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Abstract: We explore the four top signal tt̄tt̄ at the 7 TeV Large Hadron Collider as a

probe of physics beyond the standard model. Enhancement of the corresponding cross-

section with respect to the Standard Model value can probe the electroweak symmetry

breaking sector or test extra dimensional models with heavy Kaluza-Klein gluons and

quarks. We perform a detailed analysis including background and detector simulation in the

specific case of a universal extra-dimensional model with two extra dimensions compactified

using the geometry of the real projective plane. For masses around 600 GeV, a discovery

is possible for an effective cross section above 210 fb (36 fb) for 1/fb (10/fb) of integrated

luminosity. This implies a branching ratio in tops of the (1, 1) heavy photon above 13%

(5%). Furthermore, the 4-top signal from the (2, 0) and (0, 2) tiers can be discovered with

an integrated luminosity of 3.5/fb. The results of our simulation can be easily adapted to

other models since the background processes are identical. Concerning the signal, typical

production mechanisms for the tt̄tt̄ signal are similar even if cross-section values may vary

considerably depending on the model and the spectrum of the new particles.
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1 Introduction

At present the Large Hadron Collider (LHC) is exploring new energy domains and, with

increasing integrated luminosity, it will soon be capable of discovery or of giving stronger

bounds on the type and nature of the new particles expected in different extensions of

the Standard Model (SM). In the following we propose to explore the four top final

state tt̄tt̄ as a probe of physics beyond the standard model. In the SM, this channel is

rather uncommon (the cross-section is below 1 fb at the LHC for a 7 TeV centre of mass

energy): an enhancement of the corresponding cross-section is in principle easy to detect if

background processes can be reduced. The four top signal has been proposed in the past as

a probe of the nature of the electroweak symmetry breaking sector at hadron colliders [1, 2],

because the coupling of the top quark to the Goldstone bosons and the Higgs particle is of

order one. Moreover this signal is enhanced in extended or modified electroweak symmetry

breaking sectors beyond the standard model, such as top condensation models [3], models

of composite tops [4, 5], composite Grand Unified Models [6], and supersymmetric models

with light stops and gluinos [7]. In the case of top condensation models, for instance, the top

and anti-top quarks are produced by gluon splitting and the tops can be strongly scattered
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via the new interactions of the electroweak symmetry breaking sector. Another possible

source of enhancement of the tt̄tt̄ cross-section appears in extra dimensional models. In this

framework the four top signal was described as an important probe for low scale warped

extra dimensions [8]. The main effect for the enhancement comes, in this case, from a heavy

gluon which can be pair produced and give the four top quarks or via associate production

of the heavy gluon with tt̄. In all these cases the detailed study of the signal and of the

background, together with detector simulation, plays a major role in understanding the

real value of the tt̄tt̄ signal in the LHC environment. In the following we shall consider a

specific extra dimensional model with natural Dark Matter candidate [9] which features a

large enhancement of the signal. The production of the two top pairs takes place via the

resonant decays of vector resonances with masses of a few hundred GeV. The conclusions

of this detailed study can be considered valid in a more general context of vector resonances

decaying in top pair as long as the signal can be well separated from the backgrounds, while

a more specific and model dependent study may be required to distinguish this scenario

from other new physics sources of 4 top events.

The model we will focus on is a particular incarnation of Universal Extra Dimensions

(UED) on the flat Real Projective Plane (RPP) which is motivated by the presence of a

Dark Matter candidate as a consequence of the compactification. It is well known that

most of the matter in the universe is dark and of non-baryonic origin. Various potential

candidates have been suggested, and among the most popular in particle physics mod-

els there are non-relativistic (massive) and weakly interacting particle (WIMPs). In this

class we find the lightest supersymmetric particle (LSP) obtained by imposing R-parity in

supersymmetric models [10, 11]; the lightest T-odd particle (LTP) obtained by imposing

T-parity on little Higgs models [12]; the lightest Kaluza-Klein particle (LKP) obtained by

imposing a KK parity in UED models [13, 14]. The latter case is similar to the one under

consideration: the main difference is that in KK parity models, it is necessary to impose

special conditions on the fixed points of the orbifold for the symmetry to survive; on the

other hand, on the RPP, a KK parity is a residual of the 6 dimensional Poincaré symmetry

group that is broken by the orbifolding of the two extra space co-ordinates. In this sense,

the parity is a legitimate daughter of the extended Lorentz symmetry, therefore we dub the

Dark Matter candidate the lightest Lorentz particle (LLP). A realisation of UED model on

the RPP is discussed in [9], where we refer the reader for more details. The RPP geometry

was previously used in [15] for building a 6-dimensional grand unified theory. The main

requirement is the absence of fixed points of the orbifold, together with the existence of

chiral fermions for the zero modes corresponding to the SM particles. These requirements

turn out to be quite restrictive, ruling out a model in 5 flat dimensions. In 6 dimensions a

unique orbifold in flat space satisfies these requirements, the Real Projective Plane. While

the particle content and tree-level interactions are quite similar to other UED scenarios in

6D [16, 17], loop corrections, which are crucial to study the phenomenology of the model as

they are responsible for the masses and decays of the KK resonances, are very different. In

particular, the mass splitting between states in the same KK tier are much smaller. This

has dramatic consequences on the phenomenology of the models: for instance, in decays

within the tier, the radiated SM particles will have very limited kinetic energy available,

– 2 –



J
H
E
P
1
0
(
2
0
1
1
)
0
4
2

therefore they are very difficult to trigger on. This fact will significantly affect, among

others, the 4 top signature we are interested in.

The paper is organised as follows: in section 2 we briefly describe the motivations and

the structure of the extra-dimensional model. In section 3 we discuss the phenomenology

of the model and the different decay modes giving rise to the 4 top final state. In section 4

we describe the details of the simulation of the four top signal tt̄tt̄ at LHC with 7TeV

centre of mass energy and we discuss the analysis of the signal and backgrounds Finally in

section 5 we give the main results of this study and our conclusions.

2 Universal extra dimensions on the real projective plane

Orbifolds are quotient spaces of a manifold modulo a finite group. Here we are interested

in flat space: in this case, we can think of the extra dimensions as an infinite Euclidean

space R
d, where d is the number of extra dimensions, and the orbifolding procedure as a

way of covering the whole space repeating a patch (the fundamental domain of the orb-

ifold) by use of the isometries of the infinite space itself. In this sense, there are only 2

one-dimensional orbifolds: the circle S1 = R/Z and the interval S1/Z2. The circle, defined

in terms of periodic repetition of an interval, has neither fixed points nor chiral fermions;

the interval is the only orbifold with chiral massless fermions, however it possesses two

fixed points (the boundaries of the interval). The presence of fixed points is not a problem

in principle. Phenomenologically, divergences that arise in loop calculations will require

counter-terms to be localised on the fixed points, therefore limiting the predictive power

of the theory without invalidating the effective theory approach to extra dimensions. The

main issue related to fixed points is that they break the extended Poincaré invariance down

to the 4-dimensional one, therefore any extra symmetry from the extra dimensional space

is broken unless ad-hoc conditions are imposed on the localised Lagrangians. This is the

case of the KK parity. Requiring the absence of fixed points, therefore, has a notable

consequence: the DM candidate would be a direct consequence of the geometry of the

orbifold, without a symmetry to be imposed by hand. Thus, if we extend our four dimen-

sional world to include one extra dimension there are no compactifications without fixed

points which allow to obtain chiral fermions in 4D. The next step is to consider two extra

dimensions. In the plane the possible isometries are translations (t), mirror reflections,

2π/n rotations (r) with n = 2, 3, 4, 6 and glide-reflections (g) which are translations with

a simultaneous mirror reflection. Using these symmetries, in 2 (extra-)dimensions one can

define 17 crystallographic symmetry groups, also called the wallpaper groups, each giving

rise to a different orbifold. Only 3 of the resulting orbifolds are free of boundaries or fixed

points/lines. They are the torus, the Klein bottle and the Real Projective Plane. Among

them, the real projective plane alone allows chiral zero modes for fermions. The real pro-

jective plane is non-orientable and has no boundaries. In flat space, it can be thought

of as a rectangular patch of a torus with the opposite sides identified as twisted, like a

double Möbius strip. The corners of the fundamental rectangle are special points of the

space: they are not fixed, because the glide identifies the facing pairs, however they are

conical singularities with deficit angle π. Therefore, localised Lagrangians are allowed on
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the two singular points, however the identification operated by the glide allows to define

a preserved KK parity without any further restriction on the localised interactions [9].

