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1 Introduction

Shortly after the conjectured duality between super conformal field theories and string/M
theory on spaces with an AdS factor [1] -[3], these ideas were extended to non-conformal
situations [4]–[12].

In this work, we holographically study one particular two dimensional field theory that
at weak coupling is defined on the intersection of two stacks of D5 branes (these are called
I-branes). Dynamical features of these theories imply that, as the coupling is increased the
field theory turns (2 + 1)-dimensional and doubles the amount of SUSY preserved. This
dynamics is very well explained in [13].

The string background, holographic dual to this strongly coupled QFT is well under-
stood at large values of the radial coordinate, where it can be written as an intersection
of NS five branes. Good control over the string σ-model in such background has been
developed [13, 14]. Nevertheless, this background is singular in the IR (at small values of
a suitable radial coordinate). In this paper we propose a ‘completion’ of this dual back-
ground, making it trustable at low energies. The new solution is very explicit and simple.
It preserves four supercharges and can be thought of as the dual to a (2 + 1)-dimensional
field theory that is compactified to (1 + 1)-dimensions. The QFT is a two nodes quiver
with Chern-Simons terms, connected by bifundamental matter.

In the bulk of this paper, we study holographically various aspects of the strongly
coupled dynamics of this QFT. We define a suitable gauge coupling, that suggest a low
energy confining behaviour. Theta angles and the breaking of U(1)-R symmetries are
discussed, together with an estimate of a density of degrees of freedom as a function of
energy. Maldacena-Wilson loops are calculated (again indicating confinement). Also, ’t
Hooft loops and Entanglement Entropy on a strip are calculated, discussing how the non-
local UV dynamics of the system impacts of these observables.

We also briefly touch upon two aspects that will be further developed in future pub-
lications: we present a black membrane solution, obtained as analytic continuation of our
new background and calculate some characteristic quantities. Also, we shortly discuss some
aspects of the string σ-model on our backgrounds.

The paper is organised as follows. In section 2 we present the supergravity backgrounds
studied in the rest of the paper. In section 3 we propose the QFT dual to these backgrounds,
with various characteristic observables calculated. This proposal is sharpened in section 4,
where the IR confining behaviour is determined and the influence of the high energy LST
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dynamics on observables like ’t Hooft loops and Entanglement Entropy is discussed. Some
aspects of the string σ-model are discussed in section 5. The conclusions and future lines of
research suggested by this paper are written in section 6. Various appendices are included,
these discuss in great detail the very many interesting technical aspects needed in the main
body of this work.

2 The supergravity backgrounds

In this section we write the supergravity backgrounds studied. The first background already
appears in the bibliography [15, 16], the second background is new. We refer the reader to
appendices A and B for detailed derivations. The associated charges are studied. A black
membrane solution is obtained as a bonus, by performing analytic continuations. Some
characteristic observables of the black membrane are calculated.

2.1 Background I

To describe the backgrounds we use the coordinates (t, x, φ, r, θA, ϕA, ψA, θB, ϕB, ψB). We
set α′ = gs = 1 and define two sets of left-invariant forms of SU(2),

ω̂1 = cosψAdθA + sinψA sin θAdϕA, ω̃1 = cosψBdθB + sinψB sin θBdϕB,
ω̂2 = − sinψAdθA + cosψA sin θAdϕA, ω̃2 = − sinψBdθB + cosψB sin θBdϕB,
ω̂3 = dψA + cos θAdϕA, ω̃3 = dψB + cos θBdϕB.

In terms of these we present the first background. The string frame metric, the Ramond
three form F3, the potential C2 and the dilaton Φ read,

ds2
st = r

{
−dt2+dx2+(e2

A+e2
B)dφ2

2 + 8 dr2

r2(e2
A+e2

B)
+ 2
e2
A

[
ω̂2

1+ω̂2
2+ω̂2

3

]
+ 2
e2
B

[
ω̃2

1+ω̃2
2+ω̃2

3

]}
,

F3 = dC2 =− 2
e2
A

ω̂1∧ω̂2∧ω̂3−
2
e2
B

ω̃1∧ω̃2∧ω̃3 , (2.1)

C2 = − 2
e2
A

ψA sinθAdθA∧dϕA−
2
e2
B

ψB sinθBdθB∧dϕB.

Φ = logr .

