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1 Introduction

The low-energy description of the SYK model [1, 2] and of certain two-dimensional dilaton

gravity models [3–5] is a theory of a degree of freedom φ(τ) that describes a reparametriza-

tion of the thermal circle. This theory can be understood as the dynamics of a pseudo-

Goldstone mode for the breaking of reparametrization invariance, and it is expected to

describe a wide variety of systems with emergent approximate 1d conformal symmetry.

The partition function is [2, 6–9]

Z(g) =

∫
dµ[φ]

SL(2,R)
exp

[
− 1

2g2

∫ 2π

0
dτ

(
φ′′2

φ′2
− φ′2

)]
. (1.1)

The field φ(τ) is restricted to be monotone increasing and to wind once around the circle,

φ(τ + 2π) = φ(τ) + 2π, and we mod out by an SL(2,R) that acts as f → af+b
cf+d where

f = tan φ
2 . The SL(2,R) invariance of the action is made more obvious by writing it as

I =
1

2g2

∫
dτ

(
φ′′2

φ′2
− φ′2

)
= − 1

g2

∫
dτ

(
Sch(φ, τ) +

1

2
φ′2
)

= − 1

g2

∫
dτ Sch

(
tan

φ

2
, τ

)
. (1.2)
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Here

Sch(φ, τ) =
φ′′′(τ)

φ′(τ)
− 3

2

(
φ′′(τ)

φ′(τ)

)2

(1.3)

is the Schwarzian derivative of a change of coordinates in one dimension. We will refer

to (1.1) as the Schwarzian theory.

In the context of the SYK model, the coupling g is related to the inverse temperature

β, the original SYK coupling J , and the number of fermions N , by 1
g2 ∝ N

βJ . At large N

and fixed temperature, this is a weakly coupled theory, dominated by small fluctuations

about the saddle point φ = τ . But at very low temperatures β > N
J the theory is strongly

coupled, and the partition function is dominated by fluctuating configurations of the φ(τ)

field far from the saddle (see figure 2 in appendix B for pictures). This suggests that the

low-energy properties of the SYK model might be difficult to study.

However, the purpose of this paper is to show that the integral (1.1) is one-loop exact:1

Z(g) = Zone−loop(g) =
#

g3
exp

(
π

g2

)
. (1.4)

(Here # is a constant that depends on regularization but does not depend on g.) As we will

see, this fact can be explained by the Duistermaat-Heckman (DH) formula [13], which states

that the integral over a symplectic manifold of exp(H/g2), where H generates via Poisson

brackets a U(1) symmetry of the manifold, is one-loop exact.2 To apply the DH formula

to the integral (1.1), we need two facts. First, the space over which we integrate in (1.1)

is diff(S1)/SL(2,R), which is symplectic. And second, the Schwarzian action generates a

U(1) symmetry of this manifold that corresponds to time translations. Together, these two

facts explain the one-loop exactness.

The Duistermaat-Heckman formula may be unfamiliar to some readers, so we will

sketch a physics proof (along the lines of [17, 20]). Suppose given a symplectic manifold

M with coordinates xi, and with a Hamiltonian H that generates a U(1) symmetry via

δxi = vi = ωij∂jH. (1.5)

Here, ωij is the inverse of the symplectic form ωij . We would like to evaluate the integral

Z =

∫
dnxdnψ exp

[
1

2
ωijψ

iψj +H(x)

]
. (1.6)

Here the ψi are Grassmann variables that transform under diffeomorphisms of M as the

differentials dxi, so that there is a natural measure dnxdnψ. Integrating out the ψ’s in

1The work of [10] already suggested that the Schwarzian theory was exactly solvable. Further strong

evidence for one-loop exactness of this integral was reported in [11]. See also the recent work [12].
2This assertion is actually a special case of a more general localization principle in equivariant cohomol-

ogy [14, 15]. (This more general principle has been used, for example, in computing the prepotential of

N = 2 supersymmetric theories in four dimensions [16].) The statement that the path integral is one-loop

exact assumes that the fixed points of the U(1) symmetry are isolated. The general statement involves an

integral over this fixed point set. There is also a generalization that involves localization by nonabelian

symmetries [17–19]. We will not need any of these generalizations here.

– 2 –
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eq. (1.6) gives the symplectic measure Pf(ω)dnx for the integral over the x coordinates

(here Pf(ω) is the Pfaffian3 of the antisymmetric matrix ωij). This is the usual symplectic

measure on the symplectic manifold M . The point of writing the measure this way is

that (1.6) has a fermionic symmetry

Qxi = ψi, Qψi = vi (1.7)

that allows us to analyze the integral by localization. To check the fermionic symmetry, one

uses the fact that the symplectic form is closed, dω = 0. One can further check that Q2 acts

as the generator of the U(1) symmetry. Accordingly, Q2 = 0 in acting on U(1)-invariant

operators or functions. It follows that we can add QV to the action, for any U(1)-invariant

V , without changing the integral. To prove the DH formula, we choose V = gijv
iψj where

gij is any U(1)-invariant metric. Then we add QV to the action with a large coefficient.

This localizes the integral to the critical points of H, along with the correct measure for

the one-loop integral about those points. This establishes the one-loop exactness. We give

some more details on this proof in a slightly more general setting in appendix A.

The plan of this paper is as follows. In section two, we will discuss the case of the

Schwarzian theory in more detail, including the symplectic form, the associated measure,

perturbation theory, and the exact partition function. In section three, we will give further

details on the relationship of the Schwarzian theory to the coadjoint orbit of Virasoro, and

discuss some generalizations. In particular, we discuss the exact partition function and

density of states of the N = 1 and N = 2 super-Schwarzian theories [21]. In appendix

A, we describe the extension of the DH formula to a supermanifold. In appendix B, we

describe a lattice regularization of the Schwarzian theory and some sample monte carlo

configurations. Finally, in appendix C, we discuss some simple correlation functions in the

Schwarzian theory.

2 The Schwarzian theory

The localization argument for the Schwarzian theory relies on two facts: the space we are

integrating over is symplectic, and the action generates a U(1) symmetry of that space.

We will explain both of these facts in this section, before showing mechanically that the

two-loop term vanishes and discussing the exact one-loop answer.

2.1 The symplectic form and the Hamiltonians

The space that we integrate over in the path integral (1.1) is the symplectic manifold

diff(S1)/SL(2,R). As a first step, we should understand the symplectic form for this space

and the integration measure that follows from it. The form ω can be derived from the fact

that diff(S1)/SL(2,R) is the orbit of a particular coadjoint vector under the action of the

Virasoro group [22–24], and coadjoint orbits are always symplectic. See section 3 for more

details. We also give a direct explanation momentarily.

3The Pfaffian is the square root of the determinant, but for an antisymmetric matrix such as ω, it is

more natural to speak of the Pfaffian.

– 3 –



J
H
E
P
1
0
(
2
0
1
7
)
0
0
8

We can label points on diff(S1)/SL(2,R) by elements τ(φ) of diff(S1), with the under-

standing that we are identifying by a right action of SL(2,R) as f ≡ tan φ
2 →

af+b
cf+d . In

the application to the Schwarzian theory, it turns out to be somewhat more convenient to

think in terms of the inverse diff(S1) element, which we write as φ(τ). This is the same

variable that appears in the action (1.2). With this choice of coordinate, the symplectic

form is given by [23, 25]

ω =

∫ 2π

0
dτ

[(
dφ(τ)

φ′(τ)

)′
∧
(
dφ(τ)

φ′(τ)

)′′
− 2 Sch

(
tan

φ

2
, τ

)(
dφ(τ)

φ′(τ)

)
∧
(
dφ(τ)

φ′(τ)

)′]
(2.1)

=

∫ 2π

0
dτ

[
dφ′(τ) ∧ dφ′′(τ)

φ′2(τ)
− dφ(τ) ∧ dφ′(τ)

]
. (2.2)

This formula probably requires some explanation. First of all, here d is an abstract

exterior derivative that acts on the field φ but not on the spatial coordinate τ (or on

a function of τ). One can think of φ(τ) as a bosonic function in one dimension and

ψ(τ) = dφ(τ) as a fermion. As d does not act on τ , likewise it commutes with ∂τ , so

for instance dφ′ = d(∂τφ) is the same as ∂τdφ. Using such facts, we can rewrite (2.2) in

the form

ω =

∫ 2π

0
dτ

((
dφ′

φ′

)
∂τ

(
dφ′

φ′

)
− dφ∂τdφ

)
. (2.3)

We have omitted the explicit wedge product symbol — which one can think of as a reminder

that dφ(τ) is a fermionic field — and we have added a term that vanishes because (dφ′)2 = 0

by fermi statistics.

Now let us describe and verify the important properties of ω. The first basic property

is that it is closed, dω = 0. This is actually manifest in eq. (2.3), which has been written

entirely in terms of dφ and dφ′/φ′ = d log φ′ (and their τ derivatives), both of which are

exact and in particular closed.

The second basic property of ω is that it is invariant under diffS1 acting on τ . An

infinitesimal diffS1 transformation δτ = α(τ) acts on φ by

δφ(τ) = α(τ)φ′(τ). (2.4)

This corresponds to a vector vield Vα on the space of φ’s. We want to know if Vα leaves

ω invariant.

