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1 Introduction

In the recent years, much progress has been made in matching correlation functions in the

AdS3/CFT2 correspondence [1]. In the symmetric product orbifold theory on the boundary

of the AdS3 space, two- and three-point functions of single-cycle twist operators were com-

puted in [2–4]. In [5], this analysis was extended to some simple four-point functions, and

recursion relations were found for some extremal p-point correlators. In the dual world-

sheet theory for string theory on AdS3 × S3 × T4, the two- and three-point correlators of

chiral primary operators were derived in [6–8] (see also [9, 10]) and intriguing agreement

with the dual boundary correlators was found (Later, agreement with supergravity was

achieved in [11], see also [12–14] for earlier work). Recently, in [15], (the one-particle con-

tributions of) some extremal four-point correlators have been computed on the worldsheet

using a general method for SL(2) correlation functions developed in [16]. Again, agree-

ment was found with the corresponding boundary result of [5]. Even though the string

theory/supergravity and field theory correlators are computed at different points in the

moduli space, they must and do agree as predicted by the non-renormalization theorem

of [17]. This theorem states that all three-point functions as well as all extremal p-point

functions (p > 3) of chiral primary operators are protected along the moduli space [17].

In this paper we extend the analysis of [15] by deriving a recursion relation for higher

p-point correlators in the worldsheet theory. Such p-point functions may be factorized

by means of worldsheet operator product expansions (OPE), which should not be mixed
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up with their dual spacetime OPEs. Their general properties were discussed in [18] for

string theory on a general AdSd+1 ×W background. Here we specialize to AdS3 × S3 ×T4

and compute the worldsheet operator product expansions of chiral primary operators in

the associated H+
3 × SU(2) Wess-Zumino-Witten (WZW) model. The chiral primaries are

composite operators of the bosonic H+
3 and SU(2) primaries, usually dressed with some

free fermions and ghosts, and their OPEs are obtained by combining the OPEs of the

individual fields. Comparing the thus obtained (unintegrated) worldsheet OPEs with the

corresponding spacetime OPEs, we find, not surprisingly, a one-to-one realization of the

fusion rules of the chiral ring. We will also discuss some structural differences between

both kinds of OPEs.

To find the recursion relation, we insert the worldsheet OPEs into a particular class of

extremal p-point functions of chiral primary operators (In an extremal p-point function the

spacetime scaling of the p-th operator is the sum of the spacetime scalings of the other p− 1

operators). After performing the integrals over a (single) worldsheet coordinate and the

SL(2) representation label h, in a similar fashion as in [15], the p-point function factorizes

into the product of a p− 1-point function and a three-point function. In this way we find

a recursion relation which, up to an overall factor F , is in agreement with the recursion

relation of the dual boundary correlator previously found in [5]. We will comment on F in

the conclusions.

2 Worldsheet operator product expansions in AdS3

In the following we derive the operator product expansions of the chiral primary operators

in the worldsheet theory for string theory on AdS3×S3×T4. In the next section, we will use

the resulting OPEs to find a recursion relation for a particular class of p-point functions.

2.1 Chiral primary operators

We begin by summarizing the worldsheet chiral primary operators [7, 8, 19, 20]. Our

conventions are as in [15]. In particular, it is understood that all operators depend on

the complex worldsheet coordinate z, even though we often omit this dependence in the

arguments of the operators.

The worldsheet theory is the product of an N = 1 WZW model on H+
3 , an N = 1

WZW model on S3 ≃ SU(2) and an N = 1 U(1)4 free superconformal field theory. We

emphasize here that, following [16], we consider an H+
3 = SL(2,C)/SU(2) sigma model

whose target space is a Euclidean AdS3. Likewise, the dual CFT2 on the boundary is

unitary and its time variable can be analytically continued to Euclidean time. In this

way we avoid problems which arise in the definition of operator product expansions in the

(Lorentzian) SL(2,R) WZW model [21]–[24].

The above WZW model has the affine world-sheet symmetry ŝl(2)k × ŝu(2)k′ × u(1)4.

Criticality of the fermionic string on AdS3×S3 requires the identification of the levels k and

k′ [25, 26], k = k′ . The label k denotes the supersymmetric level of the affine Lie algebras

and is identified with the bosonic levels kb and k′b as k = kb − 2 = k′b + 2. The bosonic

currents are Ja for SL(2) and Ka for SU(2). The free fermions of SL(2) are denoted by
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ψa, those of SU(2) by χa (a = (+, 0,−) in either case). It is convenient to split the bosonic

currents as

Ja = ja + ̂a , ̂a = − i

k
εabcψ

aψb , (2.1)

and similarly Ka. Finally the u(1)4 symmetry is described in terms of free bosons as i∂Y i,

and the corresponding free fermions are λi (i = 1, 2, 3, 4).

The chiral operators are constructed from the dimension zero operators

Oj(x, y) = Φh(x)Φ′
j(y) with h = j + 1 , j = 0, 1

2 , . . . ,
k−2
2 , (2.2)

where Φh(x) and Φ′
j(y) are the primaries of the bosonic H+

3 and SU(2) WZW models with

dimensions

∆(h) = −h(h− 1)

kb − 2
, ∆′(j) =

j(j + 1)

k′b + 2
, (2.3)

respectively.1 The labels x and y correspond to the SL(2) and SU(2) representation labels

m and m′, respectively. Our conventions for these models can be found in appendix A

of [15]. Since h = j + 1, the operators Oj(x, y) have vanishing conformal dimensions,

∆(h) + ∆′(j) = 0.

Neveu-Schwarz sector

In the Neveu-Schwarz sector there are two families of chiral primaries. In the −1 picture

they are2

O(0)
j (x, y) = e−φψ(x)Oj(x, y) , (2.4)

O(2)
j (x, y) = e−φχ(y)Oj(x, y) , (2.5)

where the fields ψ(x) and χ(y) are given by

ψ(x) = −ψ+ + 2xψ3 − x2ψ− ,

χ(y) = −χ+ + 2yχ3 + y2χ− . (2.6)

The bosonized superghost field e−φ ensures that the operators have ghost number −1.

