − a1, b2 − a1, b1 + b2 − a1 − a2 − a3, b1 + b2 − a1 − a2, b1 + b2 − a1 − a3; 1)

which exchanges the roles of c1, s12 with c2, s34.
The expression for the Mellin amplitude is then written as

M5 =
g3

Γ
(

∆1+∆2−s12
2

)
Γ
(

∆3+∆4−s34
2

) ∫ +i∞

−i∞

dc1dc2

(2πi)2

L1(c1)L1(−c1)
(δ1 − h)2 − c2

1

L2(c2)L2(−c2)
(δ2 − h)2 − c2

2∏
σ1,σ2=±1

Γ
(
σ1c1+σ2c2+∆5

2

)
3F2

(
{ c1−c2+∆5

2 , −c2+h−s342 , c1+h−s122 }, {−c2+∆5+h−s12
2 , c1+∆5+h−s34

2 }, 1
)

Γ
(−c1+c2+∆5

2

)
Γ
(
−c2+∆5+h−s12

2

)
Γ
(
c1+∆5+h−s34

2

) , (4.14)

with

L1(c1)=
Γ
(
c1+h−s12

2

)
Γ
(

∆1+∆2+c1−h
2

)
2Γ (c1)

, L2(c2)=
Γ
(
c2+h−s34

2

)
Γ
(

∆3+∆4+c2−h
2

)
2Γ (c2)

. (4.15)

The identity between these two expressoins will be shown in the next section. We are
interested in obtaining the poles and respective residues in s12 and s34 of the expression
above. Although there are various sets of poles in c1 and c2, the only ones which will end
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Figure 6. A six-point Witten diagram in scalar theory.

up giving expressions containing poles in s12 and s34 are the ones at c1 = δ1−h, c2 = δ2−h.
Computing the residues at these poles we find

M5 =
+∞∑

n1,n2=0

P δ1n1

s12 − δ1 − 2n1

P δ2n2

s34 − δ2 − 2n2
V ∆1,∆2,δ1

[0,0,n1] V ∆3,∆4,δ2
[0,0,n2] V ∆5,δ1,δ2

[0,n1,n2] + . . . (4.16)

where the dots represent possible subleading contributions. The only new ingredient in the
above is

V ∆1,∆2,∆3

[0,n1,n2] = g Γ
(∑

i ∆i − 2h
2

)(
1− 1

2

3∑
i

∆i + ∆2

)
n1

(
1− 1

2

3∑
i

∆i + ∆3

)
n2

× (4.17)

3F2

({∑
i ∆i−2h

2
,−n1,−n2

}
,

{∑
i ∆i−2∆2−2n1

2
,

∑
i ∆i−2∆3−2n2

2

}
, 1
)

It is easy to check that when one or more of the ni’s vanish we reproduce our previous
expressions (3.24), (3.25). It’s been a long way, but the final result (4.16) is particularly
simple, and it agrees with the Feynman rules we have defined previously, assuming that the
subleading contributions in the above vanish. Attempts to evaluate the Mellin amplitude
numerically suggest this is the case, although further work is necessary. The upshot of this
calculation is that we have now in our possession a further ingredient for such rules, which
is the vertex for the case where we have two “descendant” fields and one primary.

4.2 6-point amplitude

The next step is to calculate a six point diagram involving three bulk-to-bulk propagators
connected at a single vertex in order to obtain V ∆1,∆2,∆3

[n1,n2,n3] . With this purpose in mind we
now turn our attention to the particular Witten diagram in figure 6. We can immediately
write

A6 =
∫ +i∞

−i∞

3∏
k=1

dck
2πi

fδk(ck)
∫
∂AdS

3∏
i=1

dQiA(1, 2, c+
1 )A(3, 4, c+

2 )A(5, 6, c+
3 )A(c−1 , c

−
2 , c
−
3 ) (4.18)

The calculation proceeds as for the five point amplitude - we integrate over each Qi
in turn. Exactly as before one can use the Symanzik star formula to read off the Mellin
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amplitude. After performing the s1, s2, s3 integrals (just like before we could immediately
do the integrals in s1 and s2), we are still left with a seemingly complicated integral in
s̄1, s̄2, s̄3, analogous to the second line of (4.5). However, as we show in appendix C,
performing a change of variables it is possible to write the Mellin amplitude as

M6 =
g4

26

∫ i∞

−i∞

3∏
i=1

 dci
2πi

Γ
(

∆i,1+∆i,2+ci−h
2

)
Γ
(

∆i,1+∆i,2−ci−h
2

)
Γ
(
ci+h−si

2

)
Γ
(

∆i,1+∆i,2−si

2

)
Γ(ci)Γ(−ci)

[
(δi − h)2 − c2

i

]
 (4.19)

Γ
(
h−c1−c2−c3

2

)∫ +∞

0

dx
x

dy
y

dz
z
xaybzc(1 + x)d(1 + y)e(1 + z)f (1 + x+ y + z)g,

with ∆i,j the dimension of the jth field of the ith pair of legs - j = 1, 2 and i = 1, 2, 3. For
instance, ∆2,1 ≡ ∆3,∆3,2 ≡ ∆6, . . .. Also, the si variables are the Mandelstam variables
associated with each pair of legs, such that s1 ≡ s12, s2 ≡ s34 and s3 ≡ s56. As for the
parameters a, b, . . . , g we have g = 1

2(c1 + c2 + c3 − h) and

a =
1
2

(−c1 + h− s12), b =
1
2

(−c2 + h− s34) c =
1
2

(−c3 + h− s56)

d =
1
2

(−c1 − h+ s12), e =
1
2

(−c2 − h+ s34), f =
1
2

(−c3 − h+ s56), (4.20)

To proceed we must evaluate the integral on the second line of (4.19). First we do a
multinomial expansion on the last factor of the integrand,

(1+x+y+z)g =
+∞∑

m1,m2,m3=0

(−g)m1(−g+m1)m2(−g+m1+m2)m3

×(−x)m1

m1!
(−y)m2

m2!
(−z)m3

m3!
(4.21)

We are then free to perform the separate integrations over x, y, z. The result is

∫ +∞

0

∫ +∞

0

∫ +∞

0
(. . .) =

3∏
i=1

Γ (ci) Γ
(
−ci+h−si

2

)
Γ
(
ci+h−si

2

) F
(3)
A (−g, {a, b, c} , {d, e, f} ; 1, 1, 1) (4.22)

where s1 = s12, . . . and F
(3)
A is a Lauricella generalized hypergeometric function of three

variables [26–28]. For future reference we give the definition of the Lauricella function
F

(m)
A :

F
(m)
A (g, {a1, . . . , am} , {b1, . . . , bm} ;x1, . . . , xm) ≡

+∞∑
ni=0

(
(g)Pm

i=1 ni

m∏
i=1

(ai)ni

(bi)ni

xni
i

ni!