In general, if Ω is any differential form and V is any vector field, the condition that V

leaves Ω fixed is that (dιV + ιV d)Ω = 0. Here ιV is the operation of contracting V with Ω.

If dΩ = 0, the condition reduces to d(ιV Ω) = 0. We are in that situation because dω = 0,

so to show that ω is Vα-invariant, we have to show that d(ιVαω) = 0. We will do this by

finding a function Hα such that

ιVαω = dHα. (2.5)

These functions have a special interpretation (or more exactly will have such an in-

terpretation after we remove zero-modes and make ω nondegenerate). If ω is a symplectic

form, then eq. (2.5) means4 that Hα is the Hamiltonian function that via Poisson brackets

4In terms of indices, this equation reads V iαωij = ∂jHα. This is equivalent to V iα = (ω−1)ij∂jHα, which

may be a more familiar version of the formula.

– 4 –
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generates the infinitesimal transformation (2.4) of φ. In particular, on setting α = 1, we will

get the Hamiltonian function H associated to the “time” translation symmetry δφ = φ′.

It will turn out that this function (up to a factor of −1/g2) is the Schwarzian action (1.2).

That fact is the basic reason that the Duistermaat-Heckman formula is relevant to the

Schwarzian theory.

Concretely, ιVαω is computed by replacing one copy of dφ in eq. (2.3) with δφ = αφ′.

One makes this replacement for any one copy of dφ, but one has to take account of signs:

ιVα is regarded as a fermionic operator that anticommutes with dφ, so we include a plus

or minus sign if it acts on the leftmost or rightmost factor of dφ. To make this explicit,

let us write ω = ω1 + ω2, with ω2 = −
∫ 2π

0 dτ dφ∂τdφ and ω1 = ω − ω2. Then ιVαω2 =

−2
∫ 2π

0 dτ αφ′∂τdφ = −2
∫ 2π

0 dτ αφ′dφ′. But this is dHα,2 with Hα,2 = −
∫ 2π

0 dτ αφ′2.

Similarly,

ιVαω1 = 2

∫ 2π

0
dτ

(
∂τ (αφ′)

φ′
∂τ
dφ′

φ′

)
= 2

∫ 2π

0
dτ

((
α′ + α

φ′′

φ′

)
∂τ
dφ′

φ′

)
. (2.6)

But this is dHα,1 with Hα,1 =
∫ 2π

0 dτ
(
2α′ φ

′′

φ′ +α
(φ′′
φ′

)2)
. Here we use ∂τ (dφ′/φ′) = d(φ′′/φ′).

Finally, then, the Hamiltonian function that generates the diff S1 transformation δφ =

αφ′ will be

Hα =

∫ 2π

0
dτ

(
α

((
φ′′

φ′

)2

− (φ′)2

)
+ 2α′

φ′′

φ′

)
= −2

∫ 2π

0
dτ α Sch

(
tan

φ

2
, τ

)
. (2.7)

Setting α = 1, we learn that the ordinary Hamiltonian that generates δφ = φ′ will be the

Schwarzian action (1.2), up to a factor of 1/2g2.

So far, we have shown that ω is closed and diffS1 invariant and we have identified

what will be the Hamiltonian functions. We still have to explain in what sense ω can be

interpreted as a symplectic form. Since φ(τ) is monotone increasing and winds once around

the circle, it can be interpreted as an element of diff S1, mapping τ to φ(τ). The form ω

is a closed form on diffS1, but is not symplectic because it is degenerate, that is it has

zero-modes. To see the zero-modes in the most direct way, let us expand around φ = τ ,

which we think of as the identity element of diff S1, with φ = τ+
∑

n une
inτ . At un = 0, one

finds that ω = (−2πi)
∑

n∈Z(n3 − n)dundu−n. The function n3 − n vanishes precisely for

n = −1, 0, 1, so at the identity element of diffS1, ω has precisely three zero-modes, that is,

it has a three-dimensional kernel. Since ω is diffS1-invariant, the same is true everywhere.

The three zero-modes have a simple interpretation. For n = 1, 0,−1, let Wn be the

vector field

δφ = einφ. (2.8)

They generate an action of SL(2,R) on φ, and this action commutes with the diffS1 action

generated by the Vα. One may ask if ω is invariant under this second action of SL(2,R).

The criterion is again that dιWnω = 0. But here a short calculation with some integration

by parts reveals that more is true: ιWnω = 0. Thus Wn are the three zero-modes of ω.

SL(2,R) invariance of ω would require the weaker condition d(ιWnω) = 0. The fact that

– 5 –
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actually ιWnω = 0 even without acting with d means that ω is not just SL(2,R)-invariant

but is a “pullback” from a quotient space in which one divides by SL(2,R).

Let us recall that if G is a nonabelian group, then there is a left and right action

of G on itself. The left action on g ∈ G is by g → fg, and the right action is by g →
gh−1, where here f, h ∈ G. It is a matter of convention which is called the “left” action

and which the “right” action, as the two are exchanged by g → g−1. In the case at

hand, the group of interest is diffS1, parametrized by φ. The “left” action is generated

by δφ = ε(τ)∂τφ. It commutes with the “right” action, which is generated by δφ =

g(φ) for an arbitrary function g(φ) =
∑

n∈Z gne
inφ. What we have found in the last

paragraph is that ω is a pullback from diffS1/SL(2,R), where SL(2,R) acts on the right as

a subgroup of diffS1. Differently put, we can view ω as a closed two-form on the quotient

space diffS1/SL(2,R). If we do this, since we have removed the zero-modes, ω becomes

nondegenerate and therefore is a symplectic form. The quotient space diff S1/SL(2,R)

admits only one action of diffS1, which descends from the left action of diff S1 on itself.

When viewed as a form on the quotient space, ω is diffS1-invariant, since it is left-invariant

as a form on the group manifold.

In general, given a symplectic manifold, once one picks coordinates u1, . . . , un, the

symplectic form becomes an antisymmetric matrix and the measure in that coordinate

system is dnu times the Pfaffian of the matrix. In the present context, we use the function

φ(τ) (subject to a gauge condition to remove zero-modes) to parametrize diff S1/SL(2,R).

In this parametrization, the symplectic measure is not just the ordinary path integral

measure Dφ, but is this times the Pfaffian of the symplectic form. From a physical point

of view, the evaluation of the Pfaffian is more understandable if we rename dφ(τ) as a

fermion field ψ(τ). Then ω, being bilinear in ψ, is a quadratic fermion action, and the

Pfaffian of ω is just the path integral for ψ with this action. We turn next to an analysis

of that path integral.

2.2 Evaluation of the measure

Naively, it seems that the Pfaffian of (2.1) will give a nonlocal measure for φ. However, this

depends on the choice of gauge that is used to remove SL(2,R) zero-modes. If we pick a

local gauge condition, like φ(0) = 0, φ′(0) = 1, φ′′(0) = 0, then the measure actually turns

out to be local, and equal to the measure on diff(S1)/SL(2,R) inherited from the measure

on diff(S1) discussed in [10]:

dµdiff(S1)[φ] =
∏
τ

dφ(τ)

φ′(τ)
. (2.9)

Let us show in some detail how to derive this from the symplectic form. It is convenient

to work with the expression for ω on the first line of (2.1). To compute the Pfaffian we

view this as (minus two times) an action for a periodic fermion variable ψ = dφ(τ). We can

simplify the action somewhat by defining a new fermion variable η = ψ/φ′. The change of

variables from ψ to η gives us the infinite product of 1/φ′(τ) in (2.9) (minus three factors

for the gauge-fixing). This looks promising, but we have a leftover fermionic integral that

– 6 –
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seems to depend on φ(τ):∫
Dη η(0)η′(0)η′′(0) exp

[
1

2

∫
dτ
(
η′η′′ − T (τ)ηη′

)]
, T (τ) ≡ 2 Sch

(
tan

φ

2
, τ

)
.

(2.10)

Remarkably, (2.10) is actually independent of φ(τ). To show this, we evaluate the path

integral by representing it as a trace in a Hilbert space. In other words, we canonically

quantize the η action. We can construct an equivalent action that is linear in τ derivatives

by “integrating in” some additional fields:∫
Dη η(0)η′(0)η′′(0) exp

[
1

2

∫
dτ
(
η′η′′ − T (τ)ηη′

)]
(2.11)

=

∫
DηDwDbDc c(0)η(0)b(0)b′(0) exp

[
1

2

∫
dτ
(
w(η′ − b) + bb′ − T (τ)ηb− cc′

)]
.

(All fermion fields here are assumed to be periodic on the circle.) Integrating out w sets

b = η′. The action in (2.11) then reduces to the previous action in (2.10) and the fermion

insertions η(0)b(0)b′(0) reduce to the insertions η(0)η′(0)η′′(0) in (2.10). In order to have

an even number of Majorana fermions, we have included in (2.11) a fourth decoupled field c

(and an insertion of c(0) to make the periodic path integral nonzero). For future reference,

note that the equation of motion for b gives 2b′ + w + T (τ)η = 0, so c(0)η(0)b(0)b′(0) will

be equivalent as an operator acting on physical states to −1
2c(0)η(0)b(0)w(0):

c(0)η(0)b(0)b′(0) ∼ −1

2
c(0)η(0)b(0) [w(0) + T (0)η(0)] = −1

2
c(0)η(0)b(0)w(0). (2.12)

In the final step we used that η(0)2 = 0.