Sometimes we will also need the corresponding ghost number 0 operators, which are

obtained from (2.4) by acting with the picture changing operator Γ+1. These operators

will be needed to get the correct ghost number in the correlators. The ghost number 0

operators are [6–8]

Õ(0)
j (x, y) =

(
(1 − h)̂(x) + j(x) + 2

k
ψ(x)χaP

a
y

)
Oj(x, y) , (2.7)

Õ(2)
j (x, y) =

(
hk̂(y) + k(y) + 2

k
χ(y)ψAD

A
x

)
Oj(x, y) , (2.8)

1As mentioned above, we drop the dependence on the worldsheet coordinate z. For instance, the holo-

morphic H+
3 operator is simply denoted by Φh(x) instead of Φh(x, z).

2In [19], these operators are denoted by W
−

j and X
+
j , respectively.
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where the operators DA
x and P a

y are

D−
x = ∂x , D3

x = x∂x + h , D+
x = x2∂x + 2hx ,

P−
y = −∂y , P 3

y = y∂y − j , P+
y = y2∂y − 2jy . (2.9)

Here we used again the compact notation

̂(x) = −̂+ + 2x̂3 − x2̂− ,

k̂(y) = −k̂+ + 2yk̂3 + y2k̂− , etc. (2.10)

Ramond sector

In the Ramond sector there are also two families of chiral primaries, O(a)
j (x, y) with a = ±1.

For their construction we need the spin operators

S[ε1,ε2,ε3] = e
i
2
(ε1Ĥ1+ε2Ĥ2+ε3Ĥ3) , (2.11)

where εI = ±1 and Ĥi (i = 1, 2, 3) are bosonized fermions related to ψa and χa (a = ±, 0),
as in [7, 8] (Similarly, Ĥ4,5 are related to the fermions on the T 4, λi (i = 1, 2, 3, 4) [7, 8]).

Then, in the −1/2 and −3/2 picture the chiral primaries are given by3

O(a)
j (x, y) = e−

φ
2 s1,2

− (x, y)Oj(x, y) (a = ±1) , (2.12)

and

Õ(a)
j (x, y) = −

√
k(2h − 1)−1e−

3φ
2 s1,2

+ (x, y)Oj(x, y) , (2.13)

respectively, where

s1±(x, y) = S±(x, y)e+
i
2
(Ĥ4−Ĥ5) , s2±(x, y) = S±(x, y)e−

i
2
(Ĥ4−Ĥ5) (2.14)

and

S±(x, y) = ∓xyiS[−−±] ∓ xS[−+∓] + yiS[+−∓] + S[++±] . (2.15)

Full chiral primary operators

The full chiral primary operators are given by the product of a holomorphic with an anti-

holomorphic operator,

O(A,Ā)
j (x, x̄, y, ȳ) ≡ O(A)

j (x, y)Ō(Ā)
j (x̄, ȳ) , (2.16)

where A = 0, a, 2 and Ā = 0̄, ā, 2̄. When integrated over the worldsheet, these operators

are dual to the chiral primary operators O
(A,Ā)
n (n-cycle twist operators with n = 2j + 1)

in the symmetric orbifold theory on the boundary of AdS3, defined e.g. in [2, 5, 7, 8].

3O
(+1)
j and O

(−1)
j contain s1− and s2−, respectively. In [19], these operators are denoted by Y

±

j .
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2.2 Worldsheet operator product expansions

The general structure of worldsheet operator product expansions for strings on AdSd+1 × W

was studied in [18]. The vertex operators of this theory Oh,j are usually labeled by the

spacetime scaling dimension h associated with the spacetime conformal group SO(d+ 1, 1)

and a collective label j denoting some internal quantum numbers. Let us restrict to d = 2.

As exemplified in section 2.1, for the special case of AdS3 × S3 × T4, the vertex operators

are products of the primaries Φh(z, x) and Φ′
j(z, y) of the bosonic H+

3 and SU(2) WZW

models, dressed by a polynomial in the bosonic and fermionic worldsheet fields and their

derivatives [19, 20, 25, 26]. These operators depend on both the worldsheet coordinate z

as well as the SL(2) and SU(2) representation labels x and y. As argued in [27], the label x

can be identified with the coordinate on the boundary. Moreover, the SL(2) current algebra

on the string worldsheet induces a Virasoro algebra in spacetime conformal field theory.

In addition to the usual worldsheet conformal weight ∆ = ∆(h, j) the vertex operators

therefore also have a spacetime scaling dimension related to h.4 Physical vertex operators

have worldsheet dimension ∆(h, j) = 1.

The Hilbert space of the worldsheet theory contains only the normalizable vertex

operators with h = 1
2 + is (s ∈ R). For such operators, the most general form of an

AdS3 worldsheet OPE is, in the limit z → 0, [18]:

O1(0)O2(x, x̄, z, z̄) =
∑

j

∫

C
dh

∫
d2x′

|z|2(∆(h,j)−∆(1)−∆(2))

|x|α|x′|β|x′ − x|γ F(ji, j, hi, h)Oh,j(x
′, x̄′, 0, 0)

+ descendants , (2.17)

where F is related to the 2-point and 3-point functions on the worldsheet. The pa-

rameters α, β and γ are functions of the spacetime conformal weights of the operators

Oi ≡ Ohi,ji
(i = 1, 2) and Oh,j, respectively. ∆(1), ∆(2) and ∆(h, j) denote the correspond-

ing worldsheet conformal weights. The dependence on z and x is completely determined

by conformal invariance. The OPE contains an integral over the contour h = 1
2 + is, which

is denoted by C. In the following, we ignore contributions coming from the worldsheet

descendants.

