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1 Introduction

The LHC has discovered a Higgs-like boson with a mass of approximately 126 GeV, with

properties consistent with the standard model to within current experimental errors. The

Standard Model (SM) also provides a good description of all the LHC data to date, with

no evidence for beyond the SM (BSM) physics. The current experimental results can be

described by the Standard Model with a scalar doublet which spontaneously breaks the

gauge symmetry, and with BSM physics parameterized by higher dimension operators con-

structed out of SM fields suppressed by powers of a high-energy scale Λ. The leading

operators which affect the Higgs production and decay amplitudes arise at dimension six,

and so are suppressed by 1/Λ2. Since no BSM states have been found so far, LHC results

already indicate that the scale Λ is higher than the scale v = 246 GeV of electroweak sym-

metry breaking. In a recent paper [1], we studied a subset of these dimension-six operators

which modify the h → γγ and h → Zγ decay rates, and calculated the renormalization

group evolution of these operators, including operator mixing.

In this paper, we extend our previous RG analysis [1] to all dimension-six operators. We

also compute the full contribution of the 59 dimension-six operators to the running of the

usual dimension D ≤ 4 operator coefficients of the SM Lagrangian. These SM parameters

have anomalous dimension contributions of order v2/Λ2 (or equivalently, m2
H/Λ

2) from

coefficients in the dimension-six Lagrangian. These terms correct the SM amplitudes at

order m2
H/Λ

2, which is the same order as the corrections from dimension-six operators.

The set of independent higher dimensional operators involving SM fields is given in

ref. [2], which showed that there are 59 independent dimension-six operators (assuming
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the conservation of baryon number), and reduced the set of operators from those of the

earlier work ref. [3] by using the classical equations of motion to eliminate a few redundant

operators. The choice of operator basis is not unique, and we will use the basis of ref. [2],

summarized in table 1. The anomalous dimension matrix is a 59×59 matrix with 3481 en-

tries, not including flavor indices. Although some of the entries vanish due to the structure

of the one-loop diagrams, most elements are non-zero. The 59 operators can be grouped

into eight classes defined in the next section. Our previous calculation [1] computed the

8× 8 submatrix γ44 of the 59× 59 matrix.

The full 59× 59 matrix is lengthy, and we give partial results here. Ref. [1] found that

the λ and Yukawa coupling terms were numerically more important than the gauge terms.

In this paper, we give the λ , λ2, λy2 one-loop contributions to the anomalous dimension,

which gives the full λ dependence in the limit of vanishing gauge coupling. There are large

combinatorial factors ∼ 100 in some of the terms.

There are terms in the anomalous dimension matrix of order 1. These arise from

diagrams involving external gauge fields, and are order 1 because gauge couplings are

absorbed into the gauge field-strengths in our counting scheme, defined in section 5. We

give one example of such a contribution at the end of section 5, which gives mixing between

“tree” and “loop” operators, discussed in refs. [4–7].

The outline of the paper is as follows: In section 2, we summarize the Lagrangian

we use, our notational conventions, and the SM equations of motion. A review of well-

known results on renormalization and the equations of motion is given in section 3. The

dimension-six contribution to the SM RGE is given in section 4. The structure of the 59×59

anomalous dimension matrix, our power counting scheme, and the terms we present in this

paper are given in section 5. The dimension-six RGE equations are given in section 6.

Calculations are done in the MS scheme using dimensional regularization in d = 4 −
2ε dimensions in background field gauge. The anomalous dimensions of gauge invariant

operators do not depend on a choice of gauge, and so are the same in the broken and

unbroken theory in the MS scheme.

2 The Lagrangian and equations of motion

2.1 The Lagrangian

The Lagrangian we use is given by L = LSM + L(6), the sum of the SM Lagrangian

LSM = − 1

4
GAµνG

Aµν − 1

4
W I
µνW

Iµν − 1

4
BµνB

µν + (DµH
†)(DµH) +

∑
ψ=q,u,d,l,e

ψ i /Dψ

− λ
(
H†H − 1

2
v2

)2

−
[
H†jd Yd qj + H̃†juYu qj +H†je Ye lj + h.c.

]
(2.1)

and the dimension-six Lagrangian, which is given schematically by

L(6) =
∑
i

CiQi . (2.2)
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1 : X3

QG fABCGAνµ GBρν GCµρ

Q
G̃

fABCG̃Aνµ GBρν GCµρ

QW εIJKW Iν
µ WJρ

ν WKµ
ρ

Q
W̃

εIJKW̃ Iν
µ WJρ

ν WKµ
ρ

2 : H6

QH (H†H)3

3 : H4D2

QH� (H†H)�(H†H)

QHD
(
H†DµH

)∗ (
H†DµH

)
5 : ψ2H3 + h.c.

QeH (H†H)(l̄perH)

QuH (H†H)(q̄purH̃)

QdH (H†H)(q̄pdrH)

4 : X2H2

QHG H†HGAµνG
Aµν

Q
HG̃

H†H G̃AµνG
Aµν

QHW H†HW I
µνW

Iµν

Q
HW̃

H†H W̃ I
µνW

Iµν

QHB H†H BµνBµν

Q
HB̃

H†H B̃µνBµν

QHWB H†τIHW I
µνB

µν

Q
HW̃B

H†τIH W̃ I
µνB

µν

6 : ψ2XH + h.c.