Here (eA, eB) are parameters which are fixed when imposing charge quantisation. The
coordinate φ is non-compact and could be rescaled to absorb the prefactor (e2

A+e2
B)

2 .
There are two three-spheres labelled by Ŝ3 and S̃3 respectively parametrised by the

Euler angles [θA, ϕA, ψA] and [θB, ϕB, ψB]. The range for these angles are θA,B ∈ [0, π[
ψA,B ∈ [0, 4π], and ϕA,B ∈ [0, 2π].

The Ricci scalar for the metric in eq. (2.1) is

R = −3
(
e2
A + e2

B

)
2r , (2.2)

indicating a singularity at r = 0. This is the singular behaviour found close to a stack of
D5 branes — see for example equation (3.38) in the paper [17]. In fact, the background can
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be understood as the backreaction of two stacks of D5 branes that intersect along the non-
compact coordinates (t, x) and extend respectively over (y1, y2, y3, y4) and (w1, w2, w3, w4),
which can be written as radial coordinates and three spheres. After backreaction (at strong
coupling), the two stacks share the directions [t, x, φ] wrap the spheres Ŝ3[θA, ϕA, ψA] and
S̃3[θB, ϕB, ψB], as we find in the background (2.1). See details in appendix C.

The singular behaviour at r ∼ 0 indicates the need of a description in terms of other
variables. On the other hand for large values of the radial coordinate r, the growth of the
dilaton and the string coupling (gs ∼ eΦ) requires an S-duality and the description of the
system is in terms of an intersection of NS five branes. The system is then dual to two
Little String Theories (LST) that intersect along (t, x, φ) each one wrapping the spheres
Ŝ3 and S̃3. We further elaborate on this background in section 5 and appendix C.

We are interested in resolving the singular behaviour at r = 0 of the background in
eq. (2.1), making the solution in terms of D5 branes trustable in the “IR-regime”. The goal
is to write a trustable dual description for a strongly coupled QFT (that is UV-completed by
a LST). We are also interested in preserving some amount of SUSY for stability purposes.

2.2 Background II

We write below a solution to the equations of motion of Type IIB supergravity that resolves
the singular behaviour by compactifying the coordinate φ, with a precise period. A fibration
between the spheres and the coordinate φ is also needed. This solution reads,

ds2
st = r

{
−dt2 + dx2 + fs (r) dφ2 + 4

r2fs (r)
dr2 + 2

e2
A

[
ω̂2

1 + ω̂2
2 + (ω̂3 − eAQAζ(r)dφ)2

]
+ 2
e2
B

[
ω̃2

1 + ω̃2
2 + (ω̃3 − eBQBζ (r) dφ)2

]}
, (2.3)

F3 = dC2 = 2ζ ′(r)dr ∧ dφ ∧
(
QA
eA

ω̂3 +
QB
eB

ω̃3

)
+ 2
e2
A

ω̂1 ∧ ω̂2 ∧ (eAQAζ(r)dφ− ω̂3)

+ 2
e2
B

ω̃1 ∧ ω̃2 ∧ (eBQBζ(r)dφ− ω̃3) ,

C2 = ψA

(
2QA
eA

ζ ′ (r) dr ∧ dφ− 2
e2
A

sin θAdθA ∧ dϕA

)
+ 2
eA

cos θAQAζ (r) dφ ∧ dϕA

+ψB
(
2QB
eB

ζ ′ (r) dr ∧ dφ− 2
e2
B

sin θBdθB ∧ dϕB

)
+ 2
eB

cos θBQBζ (r) dφ ∧ dϕB .

Φ = log r .

Here (eA, QA, eB, QB) are parameters. The functions fs(r), ζ(r) are given by

fs(r) = e2
A + e2

B

2 − m

r2 − 2
(
Q2
A +Q2

B

)
r4 ≡ e2

A + e2
B

2r4 (r2 − r2
+)(r2 − r2

−) , (2.4)

ζ (r) = 1
r2 − 1

r2
+
, r2

± =
m±

√
m2 + 4(Q2

A +Q2
B)(e2

A + e2
B)

e2
A + e2

B

. (2.5)

If the parameter m = 0 and eAQB = ±eBQA, the background preserves four supercharges.
For the SUSY study and the details of the construction of the background in eqs. (2.3)–
(2.5), see appendices A and B.