To understand the Hilbert space for w, b, η, c, it is convenient to write the fields in

terms of four canonical Majorana fermions

η = χ1 + iχ2, w = −χ1 + iχ2, b = iχ3, c = χ4. (2.13)

Then the exponential in (2.11) becomes

exp

[
− 1

2

∫
dτ

(∑
j

χjχ
′
j + iχ3(χ1 − iχ2)− iT (τ)χ3(χ1 + iχ2)

)]
. (2.14)

This theory is now easy to quantize in a four-dimensional Hilbert space, setting

χ1 =
1√
2
X ⊗ I, χ2 =

1√
2
Y ⊗ I, χ3 =

1√
2
Z ⊗X, χ4 =

1√
2
Z ⊗ Y, (2.15)

where X,Y, Z are the standard Pauli matrices and I is the identity. Then our path integral

is a representation of the time evolution operator for a Euclidean quantum mechanics prob-

lem with a time-dependent (and non-Hermitian) Hamiltonian that we read off from (2.14):

H(τ) =
1

2
[iχ3(χ1 − iχ2)− iT (τ)χ3(χ1 + iχ2)] = − i

2


0 0 0 T (τ)

0 0 T (τ) 0

0 1 0 0

1 0 0 0

 . (2.16)

– 7 –
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We can now compute the operator U(2π) = Pe−
∫ 2π
0 H(τ)dτ that describes evolution all the

way around the circle, by solving the Schrodinger equation Ψ′ = −HΨ. That equation is

equivalent to a pair of equations

d

dτ

(
ψ1

ψ2

)
=
i

2

(
0 T (τ)

1 0

)(
ψ1

ψ2

)
(2.17)

for two-component wavefunctions. Eliminating the bottom components, this equation is

equivalent to the second order equation

∂2
τΨ +

1

2
Sch

(
tan

φ

2
, τ

)
Ψ = 0. (2.18)

This equation has two linearly independent solutions cos(φ/2)/
√
φ′ and sin(φ/2)/

√
φ′, both

of which satisfy Ψ(τ + 2π) = −Ψ(τ). We conclude that the operator that describes time

evolution around the circle is simply U(2π) = −1. The fact that this is independent of φ is

the crucial point that underlies the fact that the path integral (2.10) is independent of φ.

Explicitly, the desired path integral (2.10) is Tr [(−1)FU(2π)(−1/2)cηbw(0)] = 1,

where the factor (−1)F = Z⊗Z expresses the fact that the fermions obey periodic bound-

ary conditions, and the insertions (−1/2)cηbw(0) = −1
4(1+Z)⊗Z are the original fermion

zero-mode insertions of eq. (2.11), expressed in eq. (2.12) in a Hamiltonian language. It

follows that the measure reduces to the naive measure (2.9).5

Why this measure? In general, if G is any group, it acts on itself on both the left

and the right, as we recalled in section 2.1. There is always (up to a constant multiple) a

unique left-invariant measure Ω` on G, obtained by picking an arbitrary measure on the

tangent space to the identity in G and then translating it over the group manifold so as to

be left-invariant. Under a mild condition on G, which is satisfied for diffS1, a left-invariant

measure is also right-invariant and it does not matter if we ask for a measure to be left- or

right-invariant.6 In the case of diffS1, the convention adopted in section 2.1 was that the

left action is φ(τ)→ φ(g(τ)) and the right action is φ(τ)→ h(φ(τ)).

The symplectic description of the measure is most natural on the quotient space

diffS1/SL(2,R). Here, since we divide by SL(2,R) acting on the right, the only natu-

ral group action that remains is the one that descends from the left action of SL(2,R) on

itself. However, the same measure can be constructed by starting with an invariant measure

5There were various arbitrary choices of sign in this calculation, involving the ordering of fermion zero-

mode insertions and the sign of the measure for the fermion zero-modes. In general, on a symplectic

manifold M with symplectic form ω, the sign of Pf(ω) depends on the orientation of M . Conventionally,

M is oriented to make Pf(ω) positive, and thus we have chosen signs to get a result +1 rather than −1 in

the above calculation. In any case, the path integral measure that we want is positive.
6Let h be any element of G, acting on G on the right. As the right action of G on itself commutes

with the left action, h will transform a left-invariant measure Ω` to another left-invariant measure Ω′`. But

as the left-invariant measure is unique up to a real multiple, h actually transforms Ω` to u(h)Ω` for some

real constant u(h). The map h → u(h) is a one-dimensional real representation of h. Thus if G has no

nontrivial real one-dimensional representations — as is the case for diff S1 — u(h) will be identically 1 and a

left-invariant measure is automatically right-invariant. (In this case, the group G is said to be unimodular.)
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on diffS1 — as just explained, it does not matter if one takes this to be a left-invariant or

right-invariant measure — and then dividing by SL(2,R) (itself endowed with an invariant

measure). This point of view about the measure was adopted in [10]. The starting point

there was the measure (2.9) on the group manifold. From that point of view, the right

invariance of the measure on diffS1 seems more essential, because it is this that enables

one to divide by SL(2,R) and get a measure on the quotient.

Ideally, one would like to derive the symplectic or quotient measure directly from a the-

ory where the Schwarzian action arises, such as SYK or dilaton gravity. We have not done

this, but we will make two further comments that suggest that this choice is reasonable.

First, the formula (2.9) makes it clear that the measure is UV-divergent, since it in-

volves a product of φ′ at each point. If we were to write this as a term in the action,

we would have Smeasure = δ(0)
∫
dτ log φ′. As we will see, this UV divergence is actu-

ally necessary to cancel divergences that appear in the naive perturbation theory of the

Schwarzian action.7

Second, we note here that the one-loop exact answer for the partition function that we

will get from (2.19) agrees precisely with the answer in the triple-scaled limit of SYK [11]

that is conjectured to isolate the pure Schwarzian theory. This suggests that at least in

that limit, SYK produces the symplectic measure.

2.3 Perturbation theory

In this section we show how to do perturbation theory for the Schwarzian action including

the symplectic measure. We will evaluate the one-loop answer (which is the exact answer

by the DH formula) and we will show explicitly that the two-loop term vanishes.

The integral of the Schwarzian action with the measure Pf(ω) can be written as

Z(g) =

∫
DφDψ

SL(2,R)
exp

{
−1

2

∫ 2π

0
dτ

[
φ′′2

g2φ′2
− φ′2

g2
+
ψ′′ψ′

φ′2
− ψ′ψ

]}
. (2.19)

Here, we have introduced a periodic Grassmann field ψ to write the Pfaffian of the symplec-

tic form (2.2) as a path integral. The formula (2.19) is analogous to the expression (1.6)

from the finite-dimensional setting.

We need to be careful about the space of fields over which we are integrating. As

described above, the subtlety is due to the fact that the φ coordinate is a coordinate on

diff(S1), whereas we want to integrate only over diff(S1)/SL(2,R). For perturbation theory,

a convenient choice of coordinates on the quotient space is to gauge-fix∫
dτ ε(τ) =

∫
dτ e±iτε(τ) = 0,

∫
dτ ψ(τ) =

∫
dτ e±iτψ(τ) = 0, (2.20)

where we define ε by φ(τ) = τ + gε(τ). Notice that ε is a strictly periodic variable.

7See [26] for a similar phenomenon in the O(N) sigma model. As in that setting, one can change variables

in the Schwarzian theory to variables that simplify the measure and make the absence of UV divergences

manifest, by choosing eΦ = (tan φ
2

)′. The measure (2.9) is simply flat in Φ. This was pointed out in [10],

where it is shown that the Schwarzian action is also simple in this coordinate. Unfortunately, it seems to

become more complicated when we impose SL(2,R) gauge-fixing conditions, and we have not found a good

way to use this Φ variable.
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We will consider the first few orders of perturbation theory in g: the classical answer,

the one-loop determinant, and the two-loop term. With our gauge conditions, the unique

classical solution that satisfies φ(τ + 2π) = φ(τ) is simply φ(τ) = τ or equivalently ε = 0.8

The action for this configuration is − π
g2 . The expansion of the action about this solution

in powers of g is

−I =
π

g2
− 1

2

∫ 2π

0
du
[
ε′′2 − ε′2 + ψ′′ψ′ − ψ′ψ + g

(
−2ε′ε′′2 − 2ε′ψ′′ψ′

)
+ g2

(
3ε′2ε′′2 + 3ε′2ψ′′ψ′

)
+O(g3)

]
. (2.21)

The quadratic action for ε and ψ is independent of g, so it looks like the one-loop term

should just give a constant. However, we have a factor of g for each fourier mode of ε from

the transformation of the measure dφ = g dε. The product over all fourier modes would

give something g-independent, after regularization. But we are fixing three of the fourier

modes in (2.20), so the correct regularized answer for the determinant is proportional to

g−3. We conclude that

Zone−loop(g) =
#

g3
exp

(
π

g2

)
. (2.22)

This is the same conclusion that was reached in [6].

