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1 Introduction

Heavy boosted particles play an important role in many analyses at the LHC, including SM

precision measurements, Higgs and electroweak physics, and searches for physics beyond

the Standard Model (BSM). In general, the collimated decay products of boosted particles

are reconstructed as a single large-radius “fat jet”. Analyses then attempt to “tag” the

origin of the fat jet by looking at its substructure. (For reviews of boosted object tagging

and jet substructure, and many original references, see e.g. [1–8].) The ability to accurately

tag boosted jets has many benefits. For instance, it can be used to overcome the QCD

background and measure h → bb in associated production [9]. In BSM physics, new

heavy particles could be created, which then produce boosted SM objects as they decay.

Requiring the presence of these boosted objects is then a useful handle in discriminating

signal against SM background.

In this paper, we will focus on a particularly well-motivated case: boosted top jets.

Signatures with energetic top quarks are predicted from SM processes such as single top

and top pair production, and in several models of new physics. Top partners are expected
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to play a key role in solutions to the hierarchy problem, and they can naturally produce

boosted top quarks in their decays. Additionally, there are other models that consider the

production of dark matter in association with a top quark or top quark pair.

Traditional top tagging methods include the Johns Hopkins/CMS top tagger (CM-

STT) [10], HEPTopTaggerV2 (HTTV2) variables [11–13], and Shower Deconstruction [14,

15] (see [16, 17] for reviews and more references). These top taggers are widely used by AT-

LAS and CMS. For instance, Shower Deconstruction is applied in a 13 TeV ATLAS search

for W ′ → tb decays in the hadronic final state in [18]. Some implementations of HTTV2

include a 7 TeV ATLAS search for resonances decaying into top-quark pairs using fully

hadronic decays [19] and a 13 TeV CMS analysis for tt-H production in the H → bb̄ decay

channel [20]. Some other recent LHC searches based on boosted top jets include [21–24].

The idea of conventional top taggers is always to start with a collection of physical

observables, such as jet mass, that can be used to distinguish tops from light-flavor QCD.

These high-level features can serve as inputs to various multivariate machine learning algo-

rithms, such as boosted decision trees (BDTs), to further enhance the tagger performance.

These algorithms attempt to find a set of complicated boundaries over the phase space

that maximizes the classification accuracy. However, as the classification ability is highly

dependent on these observables, the main challenge resides in finding ways to systemati-

cally come up with a set of observables that are not highly correlated and give the best

discriminating power.

By contrast, in recent years, there has been a great deal of interest in using deep neural

networks (NNs) to identify objects at the LHC (among many other potential applications).

The tantalizing promise of deep learning is the ability to start from much lower level inputs

than was previously thought possible, and transform them into meaningful outputs. (For

pedagogical introductions to neural networks and deep learning, see e.g. [25, 26].) In the

context of boosted jet tagging, the idea is to allow a NN to figure out on its own, from

relatively raw data (e.g. momentum four-vectors of all the constituents of the jet), the in-

trinsic patterns that identify each type of jet and the regions of phase space that distinguish

them. In this sense, deep learning attempts to invent the most useful physical observables

for classification, in addition to designing the optimal set of cuts on these observables.

The interest of the LHC community in deep learning has been spurred by the huge

successes of deep NNs in real-world applications (see [27] for a nice overview). One major

source of breakthroughs has been in computer vision, from pixel level labeling of images

for autonomous vehicles [28, 29] and Google’s automatic captioning of images [30, 31],

to Facebook’s DeepFace project [32] and Microsoft surpassing human-level performance

on ImageNet classification [33]. These results were made possible in large part thanks to

the invention of convolutional neural networks (CNNs). CNNs are built from two types

of layers: convolutional layers and fully connected layers. The former implement locality

(exploit the image’s spatially local correlations) and capture the lower level features of the

input image (lines, edges, curves, etc.). These are eventually passed on to the latter which

are responsible for learning abstract, higher level concepts (such as class probabilities).

This independence from hand engineered features is a major advantage of CNNs from

more traditional algorithms.
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CNNs have a direct application to classifying jets at the LHC, since there is an obvious

and natural sense in which jets can be viewed as images. Indeed the calorimeters already

provide the requisite pixelization. The intensity of the image can be the per-pixel pT and

can be augmented with other per-pixel quantities such as track multiplicity. This idea of

jet images has been explored in a number of works [34–39], with [36, 38, 39] applying CNNs

to W -boson, quark/gluon and top tagging respectively. These works have demonstrated

that jet taggers based on computer vision can perform comparably to or slightly better

than conventional taggers based on high-level inputs. In particular, the CNN top tagger

of [39] (named “DeepTop” there) was trained on grayscale images formed from calorimeter

deposits of moderately boosted top jets. The end result was a CNN top tagger with

performance comparable to state-of-the-art BDTs built out of SoftDrop variables [40],

HEPTopTaggerV2 (HTTV2) variables [11–13], and N-subjettiness [41].

In this paper, we explore a number of improvements to the DeepTop tagger, including

the NN architecture (augmenting the DeepTop CNN with more feature maps and more

nodes on dense layers), the NN training (loss function, optimizer algorithm, minibatch

size, learning rate), image preprocessing, sample size (increasing the training sample by

10× to ∼ 1M jets saturates the NN performance), and adding color (calorimeter pT , track

pT , track multiplicity and muon multiplicity). The result is a much more effective CNN for

top tagging, one that (for the first time) significantly outperforms best-in-use conventional

methods. This shows the enormous power and promise of modern deep learning methods

as applied to the LHC. We are clearly entering a new era driven by major gains in artificial

intelligence.