– 3 –



J
H
E
P
0
9
(
2
0
2
3
)
2
0
1

Note that the circle parametrised by the angle φ shrinks smoothly at r = r+ if we
choose its periodicity to be

φ ∼ φ+ Lφ, Lφ=
8π

r+f ′s(r+)
= 4π
e2
A + e2

B

1 + m√
m2 + 4(e2

A + e2
B)(Q2

A +Q2
B)

 .(2.6)

In the BPS limit, the Ricci scalar associated with the geometry in eq. (2.3) is

R = −(e2
A + e2

B)
2e2
Ar

5

(
4Q2

A + 3e2
Ar

4
)
. (2.7)

That is bounded for all the range of the radial coordinate [r+,∞).
Notice that in the case QA = QB = m = 0 (conversely, in the strict limit r →

∞), the background in eq. (2.3) becomes that in eq. (2.1). In some of the observables
we discuss below, we can perform a regularisation that takes away the effects on the
observable that come from the background (2.1) from the same observable computed in the
background (2.3). Also, in what follows, for any object, ξA,B, (like a D-brane) extended
along the spheres we use the notation ξA ≡ ξ̂ and ξB ≡ ξ̃.

2.3 Conserved charges

To calculate the D5 brane charges associated with the Ramond Field F3 in eq. (2.3), we
define the three-cycles,

MA = (ψA, θA, ϕA), MB = (ψB, θB, ϕB). (2.8)

Let us call the A-stack of branes to be the one extended along the coordinates
[t, x, φ, θA, ϕA, ψA] and analogously for the B-stack. To calculate the number of branes
in the A-stack, we need to integrate F3 over the three cycle MB — as this is orthogonal
to the A-brane stack. Analogously, the number of branes in the B-stack will be obtained
by integrating F3 over MA.

Setting α′ = gs = 1, the quantisation condition for Dp-branes is

(2π)7−pgsα
′ 7−p

2 NDp =
∫

Σ8−p

F8−p, leads to N i
D5 = 1

(2π)2

∫
Mi

F3.

After choosing a convenient orientation for the three-cycles (equivalently, changing the sign
of F3) we find for the D5 charges,

NA = 8
e2
B

, NB = 8
e2
A

. (2.9)

This implies a quantisation condition for the parameters (eA, eB). We could have chosen
different three cycles, leading to the same conditions. The result is the same for the either
of the backgrounds in eqs. (2.1), (2.3).
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2.4 Bonus: a black membrane solution

Let us consider our new background in eq. (2.3).1 Performing a double Wick rotation

φ→ it , QA,B → −iQA,B , t→ iy, (2.10)

we find a black membrane configuration, which in Einstein frame reads

ds2
E =

√
r

{
dy2 + dx2 − fbh (r) dt2 +

4
r2fbh (r)

dr2 + 2
e2
A

[
ω̂2

1 + ω̂2
2 + (ω̂3 − eAQAζ (r) dt)2

]
+ 2
e2
B

[
ω̃2

1 + ω̃2
2 + (ω̃3 − eBQBζ (r) dt)2

]}
,

F3 = dC2 = 2ζ ′ (r) dr ∧ dt ∧
(
QA
eA

ω̂3 +
QB
eB

ω̃3

)
+ 2
e2
A

ω̂1 ∧ ω̂2 ∧ (eAQAζ (r) dt− ω̂3)

+ 2
e2
B

ω̃1 ∧ ω̃2 ∧ (eBQBζ (r) dt− ω̃3) ,

Φ = log (r) . (2.11)

where

fbh (r) = e2
A + e2

B

2 − m

r2 + 2
(
Q2
A +Q2

B

)
r4 ≡ e2

A + e2
B

2r4

(
r2 − r2

+

) (
r2 − r2

−

)
,

ζ (r) = 1
r2 − 1

r2
+
, r2

± =
m±

√
m2 − 4

(
Q2
A +Q2

B

) (
e2
A + e2

B

)
e2
A + e2

B

. (2.12)

In general fbh (r) has two real roots r±. The extremal black membrane is obtained when
r+ = r− that is,

m2 = 4
(
Q2
A +Q2

B

) (
e2
A + e2

B

)
r2

+ = r2
− = 2

√
Q2
A +Q2

B

e2
A + e2

B

,

fbh (r) =
e2
A + e2

B

2r4

(
r2 − r2

+

)2
= e2

A + e2
B

2r4

(
r2 − 2

√(
Q2
A +Q2

B

)(
e2
A + e2

B

) )2

, (2.13)

The preservation of SUSY imposes eAQA ± eBQB = 0 . In the Einstein frame, the BPS
extremal background with QB = eA

eB
QA reads,

ds2
E =

√
r

dy2 + dx2 + 4
r2 e

2
A+e2

B
2 r4

+ζ (r)
2
dr2 + 2

e2
A

[
ω̂2

1 + ω̂2
2 + ω̂2

3 − 2ω̂3eAQAζdt
]

+ 2
e2
B

[
ω̃2

1 + ω̃2
2 + ω̃2

3 − 2ω̃3eAQAζdt
]}

.