QeW (l̄pσµνer)τIHW I
µν

QeB (l̄pσµνer)HBµν

QuG (q̄pσµνTAur)H̃ GAµν

QuW (q̄pσµνur)τIH̃ W I
µν

QuB (q̄pσµνur)H̃ Bµν

QdG (q̄pσµνTAdr)HGAµν

QdW (q̄pσµνdr)τIHW I
µν

QdB (q̄pσµνdr)H Bµν

7 : ψ2H2D

Q
(1)
Hl (H†i

←→
D µH)(l̄pγµlr)

Q
(3)
Hl (H†i

←→
D I
µH)(l̄pτIγµlr)

QHe (H†i
←→
D µH)(ēpγµer)

Q
(1)
Hq (H†i

←→
D µH)(q̄pγµqr)

Q
(3)
Hq (H†i

←→
D I
µH)(q̄pτIγµqr)

QHu (H†i
←→
D µH)(ūpγµur)

QHd (H†i
←→
D µH)(d̄pγµdr)

QHud + h.c. i(H̃†DµH)(ūpγµdr)

8 : (L̄L)(L̄L)

Qll (l̄pγµlr)(l̄sγµlt)

Q
(1)
qq (q̄pγµqr)(q̄sγµqt)

Q
(3)
qq (q̄pγµτIqr)(q̄sγµτIqt)

Q
(1)
lq (l̄pγµlr)(q̄sγµqt)

Q
(3)
lq (l̄pγµτI lr)(q̄sγµτIqt)

8 : (R̄R)(R̄R)

Qee (ēpγµer)(ēsγµet)

Quu (ūpγµur)(ūsγµut)

Qdd (d̄pγµdr)(d̄sγµdt)

Qeu (ēpγµer)(ūsγµut)

Qed (ēpγµer)(d̄sγµdt)

Q
(1)
ud (ūpγµur)(d̄sγµdt)

Q
(8)
ud (ūpγµTAur)(d̄sγµTAdt)

8 : (L̄L)(R̄R)

Qle (l̄pγµlr)(ēsγµet)

Qlu (l̄pγµlr)(ūsγµut)

Qld (l̄pγµlr)(d̄sγµdt)

Qqe (q̄pγµqr)(ēsγµet)

Q
(1)
qu (q̄pγµqr)(ūsγµut)

Q
(8)
qu (q̄pγµTAqr)(ūsγµTAut)

Q
(1)
qd (q̄pγµqr)(d̄sγµdt)

Q
(8)
qd (q̄pγµTAqr)(d̄sγµTAdt)

8 : (L̄R)(R̄L) + h.c.

Qledq (l̄jper)(d̄sqtj)

8 : (L̄R)(L̄R) + h.c.

Q
(1)
quqd (q̄jpur)εjk(q̄ks dt)

Q
(8)
quqd (q̄jpT

Aur)εjk(q̄ksT
Adt)

Q
(1)
lequ (l̄jper)εjk(q̄ksut)

Q
(3)
lequ (l̄jpσµνer)εjk(q̄ksσ

µνut)

Table 1. The 59 independent dimension-six operators built from Standard Model fields which

conserve baryon number, as given in ref. [2]. The operators are divided into eight classes: X3, H6,

etc. Operators with +h.c. in the table heading also have hermitian conjugates, as does the ψ2H2D

operator QHud. The subscripts p, r, s, t are flavor indices, The notation is described in section 2.

H is an SU(2) scalar doublet with hypercharge yH = 1/2. With this normalization con-

vention, the Higgs boson mass is m2
H = 2λv2, with v ∼ 246 GeV and the fermion mass

matrices are Mu,d,e = Yu,d,e v/
√

2.

The gauge covariant derivative is Dµ = ∂µ + ig3T
AAAµ + ig2t

IW I
µ + ig1yBµ, where

TA are the SU(3) generators, tI = τ I/2 are the SU(2) generators, and y is the U(1)

hypercharge generator. SU(2) indices j, k and I, J,K are in the fundamental and adjoint
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representations, respectively, and SU(3) indices A,B,C are in the adjoint representation.

H̃ is defined by

H̃j = εjkH
† k (2.3)

where the SU(2) invariant tensor εjk is defined by ε12 = 1 and εjk = −εkj , j, k = 1, 2.

Fermion fields q and l are left-handed fields, and u, d and e are right-handed fields.

We have suppressed flavor indices in eq. (2.1). All fermion fields have a flavor index

p = 1, 2, 3 for the three generations, and the Yukawa matrices Yu,d,e are matrices in flavor

space. Explicitly,

H†jd Yd qj = H†jdp [Yd]pr qrj (2.4)

and similarly for the other terms. Flavor indices are denoted by p, r, s, t. We work in the

weak eigenstate basis, with ui = {uR, cR, tR}, di = {dR, sR, bR}, and

q1 =

[
uL
d′L

]
, q2 =

[
cL
s′L

]
, q3 =

[
tL
b′L

]
,

 d′Ls′L
b′L

 = VCKM

 dLsL
bL

 , (2.5)

where VCKM is the quark mixing matrix.

The coefficients Ci of the dimension-six Lagrangian have mass dimension −2. The sum

on i in eq. (2.2) is over the 59 operators in table 1. The only (notational) change from

ref. [2] is the replacement of ϕ by H for the Higgs field. Note that QuH and QHu, etc. are

different operators. We use the convention F̃µν = (1/2)εµναβF
αβ with ε0123 = +1. The

operators are divided into eight classes, which are denoted by 1 : X3, 2 : H6, 3 : H4D2,

4 : X2H2, 5 : ψ2H3, 6 : ψ2HX, 7 : ψ2H2D, and 8 : ψ4 in terms of the field content and

number of covariant derivatives, with X denoting a gauge field strength tensor. We will

use this schematic notation for other operators that occur in our analysis. For example,

the penguin operator qTAγµq [Dν , Gνµ]A is a ψ2XD operator.