)
(4.23)

The above series is convergent only for
∑

i |xi| < 1. Our interpretation then is to define
the sum at this point as the value of the Lauricella function at that point, which is well
defined via analytic continuation. Of course it might very well happen that for specific
values of the parameters g, ai, bi the series reduces to a sum, in which case everything is
perfectly well defined.
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The Mellin amplitude is exactly given by

M6 = g4

∫ i∞

−i∞

3∏
i=1

(
dck
2πi

Li(ci)Li(−ci)
(δi − h)2 − c2

i

)
Γ
(
h− c1 − c2 − c3

2

)
3∏
i=1

 Γ(ci)

Γ
(

∆i,1+∆i,2−si

2

)
Γ
(
ci+h−si

2

)
F

(3)
A (−g, {a, b, c} , {d, e, f} ; 1, 1, 1) . (4.24)

with the Li defined analogously to (4.15). Evaluating the integral above in closed form
seems like a difficult challenge. The poles in s12, s34, s56 however, are easily found by
pinching of two poles in the c1, c2 and c3 integrations respectively, using the definition (4.23)
of F (3)

A . The end result is the remarkably simple expression

M6 =
+∞∑

n1,n2,n3=0

(
3∏
i=1

P δini

si − δi − 2ni

)
V ∆1,∆2,δ1

[0,0,n1] V ∆3,∆4,δ2
[0,0,n2] V ∆5,∆6,δ3

[0,0,n3] V δ1,δ2,δ3
[n1,n2,n3] + . . . (4.25)

This not only provides further evidence for our set of Feynman rules for Mellin amplitudes,
but also gives us the final vertex

V ∆1,∆2,∆3

[n1,n2,n3] = V ∆1,∆2,∆3

[0,0,0] (1− h+ ∆1)n1
(1− h+ ∆2)n2

(1− h+ ∆3)n3
(4.26)

F
(3)
A

(
∆1+∆2+∆3−2h

2
, {−n1,−n2,−n3} , {1+∆1−h, 1+∆2−h, 1+∆3−h} ; 1, 1, 1

)
.

Notice that with ni positive integers, the Lauricella triple hypergeometric function is given
by a finite sum.

Now let us show that the vertex function V ∆1,∆2,∆3

[n1,n2,n3] just computed reduces to the
previous expression (4.17) when one of the integers ni is zero. When this happens, one
of the sums in the definition (4.23) reduces to a single term, and the Lauricella triple
hypergeometric function reduces to the Appell F2 function, which we denote by F (2)

A . For
instance, if n3 = 0 we get

V ∆1,∆2,∆3

[n1,n2,n3] = V ∆1,∆2,∆3

[0,0,0] (1− h+ ∆1)n1
(1− h+ ∆2)n2

F
(2)
A

(
∆1+∆2+∆3−2h

2
, {−n1,−n2} , {1+∆1−h, 1+∆2−h} ; 1, 1

)
. (4.27)

The Appell F2 function with arguments x = y = 1 is directly related to the 3F2 hypergeo-
metric function at argument x = 1. In order to prove this one computes the integral∫ +∞

0

∫ +∞

0

dx
x

dy
y
x−a+b−cyb(1 + x)−b+c−e(1 + y)d(1 + x+ y)e (4.28)

in two different ways, firstly by using formula (4.11), and secondly using the multinomial
expansion on (1 + x+ y)e and integrating. The end result is

F
(2)
A (e, {a, b} , {c, d} ; 1, 1) = (4.29)

(1 + a− c+ e)−a (1 + b− d+ e)−b
(1 + a− c)−a (1 + b− d)−b

3F2 ({a, b, e}, {1 + a− c+ e, 1 + b− d+ e}, 1)

Using this identity it is straightforward to show that (4.27) reduces to (4.17).
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Figure 7. A twelve-point diagram in φ4 theory.

4.3 Outline of the 12-point amplitude calculation

The beautiful expression (4.26) for the general vertex V ∆1,∆2,∆3

[n1,n2,n3] in φ3 theory leads us to
conjecture that in φm theory the general vertex takes the form given in the introduction,

V ∆1...∆m

[n1,...,nm] = gm Γ
(∑

i ∆i − 2h
2

)( m∏
i=1

(1− h+ ∆i)ni

)
(4.30)

F
(m)
A

(∑n
i=1 ∆i −2h

2
, {−n1, . . . ,−nm} , {1+∆1−h, . . . , 1+∆m−h} ; 1, . . . , 1

)
.

As a rather non-trivial check of this, we have performed the computation of a twelve-
point amplitude in φ4 theory. The calculation is tedious but essentially the same as in
the six point function in φ3 theory. The diagram is of the form given in figure 7. The
computation of this amplitude is very similar to the six-point calculation. The X integrals
are performed trivially as usual. The integrals over boundary coordinatesQi are also trivial,
and the resulting expression can be translated into a Mellin amplitude consisting of four ci
integrals, and a set of four si, s̄i integrals. The latter can be explicitly performed, while the
former lead to poles in the various Mandelstam variables upon pinching. The si integrals
can be carried out immediately as in the four-, five- and six-point amplitude calculations,
so that the only non-trivial part of the calculations are the remaining integrals over the s̄i
parameters. At this point we are in a situation similar to that described in appendix (C),
with a rather nasty looking integrand. However, by performing change of variables of the
type described in that same appendix, the integral can be successively simplified until it
reduces to ∫ +∞

0

4∏
i=1

[
dxi xai

i (1 + x)bi
](

1 +
4∑
i

xi

)g
, (4.31)

with g = 1
2(c1 + c2 + c3 + c4 − h),

ai =
1
2

(−ci + h−mi), bi =
1
2

(−ci − h+mi) (4.32)
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and the four Mandelstam variables mi are m1 ≡ s123,m2 ≡ s456, . . .. To evaluate the
integral we perform a multinomial expansion as before, which leads to the four-variable
Lauricella function. The calculation then proceeds as for the six-point function and one
precisely finds an expression for the poles of the Mellin amplitude consistent with the
Feynman rules conjectured in the introduction.