F3 = 2d
[
ζ (r) dt ∧

(
QA
eA

ω̂3 +
QB
eB

ω̃3

)]
− 2
e2
A

ω̂1 ∧ ω̂2 ∧ ω̂3 −
2
e2
B

ω̃1 ∧ ω̃2 ∧ ω̃3,

Φ = log(r). (2.14)
1The material in this section arose in discussion with Juan Maldacena, whom we gratefully acknowledge.
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Note that gtt = 0, thus the vector ∂t is null. Also, in this configuration F3 has both “electric”
and magnetic parts. Nevertheless, the integrating of the magnetic part of F7 = ⋆F3 does
not lead to charge of D1 brane.

In what follows we consider the non-BPS black membrane background (2.11). This
configuration is rotating along the directions ∂ψA

and ∂ψA
. The coordinates used in (2.11)

correspond to a rotating frame, this is a consequence of the fact that the fibrations do not
decay at infinity. We can move to a non-rotating frame by doing a large gauge transfor-
mation which cancels the constant term of ζ(r) in (2.12).

We will work in the non-rotating frame at infinity and also for simplicity in the com-
putation of the charges we shift the dilaton by a constant and the F3 by a factor

ζ(r) = 1
r2 , Φ → Φ− 2 log

(
e2
A + e2

B

2

)
, F3 → e2

A + e2
B

2 F3 (2.15)

This spacetime is asymptotically locally flat and has the same causal structure as the
Reissner-Nordström spacetime. Nevertheless, the spacetime is asymptotically conformal
to Minkowski four times S3 × S3. We compute the conserved charges associated to the
spacetime by using the Noether-Wald method [54]. The expression for the charges are given
in appendix F. The energy, angular momentum associated to ∂ψA

and ∂ψB
, the temperature

and the entropy for this configuration are given by

E = 2m
e3
Ae

3
Br

2
0κ

2

(
16π2

)2
LxLy , (2.16)

JA = − 8QA
e4
Ae

3
Aκ

2

(
16π2

)2
LxLy , JB = − 8QB

e4
Ae

3
Aκ

2

(
16π2

)2
LxLy , (2.17)

T = e2
A + e2

B

16π − 4
(
Q2
A +Q2

B

)
16πr4

+
, S = 2r2

0
e3
Ae

3
BG10

(16π)2 LxLy. (2.18)

According to our normalisation κ2 = 8πG10 where G10 is the Newton constant in ten
dimensions. These quantities satisfy the first law of thermodynamics as expected

dE = TdS +ΩAdJA +ΩBdJB , (2.19)

where the angular velocities are

ΩA = eAQA
r2

+
, ΩB = eBQB

r2
+

. (2.20)

This background can be understood as a four dimensional planar black hole with electric
charges, that was firstly found in [55]. Thus, we have shown that the presence of the electric
charges in four dimensions corresponds to rotations of the branes in ten dimensions. The
asymptotic form of the metric leaves an ambiguity in the normalisation of the time-like
Killing vector at infinity that appears in the computation of the energy and the tempera-
ture. Therefore, the temperature in ten dimensions is the same as in four dimensions up
to a numerical factor.

We leave this black membrane background here, as it is not the focus of the rest of
this work. We move into computing conserved charges for the backgrounds I and II in
eqs. (2.1) and (2.3)
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NA NB

Figure 1. Dual Theory in (1 + 1) dimensions with chiral fermions running in the links. This
encodes the field theory at weak coupling. The inflow from the bulk of the branes is understood.

3 A proposal for the dual field theory and its observables

Here we present a proposal for the field theory dual to our new background in eq. (2.3).
It is convenient to first discuss the field theory dual to the D5-D5 intersection and the
background in eq. (2.1).

3.1 The holographic dual to the Background I

We start discussing the field theory on I-branes. The result in eq. (2.9) indicates the
presence of two stacks of D5 branes, with NA and NB being the number of branes on
each stack. When taken at weak coupling these stacks intersect over two dimensions.
In [18] it was shown that when two stacks of branes intersect along (4k + 2), being the
transverse dimensions a multiple of four (in our case k = 0, D5 stacks intersect in two
dimensions and have eight transverse directions) the massless spectrum contains chiral
fermions, arising from the open strings connecting the branes. These fermions give rise to
gauge (and gravitational) anomalies on the intersection. The anomalies are cancelled by
anomaly inflow from the ‘bulk of the brane’. This implies that the D-branes world-volume
action must contain a Chern-Simons term.