The Real Projective Plane can also be obtained from a sphere with identified antipodal

points [18]: in this case, there are no singular points and the curvature is uniformly spread

in the space. The spectra in the two realisations are very different and, in particular, due

to the curvature, fermions are massive on the sphere, unless some special mechanisms are

in action.

In the following, we will consider the former option, as discussed in [9]: we focus on

a simple extension of the Standard Model on the real projective plane, however similar

conclusions will apply to most models based on this background. The lowest order La-

grangian is the SM one, extended to 6 dimensions, while dimension 6 operators localised

on the two singular points are required to absorb one-loop divergences. To each SM fields it

corresponds a tower of massive resonances organised in tiers, labelled by two integers (l, k)

which correspond to the discretised momenta along the extra directions. The field content

of each tier crucially depends on the parities of the fields under the orbifold symmetries.

At leading order, all the states in each tier are degenerate with mass determined by the

two integers

m2
l,k =

l2

R2
5

+
k2

R2
6

, (2.1)

where R5,6 are the radii of the two extra dimensions. Mass differences within the modes

in each tier can be generated by three mechanisms: the Higgs vacuum expectation value

(VEV), loop corrections from bulk interactions and higher order operators localised on the

singular points. Due to the flatness of the metric along the extra coordinates, the Higgs

VEV is constant and, due to the orthogonality of the wave functions of KK modes from

different levels, the Higgs mechanism will not mix them. Therefore, the KK expansion

remains valid and the masses will be shifted, independently on the spin of the field, by the

appropriate SM mass m0; in absence of mixing with other fields, the corrected masses are

given by the formula

m2
l,k =

l2

R2
5

+
k2

R2
6

+m2
0 . (2.2)

On the other hand, the loop corrections generate level-mixings: when diagonalising the

mass matrix, however, the off-diagonal terms will only contribute at second order, therefore

we can consistently limit ourselves to diagonal contributions.1 Note also that the loop

induced terms will respect the full global symmetries of the bulk space, and therefore, as

an example, no splitting and/or mixing between the (1, 0) and (0, 1) levels will be induced,

neither decays of the (1, 1) modes into SM particles. Localised terms are required as

counter-terms for the loop divergences: however, they respect less symmetries than the

bulk loops. The only unbroken symmetry will be the KK parity pKK. In the following

we will assume that localised terms are small as they correspond to higher dimensional

operators in the 6D theory. Therefore, we will neglect their effect if tree-level or loop

1This is not true for tiers that are degenerate at tree level: for instance the tiers (2, 0) and (0, 2) in the

case of degenerate radii.
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contributions are present. The explicit calculation of the loops shows that in this scenario,

contrary to other UED models in the literature, mass differences within each tier will

be small.

The KK mass, and the Higgs mass, are the main free parameters of the model: calcu-

lating the relic Dark Matter abundance in this model, one can pin down the cosmologically

interesting range for the KK mass. However, this is nothing but an estimate, because the

result is very sensitive to the model of Cosmology and values of the cosmological param-

eters. The result for the relic abundance as a function of the KK mass was given in [9]

and updated in [19, 20]. We can consider two limiting cases: one in which the two radii

are the same so that two degenerate tiers (1, 0) and (0, 1) contribute to the Dark Matter

abundance. In this case, the preferred mass range is

200GeV < mKK < 300GeV; (2.3)

and a limit mKK < 400 GeV from the over-closure of the Universe. The two degenerate

tiers may be split in the case of asymmetric radii: when one radius is smaller than the

other by more than few percent (in particular if the difference in mass is larger that the

freeze out temperature, which is typically of order 4% of the KK mass) the heavier tier

does not contribute significantly to the relic abundance and the range is

300GeV < mKK < 400GeV. (2.4)

We will consider in the following the case mKK = 400 GeV in detail. The tiers (1, 0)

and (0, 1) will be considered therefore of a mass of 400 GeV (apart from small splitting

corrections) and the lightest of them will be associated to the dark matter candidate. Due

to the the small mass splittings among the particles inside the level (1, 0) and (0, 1), the

typical phenomenology at LHC is the production of coloured particle via tree level bulk

interactions. Due to the conservation of KK-parity, these states will be pair-produced and

will decay into the LLP, which is a scalar photon, after radiating soft standard model

particles. Indeed due to the small mass splittings, the energy available for the standard

model particle is small and they are soft. Therefore, a very detailed study is necessary to

ascertain if missing energy signatures can be detected at the LHC.

Here, we will focus on the phenomenology of heavier states, especially the next two in

mass, (1, 1) and (2, 0)–(0, 2), which are even under the KK parity and can therefore decay

in a pair of SM particles. Despite the lower cross sections due to the heavier mass scale

of these tiers, interesting signals can be generated, as will be described in the following

sections.

3 Phenomenology of the (1,1) tier

The tier (1, 1) is peculiar to models with more than one extra dimensions and it has

been pointed as a signature of models beyond 5D [21]. Its tree-level mass is given by

M (1,1) =
√

1/R2
5 + 1/R2

6 ∼
√

2MKK, where the latter is true if the two radii are nearly

equal. In this case, this level is the next-to-lightest KK tier after the (1, 0) and (0, 1). Under
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the KK parity, this level is even and, due to its mass, it cannot decay into a (1, 0)-(0, 1)

pair via bulk interactions: the only possibility is a direct coupling to a pair of SM states.

Such a coupling, however, cannot be generated by loops of bulk interactions due to the

conservation of KK momentum in the vertexes. The decay, therefore, can only occur via

localised counter-terms that break all parities but the KK parity. In the context of a valid

effective theory, we assumed that such couplings are small, corresponding to higher order

operators, and a simple dimensional analysis shows that they are typically much smaller

than loop induced couplings. This means that any state in this tier will preferably chain-

decay to the lightest one in the tier. Such decays are in fact ruled by the phase space,

which is in turn determined by loop and Higgs VEV corrections. The fate of the lightest

state is somewhat arbitrary: according to the magnitude of the higher order operators,

it may be long lived and escape the detector, leave a displaced vertex or decay promptly

into SM particles. However, based on dimensional analysis, an estimate of the size of the

coupling as suppressed by the low cut-off of the theory would give rise to prompt decays,

so we will focus on this possibility in the following.