The above OPE is not directly applicable to worldsheet operators which are dual to

spacetime operators. Such operators are non-normalizable and therefore not part of the

Hilbert space. Instead they have spacetime scalings related to h located on the real axis of

the complex h-plane. The OPE of such non-normalizable operators is obtained by careful

analytic continuation in h. As shown in [18], this amounts to the inclusion of additional

discrete contributions from the poles of F . Otherwise, the form of (2.17) is preserved.

4The exact spacetime scaling depends on the actual form of the operator, e.g. h[O
(0)
j ] = h[Oj ] + h[ψ] =

h− 1 for the operator O
(0)
j defined in (2.4).
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2.3 Worldsheet operator product expansions of chiral primary operators

We now compute the OPE (2.17) for the case that the worldsheet operators are chiral

primary. We begin by constructing the OPE of the dimension-zero operators

Oj(x, x̄, y, ȳ) = Φh(x, x̄)Φ′
j(y, ȳ) (h = j + 1) , (2.18)

which form an essential part of the chiral primaries, as discussed after (2.2). The OPE is

obtained from the OPEs of the H+
3 and SU(2) fields Φh(x, x̄) and Φ′

j(y, ȳ).

The OPE of two H+
3 primaries was found in [28, 29]. As shown in appendix A, it can

be written as

Φh2(x2, x̄2)Φh1(x1, x̄1) =

∫

C+

dh
C(h1, h2, h)|z12|−2∆12 |x12|−2h12

B(h)
Φh(x1, x̄1) , (2.19)

with h12 = h1 + h2 − h and ∆12 = ∆1 + ∆2 − ∆ (C+ = 1/2 + iR+). C(h1, h2, h3) and

B(h) are the SL(2) structure constants and the scaling of the SL(2) two-point function,

respectively. Similarly, the OPE of two SU(2) primaries is given by [30–32]

Φ′
j2

(y2, ȳ2)Φ
′
j1

(y1, ȳ1) =
∑

j

C ′(j1, j2, j)|z12|−2∆′
12 |y12|2j12Φ′

j(y1, ȳ1) , (2.20)

with j12 = j1 + j2 − j and ∆12 = ∆′
1 +∆′

2 −∆′. In both OPEs we ignored the contribution

from current algebra descendants. Combining both OPEs yields the operator product

expansion

Oj2(x2, x̄2, y2, ȳ2)Oj1(x1, x̄1, y1, ȳ1)

=
∑

j

∫

C+

dh
C ′C|z12|−2(∆12+∆′

12)|y12|2j12

B(h)|x12|2h12
Φh(x1, x̄1, z1, z̄1)Φ

′
j(y1, ȳ1, z1, z̄1)

=
∑

j

∫

C+

dh
C ′C|z12|2(∆(h)+∆′(j))|y12|2j12

B(h)|x12|2h12
Oj,h(x1, x̄1, y1, ȳ1) . (2.21)

In the last line we defined the more general operators Oj,h ≡ ΦhΦ′
j, for which the labels

h and j are not related in any way. Recall that the resulting operator Oj,h need not be

physical.

Let us now construct the OPE of the operator O(0,0)
j in the −1 picture and Õ(0,0)

j in the

0 picture, which are defined by (2.4) and (2.7), respectively. We start from the expression

Õ(0,0)
j2

(x2, x̄2, y2, ȳ2)O(0,0)
j1

(x1, x̄1, y1, ȳ1) (2.22)

=
(
(1−h2)̂(x2)+j(x2)+

2
k
ψ(x2)χaP

a
y2

)
e−φψ(x1)

×
(
(1−h2)¯̂(x̄2)+j̄(x̄2)+

2
k
ψ̄(x̄2)χ̄aP

a
ȳ2

)
e−φ̄ψ̄(x̄1)Oj2(x2, x̄2, y2, ȳ2)Oj1(x1, x̄1, y1, ȳ1).

Using the OPEs (B.2)-(B.6) in appendix B and the identity

2χaP
a
y = χ(y)∂y − j∂yχ(y) , (2.23)

– 6 –
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this can also be written as

Õ(0,0)
j2

(x2, x̄2, y2, ȳ2)O(0,0)
j1

(x1, x̄1, y1, ȳ1)

=

∣∣∣∣(1 − h2)
(
D(−1)

21 ψ(x1)
)

+ ψ(x1)D(h1)
21 +

x2
21

z21
(χ(y2)∂y2 − j2∂y2χ(y2))

∣∣∣∣
2

× e−φ−φ̄Oj2(x2, x̄2, y2, ȳ2)Oj1(x1, x̄1, y1, ȳ1)

=

∣∣∣∣
x21

z21
ψ(x1) ((1 − h2)2 + x21∂x1 − 2h1) +

x2
21

z21
χ(y2)∂y2 + . . .

∣∣∣∣
2

e−φ−φ̄Oj2Oj1 . (2.24)

The ellipses denote further terms involving derivatives of the type ∂ψ and ∂χ. In this

analysis we neglect descendants and therefore ignore such terms. In the following we will

also need to Taylor expand χ(y2) = χ(y1)+y12∂χ(y1)+ . . . and again drop derivatives of χ.

| . . . |2 indicates that there is the same factor in anti-holomorphic variables.

Substituting (2.21) into (2.24), we evaluate the derivatives on Oj such that x21∂x1 →
h12 and y21∂y2 → j12 under the integral. We obtain

Õ(0,0)
j2

(x2, x̄2, y2, ȳ2)O(0,0)
j1

(x1, x̄1, y1, ȳ1)

=
∑

j

∫

C+

dh
C ′C|z12|2(∆(h)+∆′(j)−1)|y12|2j12

B(h)|x12|2(h12−1)

(
(h1 + h2 + h− 2)2O(0,0)

j,h (x1, x̄1, y1, ȳ1)

+ (j12)
2 |x21|2
|y21|2

O(2,2)
j,h (x1, x̄1, y1, ȳ1) + . . .

)
,

(2.25)

where we ignored possible terms involving ’mixed’ operators of the type O(0,2)
j,h and O(2,0)

j,h .