When studied at weak coupling the D5-D5 system preserve chiral supercharges. We
have two gauge groups SU(NA)×SU(NB) with chiral fermions transforming in the (NA, N̄B)
representation, the system has SO(1, 1) Poincare symmetry. The anomaly is cured by in-
flow from the bulk of the D5 branes. In other words, the dynamics of the intersection
is not decoupled from the brane dynamics. The system preserves eight SUSYs [18]. The
weakly coupled field theory is summarised by the quiver in figure 1. As the couplings
grow large, the above description breaks down and is replaced by a description in terms
of the background in eq. (2.1). This is carefully described in [13]. In the strong cou-
pling regime, the system preserves SO(2, 1) with SO(4) × SO(4) R-symmetry and sixteen
SUSYs. The three dimensional field theory has gauge groups with Chern Simons terms
SU(NA)NB

× SU(NB)NA
[13, 19]. At strong coupling, these stacks intersect in the coordi-

nates (t, x, φ). One of the stacks extends along (θA, ϕA, ψA) whilst the other does it over
(θB, ϕB, ψB). The papers [13, 19], argue that the field theory is gapped.

Notice that the background in eq. (2.1) is not trustable for all the range of the radial
coordinate. In fact, for large values of r, the dilaton becomes large the type IIB system is
better described by performing an S-duality and describing the dynamics in terms of the
Little String Theory on the two stacks of NS five branes. That is, the field theory above
described has a non-field theoretical UV completion.
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On the other hand, for r → 0 the Ricci scalar in eq. (2.2) diverges and the background is
not trustable. We then need to replace the description by the one given by the configuration
in eq. (2.3).

3.2 The field theory dual to the Background II.

Here, we analyse the background in eq. (2.3). The supergravity solution is smooth, hence
the dual QFT is strongly coupled.

In fact, the Ricci scalar in eq. (2.7) is finite for r > r+ and the string coupling (pro-
portional to eΦ) is bounded below some value r < r∗. The value of r∗ is determined
by observing that the dilaton in eq. (2.3) can be changed by Φ = Φ0 + log r at the cost
of rescaling the Ramond form F3 → e−Φ0F3. These scalings make the string coupling
gs = eΦ = reΦ0 . The value r∗ ∼ e−Φ0 (for which gs ∼ 1), can be made arbitrarily large by
suitably choosing the parameter Φ0. Notice that a chosen large and negative Φ0, makes
the charges of the D5 branes larger.

We then conclude that the background is trustable in a large region of the radial
coordinate [r+, r∗). Consequently, in a large regime of energies the dual field theory is
strongly coupled. At very high energies, when the string coupling becomes large we should
S-dualise arriving to a configuration of intersecting and wrapped NS-five branes. The high
energy behaviour of the field theory is UV-completed in terms of a Little String Theory.

We now discuss the flowing to lower energies. In this case, the coordinate φ is compact-
ified, shrinks to zero size and one ends with a QFT with less SUSY, smaller R-symmetry
and effectively in (1 + 1) dimensions. Whilst for large values of the radial coordinate, the
backgrounds I and II coincide at leading order, a relevant operator is deforming the field
theory dual to background II. This deformation is associated with the subleading terms,
proportional to the parameters QA, QB. As we lower the energy (still at strong coupling) a
Kaluza-Klein spectrum of massive modes arises due to the compactification of the branes
on φ.

At energies around the scale set by r+, the QFT dual to the background in eq. (2.3)
should be a (1 + 1) dimensional QFT. This should be the reduction of the Yang-Mills-
Chern-Simons SU(NA)NB

×SU(NB)NA
to (1+1), preserving four supercharges. The QFT

is expected to be gapped, confine and break part of the R-symmetry.
In what follows, we start the study of this interesting field theory. We do so by

calculating observables of the two-dimensional QFT using probes of the background in
eqs. (2.3)–(2.5). These probes inform us about gauge couplings, theta-angles, symmetry
breaking, confinement, etc. We present a quantity that indicates the number of degrees of
freedom (density of states in terms of the energy).

3.3 Gauge coupling

To study the background using D-branes probes, it is first useful to set our conventions for
the Dirac-Born-Infeld-Wess-Zumino (DBIWZ) action, describing the dynamics of branes
in our background.