The coefficients Ci are then divided into eight blocks, i = 1, . . . , 8, with block 1 con-

taining four coefficients for the X3 operators, etc. The anomalous dimension matrix also

breaks up into blocks with γ14 denoting the 4× 8 submatrix in the X3−X2H2 sector, etc.

The notation in table 1 suppresses flavor indices. Two sample terms in eq. (2.2) including

flavor indices are

C eu
prst

Q eu
prst

+

[
Cledq
prst

Qledq
prst

+ h.c.

]
(2.6)

where the hermitian conjugate is added for non-self-conjugate operators. The coefficients

of the self-conjugate operators are hermitian tensors, so that

C∗eu
prst

= C∗eu
rpts

, (2.7)

and similarly for the other coefficients.
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2.2 SM equations of motion

The SM equations of motion play an important role in the following analysis, so we sum-

marize them here. The SM equations of motion from eq. (2.1) are

D2Hk − λv2Hk + 2λ(H†H)Hk + qj Y †u uεjk + d Yd qk + e Ye lk = 0 , (2.8)

for the Higgs field,

i /D qj = Y †u u H̃j + Y †d dHj , i /D d = Yd qj H
† j , i /D u = Yu qj H̃

† j ,

i /D lj = Y †e eHj , i /D e = Ye ljH
† j , (2.9)

for the fermion fields, and

[Dα, Gαβ]A = g3j
A
β , [Dα,Wαβ]I = g2j

I
β, DαBαβ = g1jβ, (2.10)

for the gauge fields, where [Dα, Fαβ] is the covariant derivative in the adjoint representation.

The gauge currents are

jAβ =
∑

ψ=u,d,q

ψ TAγβψ ,

jIβ =
1

2
q τ Iγβq +

1

2
l τ Iγβl +

1

2
H† i
←→
D I

βH ,

jβ =
∑

ψ=u,d,q,e,l

ψ yiγβψ +
1

2
H† i
←→
D βH , (2.11)

where yi are the U(1) hypercharges of the fermions, and

H† i
←→
D βH = iH†(DβH)− i(DβH

†)H ,

H† i
←→
D I

βH = iH†τ I(DβH)− i(DβH
†)τ IH . (2.12)

3 Operator renormalization and the equations of motion

In this section, we review some well-known results about equations of motion (EOM) and

renormalization in field theory. One can make field redefinitions on the Lagrangian, which

is a change of variables in a path integral, and so does not affect S-matrix elements [8].1

Field redefinitions can be systematically used to eliminate redundant operators from the

Lagrangian. In our case, L = LSM +L(6), so a small field redefinition of order 1/Λ2 can be

used to shift L(6) by operators proportional to the classical EOM from the SM Lagrangian.

For example, the dimension-six operator

EH� = [H†H][H†(D2H) + (D2H†)H] (3.1)

can be converted to

ẼH� = 2λv2(H†H)2 − 4λQH −
(

[Y †u ]rsQuH
rs

+ [Y †d ]rsQdH
rs

+ [Y †e ]rsQeH
rs

+ h.c.

)
(3.2)

1Field redefinitions can affect Green’s functions, since the source terms get modified.
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Figure 1. Penguin diagram contributing to s→ d transitions.

Explicitly,

LSM +
c

Λ2
EH� → LSM +

c

Λ2
ẼH� +O

(
1

Λ4

)
(3.3)

by the field redefinition

H → H +
c

Λ2
(H†H)H (3.4)

which is equivalent to using eq. (2.8) to convert EH� to ẼH�. Thus, to first order in 1/Λ2,

we can eliminate dimension-six EOM operators. At higher orders in 1/Λ2, it is necessary

to systematically use field redefinitions to eliminate redundant operators [9–12].

The counterterms generated by one-loop graphs from L(6) need not be in the standard

basis chosen for the dimension-six operators. It is necessary to first compute the renormal-

ization counterterms, and then convert them to the standard basis using a field redefinition.

A famous example of this procedure is the renormalization of the effective Lagrangian for

weak decays [13, 14]. One can use an operator basis involving only four-quark operators,

such as

Oq = u γµPL s d γµPL u (3.5)

for s→ d transitions. However, the penguin graph figure 1 requires a counterterm propor-

tional to

OP = d TAγµPL s g3 [Dν , Gνµ]A . (3.6)

The standard procedure used is to convert this back to a four-quark operator using the

gauge field equation of motion eq. (2.10),

OP → d TAγµPL s
∑
q

g2
3

[
q TAγµPL q + q TAγµPR q

]
, (3.7)

so that one can study the anomalous dimension matrix in the basis of four-quark operators.
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In general, let Ei be the dimension-six EOM operators generated by field redefinitions

on the SM Lagragian, so that Ei = 0 by the classical SM equations of motion. Then the

general dimension-six Lagrangian is

L(6) =

59∑
i=1

CiQi +
∑
r

DrEr (3.8)

including redundant EOM operators. The RGE has the form

µ
d

dµ

[
Qi
Er

]
=

[
−γji −asi

0 −bsr

][
Qj
Es

]
. (3.9)

The lower left block of this matrix vanishes, since the EOM operators are renormalized

among themselves [8]. The operators Er do not contribute to S-matrix elements, so their

µ derivative cannot contain Qi which have non-zero S-matrix elements. Eq. (3.9) implies

that the anomalous dimension matrix for the coefficients has the form

µ
d

dµ

[
Ci
Dr

]
=

[
γij 0

arj brs

][
Cj
Ds

]
. (3.10)

The Ei operators in eq. (3.8) can be dropped for S-matrix element calculations, i.e. we

only need the values of Ci. From eq. (3.10), we see that in this case, the RGE reduces to

µ
d

dµ
Ci = γijCj , (3.11)

with no reference to the EOM operators.