To do the two-loop computation we use the propagators9

〈ε(τ)ε(0)〉 = G(τ), 〈ψ(τ)ψ(0)〉 = G′(τ). (2.24)

The two-loop term in Z is the order g2 contribution. This comes from either expanding

down the g2 term in the action once, or expanding down the g term twice. The former gives

− 3g2

2

∫
dτ
[
〈ε′2ε′′2〉+ 〈ε′2ψ′′ψ′〉

]
= −3g2

2

[
2G′′′(0)2 −G′′(0)G′′′′(0) +G′′(0)G′′′′(0)

]
.

(2.25)

The first term is zero because G is an even function.10 The second and third terms (which

come respectively from 〈ε′2〉〈ε′′2〉 and 〈ε′2〉〈ψ′′ψ′〉) cancel. The second two-loop term, which

we get by expanding the O(g) term down twice, gives

g2

2

∫
dτ1dτ2

[
〈ε′ε′′(τ1)2ε′ε′′(τ2)2〉+ 〈ε′ψ′′ψ′(τ1)ε′ψ′′ψ′(τ2)〉

]
(2.26)

=
g2

2

∫
dτ1dτ2

[
− 2G′′G′′′′2 − 4G′′′2G′′′′ +G′′G′′′′2 −G′′G′′′G′′′′′

]
, (2.27)

8The general solution to the equations of motion is tan φ
2

= a+ b tan(cτ + d). The parameter c is fixed

by periodicity and the other three parameters are fixed by an SL(2,R) gauge condition.
9The exact form of G(τ) will not be needed, but it is given by

G(τ) =
1

2π

∑
|n|≥2

e−inτ

n2(n2 − 1)
=

1

2π

[
− (τ − π)2

2
+ (τ − π) sin(τ) +

5

2
cos(τ) + 1 +

π2

6

]
(2.23)

for 0 ≤ τ ≤ 2π, and extended by periodicity outside this range. Note that G is an even function.
10This is slightly subtle, because G has a singularity at τ = 0 and limτ→0+ G′′′(τ) is not zero. Our

manipulations make sense if we replace G with a function that smooths out the singularity in a symmetric

way. Equivalently, we can put a cutoff on the absolute values of the frequencies that we consider.
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where all G are G(τ1 − τ2). We can integrate the last term by parts to G′′′2G′′′′ +G′′G′′′′2.

The expression inside the integral then reduces to −3G′′′2G′′′′, which is a total derivative.

So we conclude that the entire two-loop contribution vanishes.

2.4 The exact partition function and density of states

The proof of the DH formula that we sketched in the Introduction uses a supersymmetric

localization argument that is proved by constructing an extended action with fermion fields

and a suitable fermionic symmetry.

We would like to implement this procedure for the reparametrization field φ(τ) that

appears in the Schwarzian action. Here we have to take care of the following detail. The

procedure described in the introduction makes sense for any symplectic manifold M with

a U(1) symmetry. However, the field φ(τ) without any further condition or equivalence

would represent an element of diffS1, which is not a symplectic manifold. The localization

procedure that we are looking for is only possible because in the Schwarzian theory, φ(τ) is

properly viewed as an element of the quotient space diff S1/SL(2,R), which is symplectic.

A related fact is the following. To show the one-loop exactness of the path integral for

the Schwarzian action, we will want the classical solution φ(τ) = τ to be U(1)-invariant,

where U(1) acts by shifting τ by a constant. This is clearly not true if we regard φ(τ) as

an element of diffS1, since φ(τ) = τ is not invariant under adding a constant to the right

hand side. But if φ is regarded as an element of diffS1/SL(2,R) (so that in particular φ is

considered equivalent to φ+ c for constant c) then φ(τ) = τ is indeed U(1)-invariant.11

Therefore in order to implement the localization procedure, we have to view φ as an

element of diffS1/SL(2,R). A convenient way to do this is to write φ = τ + gε, where ε is

required to satisfy the constraints (2.20), and add a fermion field ψ that satisfies the same

constraints. One can then define the fermionic symmetry

Qε = ψ, Qψ = ε′, (2.28)

whose square is the U(1) generator corresponding to d/dτ , in keeping with the general

framework. To localize the path integral, we add QV to the action with a large coefficient,

where for example

V =

∫
dτψε′, QV =

∫
dτ
[
ε′2 + ψ′ψ

]
. (2.29)

Adding this term with a large coefficient s does not affect the one-loop or classical terms

in the partition function, but because it makes the separated-point propagators small it

suppresses higher-loop corrections. By the logic of the DH proof, the partition function is

independent of s, so all loop contributions must actually vanish. We conclude that

Z(g) = Zone−loop(g) =
#

g3
exp

(
π

g2

)
. (2.30)

11For both of the issues we have raised, it would be just as good if φ were regarded as an element of

diffS1/U(1), where U(1) acts by a constant shift of φ. Here diffS1/U(1) is a symplectic manifold, and if φ

is regarded as an element of diffS1/U(1), then φ(τ) = τ is invariant under a constant shift of τ .
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A note on the density of states. It is interesting to consider the density of states

that gives rise to this partition function. In the application to SYK or dilaton gravity, we

have that g2 = β/(2πC), where β is the inverse temperature, and C is a coefficient with

dimensions of length. So in terms of β, the partition function is

Z(β) ∝ 1

β3/2
exp

(
2π2C

β

)
. (2.31)

This is equal to
∫∞

0 ρ(E)e−βEdE with

ρ(E) ∝ sinh
(

2π
√

2CE
)
. (2.32)

It is tempting to call ρ(E) a density of states, but there is a difficulty with this in-

terpretation. If ρ(E) were a sum of delta functions with integer coefficients, say ρ(E) =∑
i niδ(E − Ei), we would interpret the Schwarzian theory as a quantum system with en-

ergy levels Ei, of multiplicity ni. Instead ρ(E) is a smooth function of E. One might think

that this means that the Schwarzian theory is a quantum system with a continuous energy

spectrum, but a moment’s reflection shows that interpretation is not viable. In general,

if H is a Hilbert space and H is a Hamiltonian operator acting on H with continuous

spectrum, then TrH exp(−βH) is divergent for any β. (If H has continuous spectrum in

an interval E0 ≤ E ≤ E1, then it has infinitely many energy levels in any subinterval of

the interval [E0, E1]. The sum over this infinity causes TrH exp(−βH) to diverge.)

In general, in physics, whenever one talks about a continuous density of states per

unit energy, one always really has in mind the density of states per unit energy per unit

“x,” where x is some other variable. For example, a free particle in a box has a discrete

spectrum of energy levels, but a free particle in infinite volume has a continuous density of

states per unit energy per unit volume. Thus, by itself the partition function Z(β) of the

Schwarzian theory is not TrH exp(−βH) for any quantum system, though it might be a

factor in the partition function of a quantum system in a suitable limit. Equivalently, the

ρ(E) that we infer from the Schwarzian could arise as a smoothed approximation to a very

densely spaced set of energy levels in a true quantum system. For example, if we study

the SYK model for large N and low energies, and we smooth the exact discrete spectrum

over a small window in energy, we expect to find a function that is a multiple of the ρ(E)

derived from the Schwarzian theory, see figure 1, with a prefactor that is exponential in N .

Technically, the fact that the Schwarzian path integral does not have a Hilbert space

interpretation as TrH exp(−βH) results from the fact that in defining this path integral,

one divides by SL(2,R), a step that would not be available if τ is taken to parametrize a

real line rather than a circle.

3 Generalizations

The Schwarzian theory has a family of generalizations, involving integrals over coadjoint

orbits of Lie groups that include the Virasoro group. There are two facts that make it

possible to get a one-loop exact theory this way: (i) these orbits are always symplectic
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manifolds, and (ii) they always have a U(1) time translation generator associated to L0

that we can use as an action. It is interesting that some of the theories one defines this

way have already been shown to arise from generalizations of the SYK model.

3.1 More details on the Virasoro case

To begin, we will describe how one arrives at the ordinary Schwarzian theory using this

perspective. Here the relevant integration space, diff(S1)/SL(2,R), is a coadjoint orbit of

the Virasoro group. Virasoro is a central extension of diff S1, and the central extension

will play an essential role.

To understand the Virasoro coadjoint representation, it is helpful to briefly review

the more familiar adjoint representation. An element of the adjoint representation is a

linear combination
∑

n vnLn of the Virasoro generators Ln, plus a multiple aI of the

central element I. (The eigenvalue of I in a given representation is usually called c, the

central charge.) It is convenient to Fourier transform and consider v(τ) =
∑

n e
inτvn and

L(τ) =
∑

n e
−inτLn. The Virasoro algebra, including the central extension, is

[Lm, Ln] = (m− n)Lm+n +
I

12
m3δm,−n, [Ln, I] = 0. (3.1)

Then an element of the adjoint representation is given by a pair (v(τ), a), which represents

a Lie algebra element
∫
dτ
2πv(τ)L(τ) + aI. An orbit in the Lie algebra is obtained by

conjugating this element by a group element g = exp
[
i
∫
dτ ′

2π w(τ ′)L(τ ′)
]
. This results in

Adφ−1(v(τ), a) =

(
v(φ(τ))

φ′(τ)
, a+

1

12

∫
dτ

2π

v(φ(τ))

φ′(τ)
Sch(φ, τ)

)
. (3.2)

Here φ(τ) is related to w(τ) by φ(τ) = e−w(τ)∂τ τew(τ)∂τ . In other words, φ−1 is the

diffeomorphism that we get by exponentiating the vector field w(τ). We can understand

the transformation of v in a simple way as that of a vector field transforming under a

diffeomorphism given by φ−1.