Consider a ten dimensional manifold M10 equipped with a metric tensor Gµν , Neveu-
Schwarz two form Bµν , dilaton Φ and Ramond potentials encoded in the poly-form C. In
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this space, there is an embedded manifold Σ of dimension (p + 1) with (9 − p) space-like
normal vectors. This embedded manifold hosts a Dp-brane. We denote the coordinates on
the Dp-brane as XM with M = 0, 1, . . . , p. and the induced metric gMN . The action of a
single Dp-brane is the Dirac-Born-Infeld-Wess-Zumino action given by

SDp,DBI [gMN ,FMN ] = Tp

∫
dp+1xe−Φ

√
− det (gMN + FMN ) . (3.1)

SDp,WZ [C,FMN ] = −Tp
∫

Σ
C ∧ e−FMN (3.2)

Here FMN = BMN + 2πα′FMN , where BMN is the pull-back of the background Neveu-
Schwarz two-form on Σ, and FMN is an Abelian gauge field strength defined on the brane.
The tension of the Dp brane is Tp = 1

(2π)7−p , in our chosen units. For the case of our
backgrounds, we have BMN = 0 and the poly-form C = C2 given in eq. (2.3), and/or its
electric dual C6, given in appendix B.

With our choice of units (gs = α′ = 1) we can perform a small field FMN expansion of
the action in eq. (3.1), equivalent to a small-α′ expansion. We obtain an effective action
for the Dp-brane,

SDp,DBI = Tp

∫
dp+1xe−Φ√− det gMN

[
1− 1

4 (2π)2 FBCFBC +O
(
F 3
)]

(3.3)

where FBC = gBMgCNFMN . The Wess-Zumino part of the action in eq. (3.2) contains a
finite number of terms. Specialising for our backgrounds with BMN = 0 we have for any
Dp brane probe,

SDp,WZ = −Tp
∫

Σp+1
Cp+1−2πCp−1∧F2+

(2π)2

2 Cp−3∧F 2
2 −

(2π)3

6 Cp−5∧F 3
2 +

(2π)4

24 Cp−7∧F 4
2 .

(3.4)
In what follows we study the backgrounds in eqs. (2.1), (2.3)–(2.5) with various probe

branes in Type IIB.
The first probe is a D5 brane that extends on the directions [t, x, φ, θA, ϕA, ψA]. This

is like a probe that extends where the A-stack originally was. We will switch on an electric
field on its worldvolume.

Calculation in the Background I. Let us start by performing the probe calculation
in the background of eq. (2.1). The dual QFT is (2+1)-dimensional, as the coordinate φ is
not compact. By expanding the Born-Infeld action, we find a Maxwell term, with coupling
(the details of this calculation are spelled out below)

1
g2
YM,A

= 16π4

e3
A

T5

√
e2
A + 2e2

B. (3.5)

Similarly, the Wess-Zumino term gives,

SD5,WZ = −2π2T5

∫
C2 ∧ F2 ∧ F2 = −

∫
S3

A

F3

∫
t,x,φ

A1 ∧ F2 = −NB

∫
t,x,φ

A1 ∧ F2. (3.6)
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We have performed an integration by parts, used the quantisation condition in eq. (2.9) and
set T5 = 1

(2π)2 (in our units). There is a similarly symmetric calculation for a D5 probe along
[t, x, φ, θB, ϕB, ψB]. In agreement with the field theory picture discussed above, we find two
gauge groups with Yang-Mills Chern-Simons dynamics, SU(NA)NB

×SU(NB)NA
, with fixed

gauge couplings. This is exactly in agreement with the field theory expectations [13], that
we summarised in the previous section.

Calculation in the Background II. Let us now study the case for which the (2 + 1)
QFT has been compactified along the φ-direction and we are dealing with a (1+1) dimen-
sional QFT. We work with the background in eqs. (2.3)–(2.5), and follow the calculation
above, by first writing the induced metric on the D5 brane,

ds2
D̂5

= r

{
−dt2 + dx2 +

[
fs (r) + 2Q2

Bζ (r)2
]
dφ2 + 2

e2
A

[
ω̂2

1 + ω̂2
2 + (ω̂3 − eAQAζ(r)dφ)2

]}
.

(3.7)
From here we calculate

e−Φ

√
− det g(D̂5)

MN = r2
(

2
e2
A

)3/2

sin θA
√
f (r) + 2Q2

Bζ (r)
2.