It is important to remember that this conclusion does not mean that EOM operators

do not enter the calculation. The penguin operator counterterm eq. (3.6) is written as

OP = d TAγµPL s
∑
q

g2
3

[
q TAγµPL q + q TAγµPR q

]
+ E ,

E = d TAγµPL s g3 [Dν , Gνµ]A − d TAγµPL s
∑
q

g2
3

[
q TAγµPL q + q TAγµPR q

]
(3.12)

where E = 0 is an EOM operator, which can be dropped. The remaining four-quark

contribution enters the RGE for the four-quark operators.

There is an important consequence of the above analysis, which has led to some confu-

sion in the literature. One cannot identify the structure of the anomalous dimension matrix

simply from one-particle irreducible one-loop diagrams when the EOM are used to reduce

operators to a standard basis. For example, the penguin operator is a ψ2XD operator, but

leads to a ψ4 counterterm after using the equations of motion. This is because the EOM

can generate new operators and mixing for which no irreducible graphs exist. This subtlety

does not affect the γ44 anomalous dimension given in ref. [1].

In some cases, authors have used a redundant basis of operators, i.e. an overcomplete

set of operators in which some operators can be eliminated using the equations of motion.

An example of such a procedure is to include both the penguin operator eq. (3.6) and

– 7 –
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the various four-quark operators it generates, such as those on the r.h.s. of eq. (3.10).

Schematically, assume that the theory has operators O1,2,3, the EOM is O2 = O3, and that

the RGE after eliminating the redundant operator O3 is

µ
d

dµ

[
O1

O2

]
= −

[
γ11 γ21

γ12 γ22

][
O1

O2

]
. (3.13)

The RGE including the redundant operator O3 has the form

µ
d

dµ


O1

O2

O3

 = −


γ11 γ21 + a1 −a1

γ12 γ22 + a2 −a2

0 a3 −a3



O1

O2

O3

 . (3.14)

with a1,2,3 arbitrary. In this case, the anomalous dimension matrix is not uniquely deter-

mined, since one can always add linear combinations of EOM operators to the RGE by

making field redefinitions. The parameters ai depend on the gauge and renormalization

scheme, since different choices can differ implicitly by field redefinitions. Note that even

the 2× 2 submatrix in the O1,2 sector is not unique.

4 Running of SM terms due to L(6)

The SM coefficients have contributions from L(6) proportional to v2, or equivalently, m2
H .

The existence of such terms is not surprising. In the usual analysis of K0−K0
mixing due

to ∆S = 2 weak interactions, the ∆S = 2 Lagrangian

L(∆S=2) = C2 d γ
µPL s d γµPL s (4.1)

has terms in the RGE of the form [14]

µ
d

dµ
C2 ∝ m2

q C
2
q (4.2)

where Cq are the coefficients of the ∆S = 1 four-quark operators such as eq. (3.5), and mq

is a quark mass. Mass terms in the EFT can compensate for powers of 1/MW , since particle

masses can appear in the numerator of divergent terms when dimensional regularization

is used. In the case of SM running from L(6), the only dimensionful parameter in the SM

that can appear in the numerator is the Higgs vacuum expectation value v, or equivalently,

the Higgs mass m2
H = 2λv2.

We list here the full one-loop contributions to the SM RGE from L(6). These terms

are in addition to the usual SM anomalous dimensions.