In order to disentangle any possible correlations between our proposed improvements

and the fiducial jet image selection, we consider two very different jet samples in this paper.1

The first is the sample of moderately-boosted jets used in the DeepTop paper (350 GeV <

pT < 450 GeV). The second is a sample of high pT jets (800 GeV < pT < 900 GeV) that

(apart from some minor differences) is taken from a recent note on top tagging methods

by CMS [42]. We will refer to these as the “DeepTop sample” and the “CMS sample”

throughout this work. Apart from the pT ranges, an important difference between the two

samples is the merge requirement. This is a generator-level cut that requires the daughters

of the top quark to be contained within the cone of the fat jet. It ensures that all the

top jets contain the bulk of the energy from the boosted top quark. Without the merge

requirement, the top jet sample is significantly polluted by partially merged top jets that

might contain only the W -boson, or only the b quark and a single jet from the W decay.

The CMS sample imposes a merge requirement, while the DeepTop sample does not, and

we will see that this has a major impact on the tagger performance.

Combining all of our proposed improvements, we show that the net effect is to increase

the background rejection rate of the DeepTop tagger by a factor of ∼ 3–10 in the CMS

sample, and a factor of ∼ 1.5–2.5 in the DeepTop sample. It is perhaps not surprising

that the improvement is much more modest in the DeepTop sample, since this was the

focus of [39]. In any event, our modifications result in significant gains in performance

1We thank Gregor Kasieczka for very stimulating discussions on this point.
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over the baseline tagger for both jet samples, which is strong evidence for their general

applicability. In both cases, the single greatest improvement is actually in the NN training,

then followed by the NN architecture and the larger training sample size. This illustrates

that the performance of a NN can be determined as much by the methods used to train it

and the dataset it is trained on, as it is by the architecture.

We then proceed to a comparison of our CNN top tagger with conventional top tag-

gers that are meant to represent the state-of-the-art and best-in-use. For the DeepTop

sample, we compare directly against the “MotherOfTaggers” BDT ROC curve in figure 8

of [39]. For the CMS sample, we compare against a BDT built out of HTTV2 variables

and N-subjettiness. A cut-based version of this tagger was shown in [42] to have optimal

performance among cut-based taggers (see also the analogous ATLAS references [43, 44]).

The upshot is that our CNN top tagger outperforms these conventional taggers by a factor

of ∼ 2–3 or more in background rejection, across a wide range of tagging efficiencies.

Very recently there have been several efforts [45–48] to feed the raw jet constituents

(as momentum four-vectors) to various deep learning architectures such as recurrent neural

networks (RNNs) and dense neural networks (DNNs). These have shown much promise.

In [45] they showed that a recurrent neural network (RNN) W/Z tagger can outperform a

simple cut-based classifier based on N-subjettiness and jet mass. In [46, 48] they showed

that a dense neural network (DNN) and an RNN top tagger can significantly outperform

a likelihood-based tagger that takes N-subjettiness and jet mass as inputs. It would be

extremely interesting to do a head-to-head comparison of all of these deep learning NNs

with each other and with a state-of-the-art conventional tagger.

Although we have focused on top quarks in this work, it can also be viewed as a case

study of boosted object tagging more generally. Our approach could be straightforwardly

extended to other types of jets. There are also many other potential applications (many

have already begun to be explored), for instance whole-event classification, event gener-

ation, weakly-supervised learning, pile-up mitigation to name a few. Furthermore, our

optimizations were not systematic due to computational limitations. So perhaps with a

more systematic approach (i.e. hyperparameter scans) one could achieve even greater gains.

This paper is organized as follows. In section 2 we describe the details of our simulations

and the precise specifications of our top and QCD jet image samples. We also briefly review

the original DeepTop CNN which forms the baseline for the CNN tagger developed in this

work, as well as the conventional taggers that we benchmark against. In section 3 we give

an overview of some general “best practices” in the design of NNs, and we show how these

can be applied to improve the DeepTop CNN. We hope that, apart from the usefulness

of the CNN top tagger itself, this overview of concepts in NN design will prove useful to

others. While much or all of it will be known to experts, it may be useful to have it

collected in one place.

In section 4, we describe improvements to the image preprocessing steps in the DeepTop

paper that are made possible by using the higher-resolution tracks in the jet. In section 5,

we examine the dependence of the classification accuracy on the training sample size and

multiple intensity channels (colors). Then, in section 6 we put it all together and compare

our top tagger against the DeepTop tagger and the conventional taggers built out of high-
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level inputs. We conclude with a discussion of next steps and promising future directions

in section 7. In appendices A and B we validate our implementation of the DeepTop

paper, and the cut-based CMS top tagger (using the HEPTopTaggerV2 and τ32 variables)

respectively. In appendix C we discuss the differences in top tagger performance if fully-

merged-tops are required or not.

2 Methodology

The fat jets used in this paper are taken from all-hadronic tt̄ and QCD dijet events gener-

ated in proton-proton collisions using Pythia 8.219 [49], where multiparton interactions

and pileup are turned off for simplicity. After showering and hadronization, the events

are passed into Delphes 3.4.1 [50] for detector simulation. The jets are clustered with

FastJet 3.0.1 [51].

As discussed in the Introduction, we will study improvements to the DeepTop tagger

using two very different samples of jet images. These are described in table 1. The first is

the jet sample used in the DeepTop paper [39], while the second is essentially the same as

the high pT sample used in the CMS note [42].2 Let’s now highlight some of the important

differences between the samples:

• The DeepTop sample is much lower pT than the CMS sample.