Now we would like to understand the coadjoint representation. This is simply the dual

space of the adjoint representation. It can be parametrized as12 (b(τ), c), with the pairing

〈(b(τ), c), (v(τ), a)〉 =

∫ 2π

0

dτ

2π
b(τ)v(τ) + ca. (3.3)

The transformation of (b(τ), c) under the Virasoro group is determined by requiring that

this pairing should be invariant when we transform both (b(τ), c) and (v(τ), a). It is

easy to work out the necessary transformation using (3.2). It turns out that the action

preserves c, which is thus a constant that characterizes the orbit (and after quantization,

the representation). This of course reflects the fact that I is central and is dual to the

12The reason that we call the second parameter here c is that the Virasoro representation obtained by

quantizing this orbit does have central charge c. In other words, upon quantization, c becomes the eigenvalue

of the central element I of the Virasoro algebra.
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fact that in the adjoint representation, the transformation of v does not depend on a. The

action on b is

bφ ≡ Ad∗φ−1 (b(τ)) = φ′(τ)2b(φ(τ))− c

12
Sch(φ, τ). (3.4)

We can interpret this formula by saying that b transforms like (minus two times) a stress

tensor in a 2d CFT.

Eq. (3.4) defines the coadjoint representation. Coadjoint orbits are given by picking

an initial b(τ) and then varying φ. Since some φ configurations lead to the same coadjoint

vector, the orbit is identified with a quotient of diff(S1), where the subgroup that we

quotient by is the subgroup of diff(S1) that leaves the coadjoint vector unchanged. For

example, if we choose an initial b that is some generic constant value, then Ad∗φ−1(b) will

only be invariant under constant shifts of φ, and we get an orbit diff(S1)/U(1). However,

if we choose the special constant value b(τ) = − c
24 , then we can write

Ad∗φ−1

(
− c

24

)
= − c

12
Sch

(
tan

φ

2
, τ

)
. (3.5)

It is clear that this is invariant under SL(2,R) transformations of f ≡ tan φ
2 , so the orbit

in this case is diff(S1)/SL(2,R). (This value of b corresponds after quantization to the

Virasoro representation that comprises the identity operator and its descendants.)

Now, to relate this orbit to the Schwarzian theory, we will quote two general facts.

First, the orbit is a symplectic manifold. The symplectic form given by the pairing ω =

〈bφ, [v, v′]〉 where v, v′ are elements of the adjoint representation, which parametrize the

tangent space to the coadjoint orbit. We can also parametrize this tangent space in terms of

infinitesimal changes in φ. The relation between these is given by v(τ) = dφ−1(τ) = −dφ(τ)
φ′(τ) .

It is easy to check that this identification and the Virasoro algebra leads to the expression

for the symplectic form given in (2.1). Second, the symplectic generator of the group action

associated to a given Lie algebra element is simply given by taking the pairing of bφ with

that element. If we take the Lie algebra element to be L0, which generates τ → τ + ε, then

we get the generator by taking the pairing of bφ with a constant vector field. Using (3.3)

and (3.5) this immediately gives the Schwarzian action discussed in the previous section.

Of course, we can also consider a more generic orbit, such as the orbit of some constant

b = b0. This does not arise in the SYK model, but it results in a perfectly reasonable one-

loop exact path integral. In order for the theory to be stable for small fluctuations about

the saddle point φ = τ , we require that b0 > − c
24 . Then the orbit is diff(S1)/U(1), and the

partition function is

Z(g) =
#

g
exp

(
−24b0
c
· π
g2

)
. (3.6)

Note that the one-loop determinant in this case is proportional to 1
g instead of 1

g3 , because

we have only one zero mode to gauge fix in the integral over φ.

3.2 Virasoro-Kac-Moody

One simple generalization is to extend the Virasoro algebra to a Virasoro-Kac-Moody

algebra with group G, and repeat the above steps. One finds an action that is the sum
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of the Schwarzian action plus the quantum mechanics for a particle moving on the group

manifold, L = tr
[
(g−1∂τg)2

]
. The partition function for such a particle was already

known to be one-loop exact [27]. One expects this theory to be relevant at low-energies for

generalizations of SYK with global symmetry [28–31].

3.3 Super-Virasoro

We can get an interesting generalization by considering super-Virasoro algebras. The

coadjoint representations of the N = 1 and N = 2 algebras were considered in [32–

34]. We can understand the transformation of the coadjoint vector in a simple way as

the transformation of the super stress tensor under superconformal transformations. For

the application to SYK, we are interested in the orbit that corresponds to a super stress

tensor that vanishes on the line (where f = tan φ
2 = τ), and is invariant under global

superconformal transformations. Taking this orbit, we can get an action for a one-loop

exact theory by pairing the coadjoint vector with L0. Concretely, the resulting action

is the integral over super space of the super Schwarzian derivative. Such actions were

previously argued to arise as the low-energy theories of N = 1 and N = 2 supersymmetric

SYK models [21].

The point of relating these theories to a coadjoint orbit is that it follows that the

partition functions are one-loop exact.13 We will make a few comments about both the

N = 1 and N = 2 cases. For N = 1, the super Schwarzian theory includes a bosonic field

f = tan φ
2 and an antiperiodic Grassmann field η. The action is invariant under the global

superconformal transformations, OSp(1|2), which we interpret as a gauge symmetry, just as

in the bosonic case. In other words, we integrate over all superconformal transformations

modulo OSp(1|2).14 The classical term in the partition function is the same as in the

bosonic model, I = − π
g2 . The one-loop term is proportional to an expression involving

the number of bosonic and fermionic zero modes that we are quotienting by: g#f−#b .

The group OSp(1|2) has three bosonic and two fermionic generators, so we get a one-loop

factor 1
g . Translating g into dependence on the inverse temperature β and a parameter

C = β/(2πg2) proportional to the specific heat, we find

Z(β) ∝ 1

β1/2
exp

(
2π2C

β

)
=⇒ ρ(E) ∝ cosh(2π

√
2CE)

E1/2
. (3.7)

Notice that in this case, the density of states has a square-root growth at low energies.

In the N = 2 case, we integrate over the usual bosonic field f = tan φ
2 , two antiperiodic

fermions η, η̄, and a compact scalar σ, which is defined up to σ ∼ σ + 2πnq̂, where q̂ is a

parameter of the model. In the application to SYK, q̂ is an odd integer that determines the

number of fermions appearing in the supercharge [21]. The global super-conformal group

13This relies on some small extensions of the bosonic facts discussed above. First, it is easy to check

directly (or see [35]) that coadjoint orbits of super Lie algebras are symplectic supermanifolds. And second,

the Duistermaat-Heckman formula generalizes to integrals over symplectic supermanifolds, as we show in

appendix A.
14The theory also has a physical supersymmetry that is broken by the thermal (antiperiodic) boundary

conditions for η. Note that OSp(1|2) is not broken by this condition.
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is SU(1, 1|1) = OSp(2|2), which has four bosonic and four fermionic generators, giving a

one-loop determinant that is independent of g. The main new feature in the N = 2 case is

that we have to sum over a family of saddles, where σ winds n times around the thermal

circle [21]. We will use formulas for the super-Schwarzian action given in [21] and refer the

reader there for details. The purely bosonic part of the action is

Ib =
1

g2

∫ 2π

0
dτ

[
−Sch(tan

φ

2
, τ) + 2(∂τσ)2

]
, g2 =

β

2πC
, (3.8)

Up to SU(1, 1|1) gauge transformations, the saddles are φ = τ and σ = nq̂τ . The action for

such a saddle is Ib = − π
g2 (1−4n2q̂2), and the bosonic one-loop determinant is independent

of n. The fermionic part of the action is somewhat more complicated, but we will only need

the quadratic part to compute the one-loop determinant. Expanding eq. (5.32) from [21]

about the saddle just described, we find

If, quad =
1

g2

∫ 2π

0
dτ
[
η∂τ η̄ − 4(∂τη)(∂τ − inq̂)2η̄

]
(3.9)

=
2πi

g2

∑
m

(4m2 − 1)(m− nq̂)ηm−nq̂η̄−m+nq̂. (3.10)

In the second line we have expanded η in modes, η(τ) =
∑

p ηpe
ipτ . We should impose

antiperiodic (thermal) boundary conditions, so m and p are half-integers. The two zero

modes for each fermion are m = ±1
2 . We are interested in the dependence of the determi-

nant on the saddle point label n. To compute this, we can regularize by dividing by the

determinant with n = 0. Taking the product over all non-zero modes, we get

∏
m=...− 5

2
,− 3

2
, 3
2
, 5
2
,...

m− nq̂
m

=
∏

m= 3
2
, 5
2
,...

(
1− n2q̂2

m2

)
=

cos(πq̂n)

1− 4q̂2n2
. (3.11)

So the contribution from a given saddle is proportional to

Zn(β) =
cos(πq̂n)

1− 4q̂2n2
exp

[
2π2C

β

(
1− 4n2q̂2

)]
. (3.12)

Since q̂ is odd, the factor of cos(πq̂n) can be written for integer n as (−1)n, but we will

leave it in this form for the moment, because we will consider non-integer n below.