Before we continue, let us recall how the fusion rules in the conformal field theory on

the boundary can be reproduced from the worldsheet description [7, 8]. The operators in

the OPE must obey U(1) charge conservation (as measured by the SU(2) generator K3
0 ,

see [7, 8]). Chiral (anti-chiral) operators in the boundary CFT are mapped to highest

(lowest) weight states of SU(2) in the worldsheet theory, i.e. M = J (M = −J). U(1)

charge conservation in the fusion of two worldsheet operators, symbolically

O(∗)
j1

×O(∗)
j2

= [O(∗)
j3

] , (2.26)

therefore requires [7, 8]

J = J1 + J2 , (2.27)

where Ji = ji + ai and ai = 0, 1/2, 1 for the holomorphic operators O(0),O(a),O(2), respec-

tively. The fusion of two SU(2) primary states requires j3 ≤ j1 + j2 and therefore (2.27)

implies

a3 ≥ a1 + a2 . (2.28)

Clearly, the fusion rules must also obey the spin-statistics relations NS × NS → NS, NS ×
R → R, R × NS → R, and R × R → NS, where NS and R refer to the operators in the

– 7 –
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Neveu-Schwarz sector (O(0),O(2)) and Ramond sector (O(a)), respectively. This allows for

the following fusion rules in the holomorphic sector:

(0) × (0) = (0) + (2) ,

(0) × (2) = (2) ,

(0) × (a) = (a) ,

(a) × (a) = (2) . (2.29)

Similar fusion rules hold in the anti-holomorphic sector. The four cases (2.29) can be freely

combined between holomorphic and anti-holomorphic operators. Note however that in the

fusion (0, 0)×(0, 0) → (0, 0)+(2, 2) the resulting operator must be the same in the holomor-

phic and anti-holomorphic sector, i.e. the combinations (0, 2) and (2, 0) do not appear [7, 8].

In (2.25) the fusion rules therefore only allow for terms involving the operators

O(0,0)
j,h : j = j1 + j2 ≡ j̃ ,

O(2,2)
j,h : j = j1 + j2 − 1 ≡ j̃ − 1 , (2.30)

where the j-values have been determined using (2.27). Terms proportional to O(0,2)
j,h and

O(2,0)
j,h are forbidden by the worldsheet fusion rules.

In order to compare the worldsheet OPE with the corresponding boundary OPE, we

need to rescale the operators as in [15] such that their (integrated) two-point functions

scale as unity. For instance, the operators O(0,0̄)
j (x, x̄) will be rescaled as

O
(0,0)
j (x, x̄) =

√
2π2

√
k B(h)(2h − 1)

gs O(0,0̄)
j (x, x̄) . (2.31)

Then, as shown in detail in appendix C, the OPE of the rescaled operators O
(0,0̄)
j following

from (2.25) is

Õ
(0,0̄)
j2

(x2, x̄2; y2, ȳ2)O
(0,0̄)
j1

(x1, x̄1; y1, ȳ1) (2.32)

=

∫

C+

dh
2h− 1

2π2k

|z21|2(∆(h)−1)

|x21|2(h21−1)

(
|z21|2∆

′(j̃)
G

(000)
3 (j1, j2, j̃, h)O

(0,0̄)

j̃ ,h
(x1, x̄1; y1, ȳ1)

+ |x21|2|z21|2∆
′(j̃−1)

G
(002)
3 (j1, j2, j̃ − 1, h)O

(2,2)

j̃−1,h
(x1, x̄1; y1, ȳ1)

)
,

where in the last line we defined the coefficients

G
(000)
3 (j1, j2, j3, h3) ≡ P (j1, j2, j3, h3)

gs

k

(h1 + h2 + h3 − 2)2
∏

i(2hi − 1)
1
2

,

G
(002)
3 (j1, j2, j3, h3) ≡ P (j1, j2, j3, h3)

gs

k

(j1 + j2 − j3)
2

∏
i(2hi − 1)

1
2

, (2.33)

and

P (j1, j2, j3, h3) ≡
CC ′ 2π√

B(h1)B(h2)B(h3) cν
(cν = 1/(2π4k3)) . (2.34)

– 8 –
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The factor P (j1, j2, j3, h3) reflects the fact that h3 is not related to j3 in the third operator.

This factor would be just one, P (j1, j2, j3, h3) = 1, if h3 were related to j3 by h3 = j3 + 1.5

In that case, and if j3 is related to j1+j2 as in (2.30), the coefficients reduce to the extremal

three-point correlators

G
(000)
3 (j1, j2, j3, h3)|h3=j3+1 =

〈
O

(0,0)
j1

(∞)O
(0,0)
j2

(1)Õ
(0,0)
j3

(0)
〉
,

G
(002)
3 (j1, j2, j3, h3)|h3=j3+1 =

〈
O

(0,0)
j1

(∞)Õ
(0,0)
j2

(1)O
(2,2)
j3

(0)
〉
, (2.35)

found in [6–8]. Note, for instance, that the U(1) charge conservation j3 = j1 + j2 is

equivalent to h3 = h1 + h2 − 1, if h3 = j3 + 1. However, we stress that we do not assume

any relation between h and j̃ at this stage, i.e. the operators on the right-hand-side of (2.32)

need not be physical.