The effective action for the brane in eq. (3.3) reads,

SD̂5,BI
= −TD5

∫
dtdxdφdθAdϕAdψA

(
2
e2
A

)3/2

r2 sin θA
√
f (r) + 2Q2

Bζ (r)
2
(
1− (2π)2

4 FBCFBC

)
,

= TD5Lφ (4π)
2
(

2
e2
A

)3/2

r2
√
f (r) + 2Q2

Bζ (r)
2
∫
dtdx

(
1− (2π)2

4 FBCFBC

)
.

(3.8)

We turn on Ftx so that

FBCFBC = 2FtxFtxgttgxx = 2 1
r2FtxFtxη

ttηxx = 1
r2F

2
µν . (3.9)

From here we identify the Yang-Mills coupling for this probe D5,

1
g2
YM,A

= (2π)4 TD̂5
Lφ

(
2
e2
A

)3/2√
f (r) + 2Q2

Bζ (r)
2. (3.10)

If the D5 brane probes the SUSY preserving background, we impose QB = eB
eA
QA and

m = 0 on the parameters appearing in eqs. (2.5)–(2.6). This implies r2
± = ±2QA

eA
and

Lφ = 4π/(e2
A + e2

B). Together with eq. (2.4) and the quantisation condition (2.9), the
gauge coupling reduces to2

1
ĝ2
YM,A

= 16π4

e3
A

TD̂5
Lφ

√(
1− 2QA

eAr2

)(2eAQA
r2 + e2

A + 2e2
B

)
, (3.11)

2For large values of the radial coordinate r and decompactifying φ, this result reduces to that in eq. (3.5).

– 10 –



J
H
E
P
0
9
(
2
0
2
3
)
2
0
1

with limiting values

1
ĝ2
YM,A

=

 16π4

e3
A
TD̂5

Lφ
√
e2
A + 2e2

B , r → ∞
0 , r → r+

. (3.12)

In other words, the gauge coupling grows very large at low energies and asymptotes to a
constant value for high energies. As discussed, at very high energies the field theory is best
described in terms of a Little String Theory (LST). This calculation above refers to the
gauge coupling gYM,A. Other interactions in the QFT may become large at high energies,
in such a way that the field theory is strongly coupled in the UV. This is in agreement
with the background in eq. (2.3) being weakly curved for all values of the radial coordinate
[r+,∞).

Had we studied a D5 probe extended along [t, x, φ, θB, ϕB, ψB], with an electric field
Ftx switched on the brane, the result would be,

1
g2
YM,B

= (2π)4 TD5Lφ

(
2
e2
B

)3/2√
f (r) + 2Q2

Aζ (r)
2. (3.13)

Obviously we have an expression similar to eq. (3.11), for the gauge coupling of the second
gauge group 1

g2
Y M,B

. We should use in this case that QA = eAQB
eB

3.4 Theta angle

From the viewpoint of the (2 + 1) dimensional QFT, represented by Background I in
eq. (2.1), we can consider dimensionally reducing the Chern-Simons term obtained in
eq. (3.6). We then obtain a theta-term proportional to NB

∮
φAφ for the QFT on the

A-stack.
For the (1+1) viewpoint, additional probes calculate the Θ-angle of each gauge group.

Let us use a D3 probe, extended along [t, x, θA,ΦA] with an electric field Ftx switched
on. We study the Wess-Zumino term following eq. (3.4) and using the two-form potential
pulled-back on this D3 probe

C2|D3 = − 2
e2
A

ψA sin θAdθA ∧ dϕA . (3.14)

Replacing this C2 in eq. (3.4) and using that F2 = Ftxdt ∧ dx we find the Wess-Zumino
term for this probe is (note that C4 = 0 in the background),

SWZ,D3 = −T32π
∫
C2 ∧ F2 = T316π2

e2
A

ψA

∫
Ftxdt ∧ dx . (3.15)

The Θ-angle associated with the gauge group should be identified according to ,

SWZ,D3 = ΘA

4π2

∫
dtdxFtx, −→ ΘA = TD364π4

e2
A

ψA = ψANB

2 . (3.16)

We have used 16π4TD3 = 1 (in our units) and the quantisation condition in eq. (2.9).
Notice that the periodic identification ΘA ∼ ΘA + 2kπ implies that the angle ψA gets
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quantised to the values

∆ψA = 4kπ
NB

, with k = 0, 1, 2 . . . , NB − 1. (3.17)

For k = NB we have ∆ψA = 4π, covering the full circle.
Had we considered the D3 probe extended along [t, x, θB, ϕB] with all other coordinates

fixed, we would have found (the calculation is exactly symmetrical), ΘB = ψBNA
2 .