5 Conformal invariance of index structure

In the following sections we will be interested in evaluating amplitudes which involve fields
carrying spin degress of freedom, either in an internal propagator or as an external state.
In the latter case, to obtain expressions for amplitudes in d-dimensional space, we will have
to contract the M indices with the pull-backs ζMµ . These in turn are contracted with some
polarization tensors, so that overall we may say that the M indices are contracted with
polarizations ξM . These polarizations satisfy

ξ1 · P1 = ξM1
1 P1,M1 = ξµ

∂PM1
1

∂yµ1
P1,M1 = 0 (5.1)

because of the condition P 2
1 = 0. Further, we have

PMD
MA
∆ = PA(1 +

1
∆
PM∂M ) = 0 (5.2)

The rightmost factor checks that the overall amplitude scales with P like 1/P∆, which has
to be the case, and so it is vanishing. That is, the transversality condition of JMA has
transformed into a scaling condition imposed by DMA. In this way, DMA can be thought
of as a projector which implements conformal symmetry of the index structure.

Overall, these results are very suggestive: in the embedding formalism, amplitudes
depend on objects Pi and polarizations ξi such that

P 2
i = 0, ξi · Pi = 0, ξi ' ξi + Pi. (5.3)

These are exactly the conditions required of a gauge theory amplitude depending on mo-
menta Pi and polarizations ξi. This suggests that d-dimensional CFT dynamics are related
to gauge (or gravity) theories in d + 2 dimensions, but where the coordinates of the one
are related to the momenta of the other. Although we will not try to flesh out this relation
further here, the above set of requirements above already imply strong constraints on the
possible index structure of conformally invariant amplitudes.

Consider for instance an amplitude of the form
〈
JM3 (P3)O(P1)O(P2)

〉
. On the one

hand, no P3 with free indices are allowed, so that the index dependence must be carried
by P1, P2. Then “gauge invariance” uniquely fixes the structure

PM3
1

P13
− PM3

2

P23
≡ XM3

12 . (5.4)

The rest of the amplitude is fixed by requiring the correct behaviour under rescalings of
P1, P2, P3 by constant factors. Generically, the only structures which can appear in any
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amplitude are of the form above or

IM1M2 ≡ ηM1M2 − PM2
1 PM1

2

P1 · P2
(5.5)

which vanishes upon contraction with either PM1
1 or PM2

2 .
In particular, consider a current three-point function. The general structure of such

amplitudes, as imposed by conformal invariance has been known for a long time. With our
methods, finding the index structure of such an amplitude is a trivial task: there are only
two possible structures, namely

XM1
23 XM2

13 XM3
12 , or IM1M2XM3

12 + permutations (5.6)

And indeed, this is correct. A similar argument can be made for the four-point function.
All terms are of the form

I I, IXX, XXXX, (5.7)

but there are a greater number of them, as one could have several X ′s with the same index,
e.g. XM4

12 ,XM4
13 , XM4

23 .
The arguments given above are completely general, in the sense that they apply to any

conformal correlation function independently of the spin or number of fields involved. In
other words, the most general amplitude must have an index structure such that it reduces
to polynomials in I, X. In general, current conservation places constraints on the final form
of the amplitude by relating the coefficients of different kinds of index structures. However
such constraints do not seem to have a simple formulation in the embedding formalism,
and they are most usefully seen by pulling back our expressions to d-dimensions.

Actually there is a slight subtlety we have ommitted. It is easiest to see the problem
in the case of the stress-tensor. This is the question of removal of traces from the index
structure, which can be understood by the simple example of the correlator of a stress-
tensor and two scalar fields. The index structure of such a correlator is completely fixed
by conformal invariance,6 and we get〈

TM3N3(P3)O(P1)O(P2)
〉
∝ XM3

12 X
N3
12 − trace. (5.8)

The question is, what exactly do we mean by the trace part removal in the above? If we
remove the (d+ 2) dimensional trace of the expression above, so that it becomes

' XM3
12 X

N3
12 −

1
d+ 2

ηM3N3(X12)2, (5.9)

then we lose “gauge invariance” as easily seen. Another problem is that it is 1/(d + 2)
which appears in the expression, whereas we expect the final result to be traceless in
d dimensions, not d + 2. As it turns out, both these problems can be solved at once.
To restore gauge invariance we must, counter-intuitively, add gauge-variant terms. To
do this, first introduce introduce the vector Q which in our parameterization is simply

6See for instance [18].
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Q = (Q+, Q−, Qµ) = (0, 1, 0). This implies that Q · P = −1/2, for any boundary point P .
Then to remove the trace we take

' XM3
12 X

N3
12 −

1
d

(
ηM3N3 + 4P (M3QN3)

)
(X12)2, (5.10)

It is easily checked that the expression above is both gauge-invariant and traceless, at least
in d + 2 dimensions. Also, the extra terms we have introduced vanish upon contraction
with the pull-backs ζMµ , and we obtain an expression which is traceless in d dimensions.

This result is more general, and it applies to any pair of symmetric traceless indices.
It follows from [24]

ηµνζM1
µ (P )ζM2

ν (P )TM1M2...(P ) = ηM1M2TM1M2...(P ), if PM1 TM1...(P ) = 0 (5.11)

which is easily proved noting that in our parameterization we have

ηµνζM1
µ ζM2

ν =
(
ηM1M2 + 4Q(M1PM2)

)
. (5.12)

With these results, we may say that before taking traces, the amplitude is indeed fully
written in terms of the objects IMN , XN

ij defined previously.

6 Current amplitudes

6.1 〈JOO〉 correlator

To begin this section, we shall compute the three-point function of a current with two
scalar operators using the embedding formalism. While the final result is well known, this
calculation will serve to illustrate the usage of the embedding formalism for the computation
of current amplitudes. Also, as we shall see in the next section, it will immediately give us
the result for the three current amplitude.