3.1 Spectrum and interactions

The tier (1, 1) has a rich spectrum compared to other tiers: it contains gauge vectors

(A
(1,1)
µ ) and gauge scalars (A

(1,1)
5,6 ), Dirac fermions (f (1,1)) and Higgs (H(1,1)). For each SM

gauge boson, for instance the W−
µ , the spectrum contains a vector resonance W

−,(1,1)
µ and

a physical gauge scalar W
−,(1,1)
φ , which is the combination of the extra polarisations that

is not eaten by the massive vector resonance. The masses are split by Higgs VEV and

loop corrections: in particular, loop corrections are divergent for the vector resonances and

finite (and therefore very small) for the gauge scalars. This is due to the fact that the wave

functions of the gauge scalars vanish on the singular points where the counter-terms are

located. The Higgs resonance H(1,1), on the other hand, will receive quadratically divergent

corrections, therefore it is difficult to predict its mass. However, as a general rule, it will

tend to be heavier that other states in the tier, therefore its presence will be irrelevant for

the purpose of this work. In the fermion sector, the spectrum contains 2 massive Dirac

fermions for each chiral SM fermion: this means that for each SM fermion, for instance the

electron e, there will be 4 massive states: e
a,(1,1)
s , e

b,(1,1)
s , e

a,(1,1)
d and e

b,(1,1)
d . The indices s

and d refer to singlet (right-handed SM electron) and doublet (left-handed SM electron),

while a and b label the two degenerate states deriving from the KK expansion. Singlet and

doublet fermions will be distinguished by the interactions (for instance, they will receive

different loop corrections), while the difference between fermions a and b is more subtle.

One way to distinguish them is to define by a the fermion that receives divergent loop

corrections, while b receives finite corrections (some more details about this can be found

in [22]).

Radiative corrections are crucial to understand the phenomenology of every tier, be-

cause, together with the Higgs VEV, they determine the mass difference between states

in the tier. In the case of the (1, 1) tier, this is directly related to the decay channels of

each state. Details on techniques to compute loop diagrams in 6D can be found on [9]: the
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main novelty in the case under consideration is the fact that we are dealing with states

which have non-zero KK numbers for both extra directions and therefore the wave-function

contains both sine and cosine functions. To obtain the spectrum of the tier, one can either

calculate directly the loops (the result is reported in appendix A), or use the counter-term

structure as in [22]. The spectrum is clearly divided into a set of states that receive largish

UV-sensitive corrections (vector resonances and fermions of type a), and a set that receive

small finite corrections (gauge scalars and fermions of type b).

As mentioned before, the decays of the states in tier (1, 1) are mediated by bulk inter-

actions that contain two (different) states in the level (1, 1) and one (or more) SM particles.

Here the separation into two sets appears again, as there are no vertexes connecting the

two sets. In fact, fermions of type a can only interact with a SM fermion via a vector

resonance of level (1, 1), while fermions of type b only interact with a gauge scalar. This

fact can be understood looking at the wave-functions of the heavy states [9]. The overlap

of the wave-functions in a vertex must contain an even number of cos and sin functions in

order for the integral on the extra-coordinates to be non-vanishing. The wave functions of

the gauge boson components are proportional to:

A(1,1)
µ ∼ cos lx5 cos kx6 , A

(1,1)
5 ∼ sin lx5 cos kx6 , A

(1,1)
6 ∼ cos lx5 sin kx6 .

Fermions in 6D are eight-component spinors whose wave-functions are different whether

the zero mode is left- or right-handed. If the zero mode is left-handed, for instance, the

4D components are:

PLf
a,(1,1)
d ∼ cos lx5 cos kx6 , PRf

a,(1,1)
d ∼ a1 cos lx5 sin kx6 + a2 sin lx5 cos kx6 ,

PLf
b,(1,1)
d ∼ sin lx5 sin kx6 , PRf

b,(1,1)
d ∼ b1 cos lx5 sin kx6 + b2 sin lx5 cos kx6 .

A vertex of the type A
(1,1)
µ f̄ (1,1)f (0,0) requires that the two fermions have the same chirality:

fa has such couplings since it provides an even number of cos and sin functions (the

wave function of the SM particle is constant). On the other hand, a vertex of the type

A
(1,1)
φ f̄ (1,1)f (0,0) flips fermion chirality: it is possible to prove that the combination of A5

and A6 which generates the physical gauge scalar Aφ couples only with fermions f b. If

the zero mode is a right-handed fermions, the 4D components of the (1, 1) modes have

different combinations of sin and cos, but the analysis is completely analogous and leads

to the same conclusions. In summary, the following interactions are possible:

A(1,1)
µ f̄

a,(1,1)
s,d f (0,0) + h.c. , A

(1,1)
φ f̄

b,(1,1)
s,d f (0,0) + h.c. ,

while the following ones vanish:

A(1,1)
µ f̄

b,(1,1)
s,d f (0,0) + h.c. , A

(1,1)
φ f̄

a,(1,1)
s,d f (0,0) + h.c. .

We have shown, therefore, that the tier (1, 1) contains two distinct sectors which do not

interact and can be treated separately: {fa,(1,1), A(1,1)
µ }, that receives divergent corrections

to the masses from loop diagrams, and {f b,(1,1), A(1,1)
φ }, that receives finite loop corrections.

In both cases, each state will decay to the lightest one in its set via bulk interactions. In the
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set {fa,(1,1), A(1,1)
µ }, such decays are prompt because there is enough phase space available

for the decay; moreover, it is possible to write down localised operators that will induce the

decay of the lightest state, a neutral vector resonance, into a pair of SM particles. Due to

the fact that the vector boson wave function does not vanish on the fixed points, all channels

are possible: a pair of fermion anti-fermion, W+W− and a pair of Higgs bosons. From

the operator structure alone it is not possible to determine which final state dominates. A

reasonable assumption is that the decay will preferably involve heavy SM particles because

they may be more sensitive to the underlying fundamental theory, therefore in the following

we will focus on decays into a pair of top anti-top, leaving the value of the branching ratio

as a free parameter of the model. In the case of the set {f b,(1,1), A(1,1)
φ } the mass difference

between different states will be very small, typically below 1 GeV, with the sole exception

of the Z
(1,1)
φ , W

±,(1,1)
φ and top partners which receive large corrections from the Higgs VEV.

The decay within the level, therefore, will produce extremely soft SM particles that will be

virtually impossible to detect. The lightest state in the set will decay into standard model

states via localised operators: however, due to the fact that the wave function vanishes on

the singular points, the decay will be mediated by operators of dimension 6 or higher, and

the width will be very suppressed. A detailed discussion is given in appendix B, where we

show that the scalar A
(1,1)
φ decays typically in a pair of Higgs bosons while the decay to

top pairs is suppressed. In the following we will focus on the phenomenology of the set

containing vector resonances and fermions of type a. For simplicity of notation, from now

on we will drop the index a on the fermion. Masses, widths and branching ratios for the

benchmark point with MKK = 400 GeV are listed in table 1.

3.2 The four top final state

A state in the tier (1, 1) can be either pair produced via bulk interactions, whose size is

similar to SM couplings, or be singly produced via localised interactions: in this work we

are assuming that the single production is very small compared to the pair production as

it is mediated by higher order operators. Once a heavy state of the tier (1, 1) is produced,

it will undergo chain decays until the lightest state, namely the vector photon A
(1,1)
µ , is

reached. The SM particles radiated in the chain decay are soft due to the typically small

mass differences between states in the tier, and therefore they will easily escape detection or

be hidden in the large SM soft background. Therefore, the production of any pair of (1, 1)

states effectively contributes to the production of a pair of A
(1,1)
µ vectors. This cumulative

effect ensures that a large number of heavy vector photons will be produced at the LHC,

even though their couplings to quarks and gluons are small.