The other OPEs allowed by the fusion rules are computed in a similar way. We find

Õ
(0,0̄)
j2

(x2, x̄2; y2, ȳ2)O
(2,2̄)
j1

(x1, x̄1; y1, ȳ1)

=

∫

C+

dh
2h− 1

2π2k

|z21|2(∆(h)+∆′(j̃)−1)

|x21|2(h21−1)
G

(022)
3 (j1, j2, j̃, h)O

(2,2̄)

j̃,h
(x1, x̄1; y1, ȳ1) , (2.36)

Õ
(0,0̄)
j2

(x2, x̄2; y2, ȳ2)O
(a,ā)
j1

(x1, x̄1; y1, ȳ1)

=

∫

C+

dh
2h− 1

2π2k

|z21|2(∆(h)+∆′(j̃)−1)

|x21|2(h21−1)
G

(0aa)
3 (j1, j2, j̃, h)O

(a,ā)

j̃,h
(x1, x̄1; y1, ȳ1) , (2.37)

O
(a,ā)
j2

(x2, x̄2; y2, ȳ2)O
(b,b̄)
j1

(x1, x̄1; y1, ȳ1)

=

∫

C+

dh
2h− 1

2π2k

|z21|2(∆(h)+∆′(j̃)−1)

|x21|2(h21−1)
G

(ab2)
3 (j1, j2, j̃, h)O

(2,2̄)

j̃,h
(x1, x̄1; y1, ȳ1) , (2.38)

with

G
(022)
3 (j1, j2, j3, h3) ≡ P (j1, j2, j3, h3)

gs

k

(−h1 + h2 + h3)
2

∏
i(2hi − 1)

1
2

, (2.39)

G
(0aa)
3 (j1, j2, j3, h3) ≡ P (j1, j2, j3, h3)

gs

k

(h1 + h2 + h3 − 2)2

(2h3 − 1)2
(2h1 − 1)

1
2 (2h3 − 1)

1
2

(2h2 − 1)
1
2

, (2.40)

G
(ab2)
3 (j1, j2, j3, h3) ≡ P (j1, j2, j3, h3)

gs

k

(2h1 − 1)
1
2 (2h2 − 1)

1
2

(2h3 − 1)
1
2

δab . (2.41)

The correlators (2.39)–(2.41) reduce again to the extremal three-point functions computed

in [7, 8], if h3 = j3 + 1. Note that the total ghost number is preserved in the OPEs.

2.4 Discussion and comparison with boundary operator product expansions

Some comments on the worldsheet operator product expansions (2.32) are in order. Similar

statements will hold for the OPEs (2.36)–(2.38).

First, let us first compare (2.32) with the general form (2.17). Defining ∆(h, j) ≡
∆(h) + ∆′(j) + 1, which is the worldsheet conformal dimension of O

(0,0)
j,h (and O

(2,2)
j,h ), we

5This can be seen by using the identity (4.29) in [15]. This identity has first been found in [6–8].
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find that at small z and small x (2.32) agrees with the general form (2.17), since the

chiral primaries have conformal dimension ∆(1) = ∆(2) = 1 and |z21|2(∆(h,j)−∆(1)−∆(2)) =

|z21|2(∆(h)+∆′(j)−1). Recall also that O
(0,0)
j,h and O

(2,2)
j,h scale differently in x, h(0) = h−1 and

h(2) = h [15]. The total x-dependence should be |x21|2(h
(A)−h

(0)
1 −h

(0)
2 ) with A = 0, 2 in the

first and second term of (2.32), respectively. Therefore there is an additional factor |x21|2
in the second term of (2.32). Consequently, we find that the OPE has the correct scaling

in both x and z. (In (2.32) we have already used U(1) charge conservation such that there

is no sum over j anymore).

Second, another peculiar feature of (2.32) is the appearance of the factor

2h− 1

2π2k
. (2.42)

As we will see later, when we use the OPE inside a general correlator, this factor will cancel

against the residue of the h-integral, which is proportional to the inverse of the derivative

of the SL(2) conformal weight, (∂h∆)−1 ∝ k/(2h − 1).

Third, it is also interesting to compare the worldsheet OPE (2.32) with the corre-

sponding spacetime OPE of n-cycle twist operators of the type O
(0,0)
n which are dual to

the worldsheet operators O
(0,0)
j . This OPE is given by [5]6

O(0,0)
n2

O(0,0)
n1

= C3O
(0,0)
ñ + C ′

3O
(2,2)
ñ−2 + . . . , (2.43)

with ñ = n1 + n2 − 1 and structure constants C3 and C ′
3. The ellipses indicate terms

coming from multi-cycle operators. Given that the cycle lengths ni are related to ji by

ni = 2ji + 1 (and ñ = 2j̃+ 1), we observe a structural resemblance between the worldsheet

and the spacetime OPE, cf. (2.32) with (2.43). In particular, both OPEs satisfy the fusion

relation (0, 0) × (0, 0) → (0, 0) + (2, 2) of the chiral-chiral ring. More general, we find that

the worldsheet OPEs (2.32), (2.36)–(2.38) mimic the fusion rules of the (c, c) ring in the

spacetime conformal field theory,

(0, 0) × (0, 0) = (0, 0) + (2, 2) ,

(0, 0) × (2, 2) = (2, 2) ,

(0, 0) × (a, a) = (a, a) ,

(a, a) × (a, a) = (2, 2) . (2.44)

In fact, upon integration over the worldsheet coordinates, the worldsheet OPE (2.32) be-

comes identical to the spacetime OPE (2.43) (multi-cycle contributions ignored).7

Fourth, one might worry that (2.32) still depends on the spacetime coordinates x, while

the spacetime OPE (2.43) has no singularities. We will see however in the next section

that, when the OPE is employed inside an extremal p-point correlator of chiral primary

operators, the x-dependence will drop out (Basically the integration over h will yield a

relation between h and j̃ which eliminates the x-dependence in both terms in (2.32).).

6See [5] for a precise definition of the operators O
(0,0)
n and the corresponding OPE.

7This can be seen by setting z1 = 0 and z = z2 and performing the integral over z and h as de-

scribed in section 3 below. After the integration over h, G
(000)
3 and G

(002)
3 have reduced to the extremal

correlators (2.35) which are identical to the coefficients C3 and C′
3 appearing in (2.43) [6–8].
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3 Recursion relation for worldsheet p-point functions

In this section we derive a recursion relation for a particular extremal worldsheet p-point

function and compare it with the corresponding relation for the dual boundary correlator

previously computed in [5].