We take for the gravitational action that of a minimally coupled scalar of mass m2 =
∆(∆− d),

S =
∫

dd+1x
√
−g
(
−1

4
FMNF

MN + |∇Mφ− ieAMφ|2 +m2φ2

)
. (6.1)

The three point vertex is of the form

ieAM (P3)(∇φ(P1)φ(P2)−∇φ(P2)φ(P1)). (6.2)

The amplitude is therefore

〈JMOO〉=2ieDM3A
d−1

∫ 3∏
i=1

dti
ti
t∆i
i

∫
AdS

dX(t1P1,A−t2P2,A) exp [2(t1P1+t2P2+t3P3) ·X] (6.3)

with ∆1 = ∆2 ≡ ∆. Recall that DMA
d−1 is an operator which acts on the right-hand side of

the expression. After the X integration we obtain

〈JMOO〉=2ie πh Γ
(∑

i ∆i + 1− 2h
2

)
DM3A
d−1

∫ 3∏
i=1

dti
ti
t∆i
i (t1P1,A − t2P2,A) e−

P3
i<j titjPij .

(6.4)
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Let us focus on the integral. This is quite similar to the one we found for the scalar three
point function, and we can proceed using a trick:∫ 3∏

i=1

dti
ti
t∆i
i (t1P1,A) e−

P3
i<j titjPij =

∫ 2∏
i=1

dti
ti
t∆i
i

dt3
t3
td−2
3 (t3t1P1,A) e−

P3
i<j titjPij

= −P1,A
∂

∂P13

∫ 2∏
i=1

dti
ti
t∆i
i

dt3
t3
td−2
3 e−

P3
i<j titjPij =

δ13

2
P1,A

P13

∏
i<j

Γ(δij)(Pij)−δij . (6.5)

In the last expression, the δij satisfy the constraint
∑

i 6=j δij = ∆j − sj , with sj the spin of
the field j. Overall, we get

〈JMOO〉 = ieπh Γ
(∑

i ∆i+1−2h
2

)
DM3A
d−1

(
δ13

P1,A

P13
− δ23

P2,A

P23

)∏
i<j

Γ(δij)(Pij)−δij (6.6)

To finish, we are left with the action of the operator DMA
d−1 . However, this action is partic-

ularly simple here. To see this, first write

DMA
d−1 = ηM3A +

1
d− 1

PA3 ∂M3 =
d− 2
d− 1

ηM3A +
1

d− 1
∂

∂PM3
3

PA3 (6.7)

Since we have δ13 = δ23 = 1
2(d − 2), the second term in the operator leads to a vanishing

result. Restoring the external leg normalizations the final answer is

〈JM3OO〉 = ieC

(
PM3

1

P13
− PM3

2

P23

)∏
i<j

(Pij)−δij (6.8)

with

C =
1

4π2h

Γ(h)Γ(∆)
Γ(1 + ∆− h)2

(6.9)

Following our general discussion in section (5) we have PM3
3 〈JM3OO〉 = 0, and the index

structure is indeed of the form XM3
12 as expected.

6.2 Current three-point amplitude

We now consider a three point amplitude of a non-abelian Yang-Mills field in AdS, or
alternatively, the conformal correlation function of three currents valued in some Lie algebra
with structure constants fabc. The Witten diagram is essentially same as in figure 2. As
usual, the X integration is trivial and we can immediately write

〈Ja,M1(P1)Jb,M2(P2)Jc,M3(P3)〉= i e
(

2πh
)

Γ(d− 1)fabcDM1ADM2BDM3CIABC , (6.10)

IABC =
∫ 3∏
i=1

dti
ti
t∆i
i [ηAB (t1P1,C−t2P2,C)+perms]e−

P
i<j titjPij .

This expression is remarkable, in that most of the complicated index structure has ef-
fectively been moved to the action of the D operators. Each of the permutations inside
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the integral sign is essentially nothing but the three point function of a current with two
scalars, which we have already computed! Therefore we can immediately write down

IABC =
(d− 2)2

2

(
XC

12 η
AB

P12
+ perms

)∏
i<j

Γ(δij)(Pij)−δij . (6.11)

where δij = 1
2(d − 2). To obtain the full amplitude one has but to mechanically act with

the D operators on the expression. Before we do this however, it is worth noticing the
simplicity of the expression between parenthesis, which bears an uncanny resemblance to
a gauge theory amplitude:(

PC1
P13
− PC2
P23

)
ηAB

P12
→ (kc1 − kc2) ηab (6.12)

Also, we haven’t defined what the Mellin amplitude should be for the case of amplitudes
involving currents. A natural definition seems to be that one should take as the Mellin
amplitude the expression between parenthesis, since once this is given the entire real space
amplitude may be determined after the action of the D operators.

As a check that we haven’t made a mistake, we may evaluate the full amplitude by
acting with the D operators. After some work one obtains:〈

Ja,M1(P1)Jb,M2(P2)Jc,M3(P3)
〉

=

C3

[(
IM1M2XM3

12

P12
+ perms

)
− 3

2
d− 2
2d− 3

XM3
12 XM1

23 XM2
31

]
3∏
i<j

(Pij)−δij (6.13)

with
C3 =

ie

8πh
fabcΓ(d− 1)

(2d− 3)(d− 2)
(d− 1)3

. (6.14)

This agrees with previous results in the literature [7] up to normalization conventions. Also
as expected, the full amplitude is a polynomial in I,X, and satisfies the “gauge invariance”
condition. This calculation shows how the embedding formalism simplifies considerably the
calculation of the amplitudes.

6.3 Scalar 4-point with current exchange

In this section we will be computing the contribution to the scalar 4-point function of a
diagram where a gauge boson is being exchanged. This will be useful as practice to the
calculation of the 4-current amplitude in the next section. It will also allow us to check
our formalism is correct by checking that the pole structure of the Mellin amplitude agrees
with the general results of Mack [19].

The process we’ll be considering is described by the Witten diagram in figure 8. The
gauge-boson bulk-to-bulk propagator can be written as a product of two bulk-to-boundary
propagators, and we can write

AJ4 =
∫

dc
2πi

f1
δ (c)

∫
dQ〈JMh+c(Q)O(P1)O(P2)〉ηMN 〈JNh−c(Q)O(P3)O(P4)〉 (6.15)
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Figure 8. Gauge boson exchange diagram.

We have already computed the three-point functions appearing in the expression above.
However, in practice one does not want work with the three-point function, but rather with
its Schwinger parameterized form, as to be able to perform the Q integral.