To compute the contribution of such a saddle to the density of states, we use the integral∫ ∞
0

dE

[
δ(E) +

√
a

E
I1(2
√
aE)

]
e−βE = e

a
β . (3.13)

This is true for both positive and negative a, provided that the square root is defined the

same way inside and outside the Bessel function. It follows that a single saddle point gives

a contribution to the density of states proportional to

ρn(E) =
cos(πq̂n)

1− 4q̂2n2

[
δ(E) +

√
an
E
I1(2

√
anE)

]
an ≡ 2π2C(1− 4n2q̂2). (3.14)
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We would like to determine which sum over saddles is appropriate for the SYK the-

ory. This can be done by requiring consistency when the system is coupled to a chemical

potential. Concretely, we imagine adding a factor eiαQ in the thermal trace, where Q is

the U(1) charge, normalized so that the original SYK fermions carry charge one. Inserting

this factor is the same as doing the path integral with boundary conditions twisted by the

U(1) rotation. The action of this twist on the fields of the super-Schwarzian theory is

σ → σ + q̂α, η → e−iq̂αη, η̄ → eiq̂αη̄. (3.15)

This has precisely the same effect as adding to the integer saddle-point parameter n a

fractional part α
2π , so the contribution of a given saddle gets modified as Zn → Zn+ α

2π
.

This observation allows us to detemine how to sum over saddles, as follows. We

have to separately consider two cases, depending on whether the number of complex SYK

fermions, N , is even or odd. In the case of even N , the possible values of the U(1) charge

are integers, so if we set α = 2π, then eiαQ = 1 and the total partition function must be

the same. Increasing α from zero to 2π has the effect of mapping Zn → Zn+1, so to have

a total partition function that is invariant, we need to sum over all values of n with the

same coefficient. On the other hand, when N is odd, the possible charges are half-integer,

so when we set α = 2π we have eiαQ = −1 and the total partition function should change

by a sign. We can accomplish this by summing over even n saddles with coefficient one,

and odd n saddles with coefficient minus one. This gives the density of states

ρeven(E) =

∞∑
n=−∞

ρn(E) ρodd(E) =

∞∑
n=−∞

(−1)nρn(E), (3.16)

where the subscript indicates whether N is even or odd. These expression for ρ are plotted

in figure 1. To explain the rather strange form of the resulting curves, it is helpful to think

about applying Poisson summation to these formulas. In both the even and odd cases, we

can write the answer as

ρ(E) ∝
∑
m

ρ(E,m), ρ(E,m) ≡
∫
dne2πimnρn(E), (3.17)

The only difference is that in the even case we sum over integer m, and in the odd case,

we sum over half-integer values of m (and not integer values). In the even case, this is a

straightforward application of the Poisson summation formula. In the odd case, it requires

an extra step where we apply Poisson summation separately to the even n and odd n sums,

only combining terms at the end. This gives

ρodd(E) =
∑

2m∈Z
ρodd(E,m) (3.18)

where

ρodd(E,m) =

∫
dne2πimn [ρn(E)− ρn+1(E)] = (1− e−2πimn)ρ(E,m). (3.19)
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In principle, the sum in (3.18) involves both half-integer and integer values of m, because

m is the Poisson-summation dual of a variable n that is being summed over even values.

However, we see that the summand vanishes for integer values of m, so in practice we can

sum only over half-integer m.

The point of writing the density of states as in (3.17) is that we can think of the

fourier transform as an integral over imaginary values of the chemical potential, which has

the effect of selecting the contribution of states of charge m. So ρ(E,m) is the density of

states in charge sector m.

It is interesting to consider the range of energies that contribute in the various charge

sectors. It is straightforward to check that the δ(E) contribution is present only for charges

that satisfy |m| < q̂
2 . For the continuum part of the spectrum, we have to consider the

fourier transform of the expression including the Bessel function. Despite appearances, the

integrand is an entire function of n. In fact, this is also true for each term if we write the

cosine as a sum of two exponentials (the naive pole at 1 − 4q̂2n2 = 0 is canceled by a zero

of the Bessel function expression). Using the asymptotic behavior of the Bessel function

at large n, we find that the contour can be closed either in the upper half plane or in the

lower half plane (for |m| < q
2 we close in different directions for the two terms in the cosine)

unless E > E0(m), with

E0(m) =
1

2C

(
|m|
2q̂
− 1

4

)2

. (3.20)

This is the lowest energy of the continuum part of the spectrum in charge sector m. The

fact that different charge sectors start contributing rather sharply at different energies

explains the odd shape of ρ(E) in figure 1. Remembering that q̂ is odd, we can see that if

N is even (so that m is an integer), we have that E0(m) is positive for all values of m. This

means that there is a gap above the degenerate ground states described by the δ(E) term.

By contrast, in the case of odd N , we have sectors of charge m = ± q̂
2 that are gapless.

The qualitative features of the low energy spectrum derived in the N = 0, N = 1 and

N = 2 theories all agree quite well with exact diagonalziation numerics for the SYK model,

again at low energies. This is particularly impressive in the N = 2 case, where the story is

fairly complicated. We will not attempt a quantitative fit of these curves, but we compare

informally in figure 1.
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A Duistermaat-Heckman for supermanifolds

In this appendix, we give a physics proof of a Duistermaat-Heckman formula for supermani-

folds. The formula says that on a symplectic supermanifold, the integral of the exponential
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Figure 1. Top: exact density of states of the Schwarzian theory near the ground state, for different

amounts of supersymmetry. For the two N = 2 cases we chose q̂ = 3 and we omitted the δ(E)

contribution to the spectrum. Bottom: the numerical density of states from exact diagonalization of

(super) SYK with a four-fermion Hamiltonian. The Hilbert space dimensions used are respectively

216, 216, 218, 219. The N = 0 case is an average using data from [11]. The other curves are for a

single realization.

of a generator of a U(1) symmetry is one-loop exact. This is a small generalization of

the original DH formula, which was for integrals over bosonic symplectic manifolds. In

the proof of the bosonic version of the formula that was sketched in the introduction, one

introduces fermionic partners for the original purely bosonic integration variables. In the

super case, we will introduce fermionic partners for the bosons, and bosonic partners for

the fermions.

Let us make this more explicit. The starting point is a supermanifold M with bosonic

coordinates t1 . . . tp and fermionic coordinates θ1 . . . θq. We will use xA as a general co-

ordinate that runs over both fermionic and bosonic values. For each bosonic coordinate,

we introduce a fermionic partner that we call dta, and for each fermionic coordinate we

introduce a bosonic partner that we call dθr (in the introduction, we called the fermions ψa

instead of dta). The reason that we introduce these coordinates is to write the symplectic

measure as an integral. The reason that we refer to them as dt, dθ is that one can think

about differential forms on M simply as functions of this enlarged set of coordinates.15 For

example, the symplectic two-form is a function of the type

ω = dtaωabdt
b + dtaωardθ

r + dθrωradt
a + dθrωrsdθ

s = dxAωABdx
B. (A.1)

Here, the supermatrix of components ωAB are functions of the coordinates t, θ but not of

their partners dt, dθ. We take ω to be even-valued, which requires that ωab, ωrs are even,

while ωar is odd. The meaning of the statement that we have a symplectic manifold is that

(i) this form is nondegenerate, in the sense that the supermatrix ωAB is invertible at each

point on our manifold, and (ii) dω = 0 where we define

d = dta
∂

∂ta
+ dθr

∂

∂θr
= dxA

∂

∂xA
. (A.2)

15The space of t, θ, dt, dθ is sometimes called ΠTM , meaning a statistics-reversed version of the tangent

bundle to the original manifold M . See e.g. [36] for details.
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Note that d is an ordinary differential operator acting in the space of functions of t, θ, dt, dθ.

Now, we assume that there is a function H that generates a U(1) symmetry of the

manifold via the Hamiltonian flow

δxA = vA = −∂BHωBA (A.3)

where ωAB is the inverse of the supermatrix ωAB. Any function H generates a flow that

preserves ω and can be understood as a symmetry of the manifold. However, it is crucial

that we are assuming the flow generated by H is a U(1) symmetry, so that all orbits close

after the same amount of time. Now, we consider the integral

Z =

∫
D(xA, dxA) exp

(
1

2
ω +H

)
, (A.4)

where the integral runs over all of the variables t, θ, dt, dθ with various indices and ω is

the function defined in eq. (A.1). Just as in the introduction, there is a natural measure

D(xA, dxA) because the variables dxA transform the same way as xA but with opposite

statistics. In eq. (A.4), the integral over the even variables t and dθ is an ordinary integral,

and the integral over the odd variables θ and dt is defined by the standard Berezin rules.

Since the exponent in (A.4) is quadratic in dθ and dt (ω is homogeneous and quadratic in

those variables and H does not depend on them), the integral in (A.4) is Gaussian in the

dθ and dt variables. We can imagine doing these integrals first. The effect of doing these

integrals is to givethe symplectic measure for the remaining integrals over t, θ. This measure

is dpxdqθ
√

Ber(ωAB). Here Ber is the Berezinian, the superanalog of the determinant. So

the integral in (A.4) is the integral over the original supermanifold of exp(H).