• The DeepTop sample uses only calorimeter energies, while the CMS sample uses

particle-flow, meaning that the tracks and neutrals (defined to be calorimeter towers

minus the track contributions) are counted separately. This is very advantangeous,

as the tracks have much higher resolution than the calorimeter towers.

• With the tracking information in the CMS sample, we can use color images along the

lines of [38]. In addition to the colors used in [38] (calorimeter pT of the neutrals, per-

pixel track pT , and per-pixel track multiplicity), we also include muon multiplicity.

This is motivated by the presence of muons in a sizable fraction of top quark jets

coming from semileptonic b decays. (For comments on b-tagging see section 7.)

• The DeepTop sample used a toy calorimeter with resolution ∆η = 0.1, ∆φ =

5◦. For the CMS sample we used the default CMS detector card that comes with

Delphes 3.4.1, which has a slightly higher calorimeter resolution. The number of

pixels (37 × 37) chosen for the high pT jet images is based on this. In both cases, a

large image size is chosen to make absolutely sure the entire fat jet is captured.

• Finally, a crucial difference between the two samples is the merge requirement. Deep-

Top did not require the daughters of the top quark to fall in the cone of the fat jet,

while CMS did. With the merge requirement, the top jets are more “top-like” (oth-

erwise they are significantly contaminated by W jets and b jets), and this increases

the potential discriminating power against QCD jets. Accordingly, we will see that

the ROC curves for the CMS sample look much better than for the DeepTop sample.

We explore this further in appendix C.

2CMS uses 800 GeV < pT < 1000 GeV jets with R = 0.8.
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DeepTop CMS

Jet sample

14 TeV 13 TeV

pT ∈ (350, 450) GeV, |η| < 1 pT ∈ (800, 900) GeV, |η| < 1

R = 1.5 anti-kT R = 1 anti-kT
calo-only particle-flow

match: ∆R(t, j) < 1.2 match: ∆R(t, j) < 0.6

merge: NONE merge: ∆R(t, q) < 0.6

Image
40× 40 37× 37

∆η = 4, ∆φ = 10
9 π ∆η = ∆φ = 3.2

Colors pcaloT (pneutralT , ptrackT , Ntrack, Nmuon)

Table 1. The two jet image samples used in this work.

We will benchmark our CNN top tagger against BDT taggers built out of high-level

inputs. For the DeepTop sample, we directly compare against their “MotherOfTaggers”

BDT that takes HTTV2 variables, SoftDropped masses, and N-subjettiness variables (with

and without SoftDrop) as inputs. Since we have fully validated the DeepTop minimal

tagger, we do not bother to validate the MotherOfTaggers BDT as well, but just take

its ROC curve directly from figure 8 of the DeepTop paper. For the CMS sample, we

will consider both a cut-based tagger that combines the HTTV2 variables with the N-

subjettiness variable τ3/τ2 (motivated by the recent CMS note on top tagging [42]), as well

as a BDT trained on these variables. For the former, we varied simple window cuts on each

of the variables, as in [42]. We validate our implementation of this by reproducing the ROC

curve shown in figure 7R of [42] using our own simulations (see appendix B for details).

For our BDT we used the ROOT package TMVA [52] with the same hyperparameters as

in [44] and trained on the same jets as our final CNN tagger.

For the design of our CNN, we took as a starting point the DeepTop tagger of [39].

Its CNN architecture consisted of four identical convolutional layers (8 feature maps, 4× 4

kernel) separated in half by one 2× 2 max-pooling layer, followed by three fully connected

layers of 64 neurons each and an output layer of two softmax neurons. Zero-padding was in-

cluded before each convolutional layer to prevent spurious boundary effects. The DeepTop

CNN was trained on a total of 150k+150k top and QCD jet images, by minimizing a mean-

squared-error loss function using the stochastic gradient descent algorithm in minibatches

of 1000 jet images and a learning rate of 0.003. In order to validate our implementation of

the DeepTop tagger, we have carefully reproduced the ROC curve in figure 8 of [39], see

appendix A for details.

Using the DeepTop tagger, the authors of [39] demonstrated that CNNs could perform

comparably to a conventional BDT trained on high-level inputs. In the following sections

we will consider a number of improvements to the DeepTop tagger that, taken together,

demonstrate for the first time that CNNs can significantly outperform conventional taggers.
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3 Improvements to the neural network

In the design of an effective neural network, there are countless choices to be made. These

include not only decisions about the neural network architecture (how many layers, of

what type), but also how it is trained (loss function, optimizer, minibatch size, etc). In

general, the many parameters that go into the design of a neural network are referred to as

“hyperparameters” (not to be confused with the “parameters” of the NN — weights and

biases — that are varied during the training to minimize the loss function).

Through trial and error, we found that many of the hyperparameter choices made

in [39] could be improved. (A proper scan of hyperparameters would have been ideal but

this requires a GPU cluster which we did not have access to.) While many of these choices

are more art than science, and while the best choice may depend heavily on the particular

problem domain (e.g. the choice that may be ideal for natural images may not be the best

choice for jet images), there is some accumulated lore from the field of deep learning about

best practices. In this section we will briefly go over some of this lore and explain how

its application to jet tagging can significantly improve the DeepTop tagger performance.

While we do make an attempt at a somewhat self-contained treatment, we do not promise

to have succeeded. We refer the interested reader to [25, 26] for any missing definitions

and more background material.