Notice that in the three point functions above, the currents J have conformal dimen-
sions h± c, and not d− 1 as usual; that is〈
JMh±c(Q)O(P1)O(P2)

〉
= (6.16)

2ieπhDMA
h±c

∫
dt1
t1

dt2
t2

ds
s
t∆1
1 t∆2

2 sh+c(t1P1,A − t2P2,A) exp [−t1t2P12 + 2s(t1P1 + t2P2) ·Q]

In order to perform the Q integrals, we need to do something about the Q and Q derivative
hidden in the D operators. However, as in the calculation of 〈JOO〉 amplitude, we can
write

DMA
h±c =

h± c− 1
h± c

ηMA +
∂

∂QM
QA, (6.17)

and, as before, the second term does not contribute. Each D operator reduces to a
Minkowski metric times a factor, and the contraction of both of them leads to

ηMND
MADNB → (h− 1)2 − c2

h2 − c2
ηAB (6.18)

The prefactor in the above exactly cancels a similar factor in the definition of fδ,1(c),
reducing it to fδ,0(c) (c.f. equation (2.20)). The Q integrations proceed as in the scalar
exchange computation of section 3.2, and we get

AJ4 = e2
(

8π3h
)∫ +i∞

−i∞

dc
2πi

fδ,0(c)
∫

d̃2s Γ
(

1 + 2∆ + c− h
2

)
Γ
(

1 + 2∆− c− h
2

)
∫ 4∏

i=1

dti
ti
t∆i
i J1 · J2 exp

[
− (1 + s2)t1t2P12 − (1 + s̄2)t1t2P34 − ss̄

′∑
(ij)

titjPij

]
. (6.19)

where we have defined the “currents”:

J1 = t1P1 − t2P2, J2 = t3P3 − t4P4. (6.20)
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This expression is very close to the corresponding one for scalar exchange, and accordingly
the rest of the calculation is now essentially the same. Using Symanzik’s star formula we
write the above as a Mellin amplitude,

M(δij) = 8γ12e
2

∫ +i∞

−i∞

dc
2πi

fδ,0(c) I(12, h− 1, c)I(34, h− 1,−c), (6.21)

with γ12 = s13−s23
2 and I(12, h, c) as in (3.19), except for the crucial difference h→ h− 1.

This difference arises from the extra factors of 1/s, 1/s̄ in the integrals relative to the ones
appearing in the Mellin amplitude for scalar exchange. These in turn appear due to the
presence of the non-exponentiated P13, P24, . . . terms in the integrand of (6.19). After these
integrals are performed we obtain

M(δij) = 4γ12 e
2

∫ +i∞

−i∞

dc
2πi

lh−1(c)lh−1(−c)
(δ − h)2 − c2

(6.22)

with δ = d − 1. To evaluate the integral we simply notice that it is the same as that
appearing in a scalar exchange diagram of conformal dimension ∆ = δ − 1 = d− 2 and in
dimension h→ h− 1. Therefore we can evaluate it exactly to find

M(s12) =
4γ12

s12 − (δ − 1)
e2Γ

(
2∆+δ−h

2

)
Γ
(

2∆+δ−h
2

)
Γ(1 + δ − h)

3F2

(
1− 2∆ + δ

2
,
1− 2∆ + δ

2
,
(δ − 1)− s12

2
;
1 + δ − s12

2
, 1+δ −h; 1

)
. (6.23)

Alternatively, we can find the poles in s12 by pole pinching to find their position has shifted.
The result is

M(s12) =
+∞∑
n=0

4γ12

s12 − (δ − 1)− 2n
P δn V̂

∆,∆,δ−1
[0,0,n] V̂ ∆,∆,δ−1

[0,0,n] (6.24)

where it is understood that δ = d− 1, and we have

V̂ ∆,∆,δ−1
[0,0,0] = eΓ

(
(δ − 1) + 2∆− 2(h− 1)

2

)
, (6.25)

V̂ ∆,∆,δ−1
[0,0,n1] = V̂ ∆,∆,δ−1

[0,0,0]

(
1− 1

2
[2∆ + (δ − 1)] + (δ − 1)

)
n1

(6.26)

P δn = [n!Γ (1 + δ − h+ n)]−1 . (6.27)

There are several interesting things to notice in this result. For instance these are es-
sentially the same vertices appearing in φ3 theory, upon shifting h → h − 1, δ → δ − 1.
Also, this is an exact expression, i.e. there are no terms analytic in s12 that we’ve missed,
and expressions (6.23), (6.24) are identical. The main novelty is the factor of γ12, whose
appearance however had already been predicted by Mack [19]. It is interesting to notice
that the amplitude shows factorisation, since this term is given by

2γ12 = s13 − s23 = (k1 − k2) · (k3 − k4). (6.28)
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Figure 9. Current four-point function amplitude with current exchange.

More precisely, it would show exact factorisation if the P ’s appearing in the index structures
of the three-point amplitudes 〈JOO〉, could be transformed into k’s. The simplicity of this
result suggests that our Feynman rules can be perhaps extended to the case where there
are propagating currents.

6.4 Current 4-point amplitude

In this section, we compute a four point function of currents using AdS/CFT. We consider
non-abelian gague theory in AdS, described by an action

SYM = −
∫

dd+1x
√
−g 1

4
Tr
(
FMNF

MN
)

(6.29)

with F aMN = ∂MA
a
N − ∂NAaM + iefabcAbMA

c
N , and want to evaluate the CFT amplitude

A4 =
〈
Ja,M1(P1)Jb,M2(P2)Jc,M3(P3)Jd,M4(P4)

〉
(6.30)

From the action above, there are two kinds of diagrams contributing to the current four
point function, a contact interaction and a current exchange diagram. The latter can occur
in any of three different channels - we show the s-channel diagram in figure 9. The contact
interaction is elementary using our methods, since there is only an X integration to perform
which is trivial, and the amplitude is immediately written

Ac =
πh

2
E4

∫
dδij

(
4∏
i=1

DMiAi
d−1

)
C4

[
fabef cdeηA1A3ηA2A4 + perms

] 4∏
i<j

Γ(δij)(Pij)−δij (6.31)

where
∑

i 6=j δij = d− 1 and the overall constant is C4 = ie2Γ
(

3d−4
2

)
. The D operators act

on the products of Pij and are contracted with the Minkowski metrics to give the overall
index structure. Notice that the integrand contains the Yang-Mills theory contact diagram
in flat space. As a non-trivial check on the arguments of section 5, we show in appendix D
that the result of acting with D operators is indeed a polynomial in I,X structures. Let us
move on to the exchange diagrams. In the following we shall only consider the s-channel
exchange, and we will denote the corresponding amplitude by As. As usual, the four-point
function is the gluing of two three-point functions,

As=
∫

dc
2πi

f1
δ

∫
∂AdS

dQ
〈
Ja,M1(P1)Jb,M2(P2)Je,Nh+c(Q)