The fate of the heavy photon depends on the localised interactions, that mediate its

decays into a pair of SM particles. Details about this final decay are crucial for subsequent

analysis. A localised interaction is described by parameters which cannot be predicted

within the effective theory, but can only be determined by knowing the UV-completion

of the theory. Due to our ignorance of the details of such UV-completion, we can only

give reasonable assumptions on the size of the coupling and on the branching ratios of the

decay of the (1, 1) vector photon into SM states. Here we will focus on the decay into a

pair of tops, tt̄: the rationale under this assumption is that the top is the heaviest particle
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Particle
Mass

(GeV)

Width

(MeV)
Decay Channels

Branching

Ratios

Gauge Bosons

A
(1,1)
µ 566.39 O(10−3) tt̄ b

others (hh?) 1 − b

g
(1,1)
µ 661.86 4.15 × 103 d d̄

(1,1)
s , d̄ d

(1,1)
s 5.73%

b b̄
(1,1)
s , b̄ b

(1,1)
s 5.72%

u ū
(1,1)
s , ū u

(1,1)
s 5.55%

d d̄
(1,1)
d , d̄ d

(1,1)
d 4.46%

b b̄
(1,1)
d , b̄ b

(1,1)
d 3.87%

u ū
(1,1)
d , ū u

(1,1)
d 4.46%

Z
(1,1)
µ 589.35 36.9 νlν̄

(1,1)
l , ν̄lν

(1,1)
l 9.38%

l+l
−,(1,1)
L , l−l

+,(1,1)
L 6.98%

l+l
−,(1,1)
R , l−l

+,(1,1)
R 0.33%

W
(1,1)
µ 588.95 34.8 l−ν̄

(1,1)
l , ν̄ll

−,(1,1) 16.6%

Quarks

u
(1,1)
s 601.96 13.8 uA

(1,1)
µ 99.8%

uZ
(1,1)
µ 0.2%

t
(1,1)
s 630.39 1.31 bW

(1,1)
µ 100%

d
(1,1)
s 600.89 3.24 dA

(1,1)
µ 99.8%

dZ
(1,1)
µ 0.2%

b
(1,1)
s 600.89 3.24 bA

(1,1)
µ 99.8%

bZ
(1,1)
µ 0.2%

u
(1,1)
d 608.58 26.6 uA

(1,1)
µ 13.5%

uZ
(1,1)
µ 26.8%

dW
(1,1)
µ 59.7%

t
(1,1)
d 637.01 87.8 bW

(1,1)
µ 100%

d
(1,1)
d 608.58 23.8 dA

(1,1)
µ 0.4%

dZ
(1,1)
µ 33%

uW
(1,1)
µ 66.6%

b
(1,1)
d 612.37 11.1 bA

(1,1)
µ 0.9%

bZ
(1,1)
µ 99.1%

Leptons

l
(1,1)
L 574.43 0.65 lA

(1,1)
µ 100%

l
(1,1)
R 568.87 0.16 eA

(1,1)
µ 100%

ν
(1,1)
l 574.43 0.24 νlA

(1,1)
µ 100%

Table 1. Masses, widths and decay channels with branching ratios of states in tier (1, 1): here, u

stands for up and charm quarks, d for down and strange, l for electron, muon and tau leptons. The

width of A
(1,1)
µ is estimated in appendix B.

in the SM and therefore it may couple more strongly to the UV completion of the model.

Moreover, tops usually play a crucial role in the electroweak symmetry breaking sector of

the model due to their large coupling to the Higgs, which is very sensitive to UV physics.

We will parametrise our ignorance of the UV physics as b = BR(A
(1,1)
µ → tt̄), so that the

cross section for the 4-top final state will be given by

σtot(tt̄tt̄) = σeff(A(1,1)
µ A(1,1)

ν ) × b2. (3.1)
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In our simulation, we will assume b = 100% to generate the signal; in case of a null result

in the CMS search for 4-top final states, we can pose an upper bound on the value of b.

Recall that σeff(A
(1,1)
µ A

(1,1)
µ ) is only determined by the mass of the new states (≈

√
2mKK)

and SM couplings. In our Monte Carlo implementation of the model, we introduced an

effective coupling of the heavy photon with tops with electromagnetic strength, suppressed

by a loop factor:

g
A

(1,1)
µ tt̄

=
Qte

16π2
, (3.2)

with Qt = 2/3. The precise value of this coupling, however, is not important for our results

as long as the decay in tops is prompt and does not leave displaced vertexes (we will not

consider this possibility here, neither the possibility that the heavy photon decays outside

the detector). The operator that mediates the decay can be found in appendix B, and it

gives rise to a partial width of order 10−6 GeV.

As the heavy (1, 1) states can only be produced in pairs, after the subsequent chain

decays, the final state will always contain two heavy vector photons which can finally decay

into two tt̄ pairs. At the LHC the 4-top productions takes place as follows:

pp→ P (1,1)P ′(1,1) → A(1,1)
µ A(1,1)

µ +X → tt̄tt̄+X (3.3)

where X are the jets and the leptons coming from the decay chain of the (1, 1) states P and

P ′. All channels will lead to such final state; however, the main production cross section

will involve coloured states like heavy gluon and quark resonances.

The total cross section is mainly accounted for by the following three basic processes

that, in the benchmark point mKK = 400 GeV, amount to:

σpp→q(1,1)q(1,1) ≃ 7.6 pb

σ
pp→g

(1,1)
µ q(1,1) ≃ 5.5 pb

σ
pp→g

(1,1)
µ g

(1,1)
µ

≃ 0.7 pb











σeff(A(1,1)
µ A(1,1)

µ ) & 13 pb @ 7TeV. (3.4)

Other processes involving heavy electroweak gauge bosons and leptons can be neglected;

from now on we shall also neglect the heavy gluon pair production process and processes

involving the heavier top states. The decay channels of intermediate states, together with

their BR’s, are shown in table 1. The relevant decays for the processes in eq. (3.4) are:

q
(1,1)
s,d → q A

(1,1)
µ −→ tt̄+ 1 jet

q
(1,1)
d → q {Z,W}(1,1)

µ → q l l(1,1) → q 2l A
(1,1)
µ −→ tt̄+ 1 jet + 2l

g
(1,1)
µ → q q

(1,1)
s,d −→

{

tt̄+ 2 jets

tt̄+ 2 jets + 2l

(3.5)

where leptons include neutrinos (therefore the lepton pairs can be l+l−, νlν̄l, l
+νl and l−ν̄l,

where l = e, µ, τ). The final state will contain all possible combinations of the above:

pp→ tt̄tt̄+ n light jets + n′ leptons (3.6)

with n = 2, 3, 4 and n′ = 0, 2, 4. Noticeably, jets and leptons produced together with

the final 4 tops are mostly soft since the mass splittings between (1, 1) particles are few
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Figure 1. Comparison of differential cross sections normalised to unity with respect to HT (scalar

sum of the pT of jets) for the production of tt̄tt̄ in the RPP model (benchmark point with MKK =

400GeV) and in the SM. These events include the effect of hadronisation and detector efficiencies

(for more details, refer to section 4.4).

tens of GeV at most. The only way to make such soft particles detected is to produce

the heavy states with a large transverse momentum, however the cross section would be

largely suppressed. The final state, therefore, mainly consists of the products of the four

top decays, which carry enough momentum from the decay of the heavy photon. In the

following we shall simulate part of the signal in the 6D model including the soft SM products

of the chain decay.

It is useful to note at this point that the softness of the SM debris of the chain decay

may allow us to use a simplified model to study this phenomenology: one can generate the

same signal in a model with a massive vector Z ′ that couples to tops. The mass of the Z ′

plays the role of the mass of the tier,
√

2MKK, while the normalisation of the cross section

can be rescaled to match the production cross section of heavy quarks and gluons. By

use of an implementation of both models in Madgraph4/Madevent [23], we checked that,

at parton level, the kinematic distribution are the same to a good approximation, proving

that the two simulations would give rise to the same bounds on MKK. Here, however, we

did not make use of this simplification. Another more rough possibility is to rescale the

SM signal, which is given mainly by QDC diagrams: in this case, there is no information

about the mass scale of the new particle, and one can just obtain a conservative bound

on the total cross section. In figure 1, we show the distribution in HT of the events in

the SM and in our benchmark point of the model. We can clearly see that the SM tends

to be softer, therefore a cut in HT used to reduce the background may underestimate the

number of events.