3.1 Loss function

In any neural network, the goal is to minimize a “loss function” L over the NN parameters θ:

L =
∑
i

f(a(θ, xi), yi) (3.1)

The loss function quantifies how well the network is performing. Here a(θ, xi) is the NN

prediction and is a function of the NN parameters as well as the input xi (the jet image

in our case); yi is the truth label of example i; and i is summed over all the examples in

the training sample. For binary classification problems such as top tagging, we can take

yi = 0 for signal (tops) and yi = 1 for background (not-tops).

In DeepTop, f was taken to be the mean-squared-error (MSE) f(a, y) = (a − y)2.

However, a better choice in classification problems (that we opt for here) is the cross entropy

f(a, y) = −(y log a+ (1− y) log(1− a)). Theoretically speaking, MSE is more appropriate

and mathematically/statistically sound for Gaussian random variables, while binary cross

entropy is more appropriate for discrete (logistic) classification, where the NN output is

interpreted as a probability. In more practical terms, using the binary cross entropy for

classification tends to avoid the problem of learning slowdown when the predictions are

close to zero or one. For more discussion of this see [25].

3.2 Optimizer algorithm

Having chosen a loss function, we next need to decide on which algorithm we use to

minimize it. The loss function surface of multilayered NNs is typically non-convex and high-

dimensional with multiple flat regions and local minima. So the process of training the NN

is highly nontrivial. A poor choice of the optimizer can lead to many undesirable outcomes.

– 7 –
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Generally, the optimizers used to train deep networks are based on the idea of gradient

descent, where the parameters of the NN are updated according to the derivative of the

loss function:

∆θ = −η∇L (3.2)

The learning rate η is a hyperparameter that needs to be tuned: gradient descent would take

too many steps if η is too small, but if η is too large one may never converge to a minimum.

Computing the gradient of the full loss function (i.e. summed over the entire training

set) — referred to as batch gradient descent — is generally too time consuming. Instead,

most optimizers for deep learning involve some form of Stochastic Gradient Descent (SGD),

where the training sample is divided into “minibatches”, and gradients of the loss func-

tion are computed on each minibatch. Stepping through the training sample minibatch by

minibatch and updating the weights at each step is then referred to as a “training epoch”.

While this would appear to provide noisy and inaccurate estimates of the gradient, it actu-

ally has many benefits. For instance, introducing some noise into the gradient calculation

can prevent the optimizer from becoming stuck in a poor local minimum. Also, while some

minibatches may be inaccurate and lead to faulty updates, taken together their cumula-

tive effect can actually greatly speed up the rate of convergence. See [26] for a in-depth

discussion of this.

Finally, it is well-known that SGD is very sensitive to the learning rate and other

hyperparameters, and optimizing its performance usually requires an in-depth scan and

tuning over these quantities (see e.g. [53] for a discussion). Therefore, popular alternatives

in deep learning are optimizers such as AdaDelta [54] and Adam [55] that attempt to

adaptively determine the optimal learning rate for each parameter and each training epoch.

These adaptive versions of SGD usually require little or no manual tuning of a learning

rate and are rather insensitive to noisy or large gradients, different model architectures and

selection of hyperparameters, etc.

In [39], the optimizer was taken to be vanilla SGD with a minibatch size of 1000

and a fixed learning rate of η = 0.003. These hyperparameters do not appear to have been

tuned. Therefore it is not surprising that switching to AdaDelta (with the default settings in

Keras [56]) improves the outcome of training by a considerable amount. (We also tried using

Adam and found very similar improvements.) We obtained further improvements with a

slightly reduced learning rate (0.3 instead of 1) and a learning rate schedule (decreasing

the learning rate by 1/
√

2 when the validation loss does not decrease by more than 0.0005)

as compared to the Keras defaults.

We also found a very significant benefit to training with a smaller minibatch size than

was used in the DeepTop paper (128 instead of 1000). (Perhaps an even smaller minibatch

size would help even more, but here we were limited by computation time.) This is in

line with the small-to-moderate minibatch sizes (. O(102)) that are typically used in the

machine learning literature. Smaller minibatches give noisier estimates of the gradient, and

as noted above, this is actually beneficial in non-convex optimization, given that it could

push the solution out of the saddle points and shallow minima of the loss function.

– 8 –
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3.3 Architecture

Finally, there are myriad choices involved in specifying the architecture of the neural net-

work. Here we found that the architecture of the DeepTop CNN seemed to be optimal in

terms of the number of layers and filter size. But augmenting it with more feature maps

(64-128 instead of 8) and more nodes on dense layers (256 instead of 64) improved the

performance considerably.

Our NN architecture is shown in figure 1. The input layer is given by an image of

37 × 37 pixels with (up to) 4 colors. Next, we define a convolutional layer of 128 feature

maps with a 4× 4 kernel followed by a second convolutional layer of 64 feature maps and

similar kernel. The larger number of initial feature maps aims to capture all the possible

lower lever features of the images.3 Then we have a max-pooling layer with a 2×2 reduction

factor. Next we apply two more consecutive convolutional layers with 64 features maps

with a 4× 4 kernel each, followed by a max-pooling layer with a 2× 2 reduction factor. As

in [39], we use zero-padding in each convolutional layer to make sure we are not subject to

boundary effects. We flatten the 64 maps of the last pooling layer into a single one that

is passed into a set of three fully connected dense layers of 64, 256 and 256 neurons each.

(Restricting the first dense layer to 64 neurons was motivated by practical considerations.