〉〈
Jc,M1(P1)Jd,M2(P2)Je,Nh−c(Q)

〉
(6.32)
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with 〈
Ja,M1(P1)Jb,M2(P2)JNc,h+c(Q)

〉
= e (2πh) fabc

∫
dt1
t1

dt2
t2

ds
s
td−1
1 td−1

2 sh+c

DM1A1DM2A2DNA3
h+c [(t1P1 − t2P2)A3ηA1A2 + (t2P2 − sQ)A1ηA2A3

+ (sQ− t1P1)A2ηA1A3 ] exp (−t1t2P12 + 2s(t1P1 + t2P2) ·Q) . (6.33)

The presence of Q’s in the expression, and also of Q derivatives inside the Dh+c operator
complicates the calculations. Fortunately, there is a significant simplification. Recall that
originally we had DMAXA = 0. After the X integrations are performed this means that∫ (∏

i

dti
ti
t∆i
i

)
DMA

(∑
tiPi,A

)
e−

P
titjPij = 0. (6.34)

We interpret this as “momentum conservation”. Now, the operator Dh+c is given by

DNA3
h+c =

h+ c− 1
h+ c

ηNA3 +
1

h+ c

∂

∂QN
QA3 . (6.35)

Consider contracting the second piece of the above with each term of the second line
of (6.33). The first such term leads to a vanishing result, since it is nothing but the
operator DM1A1DM2

A1
acting on a 〈JNOO〉 amplitude, which vanishes when contracted

with QN . The remaining two terms on the second line become

' t2P2,A1QA2 − t1P1,A2QA1 (6.36)

Using momentum conservation to trade Q for P1 and P2 and the result is easily seen
to vanish (recall that DMiAiPAi is vanishing). Therefore, in Dh+c it suffices to keep its
Minkowski metric part. Further, any Q with a free index may be traded for P1, P2. The
net result is that we have〈

Ja,M1(P1)Jb,M2(P2)Jc,Nh+c(Q)
〉

= e (2πh) fabc
∫

dt1
t1

dt2
t2

ds
s
td−1
1 td−1

2 sh+cDM1A1DM2A2

h+ c− 1
h+ c

ηNA3 [(t1P1 − t2P2)A3ηA1A2 + 2t2P2,A1ηA2A3 − 2t1P1,A2ηA1A3 ]

exp (−t1t2P12 + 2s(t1P1 + t2P2) ·Q) . (6.37)

Of course, a completely analogous expression holds for the other three point function
appearing in (6.33). Since all the details of index structure have now decoupled from the
integrals, the rest of calculation is essentially the same as that of the current exchange
diagram of the previous section. The Q integral is performed, and the result can be put
into the form of a Mellin amplitude using Symanzik’s star formula. In the end we obtain

As =
πh

2
E4

∫
dδij

(
4∏
i=1

DMiAi

)
MA1,...,A4(δij)

∏
i<j

Γ(δij)(Pij)−δij (6.38)

with

MA1A2A3A4(s12) =
1
2
IA1A2A3A4(s12, γ12)

s12 − (d− 2)

e2Γ
(

3(d−1)−h
2

)2

Γ
(
d
2

)
3F2

(
2− d

2
,
2− d

2
,
d− 2− s12

2
;
d− s12

2
,
d

2
; 1
)
. (6.39)
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or equivalently,

MA1...A4 = IA1A2A3A4(s12, γ12)
+∞∑
n=0

P d−1
n

s12 − (d− 2)− 2n
V̂ d−1,d−1,d−2

[0,0,n] V̂ d−1,d−1,d−2
[0,0,n] . (6.40)

The vertices in the above are the same that appeared in (6.24) Specializing our expressions
for d = 4 we get the simple result

MA1...A4 =
225πe2

256
IA1A2A3A4(s12, γ12)

(
2

s− 2
+

1
s− 4

)
(6.41)

We have yet to characterize the index structure IA1A2A3A4 . It is the result of contracting
two currents of the form

JAiAjAk
≡ (tiPi − tjPj)Ak

ηAiAj + 2tjPj,AiηAjAk
− 2tiPi,AjηAiAk

. (6.42)

followed by titjPij → δij
Pij

. Doing this we obtain

IA1A2A3A4 = 4γ12 η
A1A2ηA3A4

−4
[

(γ12 − s12)
2P13

(
ηA3A4PA2

1 PA1
3 + ηA1A2PA3

1 PA4
3 − 2ηA1A3PA2

1 PA4
3

)
−(1↔ 2)− (3↔ 4) + (1↔ 2, 3↔ 4)

]
. (6.43)

It is clear that if one identifies Pi with a fictional momentum ki, then the index structure
of this expression roughly corresponds to the one appearing in the analogous diagram for
Yang-Mills theory in flat space. To obtain the full conformal index structure we have to
act with the D operators. This is most simply performed with the aid of a computer.7 The
result is too long to be presented here, but we have been able to check that it is simply a
polynomial in the XM

ij and IMN structures introduced in (1.16), (1.17), as expected from
our general arguments in section 5.

Importantly the propagator/vertex structure remains, and it is exactly the same as
what we have computed in the scalar four point function current exchange diagram. In
this sense, that computation already contains all the dynamic information relevant for the
four-current correlator. What the current result shows is that it is possible to quite simply
decouple the details of the index structure from the rest of the calculation.

7 Discussion and outlook

In this paper we have showed how calculations of correlation functions in AdS/CFT are
significantly made simpler by the combined use of the embedding formalism and the Mellin
representation. The embedding formalism essentially makes the kinematic AdS integrals
become trivial, at the expense of introducing integrations in Schwinger parameters. At this
point the Mellin representation becomes useful by translating such integrations to Mellin

7Notebooks are available upon request.
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space via Symanzik’s formula. With these methods we have managed to write down four
point Mellin amplitudes explicitly in terms of hypergeometric functions. For higher point
amplitudes, we have shown how there seems to be a set of Feynman rules which allows us
to write them down. Although we have not proved in full generality that these rules are
correct, we have presented non-trivial evidence in the form of the explicit calculation of
higher point amplitudes.