A simple worldsheet p-point function on the sphere is given by the product of p

(rescaled) operators Oj ≡ O
(0,0)
j ,

Gp ≡ G
j1,...,jp
p = g−2

s

〈
Õjp(∞)Ojp−1(1)

(
p−2∏

i=2

∫
d2zi Õji

(xi, x̄i; zi, z̄i)

)
Oj1(0)

〉
, (3.1)

with the extremality condition

jp =

p−1∑

i=1

ji . (3.2)

Modular invariance has been used to fix three of the p worldsheet points as z1,p−1,p =

0, 1,∞. Similarly, the continuous SL(2) representation labels are chosen as x1,p−1,p =

0, 1,∞. The x labels will later be identified with the complex coordinates in the spacetime

conformal field theory [27]. The correlator Gp involves p−2 ghost number zero and 2 ghost

number −1 operators, Õ
(0,0)
j and O

(0,0)
j , respectively. Recall that the total ghost number

of a correlator on a genus-g surface must be −χ = −(2 − 2g), which is −2 on the sphere.

We now show that the p-point functions Gp satisfy the recursion relation

Gp ≃
〈

O
(0,0)

j̃
(∞)Õ

(0,0)
j2

(1)O
(0,0)
j1

(0)
〉

Gp−1 (3.3)

with j̃ = j1 + j2. The symbol ≃ indicates that (3.3) is true up to a factor F which

currently cannot be reproduced on the worldsheet. This factor is coming from two-particle

contributions in the intermediate channel, which are nonlocal on the worldsheet. The factor

F has however been determined in the dual symmetric orbifold theory. The recursion

relation for the dual boundary correlators Cp is given by

Cp =
np

ñ

〈
O

(0,0)†
ñ (∞)O(0,0)

n2
(1)O(0,0)

n1
(0)
〉
Cp−1 (3.4)

with ñ = n1 +n2 − 1 [5]. The non-renormalization theorem of [17] predicts the equivalence

of both recursion relations such that F can be identified as F =
np

ñ
=

2jp+1

2j̃+1
.

Proof of (3.3): Substituting the worldsheet OPE (2.32) into Gp, we obtain8

Gp = g−2
s

∫
d2z2

∫

C
dh

〈
Õjp(∞)Ojp−1(1)

(
p−2∏

i=3

∫
d2zi Õji

(xi, x̄i; zi, z̄i)

)
Oj̃,h(0)

〉

× 2h− 1

2π2k

|z2|2(∆(h)+∆′(j̃)−1)

|x2|2(h21−1)
G

(000)
3 (j1, j2, j̃, h) + . . .

=

∫
d2z

∫

C
dh

2h− 1

2π2k

|z|2(∆(h)+∆′(j̃)−1)

|x|2(h21−1)
Gp−1 G

(000)
3 (j1, j2, j̃, h) + . . . , (3.5)

8Within a p-point function the integration over the half-axis C
+ = 1/2 + iR+ can be extended to an

integration over the full axis C = 1/2 + iR [28, 29].
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where we set z = z2 (x = x2) and introduced the short hand notation Gp−1 for G
j,j3,...,jp

p−1 .

The ellipses indicate that there is in principle a second contribution from the operator

O
(2,2)

j̃−1,h
in the OPE (2.32). This contribution is zero, as will be shown below.

The integrals over z and h can be done as in the case of four-point functions [15, 16].

As in [15], we need to do the z-integral before the h-integral. In that case we have to be

careful about the occurrence of divergencies and regularize the z-integral by introducing

a cutoff ε [16]. Later, after the integrations, we will eventually take the limit ε → 0. In

general it is not known how to compute the z-integral over the whole range of z, but it can

be computed in the limit of small |z| < ε. In this region, the z-integral can be performed

by elementary methods,
∫

|z|<ε

d2z |z|2(λ(h)−1) =
π

λ(h)
ε2λ(h) (3.6)

with λ(h) = ∆(h) + ∆′(j̃). As discussed in [16, 18], the integral only over |z| < ε captures

the single-cycle (or, in higher dimensions, single-trace) terms in the spacetime OPE. By

performing the integral only over |z| < ε, we omit nonlocal contributions from the large z

region, which are expected to give the double-cycle terms in the spacetime OPE [16, 18].

This limitation prevents us from deriving the overall factor F , which is known to arise from

double-cycle operators in the spacetime OPE [5].

We now turn to the integration over h. In general, after the z integration, there are

additional discrete contributions coming from poles in the integrand of (3.5) [16, 18]. Such

contributions arise when the poles cross the integration contour during

i) the analytic continuation in j1 and j2 (or h1,2 = j1,2 + 1), and

ii) the shift of the contour from h = 1/2 + is to h = h0 + is (s ∈ R), where h0 is defined

by λ(h0) = 0.9

There are altogether four types of poles [16, 18]:

type I: λ = 0 ,

type II: h = h1 + h2 + n ,

type III: h = k − h1 − h2 + n ,

type IV: h = |h1 − h2| − n , n ∈ {0, 1, 2, . . .} .

The poles of type II-IV are poles in the structure constants C(h, h1, h2). As discussed

extensively in [18], none of these poles contributes to the integral, at least if the preceding

z integration is restricted to the regime |z| < ε. Even though naively one might interpret

the contributions from the poles of type II as “double-cycle” operators in the spacetime

CFT, such contributions go to zero in the ε → 0 limit [18] (This is in agreement with the

general expectation [18] that contributions from double-cycle operators arise non-locally,

i.e. at large z and not in the |z| < ε region). Type III poles do not appear if one assumes

9It is convenient to shift the contour in this way since, as we will see, most of the pole contributions

vanish during the shift.
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h1 +h2 <
k+1
2 [16]. Other than the poles of type II, the type IV poles may contribute both

during the analytic continuation and the additional shift in the contour. It was found in [18]

that the contribution coming from crossing the contour during the analytic continuation is

exactly the opposite of that during the subsequent shift of the contour. In effect, the poles

of type IV do not modify the final result.