If M is an ordinary (bosonic) symplectic manifold, then instead of
√

detω we have the

more natural Pf(ω), but in the superworld there is no analog of the Pfaffian and we have to

use the square root of the Berezinian. This is related to the following circumstance. If ω is

an ordinary symplectic form on a manifold (or just on a vector space) then it determines an

orientation. This orientation determines a natural sign of the square root
√

detω, and the

square root with that sign is called the Pfaffian. On a symplectic supermanifold, the even

tangent bundle16 of M still has a natural orientation, but the odd tangent bundle of M

does not. Accordingly, there is no natural sign for the fermionic measure dqθ. The upshot

is that although there is a natural symplectic measure that we can write informally as

dpxdqθ
√

Ber(ω), the factors dpxdqθ and
√

Ber(ω) do not separately have naturally-defined

signs. (Going back to eq. (A.4), the overall measure D(xA, dxA) is completely well-defined,

but if we write it as the product of a measure for x, θ and a measure for dx, dθ, then both

factors separately have sign problems.)

Now, we define a supersymmetry by

QxA = dxA, Q(dxA) = vA, (A.5)

16Technically, the even and odd tangent bundles of M are naturally defined over the reduced space of M ,

and not over M itself. For the purposes of the topological point that we are explaining here, this difference

is immaterial.
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where the variation vA is the flow generated by H, see (A.3). It is straightforward to check

using the fact that dω = 0 that the variation of the action vanishes, Q(1
2ω +H) = 0. One

can also show that Q2xA = vA and Q2(dxA) = d(vA) so that Q2 is simply the generator

of the U(1) flow associated to H. The final preliminary step is to choose a U(1) invariant

metric gAB (one can take any metric and average it over U(1) to make it invariant; this

is where it is important H generates a compact U(1) symmetry rather than a generic

symplectomorphism).

To make the localization argument, we now define a Grassman-odd function

V = gABv
AdxB. (A.6)

From the U(1) invariance of the metric and the fact that Q2 is the U(1) generator, it

follows that Q2V = 0. We can therefore localize by adding sQV to the action with a large

coefficient s. This does not change the integral; indeed, the integral of a U(1)-invariant

Q-exact function vanishes, and the formula

e
1
2
ω+H−sQV = e

1
2
ω+H +Q

[
e

1
2
ω+H

(
−sV +

s2

2
V QV + . . .

)]
, (A.7)

shows that all terms that depend on s are Q-exact.

The term that we added does not change the integral, but it does change the integrand,

and it has the effect of localizing the integral to the critical points of H. To see this, we write

QV = dxC
∂gAB
∂xC

vAdxB + dxC
∂vA

∂xC
dxBgAB + vBgABv

A. (A.8)

When the localization parameter s is large, we are localized to the region where vA and

dxA are zero. This will be a location where the θ variables vanish, and the t variables take

some particular value, say t∗. We can then expand about this point as

vA = yB∂Bv
A(t∗), ya = ta − ta∗, yr = θr. (A.9)

We then see that the first term in (A.8) is cubic in the small deviation from the critical

point and can be ignored relative to the second and third terms, which are quadratic. The

quadratic action is

QVgaussian =
[
gCB∂Av

C
]
θ=0,t=t∗

dxAdxB +
[
gDC∂Av

C∂Bv
D
]
θ=0,t=t∗

yAyB. (A.10)

Notice that the quantities in brackets are bosonic, depending only on t∗, so the quadratic

terms only couple variables of the same fermionic parity. So we have separate Gaussian

integrals over the t, θ, dt, dθ variables. After doing these integrals, cancelling factors of

the determinant of the metric and the localization parameter s, and using ∂Av
B(t∗) =

−∂A(ωCB∂CH)|t∗ = −ωCB(t∗)∂A∂CH(t∗), we find that the contribution from the critical

point t∗ is (up to measure factors of 2π)

Zt∗ = eH(t∗)

√
det [∂r∂sH]√

detωrs

√
detωab√

det [∂a∂bH]

∣∣∣∣∣
θ=0,t=t∗

= eH(t∗)

√
BerωAB√

Ber [∂A∂BH]

∣∣∣∣∣
θ=0,t=t∗

. (A.11)
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Here, as above, we use r, s for fermionic indices, and a, b for bosonic indices. Notice that

mixed derivatives of H and mixed components of ω vanish at the critical point, because

they would have to be odd and therefore proportional to odd powers of θ. As we have

explained above, there is no natural sign of the square root
√

BerωAB, but
√

Ber ∂A∂BH

has precisely the same problem and the ratio of the two square roots has a well-defined sign.

(Concretely, the sign of
√

BerωAB and the sign of
√

Ber ∂A∂BH depend on an orientation

of the odd tangent bundle of M , but this dependence is absent in the ratio.)

If the function H has more than one critical point (or equivalently if the U(1) action

on M has more than one fixed point), then we should sum over these points to get the full

answer for the integral. As in the case of the bosonic Duistermaat-Heckman formula, if the

critical points form a moduli space M of positive dimension, one can express the original

integral over M as an integral over M. (For instance — although this example involves

a further generalization to a nonabelian analog of Duistermaat-Heckman — in the case of

two-dimensional Yang-Mills theory, one can take M to be the space of all gauge fields on

an oriented two-manifold and then M is the moduli space of flat connections on M [17].)

This discussion has been somewhat abstract. For a concrete example, we can consider

the purely fermionic manifold CP0|2 which has the symplectic form

ω = ∂∂̄ log(1 + θ1θ̄1 + θ2θ̄2) = −(1− θ2θ̄2)dθ1dθ̄1 − θ1θ̄2dθ2dθ̄1 + (1↔ 2). (A.12)

We would like to consider the integral

I =

∫
d2θ1d2θ2d2(dθ1)d2(dθ2) exp

(
1

2
ωijdθ

idθj +
1

g2
H

)
(A.13)

where H is a symplectic generator of a U(1). For example

H = θ1θ̄1 − θ1θ̄1θ2θ̄2 + (1↔ 2) (A.14)

which phase rotates θ1, θ̄1 into each other and similarly θ2, θ̄2. The Gaussian integral over

the bosonic dθ variables gives us a measure factor proportional to (1 + θ1θ̄1 + θ2θ̄2). We

then do the final integral over the θ variables. This gives that I is a multiple of 1/g4.

This is the same as the “one-loop” answer where we replace everything by the lowest

nonvanishing order in the θ variables. The fact that this works relies on a cancellation

between a measure factor and a factor coming from the higher order term in H. This is

similar to what happens in bosonic examples of DH integrals.

B A lattice version of the Schwarzian theory

In this appendix, we discuss a lattice regularization of the Schwarzian path integral that

preserves the exact SL(2,R) gauge symmetry of the Schwarzian action.17 This was not

necessary for anything in the main text, but we include it in order to give a concrete

picture of the important φ(τ) configurations at different values of the coupling. We expect

that the lattice theory is only one-loop exact in the continuum limit.

17We are grateful to J. Maldacena for suggesting this lattice implementation. Note that we do not expect

the regularized theory to be one-loop exact.
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Figure 2. Typical configurations of the discretized φ varible that contribute to Z(g) for the

discretized Schwarzian theory. The configurations were generated using the Metropolis algorithm,

with a lattice of n = 300. The figure at left contains only small fluctuations about the saddle point,

which would be a straight line φj = 2πj
n .

One can work in terms of the variable f(τ) = tan φ(τ)
2 or in terms of φ(τ) directly.

We start first with f . One approximates the continuum f(τ) by a lattice of values fi at

τ = ai, i = 0, 1, 2 . . . . Here we take the lattice spacing to be a and the inverse temperature

to be 2π, so we have n = 2π
a points. Then one can make a lattice approximation to the

Schwarzian using a conformal cross ratio of adjacent values:

(fi+3 − fi+1)(fi+2 − fi)
(fi+3 − fi+2)(fi+1 − fi)

= 4− 2a2Sch(f, u) +O(a3). (B.1)

This preserves an exact SL(2,R) acting on all points as f → af+b
cf+d . So a lattice version of

the Schwarzian theory, including a lattice version of the measure df
f ′ from (2.9), is

Z(g) =

∫ ( n∏
i=1

dfi
fi+1 − fi

)
e
− 1

2ag2

∑n
i=1

[
(fi+3−fi1 )(fi+2−fi)

(fi+3−fi+2)(fi+1−fi)
−4

]
. (B.2)

In these formulas the index should be understood to “wrap around” the circle, so that

i = n+ 1 is equivalent to i = 1. Notice that our measure is also exactly SL(2,R) invariant.