3.3 Four tops from tiers (2, 0) and (0, 2)

The tiers (2, 0) and (0, 2) are quite interesting for phenomenology because they contain the

lightest even states that can decay into SM particles via loop interactions without missing

– 11 –



J
H
E
P
1
0
(
2
0
1
1
)
0
4
2

energy. The main difference with respect to the tier (1, 1), besides the higher mass, is that

the decay rates can be calculated and predicted, with only a mild logarithmic dependence

on the cut-off of the theory. For instance, the lightest state in the tiers, which is a vector

photon, decays into a pair of tops with a rate of about 20%. This tiers, therefore, will also

generate a 4 top final state that can be analysed in the same way as the one presented in

this work. The decay chains are typically more complex, because each state in the levels

can decay directly into a pair of SM particles or into a pair of states in the odd levels (1, 0)

or (0, 1) via bulk interactions. All such rates can be calculated and predicted. In [22] a

more detailed study of the (2, 0) and (0, 2) decay channels has been presented. The main

production mechanism is pair production of coloured states, heavy quarks and gluons,

which can in some cases chain decay into a final state of 4 tops (each pair of top-antitop

coming from the decay of the vector photon, A
(2,0)−(0,2)
µ and, less frequently, from the

vector Z
(2,0)−(0,2)
µ ). The authors considered a benchmark point with mKK = 300 GeV, for

which the mass of the tier is around 600 GeV similar to the mass of the (1, 1) state under

consideration here. An estimate of the inclusive 4-top cross section leads to about 77 fb

for each tier: this number is much smaller than the (1, 1) case because of the suppressed

branching ratios into tops. However, it is important to notice that this cross section cannot

be suppressed by any arbitrary parameter in the theory, therefore a non observation of the

4-top signal at this level would lead to an exclusion of the model at this mass scale.

In the following, we will focus uniquely on the signal generated by the (1, 1) level, but

keeping in mind that the same result can be applied to the smaller but irremovable signal

from the (2, 0) and (0, 2) levels.

4 Simulation details

In this section we will discuss some details of our simulation. We will be interested in a

beam energy of 7 TeV in the centre of mass, and we will normalise the event number to an

integrated luminosity of 1 fb−1, which has already been collected before the summer 2011

at the LHC.

4.1 Signal

The UED/RPP model has been implemented in FeynRules [24] to obtain the necessary

Feynman rules for (1,1) couplings and the simulation has been performed exploiting stan-

dard software tools: diagram topologies and event simulations have been generated with

Madgraph4/Madevent [23] for each possible final state containing 4 tops. The subsequent

top decay and hadronisation has been obtained using Pythia6.4 [25].

The relative relevance of different signatures can be computed considering the branch-

ing ratios of intermediate heavy particles decays. Referring to table 1 the total cross section

is composed of:

σpp→4t+2j ≃ 2.4 pb ∼ 17% ,

σpp→4t+2j+2l ≃ 3.1 pb ∼ 22% ,

σpp→4t+2j+4l ≃ 2.1 pb ∼ 15% ,

σpp→4t+3j ≃ 1.9 pb ∼ 14% ,

σpp→4t+3j+2l ≃ 2.5 pb ∼ 18% ,

σpp→4t+3j+4l ≃ 1.1 pb ∼ 8% .

(4.1)
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Unfortunately, the large number of external particles makes it difficult to generate events for

all possible final states with the available software: we therefore provide results of numerical

simulations for the simplest signatures and extrapolate the rest of the signal, when possible.

Following (3.4), we first select signatures coming from the q(1,1)q(1,1) intermediate state, and

looking at (3.5) it is possible to see that the most relevant final states are 4t+2j+n′l with

n′ = 0, 2, 4. Diagrams for a signal without leptons contain 8 external particles (including

the initial partons) and this is the practical upper limit for our computation. Signatures

with more than 2 soft jets necessarily involve the generation of a heavy gluon, but even

if in principle the signal 4t + 3 soft jets can be computed by Madgraph, in practice the

combinatorial is huge and makes the computation unfeasible. As already stressed, the 4

jet signal can be discarded since its cross section is one order of magnitude smaller than

the rest.

We already noticed that jets and leptons emerging from intermediate decays of heavy

states are mostly soft, thus signatures with different number of jets and leptons have very

similar distributions. This means that it is sufficient to base our study on the kinematic

details of the 4 tops in the final state, coming from the decays of the heavy photons: we

have verified the validity of this assumptions by comparing the events with two soft jets

with events with one or no jet (that can be easily generated), coming from sub-leading

diagrams involving direct production of the heavy photon. In the event generation, we

have imposed minimal kinematic cuts on the transverse momentum and rapidity of light-

and b-jets, namely pT > 20 GeV and η < 5, while no cuts have been imposed on leptons.

The PDFs used for the computations are the CTEQ6L1 [26].

4.2 Identification of SM backgrounds

Reconstructing the four top quarks individually is a very difficult task, which suffers from

huge combinatorial background. In addition, in the complex environment of the LHC, final

state objects overlap and their individual reconstruction is not efficient. In order to get rid

of the huge multijet background, we study the potential of a same sign dilepton signature.

This channel accounts for 21% (at tree level) of the signal.

In the following we consider only electrons and muons. There are two main categories

of backgrounds: one is represented by tt̄+jets, V qq (where V = W or Z), V V+jets and

Z+jets. They do not contain opposite sign dileptons, but their cross-section is large enough

to fake a same sign dilepton signature because of the charge misidentification of the leptons.

The second category of background is the one with two real same sign dileptons. We have

considered Ztt̄+jets and Wtt̄+jets and the tt̄tt̄ production in the SM. The cross section

of the aforementioned processes is smaller, but they yield an irreducible background. All

these backgrounds and their cross-sections are summarised in table 2.

4.3 Detector simulation

As explained before, background and signal events are generated with MadGraph/MadEvent.

In order to take into account the efficiency of event selection under realistic experimen-

tal conditions, the detector simulation is carried out with the fast detector simulator

Delphes [28] using the CMS detector model. The tracker is assumed to reconstruct tracks
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Background process cross-section [pb]

Z+jets 2800

tt̄+jets 165

V qq 36

V V+jets 5

Wtt̄ 0.018

Ztt̄ 0.013

SM tt̄tt̄ 0.010

Table 2. List of backgrounds considered in this analysis. The cross sections for all processes

are at the LO, as obtained from the MadEvent calculator [23], except for tt̄ events for which the

approximate NLO calculation of [27] is used.

object |ηmax| pmin
T [GeV]

e,µ 2.4 10

jets 3 20

b-jets 2.5 20

Table 3. Acceptance of the different final states in the simulated detector.

within |η| < 2.4 with a 100% efficiency and the calorimeters cover a pseudo-rapidity region

up to |η| < 3 with an electromagnetic and hadronic tower segmentation corresponding the

the CMS detector. The energy of each quasi stable particle is summed up in the corre-

sponding calorimeter tower. The resulting energy is then smeared according to resolution

functions assigned to the electromagnetic calorimeter (EC) and the hadronic calorimeter

(HC). The acceptance criteria are summarised in the table 3. For the leptons (electrons of

muons), we require a tight isolation criterion: no additional tracks with pT > 2 GeV must

be present in a cone ∆R =
√

∆η2 + ∆φ2 = 0.5 centred on the lepton track. The jets are

reconstructed using only the calorimeter towers, through the anti-kt algorithm with cone

size radius of 0.5, as defined in the FastJet package [29] and implemented in Delphes. The

b-tagging efficiency is assumed to be 40% for all b-jets, independently of their transverse

momentum, with a fake rate of 1% (10%) for light (charm) jets. Finally, the total missing

transverse energy (MET) is reconstructed using information from the calorimetric towers

and muon candidates only.