It keeps the number of weights at a manageable level, speeding up training time and

ameliorating overfitting.) Finally, the last dense layer is connected to the output layer of 2

neurons which produces the probability that the jet originated from a top or not. We use

rectified linear units (ReLU) as the activation functions on all the layers, except for the

output layer where we use the softmax function. Also, our final training sample was large

enough so that regularization techniques, such as dropout, were not necessary.

The neural network is implemented on an NVidia Tesla K80 GPU using the NVidia

CUDA platform (CUDA drivers, toolkit and cuDNN library). The code for the CNN is

written in Python, using the deep learning library Keras [56] with the TensorFlow [57]

backend. The weights are initialized with the Keras default settings.

We arrived at the NN architecture used in this paper mainly by trial and error. Due

to limited resources, a thorough scan of NN architectures was not possible, however this

would obviously be desirable. It is easily possible that further performance gains could be

obtained with such a scan.4

4 Image preprocessing

In the original DeepTop paper [39], the image preprocessing steps were found to actually

decrease the performance of the tagger. This is surprising since usually preprocessing

improves classifier performance.

3In computer vision applications these features are different shapes (lines, edges, curves, etc.) that the

NN uses to build up to higher-level concepts. Although there is not a direct correspondence between typical

computer vision images and our images given that jet images are sparse, raising the number of initial feature

maps improved the classification accuracy.
4We note that a limited scan was carried out in the DeepTop paper. However, they only considered

6, 8 and 10 feature maps per convolutional layer, which does not include the 64–128 feature maps used in

this work.
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Figure 1. Architecture of our CNN top tagger.

The DeepTop preprocessing steps were as follows. First they pixelated the image

according to their detector resolution. Then they shifted such that the maximum pixel

intensity as defined by a 3x3 window was at the origin. Next, they rotated such that the

second maximum was in the 12 o’clock position, and they flipped to ensure that the third

maximum is in the right half plane. Finally, they normalized each image so that the pixel

intensities are between 0 and 1.

Our preprocessing steps differ from this in the following ways. First of all, we perform

all preprocessing before pixelating the image. This makes the most sense for the CMS

sample which separates the much-higher-resolution tracks from the calorimeter towers. But

it also appears to have some benefit even for the calo-only jets of the DeepTop sample. Our

first step is to calculate the pT -weighted centroid of the jet and the pT -weighted principal

axis. Then we shift so that the centroid is at the origin and we rotate so that the major

principal axis is vertical. In contrast to DeepTop, we flip along both the L-R and the U-D

axes so that the maximum intensity is in the upper right quadrant. Finally, after doing all

these transformations, we pixelate the image and then normalize it to unit total intensity

(i.e. divide by the total pT ).

To demonstrate the effectiveness of our preprocessing steps, we show in figure 2 the

average of 100k top and QCD jet images drawn from the high pT CMS jet sample, with and

without preprocessing. Although below we consider color images where the track pT ’s and

neutral pT ’s are considered separately, here we restrict ourselves to grayscale images where

they are added together. We see that even without preprocessing, the average images are

quite different, with the QCD jets being much more peaked than the top jets. After our pre-

processing steps, the 3-prong substructure of the top jets becomes readily apparent, while

the QCD jets remain more dipole-like. (This should be contrasted with the average images

in the DeepTop paper, where the 3-prong substructure of the top jets is much less apparent.)

5 Other improvements

5.1 Sample size

In the DeepTop paper, the training samples were limited to 150k+150k. Here we explore

the effect on our CNN top tagger of increasing the training sample size. As usual, we

split the dataset into training, cross-validation and test samples. The objective during

training is to minimize the loss function and progress is evaluated after each epoch on the

cross-validation dataset. When training is completed, the final test accuracy — percentage
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Figure 2. The average of 100k jet images drawn from the CMS sample (37 × 37 pixels spanning

∆η = ∆φ = 3.2). The grayscale intensity corresponds to the total pT in each pixel. Upper: no

preprocessing besides centering. Lower: with full preprocessing. Left: top jets. Right: QCD jets.

of correct classifications averaged over signal and background — is calculated over an

independent test sample. Shown in figure 3 are the learning curves for the test accuracy

vs. training sample size, for our two different jet samples. (The training sample size is

defined to be the number of top jets in the training sample; an equal number of QCD

jets were used. The test sample size was fixed at 400k+400k jets.) We have shifted the

learning curve for the DeepTop sample by a constant 0.075; interestingly, it lines up almost

perfectly with the learning curve for the CMS sample. This is evidence that the shape

of the learning curve is independent of the fiducial jet selection (although the asymptotic

value clearly depends strongly on it). In any event, we see that the performance is basically

saturated for & 1M jets (for our final CNN tagger, we train on 1.2M+1.2M jets).

We also indicate in figure 3 the result of a least-squares fit of an inverse power law

a+ b/N c
train to the learning curve. This description of the learning curve may be a general

empirical feature of machine learning [58]. However, lacking a precise understanding of

the uncertainties on the test accuracies (the sample variance from both the test set and

the training set contribute), we cannot provide a detailed description of the fit. Here, to

perform the fit, we estimated the uncertainty on each value of the test accuracy using a

simple 1/
√
Ntrain scaling.5 We merely include this fitting function to guide the eye. One

sees visually that it seems to describe the learning curves well.