The similarity between Mellin amplitudes and flat space scattering amplitudes had
been noticed already in [21]. There it was conjectured that in the high energy limit where
the δij parameters become large, the Mellin amplitude reduces to a flat-space amplitude of
massless particles. In this sense, AdS space can be thought of as naturally providing an IR
cut-off for flat-space amplitudes. As far as we have been able to check, the results we have
derived in this paper agree with the proposal of [21], at least in the scalar sector. When
free indices are present, we are faced with difficulties, as the Mellin amplitude now depends
on the coordinates P as well as on the Mandelstam invariants. Our results suggest that we
should identify the corresponding flat space amplitude with the reduced Mellin amplitude,
i.e. the amplitude obtained before acting with theD operators. Indeed, as we’ve pointed out
throughout this paper, those amplitudes are remarkable similar to flat space amplitudes,
if one identifies the coordinates P with momenta k.

We clearly lack a deeper understanding of the structure of general Mellin amplitudes,
such as pole structure, relation to lower point amplitudes and unitarity properties.8 Pre-
sumably such an understanding could lead to a proof of our proposed Feynman rules for
Mellin amplitudes in scalar theory. It could also help us to understand the structure of
amplitudes involving fields with spin, and if whether Feynman rules can be written down
in this case. As a first easy check one should compute higher n-point functions of scalars
with gauge fields propagating in the internal lines.

An obvious continuation of our work is the investigation of loop amplitudes. These were
first discussed in [21], but there it was not attempted to write the result à la Feynman. It
would be interesting to check whether our rules for tree-level scalar amplitudes generalize
to loop amplitudes in the expected way. Although in our formalism one would never
obtain loop momenta integrals, one does obtain Mellin-Barnes type integrals, which roughly
correspond to integrals over conformal dimension. Since the Mellin momenta ki square to
conformal dimension, perhaps these integrals can be interpreted as integrals over the norm
of the loop momenta.

Recently there was an attempt to use the spinor-helicity formalism to compactly de-
scribe CFT correlators in momentum space [35]. Our methods allow for a different tack on
the same problem: since the embedding formalism allows us to describe the index structure
of Mellin amplitudes in terms of d+2 vectors P satisfying P 2 = 0, use of spinor-helicity for-
malism suggests itself. For instance one could to use the six-dimensional formalism of [36]
to describe four-dimensional conformal field theory amplitudes. Curiously, for d = 2 it
seems that the ± helicities of four dimensional massless particles map to (anti)holomorphic
two-dimensional amplitudes. This is possible because after the action of D operators, the

8For a proposed BCFW type recursion relation for Witten diagrams see [33, 34].
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conformal index structure of a CFT amplitude resembles that of a flat-space amplitude
with higher dimension operators: the current 3-pt function has contributions cubic in P ,
which would come from an (Fab)3 term in four dimensions.

It seems likely that the calculation of the stress-tensor four-point function should be
achievable using our methods. The results we have obtained in this paper for the current
four-point function lead us to expect that the index structure should decouple from the
exchange part of the amplitude. The latter should essentially be the same as that obtained
as for stress-tensor exchange in scalar theory. The full amplitude will be obtained by
acting with four D2 operators on the reduced Mellin amplitude, which should have an
index structure similar to a four-graviton flat-space amplitude upon identification of the
momentum with the coordinate P . We hope to present more on this and other stress-tensor
correlation functions elsewhere [37].

Finally, we have seen that there seems to be an intriguing connection between the
correlation functions we have been computing for d-dimensional CFT’s, and a theory of
massless particles in d + 2 dimensions. The connection is given by interpreting boundary
point of the CFT as d + 2 null vectors P , which can then be interpreted as momenta.
It is highly suggestive that we were able to write down the relations (5.3) and even a
“momentum conservation” equation (6.4). It would be interesting to see if this connection
can be developed further.

Acknowledgments

It is a pleasure to acknowledge discussions with Atish Dabholkar, Paolo Benincasa, Eduardo
Conde and Xiàn Camanho. The author would like to thank the University of Santiago de
Compostela, where part of this work was performed, for funding and hospitality. The
author acknowledges funding from the LPTHE, Université Pierre et Marie Curie, and
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A Some integrals

In this section we describe the computation of the AdS and AdS boundary integrals which
appear throughout the paper. These calculations have appeared already in [21], and we
include them here for completeness. The first such calculation is the proof that∫ +∞

0

∏
i

(
dti
ti
tαi

)∫
AdS

dX e2T ·X = πhΓ
(∑

i αi − 2h
2

)∫ +∞

0

∏
i

(
dti
ti
tαi

)
eT

2
. (A.1)

with T =
∑
tiPi. We proceed by computing the left-hand side. First we evaluate the AdS

integral. By Lorentz invariance we can consider the case where T = |T |(1, 1, 0). We also
parameterize AdSd+1 space by

X = (X+, X−, Xµ) =
1
x0

(1, x2
0 + x2, xµ) (A.2)
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and define h ≡ d/2. Then we get∫
AdS

dX e2T ·X =
∫ +∞

0

dx0

x0
x−d0

∫ +∞

0
ddx e−(1+x2

0+x2)|T |/x0

= πh
∫ +∞

0

dx0

x0
x−h0 e−x0+T 2/x0 (A.3)

The original integral becomes

πh
∫ +∞

0

∏
i

(
dti
ti
tαi

)∫ +∞

0

dx0

x0
x−h0 e−x0+(

P
i tiPi)

2/x0 =

= πh
∫ +∞

0

∏
i

(
dti
ti
tαi

)
eT

2

∫ +∞

0

dx0

x0
x

P
i αi/2−h

0 e−x0 =

= πhΓ
(∑

i αi − 2h
2

)∫ +∞

0

∏
i

(
dti
ti
tαi

)
eT

2
. (A.4)

where in the second step we rescaled ti → ti/
√
x0

Next we prove:∫ +∞

0

ds
s

ds̄
s̄
sh+csh−c

∫
∂AdS

dQe2T ·Q = 2πh
∫ +∞

0

ds
s

ds̄
s̄
sh+csh−ceT

2
(A.5)

with T ≡ (sX + s̄Y ). First we evaluate the boundary integral on the left-hand side. Using
the parameterization

Q = (Q+, Q−, Qµ) = (1, x2, xµ) (A.6)

we find ∫
∂AdS

dQe2T ·Q =
∫ +∞

0
ddx e−|T |(1+x2) =

πh

|T |h
e−|T |. (A.7)

Now, noticing that 1 =
∫ +∞

0 dv δ(v − s− s̄), we find∫ +∞

0

ds
s

ds̄
s̄
sh+csh−c

πh

|T |h
e−|T | =

=
∫ +∞

0
dv
∫ +∞

0

ds
s

ds̄
s̄
sh+csh−cδ(v − s− s̄) πh

|sX + s̄Y |h
e−|sX+s̄Y |

= πh
∫ +∞

0

dv
v

∫ +∞

0

ds
s

ds̄
s̄
sh+csh−cδ(1− s− s̄) vh

|sX + s̄Y |h
e−|sX+s̄Y |

= πh
∫ +∞

0

dv
v

∫ +∞

0

ds
s

ds̄
s̄
sh+csh−cδ(1− s− s̄) vh ev(sX+s̄Y )2 (A.8)

Finally rescaling s → s/
√
v, s̄ → s̄/

√
v the v integral is performed and we find the right-

hand side of (A.5), as promised.