µ
d

dµ
λ =

m2
H

16π2

[
12CH +

(
−32λ+

10

3
g2

2

)
CH� +

(
12λ− 3

2
g2

2 + 6g2
1y

2
H

)
CHD

+ 2η1 + 2η2 + 12g2
2cF,2CHW + 12g2

1y
2
HCHB + 6g1g2yHCHWB

+
4

3
g2

2C
(3)
Hl
tt

+
4

3
g2

2NcC
(3)
Hq
tt

]
,
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µ
d

dµ
m2
H =

m4
H

16π2
[−4CH� + 2CHD] ,

µ
d

dµ
[Yu]rs =

m2
H

16π2

[
3C∗uH

sr
− CH�[Yu]rs +

1

2
CHD[Yu]rs − [Yu]rtC

(1)
Hq
ts

+ 3[Yu]rtC
(3)
Hq
ts

+ CHu
rt

[Yu]ts − CHud
rt

[Yd]ts − 2C
(1)∗
qu
sptr

[Yu]tp − 2cF,3C
(8)∗
qu
sptr

[Yu]tp

− C(1)∗
lequ
ptsr

[Y ∗e ]tp +NcC
(1)∗
quqd
srpt

[Yd]
∗
tp +

1

2
C

(1)∗
quqd
prst

[Yd]
∗
tp +

1

2
cF,3C

(8)∗
quqd
prst

[Yd]
∗
tp

]
,

µ
d

dµ
[Yd]rs =

m2
H

16π2

[
3C∗dH

sr
− CH�[Yd]rs +

1

2
CHD[Yd]rs + [Yd]rtC

(1)
Hq
ts

+ 3[Yd]rtC
(3)
Hq
ts

− CHd
rt

[Yd]ts − [Yu]tsC
∗
Hud
tr
− 2C

(1)∗
qd
sptr

[Yd]tp − 2cF,3C
(8)∗
qd
sptr

[Yd]tp

+ Cledq
ptrs

[Ye]
∗
pt +NcC

(1)∗
quqd
ptsr

[Yu]∗tp +
1

2
C

(1)
quqd
sptr

[Yu]∗tp +
1

2
cF,3C

(8)∗
quqd
sptr

[Yu]∗tp

]
,

µ
d

dµ
[Ye]rs =

m2
H

16π2

[
3C∗eH

sr
− CH�[Ye]rs +

1

2
CHD[Ye]rs + [Ye]rtC

(1)
Hl
ts

+ 3[Ye]rtC
(3)
Hl
ts

− CHe
rt

[Ye]ts − 2C∗le
sptr

[Ye]tp +NcC
∗
ledq
srpt

[Yd]pt −NcC
(1)∗
lequ
srpt

[Yu]∗tp

]
, (4.3)

µ
dg3

dµ
= −4

m2
H

16π2
g3CHG , µ

dg2

dµ
= −4

m2
H

16π2
g2CHW , µ

dg1

dµ
= −4

m2
H

16π2
g1CHB ,

µ
d

dµ
θ3 = −

4m2
H

g2
3

C
HG̃

, µ
d

dµ
θ2 = −

4m2
H

g2
2

C
HW̃

, µ
d

dµ
θ1 = −

4m2
H

g2
1

C
HB̃

, (4.4)

where

η1 =

(
1

2
NcCdH

rs
[Yd]sr +

1

2
NcCuH

rs
[Yu]sr +

1

2
CeH
rs

[Ye]sr

)
+ h.c. ,

η2 =− 2NcC
(3)
Hq
rs

[Y †uYu]sr − 2NcC
(3)
Hq
rs

[Y †d Yd]sr +NcCHud
rs

[YdY
†
u ]sr

+NcC
∗
Hud
rs

[YuY
†
d ]rs − 2C

(3)
Hl
rs

[Y †e Ye]sr , (4.5)

Nc = 3 is the number of colors, cF,3 = 4/3, and cA,2 = 2. The θ terms are normalized so

that L = (θg2/32π2)F̃AµνF
Aµν for each gauge group.2

The form of eq. (4.4) depends on the choice of basis for L(6), since EOM have been

used to eliminate redundant operators. One can see from eq. (3.2) that the EOM contain

both dimension-four operators (H†H)2, and dimension-six operators such as QH , so the

dimension-four terms depend on the basis choice for the dimension-six terms.

Eq. (4.4) affects SM amplitudes at order m2
H/Λ

2, and is just as important as the

evolution of L(6). For Λ ∼ 1 TeV, the terms in eq. (4.4) are more important than two-

loop contributions to the SM running. The stability of the Higgs scalar potential is very

2Transformations of θ1,2,3 under flavor transformations, and the basis invariant definition of θ angles in

the electroweak theory is discussed in ref. [15].
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sensitive to the precise value of λ, so the L(6) contribution will affect the relation between

mH and the scalar self-coupling. Eq. (4.4) also plays a role in the evolution of Yukawa

couplings. Retaining only the top-quark Yukawa coupling,

Ye →


0 0 0

0 0 0

0 0 0

 , Yd →


0 0 0

0 0 0

0 0 0

 , Yu →


0 0 0

0 0 0

0 0 yt

 , (4.6)

gives from eq. (4.4),

µ
d

dµ
[Yd]rs =

m2
H

16π2

[
3C∗dH

sr
−[Yu]∗stC

∗
Hud
tr

+NcC
(1)∗
quqd
ptsr

[Yu]∗tp+
1

2
C

(1)
quqd
sptr

[Yu]∗tp+
1

2
cF,3C

(8)∗
quqd
sptr

[Yu]∗tp

]
,

µ
d

dµ
[Ye]rs =

m2
H

16π2

[
3C∗eH

sr
−NcC

(1)∗
lequ
srpt

[Yu]∗tp

]
. (4.7)

In the SM, µ dYi/dµ ∝ Yi so these higher dimension terms can be more important than

the SM running, depending on the flavor structure of L(6).

5 Structure of the anomalous dimension matrix

The SM at energies above the electroweak scale is a weakly coupled gauge theory, and SM

gauge boson interactions are proportional to the gauge boson coupling g. For this reason,

it is useful to use rescaled operators Q̃i with coefficients C̃i, including an explicit factor of

the gauge coupling for each field strength tensor X, instead of the basis Qi in table 1. Thus

Q̃G = g3
3QG, etc. One can trivially convert between the two conventions. If Q̃i = ζiQi,

then the rescaled coefficients and anomalous dimensions are

C̃i = ζ−1
i Ci , γ̃ij = ζ−1

i γijζj . (5.1)

We first discuss the structure of the one-loop anomalous dimension matrix, where all

gauge couplings are treated as order g and all Yukawa couplings as order y. The ψ2H3 and

ψ2XH operators have a single chirality flip. It is convenient to absorb a numerical factor

of order y into these operators for the purposes of the present discussion,3 and a factor

of g into X. In our actual calculations, we will revert to the unrescaled original operator

basis Qi.