We are left with poles of type I, λ(h) = 0, corresponding to h = h0 ≡ j̃ + 1. The

residue of this pole is

Res(f ;h0) =
πε2λ(h0)

λ′(h0)

2h0 − 1

2π2k
Gp−1 G

(000)
3 , (3.7)

where f is the integrand of (3.5) and ′ ≡ ∂h. Remarkably, the first and second factor on

the right-hand side cancel each other (up to 2π), since λ′(h0) = ∂h∆(h0). Moreover, the

x-dependence drops out since h21 − 1 = h2 + h1 − h0 − 1 = j2 + j1 − j̃ = 0. Applying the

residue theorem, we thus obtain

Gp = Gp−1 G
(000)
3 (j1, j2, j̃, h = j̃ + 1)

=
〈

O
(0,0)

j̃
(∞)Õ

(0,0)
j2

(1)O
(0,0)
j1

(0)
〉

Gp−1 , (3.8)

which is nothing but (3.3).

We still have to show that in (3.5) there are no contributions from the operator O
(2,2)

j̃−1,h
.

The additional term in the integrand of (3.5) is proportional to

|z|2(∆(h)+∆′(j̃−1)−1)

|x|2(h21−2)
G

(002)
3 (j1, j2, j̃ − 1, h) (3.9)

and has a pole at h = j̃. After applying the residue theorem, the x-dependence drops out,

since |x|2(h2+h1−h−2) = |x|2((j2+1)+(j1+1)−j̃−2) = 1 and we get the additional contribution

〈
O

(2,2)

j̃−1
(∞)Õ

(0,0)
j2

(1)O
(0,0)
j1

(0)
〉

G
′
p−1 , (3.10)

where G
′
p−1 is defined by

G
′ j̃−1,j3,...,jp

p−1 = g−2
s

〈
O

(0,0)
j4

(∞)Õ
(0,0)
j3

(1)XO
(2,2)

j̃−1
(0)
〉

(3.11)

and X denotes the product of p− 4 Õ
(0,0)
j operators.

Clearly, for p = 4, the three-point correlator G
′ j̃−1,j3,j4
3 is zero, as can be seen as

follows. The extremality condition (3.2) for Gj1,j2,j3,j4
4 can be written as

j4 = j1 + j2 + j3 = j̃ + j3 , (3.12)

which is formally the U(1) charge conservation for the fusion of O
(2,2)

j̃−1
and Õ

(0,0)
j3

. However,

the fusion rules require a4 ≥ ã + a3 (cf. with (2.28)), which is violated since a4 = 0 and

ã + a3 = 1 + 0 = 1, implying G
′
3
j̃−1,j3,j4 = 0. A similar argument holds for p > 4. Thus,

the term (3.10) vanishes identically.
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4 Conclusions

In this paper we studied the worldsheet realization of the chiral ring structure of the

N = (4, 4) symmetric orbifold theory on the boundary of AdS3×S3×T4. Our main results

are the (unintegrated) worldsheet operator product expansions (2.32) and (2.36)–(2.38),

which nicely reflect the fusion rules of the chiral ring. Despite the similarity to the dual

spacetime OPEs, there are also some structural differences which we discussed at length

in section 2.4. In particular, the worldsheet OPEs are not simply given by the (extremal)

worldsheet three-point functions of chiral primary operators [6–8], as one might naively

expect. In fact, the operators Oh,j appearing on the right hand side of the worldsheet

OPEs need not even be physical, i.e. there is a priori no relation between the SL(2) and

SU(2) labels h and j, whereas h = j+ 1 for chiral primaries. In this respect, the OPEs are

more general than the three-point functions in [6–8]. However, when the worldsheet OPEs

are integrated over the worldsheet coordinates, the h integral turns out to have a pole at

h = j + 1, and the worldsheet OPEs become identical to those of the spacetime CFT.

As an interesting application, we used the worldsheet OPEs to derive a recursion rela-

tion for a particular class of extremal p-point correlators on the worldsheet. Our result (3.3)

for the correlator (3.1) agrees with the recursion relation for the dual boundary p-point

function [5], up to a simple overall factor F = np/ñ. In the spacetime OPE the factor F

comes from two-cycle operators, whose contributions are not suppressed in extremal cor-

relators at large N . Unfortunately, these contributions arise nonlocally on the worldsheet

and are presently not very well understood [18]. It would be highly desirable to under-

stand in more detail how multi-cycle (or, in general, multi-trace) operators are treated in

worldsheet OPEs.

In this paper (and its precursors [6–10, 15]) worldsheet p-point functions on AdS3×S3

(with NSNS fluxes) are computed on the full quantum level. This may be compared to

the semi-classical treatment of worldsheet p-point functions for string theory on AdS5×S5

(with RR fluxes), see e.g. [33]–[38]. To gain more insight into the latter approach, it would

be interesting to repeat such semi-classical computations on AdS3 × S3 and compare the

results with the already known quantum correlators. It may also be of interest to attempt

a full quantum computation on AdS3 backgrounds with Ramond-Ramond fluxes, perhaps

using techniques suggested in [39].
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A OPE of H
+

3 primaries

In the following we derive the worldsheet operator product expansion of chiral primary

operators in the H+
3 model. — Important note: Other than in the rest of the paper, we use
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the conventions of Teschner [28, 29] in this appendix, i.e. we use j to label the H+
3 states.

The worldsheet OPE of two H+
3 primaries is [28, 29]10

Φj1(x1, x̄1, z1, z̄1)Φj2(x2, x̄2, z2, z̄2)

=

∫

C+

dj3 C(j1, j2, j3)|z12|−2∆12(J12(j3)Φ−j3−1)(z2, z̄2) , (A.1)

where

(J12(j3)Φ−j3−1)(z2, z̄2) ≡
∫

C

d2x3 |x12|2j12 |x23|2j23 |x31|2j31Φ−j3−1(x3, x̄3, z2, z̄2) . (A.2)

Here ∆12 = ∆1 + ∆2 − ∆3, j12 = j1 + j2 − j3, etc. We prefer to express the OPE in terms

of Φj3 rather than Φ−j3−1. We therefore substitute the expression

(J12(j3)Φ−j3−1)(z2, z̄2) =
γ(−2j3)

(−π)γ(−j23)γ(−j31)
1

B(j3)
(J12(−j3 − 1)Φj3)(z2, z̄2) (A.3)

into (A.1) and obtain

Φj1(x1, x̄1, z1, z̄1)Φj2(x2, x̄2, z2, z̄2) (A.4)

=

∫

C+

dj3 C(j1, j2, j3)|z12|−2∆12
γ(−2j3)

(−π)γ(−j23)γ(−j31)
1

B(j3)

×
∫

C

d2x3 |x12|−2(−j1−j2−j3−1)|x23|−2(1+j31)|x31|−2(1+j23)Φj3(x3, x̄3, z2, z̄2) .