B The Symanzik star formula

For completeness, in this section we review the Symanzik star integration formula in Eu-
clidean space as discussed in [19]. For a proof and more details we refer the reader to the
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original reference [22]. Consider a set of n points in Euclidean space xi and their differences
xi−xj . In the embedding formalism we have Pij ≡ −2Pi ·Pj = (xi−xj)2. Then Symanzik’s
formula is:∫ +∞

0

(
n∏
i=1

dti
ti
t∆i

)
e−(

P
1≤i<j≤ntitj Pij) =

πh/2

(2πi)
1
2
n(n−3)

∫
dδij

∏
1≤i<j≤n

Γ(δij) (Pij)−δij (B.1)

The integration measure on the right-hand side deserves further explanation. The param-
eters δij , symmetric in i, j, satisfy ∑

i 6=j
δij = ∆j (B.2)

for all i. Now pick a particular solution of the set of equations (B.2), δ0
ij . Then we write

δij = δ0
ij +

1
2
n(n−3)∑
k=1

cij,ksk (B.3)

with

cii,k = 0,
∑
j 6=i

cij,k = 0. (B.4)

Choosing as independent coefficients the
(

1
2n(n− 3)

)2 coefficient cij,k with 2 ≤ i < j ≤ n

(with the exception of c23,k), with the further restriction |det cij,k| = 1, we can write

∫
dδij →

∫
−i∞

1
2
n(n−3)∏
k=1

dsk
2πi

(B.5)

The integration paths are chosen parallel to the imaginary axis, with real parts such that
the real parts of the arguments of the gamma functions are positive.

C Details on the calculation of the six-point amplitude

In the computation of the six point amplitude, or indeed of any amplitude involving internal
lines, we have to perform boundary integrals over the coordinates Qi of each internal line.
Since these integrals have to be done in a certain order, this breaks the symmetry of the
expressions and the result seems more complicated than it is. A typical example of this
is what happens in going from the third line of (4.5) to the simpler looking (4.8). In the
calculation of the six- and twelve-point functions the same thing occurs. In this section we
give some details on the changes of variables required to obtain a simpler looking integral for
the case of the six-point amplitude. Details on the 12-point amplitude are quite technical
and can be obtained upon request.

We have six integrals that can be performed, over parameters si, s̄i, i = 1, . . . 3. After
the si integrations are performed, then if the boundary integrations were done in the order
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Q1, Q2, Q3 the integral over the s̄i is of the form∫ +∞

0

3∏
i=1

(
ds̄i
s̄i

)(
s̄2

1 + 1
) 1

2
(s12−s34−s56) ((

s̄2
1 + 1

)
s̄2

2 + 1
) 1

2
(−s12+s34−s56)

×
(
s̄2

1

(
s̄2

3

((
s̄2

1 + 1
)
s̄2

2 + 1
)2 + s̄2

2

)
+ 1
) 1

2
(−c1−h+s12) ((

s̄2
1 + 1

)2
s̄2

2s̄
2
3 + 1

) 1
2

(−c2−h+s34)

×
((
s̄2

1 + 1
)
s̄2

3

((
s̄2

1 + 1
)
s̄2

2 + 1
)

+ 1
) 1

2
(−s12−s34+s56)

, (C.1)

which looks quite complicated. However, performing the change of variables

s̄1 →
√
x, s̄2 →

√
y, s̄3 →

√
z (C.2)

followed by the sequence of variable changes

y → y

1 + x
, z → z

1 + x
,

x → x

(1 + y)(1 + z)
, y → y

1 + z
, (C.3)

finally leads to∫ +∞

0

dx
x

dy
y

dz
z
xaybzc(1 + x)d(1 + y)e(1 + z)f (1 + x+ y + z)g , (C.4)

with g = 1
2(c1 + c2 + c3 − h) and

a =
1
2

(−c1 + h− s12), b =
1
2

(−c2 + h− s34) c =
1
2

(−c3 + h− s56)

d =
1
2

(−c1 − h+ s12), e =
1
2

(−c2 − h+ s34), f =
1
2

(−c3 − h+ s56). (C.5)

D Index structure of current four-point function contact diagram

We wish to evaluate:

DM1A1DM2A2DM3A3DM4A4

(
ηA1A3ηA2A4

∏
i<j

(Pij)
−δij

)
. (D.1)

Defining the quantities

ZM1 ≡ s12

(
XM1

23 +XM1
24

)
+ γ12X

M1
34 (D.2a)

ZM2 ≡ s12

(
XM2

13 +XM2
14

)
− γ12X

M2
34 (D.2b)

ZM3 ≡ s12

(
XM3

14 +XM3
24

)
− γ12X

M3
12 (D.2c)

ZM4 ≡ s12

(
XM4

13 +XM4
23

)
+ γ12X

M4
12 (D.2d)

ÎMiMj ≡ 16δij
IMiMj

Pi · Pj
, (D.2e)
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the result is

256(d− 1)4 (Pij)
δij

(
DM1A1DM2A2DM3A3DM4A4ηA1A3ηA2A4

∏
i<j

(Pij)
−δij

)
=

ZM1ZM2ZM3ZM4 +
[

(d− 1)2 − δ12

δ12

]2

ÎM1M2 ÎM3,M4 + ÎM1M3 ÎM2M4 + ÎM1M4 ÎM2M3

+
[

(d− 1)2 − δ12

δ12

](
ZM3M4 ÎM1M2 + ZM1M2 ÎM3M4

)
+
(
ZM1M3 ÎM2M4 + ZM1M4 ÎM2M3 + ZM2M3 ÎM1M4 + ZM2M4 ÎM1M3

)
, (D.3)

in exact agreement with the expectations of section 5.
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