The anomalous dimension matrix (for the coefficients) in the rescaled basis Q̃i has the

form shown in table 2, where we have given the explicit operator rescaling. The lower

table shows the entries given by direct computation of graphs, and the upper table shows

entries that are possible by computing a graph and then converting it to the standard basis

using EOM. The zero entries are those for which there is no one-loop divergent graph. The

possible orders in g, λ and y are shown for the other entries. In some cases, the allowed

graphs have vanishing divergence, such as Fig 2(a), so not all of the possible terms in the

array are non-zero. Formally including factors of y into the the ψ2H3 and ψ2XH terms

makes the matrix a function only of even powers of y. The anomalous dimension matrix

3We do not include any factors of y in the (LR)(LR) and (LR)(RL) ψ4 operators.
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g3X3 H6 H4D2 g2X2H2 yψ2H3 gyψ2XH ψ2H2D ψ4

1 2 3 4 5 6 7 8

g3X3 1 0 0 0 1 0 0 0 0

H6 2 g6λ 0 g2λ, λ2 λg4 λy2 0 λg2, λy2 0

H4D2 3 g6 0 g2 g4 0 g2y2 g2 0

g2X2H2 4 0 0 0 0 0 0 0 0

yψ2H3 5 g6 0 g2, λ, y2 g4 y2 g2λ, g2y2 g2, λ, y2 λ, y2

gyψ2XH 6 g4 0 0 0 0 g2, y2 1 1

ψ2H2D 7 g6 0 g2 g4 0 g2y2 g2, y2 g2, y2

ψ4 8 g6 0 0 0 0 g2y2 g2, y2 g2, y2

g3X3 H6 H4D2 g2X2H2 yψ2H3 gyψ2XH ψ2H2D ψ4

1 2 3 4 5 6 7 8

g3X3 1 g2 0 0 1 0 0 0 0

H6 2 0 λ, g2 g4, g2λ, λ2 g6, g4λ y4 0 y4 0

H4D2 3 0 0 g2, λ g4 y2 0 y2 0

g2X2H2 4 g4 0 1 g2, λ 0 y2 1 0

yψ2H3 5 0 0 g2, y2 g4 g2, λ, y2 g2λ, g4, g2y2 g2, λ, y2 y2

gyψ2XH 6 g4 0 0 g2 1 g2, y2 1 1

ψ2H2D 7 0 0 y2 g4 y2 g2y2 g2, λ, y2 y2

ψ4 8 0 0 0 0 0 g2y2 y2 g2, y2

Table 2. The form of the one-loop anomalous dimension matrix for the coefficients of dimension

six operators in the rescaled basis. The rows and columns are labelled by the eight operator classes.

The lower table gives entries for which there is a direct contribution from a one-particle irreducible

one-loop graph. The upper table gives entries which are generated indirectly by using EOM, and

for which there need not be a direct contributing graph. There are also y2 contributions to all

diagonal entries except 11 from wavefunction renormalization. In some cases, the graphs vanish or

produce an EOM operator that is shifted to other terms, and the entry is zero.

for coefficients of rescaled operators contains terms of order unity. For example, the graph

in figure 2(b) gives an order 1 contribution to the g3X3 − g2X2H2 entry. In terms of the

original operators, the graph has one gauge coupling at the Standard Model vertex, and

is order g. On rescaling, the X2H2 operator at the L(6) vertex gets a factor of g2, and

the X3 operator given by the external lines absorbs a factor of g3, so the graph becomes

order g × g2/g3 = 1. Similarly graph figure 2(c), which is order g3 in terms of the original
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Figure 2. (a) A H6−ψ2H2D anomalous dimension graph which vanishes. (b) A g3X3− g2X2H2

anomalous dimension graph of order 1. (c) A g2X2H2− g3X3 anomalous dimension graph of order

g4. The solid square is a vertex from L(6) and the dots are vertices from LSM.

operators (g2 from the standard model vertex and g from the L(6) vertex), is order g4 in

terms of the rescaled operators.

All the entries in the one-loop anomalous dimension matrix contain the usual 1/(16π2)

factor of a perturbative one-loop graph. However, there are entries of order 1, g2, y2, g4, y4,

etc. so that it appears that the anomalous dimension matrix does not have the usual form,

a product of powers of g2/(16π2), λ/(16π2) and y2/(16π2), with no extraneous factors of

16π2. To understand what is going on, it is instructive to consider the rescaled operators

normalized using naive dimensional analysis [16]. The general Lagrangian term is

f2Λ2

(
ψ

f
√

Λ

)a(H
f

)b(yH
Λ

)c(D
Λ

)d(gX
Λ2

)e
(5.2)

with Λ ∼ 4πf . The H and yH terms have the same scaling if y ∼ 4π. If y < 4π, then

one gets the usual suppression of chirality flip terms in weak coupling, analogous to the

suppression of gauge interactions in weak coupling discussed in ref. [16]. The eight operator

classes give

f2

Λ4
g3X3,

Λ2

f4
H6,

1

f2
H4D2,

1

Λ2
g2X2H2,

1

f2
yψ2H3,

1

Λ2
yψ2gXH,

1

f2
ψ2H2D,

1

f2
ψ4 (5.3)

times coefficients of order one for L(6).