In the following, we present a simple strategy that can lead to promising Signal-over-

Background (S/B) ratios. Our purpose is to illustrate the new possibilities that open

up in the four top final state and motivate more detailed studies. To this aim detailed

information on the efficiencies and the visible cross sections are given.

4.4 Analysis results

As outlined before, we request two isolated same sign leptons in the final state. Two well

reconstructed leptons with pT > 30 GeV and |η| < 2.4 are sufficient to trigger the events

(the two lepton combined trigger efficiency is assumed to be 100% after the lepton selection

– 14 –



J
H
E
P
1
0
(
2
0
1
1
)
0
4
2

HT [GeV]
0 200 400 600 800 100012001400160018002000

E
ve

n
ts

 / 
20

-110

1

10

210

310

410

510

610 tt
VVjets

Zjets

qVq

tWt

tZt

tttSM t
+2jtttSignal t

(a)

MET [GeV]
0 50 100 150 200 250 300 350 400 450 500

E
ve

n
ts

 / 
5

-210

-110

1

10

210

310

410

510

tt
VVjets

Zjets

qVq

tWt

tZt

tttSM t
+2jtttSignal t

(b)

jetsN
0 2 4 6 8 10 12 14

E
ve

n
ts

 / 
1

1

10

210

310

410

510

610 tt
VVjets

Zjets

qVq

tWt

tZt

tttSM t
+2jtttSignal t

(c)

bjetsN
0 1 2 3 4 5 6

E
ve

n
ts

 / 
1

1

10

210

310

410

510

610
tt

VVjets

Zjets

qVq

tWt

tZt

tttSM t
+2jtttSignal t

(d)

Figure 2. Differential cross sections for the signal and SM backgrounds (stacked histogram)

without any selection cut with respect to (a) HT (the scalar sum of the pT of the jets), (b) MET

(missing transverse energy), (c) the number of hard jets and (d) the number of b-tagged jets. The

b parameter is set to one in order to allow an easy rescaling of the distributions.

cut). Selected jets have pT > 20 GeV and |η| < 3. The distributions for various observables

without any selection cuts are are shown in figure 2 where the total signal cross-section

is normalised to 13 pb, assuming a branching ratio b = 1. As expected, since the signal

contains four tops, the distributions of signal and background events are well separated for

HT (which is defined as the scalar sum of all the selected jets), and the number of jets.

However this effect is less striking for MET, since some of the SM backgrounds have the

same number neutrinos as the signal and for the number of b-jets. Figure 3 shows the

same distributions after the requirement of the same sign isolated leptons and a veto on

the dilepton mass around the Z peak ±10 GeV (to remove the Z+jets component). With
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Figure 3. Differential cross sections for the signal and SM backgrounds (stacked histogram) after

the requirement of two same sign leptons with respect to (a) HT, (b) MET, (c) the number of hard

jets and (d) the number of b-tagged jets. The b parameter is set to one in order to allow an easy

rescaling of the distributions.

two like sign leptons, a four top final state produces eight hard quarks (including the four

bottom quarks). QCD radiation can increase this further. The number of jets is around

four for the the SM backgrounds with the tt̄ component around 6 jets, while it peaks

around nine jets for the signal (the dominant signal distribution comes from the four tops

plus two extra jets contribution). The four top quarks also produce four bottom quarks

when they decay. However the probability of tagging all four bottoms is rather small.

Figure 3 shows the number of b quarks identified by Delphes. The four top signal peaks

around 1 b being reconstructed, whereas the background is almost exclusively present

in the 0 b-tagged jet bin. This variable is not optimal to discriminate between signal

and background but it could help to verify if four tops are involved. However, the variable
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Selection Signal yield Background yield S/B S/
√
S +B

(A) 1799 155 11.6 41

(B) 1786 5 357 42

(C) 1698 9 189 41

Table 4. Background and signal event rates for integrated Luminosity of 1/fb and for a branching

fraction b = 1, after various selection cuts. Selection (A) requires two like sign isolated leptons;

selection (B) two like sign isolated leptons plus HT > 450GeV; finally selection (C) two like sign

isolated leptons plus at least 6 jets. S/B and S/
√
S +B ratios are also provided for each selection.

b
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S
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Selection (C)

Figure 4. Left: evolution of the significance ratio S/
√
S +B for the three selections with respect to

the branching ratio parameter b, showing that selection (B) is the most effective. Right: evolution

of the significance ratio S/
√
S +B for the selection (B) and for different values of the branching

ratio b with respect to the integrated luminosity. The line indicating a significance ration of 5

needed for a discovery is also provided.

providing the most striking separation between SM backgrounds and signal is HT. Figure 3

shows that a cut around 450 GeV removes almost all the remaining background and retains

roughly all the four tops events. In the end, we chose to investigate the following selections:

two like sign isolated leptons with pT > 30 GeV (selection A), a cut at 450 GeV on HT

(selection B) and a number of jets greater or equal to 6 (selection C). Table 4 presents

the background and signal event yield, the Signal over noise ratio and the significance

S/
√
S +B for an integrated luminosity of 1/fb and a branching ratio b = 1. The different

selections are comparable with a final significance around 40. The left panel in figure 4

shows the evolution of the significance ratio b2S/
√
b2S +B as a function of the branching

ratio parameter b for an integrated luminosity of 1/fb. For selection (B) a significance of

5 is obtained for b = 0.14. In order to claim a discovery, the significance ratio must be

greater than 5. The right panel in figure 4 shows the evolution of the significance ratio for

the selection (B) and for different values of b as a function of the integrated luminosity.

For b < 0.05 no discovery is possible for an integrated luminosity below 10 fb−1. For some

larger values of b, the luminosity needed for a discovery is shown in table 5.
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b Luminosity (/fb)

0.05 > 10

0.075 3.73

0.1 1.76

0.125 1.05

0.15 0.70

Table 5. Integrated luminosity needed for a discovery for different values of the branching fraction

parameter b.

5 Conclusions

We have studied the four top final state tt̄tt̄ at the 7 TeV Large Hadron Collider as a

probe of physics beyond the standard model. The enhancement of the corresponding

cross-section with respect to the Standard Model value allows to test and constrain extra

dimensional models with heavy Kaluza-Klein gluons and quarks. In particular we have

performed a detailed analysis including background and detector simulation for a universal

extra-dimensional model with two extra dimensions compactified on a flat real projective

plane. This background is especially interesting because it has an exact parity that forbids

the decay of the lightest KK state, therefore offering a good candidate for Dark Matter.

Production cross-sections into tt̄tt̄ final states may be large for the (1, 1) tier of the model.

When any heavy state of the tier (1, 1) is produced, it undergoes chain decays to the

lightest state, the vector photon A
(1,1)
µ , via bulk interactions. Finally the vector photon

decays directly into SM particles through suppressed localised interactions. If the heavy

vector decays into tops, all the production channels participate in the 4-top final state,

thus enhancing significantly the effective cross-section. The size of the coupling and the

branching ratio of the decay of the (1, 1) vector photon to SM states cannot be determined

in the effective model, however it is constrained by LHC data. On the other hand, the

heavy gauge bosons of the tiers (2, 0) and (0, 2), which are slightly heavier than the (1, 1),

can decay into a pair of energetic SM fermions via calculable loops. Even though the

branching ratios are rather small, due to the presence of other channels, and give rise to a

smaller effective cross-section in the four top final state, however in this case the coupling

is determined in the effective theory in terms of SM parameters and the final cross-section

can be computed. Therefore, this signal can be a smoking gun or an exclusion arena for

these models. The background and signal events were generated with MadGraph/MadEvent.