5We have tested this scaling using a small number of pseudoexperiments for small values of Ntrain and

it appears to hold.
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Figure 3. In blue (yellow) are the learning curves for the test accuracy vs. training sample size for

the CMS jets (DeepTop jets). The CNN used is our final tagger but with grayscale images. The

learning curve for DeepTop jets has been shifted up by a constant offset of 0.075. Shown also in black,

dashed is a heuristic least-squares fit to an inverse power law with uncertainties given by 1/
√
Ntrain.

5.2 Color

Inspired by [38], we also added color to our images from the CMS sample. (The DeepTop

sample was calo-only so we could not add color to them.) The four colors we used were

neutral and track pT per pixel, the raw number of tracks per pixel, and the number of

muons per pixel. The last color was not considered in [38], which focused on quark vs.

gluon tagging. Obviously, muons can be considered a crude proxy for b-tagging and should

play a role in any top tagger. (For more comments on b-tagging, see section 7.)

Interestingly, we found that adding color to the images led to significant overfitting for

smaller training sample sizes. Evidently, while the color adds information to the images, it

also increases the noise, and with too few training examples, the network learns to fit the

noise. This problem went away when the training sample was increased to 1.2M+1.2M,

which is why we choose to place the color improvement last.

6 Final comparison

The full specifications of our final tagger are summarized in table 2 side-by-side with those

of the original DeepTop tagger.

Having gone through all the improvements (loss function, optimizer, CNN architecture,

image preprocessing, sample size and color) to the DeepTop tagger in the preceding sections,

we are now ready to put them all together and quantify their cumulative effects on the

tagger performance. Shown in figures 4–6 and table 3 are ROC curves and aggregate metrics

characterizing these effects. The baseline in these plots is always the DeepTop minimal
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DeepTop minimal Our final tagger

Training

SGD AdaDelta

η = 0.003 η = 0.3 with annealing schedule

minibatch size=1000 minibatch size=128

MSE loss cross entropy loss

CNN architecture
8C4-8C4-MP2-8C4-8C4- 128C4-64C4-MP2-64C4-64C4-MP2-

64N-64N-64N 64N-256N-256N

Preprocessing
pixelate→center center→rotate→flip

→ normalize → normalize→pixelate

Sample size 150k+150k 1.2M+1.2M

Color pcaloT = pneutralT + ptrackT (pneutralT , ptrackT , Ntrack, Nmuon)

Table 2. Summary of our final CNN tagger, together with the original DeepTop tagger.

DeepTop jets CMS jets

Improvement Accuracy AUC Accuracy AUC

Baseline 85.5% 0.930 91.7% 0.975

Training 86.1% 0.935 93.4% 0.983

Architecture 86.6% 0.939 94.0% 0.985

Preprocessing 86.7% 0.940 94.2% 0.986

Sample Size 87.0% 0.943 94.5% 0.988

Color – – 94.8% 0.989

Table 3. Accuracy and area under the curve (AUC) of our tagger after adding the modifications

over DeepTop minimal.

column in table 2, applied to the two different jet samples in table 1. Each modification is

then added cumulatively to this baseline. Here is a more detailed breakdown (each entry

here corresponds to moving from left to right sequentially in the corresponding category

of table 2):

• The end result of all of our improvements to the training (loss function and optimizer)

is the blue curves in figures 4–6. This gave the single largest boost to the performance

of all the different modifications we considered. Furthermore, we find that over half

of the improvement here is due solely to the smaller minibatch size. We also note in

passing that the better training methods allowed us to vastly speed up the training

time, as we only need O(10) training epochs to converge instead of the O(103) epochs

of the DeepTop paper.

• Improving the DeepTop architecture with more feature maps and more nodes on

hidden layers brought about another substantial gain in performance, this is indicated

in the green curves in figures 4–6.

• The result of our image preprocessing steps is a (relatively modest) improvement in

tagger performance, as indicated by the purple curves in figures 4–6.
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Figure 4. Sequence of ROC curves (background rejection 1/εB vs. tagging efficiency εS) illustrating

the cumulative effects of the various improvements to the DeepTop tagger, for the DeepTop jet

sample. Our final tagger including all the improvements is shown in orange.

• We found that increasing the training sample size by a factor of ∼ 10 significantly

improved the performance. The improvement using 1.2M+1.2M jets (which according

to figure 3 is enough to saturate the best-possible performance of this tagger) is

indicated by the orange curves in figures 4–6 (the previous ROC curves were based

on the DeepTop training sample size of 150k+150k jets).

• Adding color (only possible for the CMS jet sample that differentiates tracks from

neutrals) resulted in a very modest improvement in the tagger performance, shown

in the black curve in figures 5–6.

We see that with these modifications we can achieve a factor of ∼ 3–10 improvement

(depending on the tagging efficiency) in the background rejection rate for the CMS jet

sample and a factor of ∼ 1.5–2.5 improvement for the DeepTop jet sample.

It is interesting that the improvements are much greater for the CMS jet sample

than the DeepTop jet sample. Perhaps the tops vs. QCD jets in the CMS sample have

more subtle distinguishing features that can only be learned with the improved methods.

Regardless of the reason, this comparison illustrates the strong effect that the fiducial

jet selection can have on tagger performance. And although our improvements are more

modest for the DeepTop sample, they still do improve it by a factor of ∼ 2, which is

still quite significant. This demonstrates that the principles described in the previous

subsections which motivated these improvements do have general validity.
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Figure 5. Same as figure 4 but for the CMS jet sample.
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Figure 6. Ratio of the ROC curves in figures 4–5 over the minimal DeepTop tagger ROC curve,

providing another view of the cumulative improvements.
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Figure 7. ROC curves comparing our best top tagger (black), the original DeepTop tagger (red),

and the “MotherOfTaggers” BDT built out of high-level inputs from [39] (blue solid), for the

DeepTop jet sample.