Let Q̂i be the L(6) operators normalized as in eq. (5.3), so that their coefficients Ĉi
are dimensionless, and expected to be order unity by naive dimensional analysis. Then one

sees that the contribution of graph figure 2(b,c), can be written in three equivalent ways,

µ
d

dµ
C1 =

Ab
16π2

g C4, µ
d

dµ
C4 =

Ac
16π2

g3C1,

µ
d

dµ
C̃1 =

Ab
16π2

C̃4, µ
d

dµ
C̃4 =

Ac
16π2

g4 C̃1,

µ
d

dµ
Ĉ1 = Ab Ĉ4, µ

d

dµ
Ĉ4 = Ac

(
g2

16π2

)2

Ĉ1 , (5.4)
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where Ab,c are constants. One can see from the last row that, with the normalization

eq. (5.3), the anomalous dimension for Ĉi depends on products of powers of λ/(16π2)2,

g2/(16π2), and y2/(16π2) as expected. It is straightforward to verify this for the entire

matrix. Terms such as γ14 are order unity and effectively zeroth order, γ44 is of one-loop

size, γ41 of two-loop size, γ31 of three-loop size, and γ21 of four-loop size, etc., even though

all of them are given by one-loop diagrams in the EFT.

It is worth emphasizing that, while the the use of eq. (5.3) for the normalization

makes it easier to understand the importance of various terms, it does not affect the actual

calculation. One can convert from one normalization to another using the trivial rescaling

in eq. (5.1). When we refer to anomalous dimension entries as order g2, etc. we will use the

rescaled form in table 2 in either the Ĉi or C̃i normalization, which differ only by factors

of 4π. The explicit RGE are given for the original unrescaled coefficients Ci.

The effects of L(6) are suppressed by 1/Λ2, and vanish as Λ → ∞, so the RGE does

not need to be integrated over a large range of t = lnµ. The integration can be done

in perturbation theory by expanding in powers of the anomalous dimension matrix γ.

Dropping β-function running of the couplings for simplicity,

C(t) =

[
1 + tγ +

1

2
t2γ · γ + . . .

]
C(0) . (5.5)

Different powers of γ can contribute at the same order, because of the structure of table 2.

For example, a one-loop contribution of order λ/(16π2) is generated by the product of the

order λ term in γ33 and the order 1 term in γ43 at second order in γ. To get the coefficients

of all 59 operators accurate to one-loop order (i.e. including all g2/(16π2), λ/(16π2) and

y2/(16π2) corrections) requires keeping terms to third order in γ.

The operator X2H2 contributes to h→ γγ and h→ γZ, which are one-loop amplitudes

in the Standard Model. In ref. [1], we restricted our attention to the X2H2 operators, and

computed the 8×8 γ44 submatrix of the 59×59 anomalous dimension matrix. The largest

effects were due to the λH4 and Yukawa couplings, rather than the gauge couplings.

In this paper, we give the results for terms in the one-loop anomalous dimension matrix

that depend only on λ, and are independent of the gauge couplings, i.e. the terms of order

λ, λ2, and λy2 in table 2. The remaining terms will be discussed in subsequent publications.

Note that the results in section 4 keep the full g, λ, y dependence at one-loop, and do not

drop any terms.

There are terms in γ of order 1. These arise from graphs such as figure 3 involving

gauge fields. The graph is order gy because it has one gauge, and one Yukawa vertex, but

becomes order 1 in our rescaled basis. We will discuss these terms in a subsequent paper.

Here we give an example of one such term, γ68, the mixing of four-fermion operators with

magnetic moment operators,

µ
d

dµ
CeB
pr

=
1

16π2

[
4g1Nc (yu + yq)C

(3)
lequ
prst

[Yu]ts

]
+ . . .

µ
d

dµ
CeW
pr

=
1

16π2

[
−2g2NcC

(3)
lequ
prst

[Yu]ts

]
+ . . .
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Figure 3. Diagram contributing to the ψ2XH − ψ4 anomalous dimension γ68 given in eq. (5.7).

The solid square is a ψ4 vertex from L(6) and the dots are gauge and Yukawa vertices from LSM.

µ
d

dµ
CuB
pr

=
1

16π2

[
4g1(ye + yl)C

(3)
lequ
stpr

[Ye]ts

]
+ . . .

µ
d

dµ
CuW
pr

=
1

16π2

[
−2g2C

(3)
lequ
stpr

[Ye]ts

]
+ . . . , (5.6)

where . . . denotes contributions from other operators, and yi are the U(1) hypercharges.

Eq. (5.6) is an example of non-zero mixing between “tree” and “loop” operators.

Eq. (5.6) cannot be cancelled by other terms, since there are no redundant operators in

the basis we use. The operator Q
(3)
lequ can be Fierzed into scalar form (α is a color index),

Q
(3)
lequ = (l̄jpσµνer)εjk(q̄

k
sσ

µνut) = −4(l̄jper)εjk(q̄
kα
s uαt)− 8(l̄jpuαt)εjk(q̄

kα
s er)

= −4Q
(1)
lequ − 8(l̄jpuαt)εjk(q̄

kα
s er) (5.7)

and can be generated by the tree-level exchange of (3,2, 7/6) scalars, i.e. those with the

quantum numbers of a leptoquark doublet. Tree-level exchange of leptoquarks and heavy

(1,2, 1/2) scalars with H-field quantum numbers can generate any combination of Q
(1)
lequ

and Q
(3)
lequ.