The efficiency of event selection under realistic experimental conditions was simulated with

the fast detector simulator Delphes using the CMS detector model. Reconstructing the

four top quarks individually is very difficult and, in the complex environment of the LHC,

final state objects overlap and their individual reconstruction is not efficient. We showed

that selecting events with two same sign leptons from the tt̄tt̄ decays, where lepton means

electron or muon, dramatically reduces the backgrounds and allows to strongly constrain

the model. We focused on a benchmark point with the scale of the extra dimensions

mKK = 400 GeV, which means that the mass of the (1, 1) state is close to 600 GeV. In this
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specific point, with an integrated luminosity of 1/fb (10/fb), the significance of the signal

exceeds 5 for a branching ratio of the decay of the (1, 1) vector photon into top quarks

above 13% (5%). This implies that the effective cross-section for discovery is above 210 fb

(36 fb).

This analysis can be also extended to 4-tops coming from the tiers (2, 0) and (0, 2):

for mKK = 300 GeV (for which the masses are similar to the masses considered in this

study), the contribution of a single tier to the 4-top final state is 77 fb (144 fb if both tiers

contribute), thus this events can be accounted for by an effective b = 7.7% (11%). Using

the results of our analysis in this case, we can conclude that this signal can be discovered

with an integrated luminosity above 3.5/fb (1.5/fb).

On more general grounds this kind of analysis can be applied to other extra-dimensional

models or to models of electroweak symmetry breaking in which new particles strongly

interact with the top quarks.
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A Calculation of the mass splitting in tier (1, 1)

The calculation of the mass splitting for tier (1, 1) can be performed in a similar way to

the other levels. Details about the calculation can be found in [9, 19]: the main technical

difference is that, contrary to tiers (1, 0) and (0, 1) considered in [9], states in this tier carry

momentum along both extra directions, thus the calculation is terms of 5D propagators is

more involved.

For a vector gauge boson of SU(N), gauge loops contribution to the mass of a generic

tier (n,m) with n+m even (thus including the tier (1, 1)) can be written as:

δm2
V (n,m)

∣

∣

gauge
=
αC2(G)

16π3R2

[

T6 + pg
(

14ζ(3) + (−1)mBGe(n,m)
)

+ pgpr
(

14ζ(3) + (−1)nBGe(m,n)
)

+ pr16π
2(n2 +m2) log Λ2R2

]

, (A.1)

where pr and pg are the parities of the gauge boson in the loop under rotation and glide

respectively (in our case, they are both pr,g = +1), α = g2/4π is the gauge coupling and

C2(G) = N a gauge group factor. The other parameters are T6 ≈ 1.92, which is a number

coming from the renormalised contribution of the torus to the loop, the Riemann function

ζ(3) ≈ 1.20 and the function BGe which is a complicated function of the KK numbers

of the tier under consideration. This function corresponds to a non-local contribution in

the bulk, and it gives a very small contribution to the mass and it decreases very fast for

large n and m: in the case of interest, BGe(1, 1) ≈ 1.60. The last term of the correction

gives the dominant contribution to the mass because it is proportional to the log of the

cut-off scale Λ and to the mass of the tier n2 +m2: in the numerical studies we will also

fix ΛR = 10, however the results are mildly dependent on the precise value of the cut-off.

This last term can also be predicted by using the counter-term method described in [22]
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without performing any loop calculation. The masses will also receive a contribution from

the scalar and fermion loops:

δm2
V (n,m)

∣

∣

matter
=

α

16π3R2

[

∑

fermions

C(rf )(−8T6)

+
∑

scalars

C(rs)

(

T6 + pg
(

7ζ(3)+(−1)mBSe(n,m)
)

+ pgpr
(

7ζ(3) + (−1)nBSe(m,n)
)

− pr
2

3
π2(n2+m2) log Λ2R2

)]

, (A.2)

where C(rs) and C(rf ) are group factors for scalars s and fermions f (for a fundamental

of SU(N), C(r) = 1/2, while for a U(1) gauge boson C is replaced by the charge squared

Y 2
s,f ). Also, BSe(1, 1) ≈ 1.89. A similar calculation can be performed for fermion fields. At

tree level, there are 2 degenerate fermions: loop corrections distinguish the two because

of different couplings, therefore we can define as fermion a the fermion that receives the

divergent contribution of the loop [22], and b the one that receives only finite contributions.

Note that this is not exactly a mass eigenstate, because there are still small finite terms,

dependent on the KK numbers, that mix the two states. For simplicity, we will neglect these

contributions (which are numerically sub-leading) and consider a and b as mass eigenstates.

The loop correction to a fermion from gauge loops will have the structure:

δm
ψ

(n,m)
a

∣

∣

gauge
=

αC2(rψ)

16π3R
√
n2+m2

[

pg
21

2
ζ(3) + pgpr

21

2
ζ(3) + pr8π

2(n2+m2) log Λ2R2

]

,

(A.3)

where the gauge factor C2(rψ) is equal to N2−1
2N for a fundamental of SU(N) and Y 2

ψ for a

U(1) field. The third generation quarks, top singlet and doublet, will also receive sizable

corrections from the Yukawa couplings:

δm
ψ

(n,m)
a

∣

∣

Yukawa
=

y2
ψ

64π4R
√
n2+m2

[

pg
21

4
ζ(3) + pgpr

21

4
ζ(3) + prπ

2(n2+m2) log Λ2R2

]

,

(A.4)

where pr and pg are the parities of the Higgs boson (pr,g = +1 in our case of interest).

Note that for the fermion ψb the same formula applies except for the divergent term which

is absent; moreover, there are some finite contributions that depend on n and m and have

non-diagonal pieces. Here we neglect them altogether due to their small numerical value.

Numerical values of the corrections, in units of R, are listed in table 6 and 7 for all the SM

fields.

The tier (1, 1) also contains a resonance of the Higgs scalar. However, the mass correc-

tion is quadratically sensitive to the cut-off of the theory: this implies on one hand that the

calculation is not reliable, and on the other that the corrections tend to be large, therefore

the Higgs will be heavier than the other states in the tier. The quadratic divergence ap-

pears at two levels: there is a bulk contribution and a localised one, characterised by two

independent counter-terms. While the bulk contribution is the same for the zero mode and

the resonances, the localised one contributes differently due to the different normalisations

of the wave functions of the states. For instance, the scalar in tier (1, 1) has a factor of 2

– 20 –



J
H
E
P
1
0
(
2
0
1
1
)
0
4
2

U(1) SU(2) SU(3)

δm2

A
(1,1)
µ

R2 −0.004 0.168 0.891

δm2

A
(1,1)
φ

R2 −0.0028 0.0064 0.0076

Table 6. Numerical value of the loop corrections for gauge vector and scalar bosons in tier (1, 1),

in units of R.

lR lL, νl us ds ud, dd ts bd, td
δm

f
(1,1)
a

R 0.009 0.026 0.150 0.146 0.69 0.159 0.179

δm
f
(1,1)
b

R 0.0037 0.0010 0.0058 0.0057 0.0066 0.0072 0.0080

Table 7. Numerical value of the loop corrections for fermions in tier (1, 1), in units of R.

in the normalisation with respect to the zero mode, therefore the localised divergence will

be 4 times larger. The divergent loop contribution to the zero mode can be reabsorbed

in the definition of the Higgs vacuum expectation value (and therefore it contributes to

the hierarchy problem of the Higgs sector): if the divergent term were the same for all the

resonances, it would be possible to rewrite them in terms of the Higgs mass. However, this

is not the case, and an additional quadratic dependence on the cut-off scale remains in the

Higgs resonance masses.