The comparison between our tagger and state-of-the-art conventional top taggers that

use high-level features is shown in figure 7 for the DeepTop jet sample and in figure 8 for

the CMS jet sample. As discussed in section 2, for the DeepTop jet sample, we compare

directly against their “MotherOfTaggers” BDT ROC curve (i.e. without recasting it). For

the CMS jet sample, we include two taggers that are representative of the state-of-the-art

in top-tagging with high-level features: a cut-based top-tagger using variables from HTTV2

and N-subjettiness, and a BDT built out of those same variables. The BDT is trained on

the same 1.2M+1.2M jets as our final CNN tagger. The BDT improves the performance

of the high-level cut-based tagger by a moderate amount.

For the DeepTop jet sample, the baseline tagger was already comparable to the BDT,

and our improvements to the former raise it above the BDT by a factor of ∼ 2. Meanwhile,

for the CMS jet sample, it is surprising to see that the baseline tagger is outperformed

by even a simple cut-based tagger at lower tag efficiencies. This again highlights the

importance of optimizing a tagger for each fiducial jet selection. Thanks to the factor of

3–10 improvement over the baseline, our final CNN top tagger still shows substantial gains

(a factor of ∼ 3 in background rejection) compared to the BDT. One exception to this is at

the lowest tag efficiencies (εS ∼ 0.1), where the BDT and the deep learning tagger perform

very similarly (this can be seen also in the DeepTop sample). This could be because at

these low tag efficiencies, the top is very easy to identify and discriminate against QCD,

and so the gain from deep learning is minimized.
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Figure 8. ROC curves comparing our best top tagger (black), the original DeepTop tagger (red),

the cut-based top-tagger from [42] using variables from HTTV2 and τ32 (blue dashed), and a BDT

built out of those same variables (blue solid), for the CMS jet sample.

7 Outlook

In this paper, we showed for the first time how a top tagger based on deep learning and

low-level inputs (raw jet images) can significantly outperform state-of-the-art conventional

top taggers based on high level inputs. Taking the DeepTop tagger as a starting point, we

explored a number of modifications, most of them quite simple, that overall improve the

performance by up to a factor of ∼ 10 in the ROC curve. Compared to a BDT trained on

high-level inputs, our image-based deep-learning top tagger performs better by as much as

a factor of ∼ 3.

We believe our work illustrates the enormous promise and potential of modern machine

learning. Many more exciting results are sure to follow. In this section we will briefly discuss

some of the interesting future directions.

In this work, we made various simplifying assumptions that should be relaxed in future

studies. For instance, we ignored pileup. This was motivated by the fact that these are

very high pT jets and we are just trying to classify, instead of trying to measure anything

precisely, so we expect pileup to have a negligible effect. But this should be checked —

for any actual experimental application one would want to demonstrate the performance

of the tagger under realistic pileup conditions. We also restricted to two narrow ranges

(350–450 GeV and 800–900 GeV) of top pT s. The stability of a tagger performance under a

broad range of pT s is important to experimentalists, to avoid artificially sculpting the data.
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Another glaring omission is b-tagging. Here we have just relied on the momentum four-

vectors of the jet constituents, and have not used any impact parameters, displacements or

secondary vertex finding. Obviously, since this information is orthogonal to the momenta,

we expect that adding b-tagging will give a further boost to the tagger performance. It

would be interesting to know whether this boost is enhanced by deep learning or not.

The reason we were not able to add b-tagging is because there is not enough publicly

available information to accurately recast the secondary vertex finders used by the exper-

imental collaborations, or even the impact parameters (IPs). The IP resolutions have not

been updated past 7 TeV [59], and they are for single isolated tracks or at best very low

pT tops. These IP resolutions are likely to be unrealistically good for tracks in high pT
boosted top environments. Indeed, when we attempted to implement IP significance b-

tagging (say, along the lines of [60]) using these publicly available IP resolutions, we found

too large of an improvement to the top tagger performance compared to what one sees

e.g. in [42].

Another relevant topic that we have not explored in this paper concerns the issue of

overtraining on MC simulations. Clearly, our tagger has no problem generalizing from the

training sample to the test sample, but the question is how representative this sample is of

the actual data. Since we only used Pythia [49] with some default settings, this question

remains unanswered. Some have tried to address it using Herwig [61, 62] as a stand-in for

the data (i.e. training on Pythia jets and then testing on Herwig jets to see if there is

any degradation in performance), but this is most meaningful if somehow Herwig is more

realistic than Pythia. Otherwise any conclusions from Pythia vs. Herwig comparisons

could be misleading.

As noted above, we did not have access to a GPU cluster here. With such computing

resources, it would be possible, and important to do a proper architecture and hyperpa-

rameter scan to see if the NN performance could be further improved. Our architecture

considered here was inspired by the DeepTop paper. However, there are many state-of-

the-art CNN architectures out there such as AlexNet [63], Fast-R-CNN [64], VGG [65],

ResNet [66], GoogLeNet [67], etc. It would be interesting to test these out and see if any

of them offer any further benefit.

It should be straightforward to generalize the top tagger in this work to classify other

boosted objects such as W/Z bosons, Higgses, and BSM particles. It would also be in-

teresting to broaden the scope to include partially-merged and fully resolved tops in the

list of taggable particles. In this sense, the tagger could have a performance dependent on

these two categories, resulting in a greater background rejection at a fixed tag efficiency

for merged tops.