We can also directly use the φ variable instead of f . Then the partition function is

Z(g) =

∫ ( n∏
i=1

dφi

sin φi+1−φi
2

)
e
− 1

2ag2

∑n
i=1

[
sin

φi+3−φi1
2 sin

φi+2−φi
2

sin
φi+3−φi+2

2 sin
φi+1−φi

2

−4

]
. (B.3)

This reduces to the expected thing once we realize

sin
φi+3−φi1

2 sin φi+2−φi
2

sin φi+3−φi+2

2 sin φi+1−φi
2

= 4− 2a2

[
Sch(φ, u) +

1

2
φ′2
]

+O(a3). (B.4)

Both of the above partition functions are divergent because of the exact SL(2,R) gauge

symmetry. We can fix this by fixing the values of three of the points. One choice is to fix

φ1 = 0, φ2 = 2π
n , φN = 2π(1− 1

n). Then the integral over monotonic φ is convergent. Notice

that the log divergence from the measure is cut off by the fact that the action diverges

when neighboring values of φ coincide.
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Figure 2 shows some typical configurations contributing to Z(g), sampled using the

Metropolis algorithm, for different values of g and with n = 300 points on the lattice. As

g increases, the free energy becomes increasingly dominated by the measure, which prefers

to have all of the points at very similar values. Of course, the function φi is required to

run between zero and 2π, but for large g it prefers to do this all at once in a few places.

C Correlation functions of the Schwarzian

In this appendix, we show how to compute correlation functions of the Schwarzian deriva-

tive of φ. To start, one can compute moments of the integrated Schwarzian by differenti-

ating the partition function. For example:∫
dτ〈Sch(τ)〉 =

1

Z(g)

∂

∂1/g2

Z(g) = π +
3g2

2
(C.1)∫

dτdτ ′〈Sch(τ)Sch(τ ′)〉 =
1

Z(g)

∂2

∂2
1/g2

Z(g) = π2 + 3πg2 +
3g4

4
. (C.2)

Here and below, we are using the notation Sch(τ) ≡ Sch(tan φ(τ)
2 , τ). To get unintegrated

correlators at fixed points, we proceed as follows. The composition rule

Sch(f(y(x)), x) = Sch(f, y)(∂xy)2 + Sch(y, x) (C.3)

together with invariance of the measure implies

Z(g) =

∫
dµ[φ]

SL(2)
e

1
g2

∫
dxSch(tan

φ(y)
2
,x)

=

∫
dµ[φ]

SL(2)
e

1
g2

∫
dx[(∂xy)2Sch(tan φ

2
,y)+Sch(y,x)]

. (C.4)

Relabeling x→ h and y → τ , and using Sch(y, x) = −(∂xy)2Sch(x, y), we find∫
dµ[φ]

SL(2)
e

1
g2

∫
dτ
h′(τ)

Sch(tan
φ(τ)

2
,τ)

= e
1
g2

∫
dτ
h′(τ)

Sch(h,τ)
Z(g) = e

1
2g2

∫
dτ

h′′(τ)2

h′(τ)3 Z(g). (C.5)

Here, we require that h is a function that maps S1 → S1,

h(τ) = τ + ε(τ),

∫
ε′(τ)dτ = 0. (C.6)

Expanding (C.5) to second order in ε we find

〈Sch(τ)Sch(0)〉 = −2g2〈Sch(0)〉δ(τ)− g2δ′′(τ) + const. (C.7)

The value 〈Sch(0)〉 can be determined from (C.1) and the constant can be determined using

the integrated correlator (C.2). The result is

〈Sch(τ)Sch(0)〉 = −
(
g2 +

3g4

2π

)
δ(τ)− g2δ′′(τ) +

1

4
+

5g2

4π
+

15g4

16π2
. (C.8)

Higher point correlation functions of the Schwarzian can be evaluated in a similar way.

We will point out two interesting features. First, the correlators are constant away from
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coincident points. This can be understood from the fact that the equation of motion for

φ is Sch′(τ) = 0. Second, the actual values of the separated-point correlators are given by

the corresponding moments of the energy of the system and the relation

E =
2π

βg2
Sch(τ). (C.9)

More precisely, what we mean is that the separate-points correlators of the Schwarzian

give moments of the energy in the distribution ρ(E). These can be computed in the usual

way by differentiating (2.31). We have checked this mechanically up to the three-point

function, but we expect that it holds in general.
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[9] J. Engelsöy, T.G. Mertens and H. Verlinde, An investigation of AdS2 backreaction and

holography, JHEP 07 (2016) 139 [arXiv:1606.03438] [INSPIRE].

[10] D. Bagrets, A. Altland and A. Kamenev, Sachdev-Ye-Kitaev model as Liouville quantum

mechanics, Nucl. Phys. B 911 (2016) 191 [arXiv:1607.00694] [INSPIRE].

[11] J.S. Cotler et al., Black holes and random matrices, JHEP 05 (2017) 118

[arXiv:1611.04650] [INSPIRE].

[12] D. Bagrets, A. Altland and A. Kamenev, Power-law out of time order correlation functions

in the SYK model, Nucl. Phys. B 921 (2017) 727 [arXiv:1702.08902] [INSPIRE].

– 25 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1103/PhysRevLett.70.3339
https://arxiv.org/abs/cond-mat/9212030
https://inspirehep.net/search?p=find+EPRINT+cond-mat/9212030
http://online.kitp.ucsb.edu/online/entangled15/kitaev/
http://online.kitp.ucsb.edu/online/entangled15/kitaev2/
https://doi.org/10.1016/0550-3213(85)90448-1
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B252,343%22
https://doi.org/10.1016/0370-2693(83)90012-6
https://doi.org/10.1016/0370-2693(83)90012-6
https://inspirehep.net/search?p=find+J+%22Phys.Lett.,B126,41%22
https://doi.org/10.1007/JHEP11(2015)014
https://doi.org/10.1007/JHEP11(2015)014
https://arxiv.org/abs/1402.6334
https://inspirehep.net/search?p=find+EPRINT+arXiv:1402.6334
https://doi.org/10.1103/PhysRevD.94.106002
https://doi.org/10.1103/PhysRevD.94.106002
https://arxiv.org/abs/1604.07818
https://inspirehep.net/search?p=find+EPRINT+arXiv:1604.07818
https://doi.org/10.1103/PhysRevLett.117.111601
https://arxiv.org/abs/1605.06098
https://inspirehep.net/search?p=find+EPRINT+arXiv:1605.06098
https://doi.org/10.1093/ptep/ptw124
https://arxiv.org/abs/1606.01857
https://inspirehep.net/search?p=find+EPRINT+arXiv:1606.01857
https://doi.org/10.1007/JHEP07(2016)139
https://arxiv.org/abs/1606.03438
https://inspirehep.net/search?p=find+EPRINT+arXiv:1606.03438
https://doi.org/10.1016/j.nuclphysb.2016.08.002
https://arxiv.org/abs/1607.00694
https://inspirehep.net/search?p=find+EPRINT+arXiv:1607.00694
https://doi.org/10.1007/JHEP05(2017)118
https://arxiv.org/abs/1611.04650
https://inspirehep.net/search?p=find+EPRINT+arXiv:1611.04650
https://doi.org/10.1016/j.nuclphysb.2017.06.012
https://arxiv.org/abs/1702.08902
https://inspirehep.net/search?p=find+EPRINT+arXiv:1702.08902


J
H
E
P
1
0
(
2
0
1
7
)
0
0
8

[13] J.J. Duistermaat and G.J. Heckman, On the variation in the cohomology of the symplectic

form of the reduced phase space, Invent. Math. 69 (1982) 259.

[14] N. Berline and M. Vergne, Zeros d’un champ de vecteurs et classes characteristiques

equivariantes, Duke Math. J. 50 (1983) 539.

[15] M.F. Atiyah and R. Bott, The moment map and equivariant cohomology, Topology 23 (1984)

1 [INSPIRE].

[16] N.A. Nekrasov, Seiberg-Witten prepotential from instanton counting, Adv. Theor. Math.

Phys. 7 (2003) 831 [hep-th/0206161] [INSPIRE].

[17] E. Witten, Two-dimensional gauge theories revisited, J. Geom. Phys. 9 (1992) 303

[hep-th/9204083] [INSPIRE].

[18] L. Jeffrey and F. Kirwan, Localization for nonabelian group actions, Topology 34 (1995) 291.

[19] S. Cordes, G.W. Moore and S. Ramgoolam, Lectures on 2D Yang-Mills theory, equivariant

cohomology and topological field theories, Nucl. Phys. Proc. Suppl. 41 (1995) 184

[hep-th/9411210] [INSPIRE].

[20] J.M. Bismut, Localization formulas, superconnections, and the index theorem for families,

Commun. Math. Phys. 103 (1986) 127.

[21] W. Fu, D. Gaiotto, J. Maldacena and S. Sachdev, Supersymmetric Sachdev-Ye-Kitaev

models, Phys. Rev. D 95 (2017) 026009 [arXiv:1610.08917] [INSPIRE].

[22] A.A. Kirillov, Orbits of the group of diffeomorphisms of a circle and local Lie superalgebras,

Funct. Anal. Appl. 15 (1981) 135.

[23] E. Witten, Coadjoint orbits of the Virasoro group, Commun. Math. Phys. 114 (1988) 1

[INSPIRE].

[24] I. Bakas, Orbits of diff S1 in the space of quadratic differentials, Nucl. Phys. Proc. Suppl. 6

(1989) 137 [INSPIRE].

[25] A. Alekseev and S.L. Shatashvili, Path integral quantization of the coadjoint orbits of the

Virasoro group and 2D gravity, Nucl. Phys. B 323 (1989) 719 [INSPIRE].
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