B Decays of the lightest state in the tier (1, 1)

The decays of the lightest state in the tier (1, 1) are necessarily mediated by operators lo-

calised on the singular points, and with different coefficient on the two points thus breaking

the additional KK parity of the bulk. If we consider the lowest order operators, we have

kinetic terms that have dimension 6 in unit of mass when localised (this is coming from the

canonical dimension of the bulk fields). However, the gauge scalars do not appear, because

they are odd under the rotation symmetry of the orbifold, as they have wave functions

A5 =
1√
2πR

sin
x5

R
cos

x6

R
A

(1,1)
φ , A6 = − 1√

2πR
cos

x5

R
sin

x6

R
A

(1,1)
φ , (B.1)

which vanish on the fixed points. In fact, on the singular points, both energy-stress tensor

F iMN = ∂MA
i
N − ∂NA

i
M + gf ijkAjMA

k
N and covariant derivative DM = ∂M − igAiMT

i do

not contain the gauge scalars:

F5µ = F6µ = 0 , (B.2)

F56 =

√
2

πR2
sin

x5

R
sin

x6

R
A

(1,1)
φ = 0 , (B.3)

D5,6φ = ∂5,6φ . (B.4)
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In order to have operators which contain A
(1,1)
φ on the fixed points, we need to consider

higher derivatives along the two extra coordinates. For instance, on the fixed points:

∂5A5 =
1√

2πR2
cos

x5

R
cos

x6

R
A

(1,1)
φ =

1√
2πR2

A
(1,1)
φ , (B.5)

∂6A6 = − 1√
2πR2

cos
x5

R
cos

x6

R
A

(1,1)
φ = − 1√

2πR2
A

(1,1)
φ . (B.6)

Such terms can be generated by a double covariant derivative applied on an even field: for

instance D5D5φ. Analogously

∂5F
i
5µ = − 1√

2πR2
∂µA

i,(1,1)
φ +

g√
2πR2

f ijkA
j,(1,1)
φ Ak,(0,0)µ , (B.7)

∂6F
i
6µ =

1√
2πR2

∂µA
i,(1,1)
φ − g√

2πR2
f ijkA

j,(1,1)
φ Ak,(0,0)µ , (B.8)

where we only consider the zero mode for the vector component and g = g6/(2πR). Finally,

we can consider

∂5∂6F56 =

√
2

πR4
A

(1,1)
φ . (B.9)

Note however that the dimensions in mass of such terms are very different:

D5D5 , D6D6 → dim. 2 ,

D5F5µ , D6F6µ → dim. 4 ,

D5D6F56 , D6D5F56 → dim. 5 .

These can be used to build the lowest order operators that contain A
(1,1)
φ .

Couplings to zero mode fermions. The lowest order operators have dimension in

mass 8:

ψ̄Γµ(DµD5D5ψ) + h.c. , ψ̄Γ5,6(D5D5D5,6ψ) + h.c. , (B.10)

and variations in the position of the derivatives and index 5–6. Note also that the second

operator vanishes on the zero modes because of their chiral nature. Other possible operators

of dimension 9 are:

Hψ̄D5D5ψ + h.c. , D5F5µψ̄Γµψ . (B.11)

Couplings to zero mode gauge vectors. The only dimension 8 operator (for a non

Abelian gauge group only) is:

(DµD5F5ν)
iF i,µν =

[

∂µ∂5F
i
5ν + g6f

ijkAjµ∂5F
k
5ν

]

F i,µν . (B.12)

And similar one with index 6. However, when extracting the coupling A
(1,1)
φ A

(0,0)
µ A

(0,0)
ν ,

we notice that both contributions on the right-handed part of the previous formula vanish:

therefore such operators do not contribute to the decay of the gauge scalar into a pair of

SM gauge bosons.
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Couplings to zero mode Higgs. If we consider scalar fields, there is an operator with

dimension in mass 6:

H†(D5D5H) + h.c. = −ig6(∂5A
i
5)H

†T iH. (B.13)

And similarly with 6. This operator mediates the decay of A
(1,1)
φ to a pair of Higgs bosons

and its decay width will be discussed in the following.

B.1 Decay widths

Here, we focus on the concrete case of a U(1) gauge scalar coupled to fermions (tops)

and scalars. We will also consider the massive vector as a comparison. The relevant

operators are:

Lloc(Aµ) = i
z

Λ2
ψ̄Γµ(∂µ − ig6QfAµ)ψ , (B.14)

Lloc(Aφ) = i
ζ

Λ2
H†D5D5H + i

ξ

Λ4
ψ̄Γµ(DµD5D5ψ) + h.c. (B.15)

where we do not consider other combinations of derivatives. Extracting the coupling of

one A
(1,1)
φ with zero modes, we obtain:

Lloc(A
(1,1)
µ ) =

zL,R
2π2R2Λ2

gQf ψ̄
(0,0)
L,R γ

µPL,Rψ
(0,0)
L,R A

(1,1)
µ + . . . , (B.16)

Lloc(A
(1,1)
φ ) =

ζ

2π2R2Λ2

gQh√
2
H(0,0)†H(0,0)A

(1,1)
φ

+
ξL,R

2π2R4Λ4

gQfR√
2
ψ̄

(0,0)
L,R γ

µψ
(0,0)
L,R ∂µA

(1,1)
φ + h.c. + . . . (B.17)

The L,R refer to the chirality of the zero mode fermion. From these we can calculate the

partial widths

Γ(A(1,1)
µ → f̄f) =

αQ2
fM

6

1

4π4(ΛR)4

√

1−
4m2

f

M2

(

(z2
L+z2

R)

(

1−
m2
f

M2

)

+6zLzR
m2
f

M2

)

. (B.18)

Γ(A
(1,1)
φ → f̄f) =

αQ2
fM

8

1

4π4(ΛR)8
(mfR)2

√

1 −
4m2

f

M2
(ξL − ξR)2. (B.19)

Γ(A
(1,1)
φ →hh) =

αQ2
h

16R2M

ζ2

4π4(ΛR)4

√

1 −
4m2

f

M2
. (B.20)

To have an idea of the rates, we calculated the partial decay width for M =
√

2 ·
400GeV = 565 GeV and zL = zR = ξL = −ξR = ζ = 1. Moreover, we used mt = 175 GeV,

mh = 120 GeV, ΛR = 10, α = αem = 1/127, Qf = Qh = 1:

Γ(A(1,1)
µ → f̄ f) = 3.6 × 10−7 GeV. (B.21)

Γ(A
(1,1)
φ → f̄ f) = 1.7 × 10−11 GeV. (B.22)

Γ(A
(1,1)
φ → hh) = 3.2 × 10−8 GeV. (B.23)
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It is therefore natural to expect that the branching of the gauge scalar in a pair of tops is of

order 10−3÷10−4. This implies that the gauge scalars do not contribute significantly to the

4-top final state; on the other hand, the fact that the only dimension-6 operator involves

Higgs bosons implies that the branching ratio into hh is naturally 100%. This would lead

to very large production cross sections of 4 Higgs bosons and interesting final states that

may lead to a discovery of the Higgs and of the extra-dimensional model. For instance,

for a light Higgs, one may select a final state with 6 bottoms and a pair of photons, with

a total branching of 4 · BR(h → γγ) ∼ 10−2 and an effective cross-section of the order of

100 fb.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution Noncommercial License which permits any noncommercial use, distribution,

and reproduction in any medium, provided the original author(s) and source are credited.
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