Beyond boosted jet tagging, there are countless other potential applications of deep

learning to the LHC. For instance, classification of full events is explored in [45]. Further-

more, there are papers that apply Generative Adversarial Networks [68] for simulations in

high energy physics in [69–72], where the main purpose is to drastically reduce the event

generation time taken by the Geant4 package [73] to emulate the detector response. Other

studies focus on extending the ML based classifiers from fully supervised (each event is

labeled as signal or background for training purposes) to weakly supervised [74–77]. An-
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other interesting direction to explore would be using unsupervised learning to find all the

categories (or discover new ones) of boosted objects or other types of signatures. Given all

of these interesting future directions (and more), we believe we are just starting to grasp

the scope of the many applications of ML in high energy physics.
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A Validating our DeepTop implementation

Here we will validate our implementation of the DeepTop tagger [39] that forms the ba-

sis of this work. Following their specifications, as described in table 1 (14 TeV collisions,

350 GeV < pT < 450 GeV, |η| < 1, anti-kT R = 1.5 calo jets, ∆R(t, j) < 1.2 match require-

ment, no merge requirement, ∆η × ∆φ = 0.1 × 5◦ toy calorimeter, 40×40 pixel images),

with the “minimal” preprocessing option described in their paper (centering only), we pro-

duced 600k+600k top and QCD jet images, split 25%/25%/50% into training, validation

and test samples as in [39].

We used the “default architecture” shown in figure 4 of [39]. This, together with the

training methods used in the DeepTop paper were described in section 2. Following these

same methods, the result of our validation is shown in figure 9. We see that the agreement

is excellent.

B Validating our HEPTopTaggerV2 implementation

Next we turn to validating our implementation of HEPTopTaggerV2 (HTTV2) and Nsub-

jettiness as used in [42]. As described in section 2, their jet samples are in line with our

CMS sample, except for some slight differences, specifically 800 < pT < 1000 and R = 0.8.

The HTTV2 algorithm takes the constituents of a jet as input, attempts to cluster

them into subjets consistent with a b and a W , and outputs a short list of kinematic

variables, mjet, frec and Ropt. The first is the jet mass and obviously should be close to

the top mass. The second is a measure of how W -like a subjet is. The third is a measure
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Figure 9. ROC curves validating our implementation of the DeepTop tagger with minimal prepro-

cessing (solid) against the original (dashed). The latter was obtained by digitizing the “DeepTop

minimal” curve in figure 8 of [39]. We see that the agreement is excellent.

of the optimal jet radius which may be different than the input jet radius.6 Finally, the

N-subjettiness variables τi are observables built out of the jet constituents that measures

how likely the jet is to have a given number of subjets.

Using mjet, frec and τ32 ≡ τ3/τ2, CMS scans over simple window cuts to produce

the optimal mistag rate for a given tag efficiency. The resulting ROC curve is shown in

figure 7R of [42].7 Our version of this overlaid on the CMS ROC curve is shown in figure 10.

We again see that the agreement is pretty good.

C Importance of the merge requirement

Here we will elaborate further on the importance of the requirement (∆R(t, q) < 0.6 in this

paper, following [42]) that the decay products of the top be “fully merged”. Tops failing

the merge requirement generally result in fat jets that do not contain the full energy from

the top quark decay. One can see this e.g. in figure 2 of [42] where histograms of the jet

mass are shown with and without the merge requirement. Without the merge requirement,

there is a clear peak and lower tail around the W mass, indicating that some of the top

jets are actually W jets or the b and only part of the W .

6For some jets, the HTTV2 may fail to find three or more subjets, in which case it produces no outputs.

This failure mode must be included in the efficiency calculation of any HTTV2-based tagger.
7CMS also cuts on a ∆Ropt variable but they say this has the least discriminating power. We omit the

cut on this variable for simplicity.
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Figure 10. ROC curves validating our implementation (solid) of the HTTV2+N-subjettiness cut-

based tagger described in [42]. The CMS curve (dashed) was digitized from figure 7R of [42]. We

see that the agreement is pretty good.

Restricting the signal sample to fully-merged tops will clearly boost the tagger perfor-

mance, since the differences with QCD are more accentuated (the top jets are more top-

like). This is illustrated in figure 11 which compares the ROC curve for our CMS sample

with preprocessing (the purple curve in figure 5) with and without the merge requirement.

We see that the performance gain with the merge requirement is indeed substantial. How-

ever, top jets that do not satisfy the merge requirement could still be useful in studies to

separate top from QCD jets. Even though the top mass cannot be reconstructed, analyses

could decide against QCD jets based on the partially reconstructed top jets as W jets or

the b and only part of the W .

We remark in passing that the merge requirement could explain a puzzling discrepancy

between the results in the DeepTop paper [39] and the CMS note [42]. Comparing the

DeepTop ROC curve figure 9 against the CMS ROC curves defined for a similar jet sample

(figure 7L of [42]), we see that the DeepTop tagger performs considerably worse, by a

factor of ∼ 3 or more. This is despite the DeepTop tagger being shown to outperform

a BDT trained on HTTV2 variables, which is among the best ROC curves shown in the

CMS reference. We believe the crucial difference between the two ROC curves is the merge

requirement. CMS requires their low pT tops to satisfy ∆R(t, q) < 0.8, while DeepTop [39]

does not include this requirement.
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Figure 11. ROC curves showing the performance of our top tagger on the CMS sample with and

without the merge requirement.
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