6 λ, λ2, λy2 contributions to the L(6) anomalous dimension matrix

The computation of the λ, λ2, λy2 anomalous dimensions has some subtleties. An example

is the graph in figure 4 which generates, in addition to the QH� and QHD operators,

the EOM operator EH� of eq. (3.1). Eq. (3.2) eliminates EH� in terms of our standard

basis of operators, so figure 4 contributes to the running of the H6 coefficient CH , as well

as the ψ2H3 coefficients CuH , CdH and CeH , and to the running of the dimension four

SM coefficients in eq. (4.4). Figure 4 is an example of how terms get shuffled around

by the EOM. Figure 4 has only external H fields, but contributes to the running of the

ψ2H3 operators.

The equations presented below are not the complete RGE, but only the λ, λ2, λy2

terms. The remaining terms are lengthy, and will be given a subsequent publication. The
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Figure 4. Graph contributing to the H4D2−H4D2 anomalous dimension and to EOM operators.

The solid square is a H4D2 vertex from L(6) and the dot is the λ(H†H)2 vertex from LSM.

evolution of the H6 coefficient is

µ
d

dµ
CH =

1

16π2

[
108λCH − 160λ2CH� + 48λ2CHD

]
+

8λ

16π2
η1 +

8λ

16π2
η2 (6.1)

where η1,2 are given in eq. (4.5). The diagonal CH − CH term 108λ/(16π2) has a large

numerical coefficient, and is independent of the normalization chosen for the H6 operator,

i.e. whether we use (H†H)3 or (H†H)3/(3!)2, etc. The large number 108 arises from the

combinatorics of the Wick contractions. For mH ∼ 126 GeV, 108λ/(16π2) ≈ 0.1.

The evolution of the X2H2 coefficients is

µ
d

dµ
CHG =

12λ

16π2
CHG , µ

d

dµ
C
HG̃

=
12λ

16π2
C
HG̃

,

µ
d

dµ
CHW =

12λ

16π2
CHW , µ

d

dµ
C
HW̃

=
12λ

16π2
C
HW̃

,

µ
d

dµ
CHB =

12λ

16π2
CHB , µ

d

dµ
C
HB̃

=
12λ

16π2
C
HB̃

,

µ
d

dµ
CHWB =

4λ

16π2
CHWB , µ

d

dµ
C
HW̃B

=
4λ

16π2
C
HW̃B

, (6.2)

and is part of the complete γ44 calculation given previously in ref. [1].

The H4D2 terms are

µ
d

dµ
CH� =

24λ

16π2
CH� , µ

d

dµ
CHD =

12λ

16π2
CHD , (6.3)

and the ψ2H3 terms are

µ
d

dµ
CuH
rs

=
λ

16π2

[
24CuH

rs
− 4C

(1)
Hq
rt

[Yu]∗st + 12C
(3)
Hq
rt

[Yu]∗st + 4[Yu]∗tr CHu
ts
− 4[Yd]

∗
tr C

∗
Hud
st

− 4 [Yu]∗srCH� + 2[Yu]∗srCHD − 8C
(1)
qu
rpts

[Yu]∗tp − 8cF,3C
(8)
qu
rpts

[Yu]∗tp − 4C
(1)
lequ
ptrs

[Ye]tp

+ 4NcC
(1)
quqd
rspt

[Yd]tp + 2C
(1)
quqd
psrt

[Yd]tp + 2cF,3C
(8)
quqd
psrt

[Yd]tp

]
,
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µ
d

dµ
CdH
rs

=
λ

16π2

[
24CdH

rs
+ 4C

(1)
Hq
rt

[Yd]
∗
st + 12C

(3)
Hq
rt

[Yd]
∗
st − 4[Yd]

∗
tr CHd

ts
− 4[Yu]∗tr CHud

ts

− 4 [Yd]
∗
srCH� + 2[Yd]

∗
srCHD − 8C

(1)
qd
rpts

[Yd]
∗
tp − 8cF,3C

(8)
qd
rpts

[Yd]
∗
tp + 4C∗ledq

ptsr

[Ye]pt

+ 4NcC
(1)
quqd
ptrs

[Yu]tp + 2C
(1)
quqd
rtps

[Yu]tp + 2cF,3C
(8)
quqd
rtps

[Yu]tp

]
,

µ
d

dµ
CeH
rs

=
λ

16π2

[
24CeH

rs
+ 4C

(1)
Hl
rt

[Ye]
∗
st + 12C

(3)
Hl
rt

[Ye]
∗
st − 4[Ye]

∗
tr CHe

ts
− 4 [Ye]

∗
srCH�

+ 2[Ye]
∗
srCHD − 8C le

rpts
[Ye]
∗
tp + 4NcCledq

rspt
[Yd]

∗
tp − 4NcC

(1)
lequ
rspt

[Yu]tp

]
, (6.4)

There are no other one-loop λ, λ2 and λy2 terms.

7 Conclusions

We have given the structure of the 59× 59 anomalous dimension matrix for dimension-six

operators in the Standard Model, and presented all the terms of order λ, λ2 and λy2 that

can arise at one loop. We have also given one example of tree-loop mixing among the

dimension-six operators. The remaining one-loop terms will be discussed in a subsequent

publication. In addition, we have given the full contribution of L(6) to the RGE of the usual

dimension-four terms and the dimension-two term H†H in the Standard Model Lagrangian.

Note added: while this paper was being readied for publication, ref. [17] appeared, which

also discusses the anomalous dimension of L(6). Ref. [17] gives the full λ, y, g dependence

of a subset of the anomalous dimension matrix. A different operator basis including 5

redundant operators is used, as well as a “tree-loop” analysis, so it is difficult to make a

quick comparison of the common terms between the two calculations, but an initial look

shows good agreement.
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