We now simplify the expression by computing the x3-integral

I =

∫

C

d2t′ |t|−2(−j1−j2−j3−1)|t′|−2(1+j31)|t− t′|−2(1+j23)Φj3(x2−t′, x̄2−t̄′, z2, z̄2) , (A.5)

where we have defined t=x12 and t′=x23. Denoting t= |t|t̂ and defining y= t′/|t|, we get

I = |t|−2(−j1−j2+j3+1)

∫

C

d2t′ (|t′|/|t|)−2(1+j31)|(t′/|t| − t̂)|−2(1+j23)Φj3(x2−t′, x̄2−t̄′, z2, z̄2)

= |t|2j12

∫

C

d2y |y|−2(1+j31)|y − t̂|−2(1+j23)Φj3(x2−y|t|, x̄2−ȳ|t|, z2, z̄2) . (A.6)

In the OPE, x1 and x2 are assumed to be close to each other such that |t| is small. We

also ignore the subleading contributions from space-time descendants. We may then Taylor

expanded the operator Φj3(x2 − y|t|, x̄2 − ȳ|t|, z2, z̄2) around x2 and obtain11

I ≈ |t|2j12Φj3(x2, x̄2, z2, z̄2)

∫

C

d2y |y|−2(1+j31)|y − t̂|−2(1+j23) . (A.7)

Using the identity

∫

C

d2y |y|2a|1 − y|2b = −πγ(−1 − a− b)

γ(−a)γ(−b) , (A.8)

10We interchange the labels 1 ↔ 2. In the following we ignore the contribution from descendants.
11An almost identical expansion was done in eq. (2.10) in [18].

– 15 –
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the integral I becomes

I = (−π)|x12|2j12
γ(1 + 2j3)

γ(1 + j31)γ(1 + j23)
Φj3(x2, x̄2, z2, z̄2) . (A.9)

Thus,

Φj1(x1, x̄1, z1, z̄1)Φj2(x2, x̄2, z2, z̄2)

=

∫

C+

dj3 C(j1, j2, j3)|z12|−2∆12
1

B(j3)
|x12|2j12Φj3(x2, x̄2, z2, z̄2) . (A.10)

Replacing j → −h (Φj → Φh), we get (2.19).

B Some correlators and operator product expansions

In this appendix we list some worldsheet operator product expansions used in section 2. It

is convenient to express these OPEs in terms of the operator

D(hi)
ki =

1

zki

(
x2

ki∂xi
− 2hixki

)
, (B.1)

where hi denotes the spacetime scaling of the operator it acts on. Some important world-

sheet operator product expansions are [7, 8, 15]:

j(xk)Φhi
(xi) ∼ D(hi)

ki Φhi
(xi) , (B.2)

j(x1)j(x2) ∼ (k + 2)
x2

12

z2
12

+ D(−1)
12 j(x2) , (B.3)

̂(x1)̂(x2) ∼ −2
x2

12

z2
12

+ D(−1)
12 ̂(x2) , (B.4)

̂(x1)ψ(x2) ∼ D(−1)
12 ψ(x2) , (B.5)

ψ(x1)ψ(x2) ∼ k
x2

12

z12
. (B.6)

C Rescaling the operators in the OPE

In this appendix we compute the rescaled OPE (2.32). For comparison with the boundary

theory, it is useful to rescale the operators such that, when integrated over z, their two-point

functions are just one (integration over z1,2). The rescaled operators are [15]

O
(0,0)
j (x, x̄) =

√
2π2

√
k B(h)(2h − 1)

gs O(0,0̄)
j (x, x̄) ,

O
(a,ā)
j (x, x̄) =

√
2π2(2h− 1)

B(h)
gsO(a,ā)

j (x, x̄) . (C.1)

– 16 –
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The operator O(2,2)
j (x, x̄) is rescaled as O(0,0)

j (x, x̄) (Tilded operators are rescaled as their

untilded partners). Then, substituting the OPE (2.25) into

Õ
(0,0̄)
j2

(x2, x̄2; y2, ȳ2)O
(0,0̄)
j1

(x1, x̄1; y1, ȳ1)

=
2π2g2

s

k
√
B(h1)(2h1 − 1)B(h2)(2h2 − 1)

Õ(0,0̄)
j2

(x2, x̄2; y2, ȳ2)O(0,0̄)
j1

(x1, x̄1; y1, ȳ1) , (C.2)

we get

Õ
(0,0̄)
j2

(x2, x̄2; y2, ȳ2)O
(0,0̄)
j1

(x1, x̄1; y1, ȳ1) (C.3)

=
∑

j

∫

C
dh

|z12|2(∆(h)+∆′(j)−1)|y12|2j12

|x12|2(h12−1)

(2h−1)√
(2h−1)(2h2−1)(2h1−1)

gs

√
2π2 C ′C√

k B(h1)B(h2)B(h)

×
(

(h1 + h2 + h− 2)2O
(0,0̄)
j,h (x1, x̄1; y1, ȳ1) + (j12)

2 |x21|2
|y21|2

O
(2,2̄)
j,h (x1, x̄1; y1, ȳ1)

)
,

which can be written as (2.32).

Open Access. This article is distributed under the terms of the Creative Commons

Attribution Noncommercial License which permits any noncommercial use, distribution,

and reproduction in any medium, provided the original author(s) and source are credited.
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