Another way of understanding the R-symmetry breaking would be to consider eu-
clidean D1 branes wrapping [θA, ϕA]. The Wess-Zumino action contributes to the partition
function via

ZD1 ∼ e
i

2π

∫
C2 . (3.18)

This contribution should not depend on a (large) gauge transformation parameter ϵA, that
appears as we change ψA → ψA + ϵA. We enforce(

i

2π

)(−2ϵA
e2
A

)∫
sin θAdθAdϕA = 2ikπ, leads to ϵA = 4kπ

NB
. (3.19)

These results indicate that the background’s continuous isometries transforming ψA,B→
ψA,B + ϵA,B, with (ϵA,B being constants), are actually broken. In fact, the allowed changes
are ∆ψA,B = 4kπ

NB,A
, with k = 0, 1, 2 . . . , NB,A − 1, which should be interpreted as the

breaking of the two field theory global symmetries U(1)A,B into discrete subgroups.
The argument used to derive eqs. (3.17)–(3.19) is not airtight. It uses a two manifold

that has a boundary and at the same time a gauge choice is made for the potential C2 in
eq. (3.14). It would be nice to have an argument for R-symmetry breaking that is explicitly
gauge invariant. In the coming section we present a different holographic perspective on
the U(1)A,B breaking with this property.

3.5 U(1)A,B symmetry breaking pattern

Some supersymmetric field theories exhibit a classical U(1) R-symmetry that is quantum
mechanically broken to a discrete subgroup. The symmetry breaking can be understood
diagrammatically or in terms of instantons. The supergravity dual to the given field theory
should encode this, but the mechanism should not involve instantons (as that are very
suppressed in supergravity). The fact that the Ramond potentials are not gauge invariant
under the U(1) R-symmetry is key. The breaking of the global R-symmetry in the field
theory manifest as spontaneous breaking in supergravity. The vector field in the bulk, dual
of the R-symmetry current acquires a mass. We find this below for our background of
eq. (2.3). The argument that follows is gauge invariant at all steps. All along this section,
we set m = 0 and focus only in the BPS case.

The U(1) symmetry of the metric is perturbed, the Lagrangian for this fluctuation is
described by the usual F 2

µν-term. For the perturbation to be consistent, the Ramond fields
must be also perturbed, this contributes to the mass term for the fluctuation. The massive
gauge field is understood as symmetry breaking in supergravity.

In the previous section, we hinted at a breaking of the isometries represented by the
Killing vectors ∂ψA,B

. To better understand the breaking of the field theory global U(1)
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symmetries associated with the translations in ψA,B we proceed as explained in [21, 22].
We give full details in appendix D. In the holographic background, we gauge the isometry
by replacing, both in the metric and in the Ramond potential of eq. (2.3)

dψA,B → dψA,B +AA,B, ψA,B → ψA,B + ϵA,B. (3.20)

Such that a change ψj → ψj + ϵj is compensated by Aj → Aj + dϵj . We then study
the Lagrangian for the gauge fields AA,B, by replacing these changes in the string frame
Lagrangian. The metric perturbation changes the Ricci scalar to

e−2ΦR→ e−2Φ
(
R− 1

4
2r
e2
A

F 2
A − 1

4
2r
e2
B

F 2
B

)
. (3.21)

The kinetic term for F3 changes as,
1
12F

µνλFµνλ → 1
12F

µνλFµνλ +
1
2
4Q2

A + e2
Ar

4

e2
Ar

6 (AA − dϵA)2 + 1
2
4Q2

B + e2
Br

4

e2
Br

6 (AB − dϵB)2

+ 4QAQB
eAeBr6 (AA − dϵA) · (AB − dϵB) .

(3.22)
These perturbations around an isometry direction are usually known to be consistent. It
is interesting to note that the kinetic term for the gauge field A(A,B) comes only from the
Ricci scalar. The information of ϵA,B on the other hand, comes only from F 2

3 . Defining

W(A,B) = AA,B − dϵA,B, (3.23)

and imposing the BPS condition eAQB = eBQA, the Lagrangian for the perturbation reads,

L = −1
4

2
re2
A

F 2
A − 1

4
2
re2
B

F 2
B + 1

2r2 (W
(A)
µ W (A)µ +W (B)

µ W (B)µ) + 1
2
4Q2

A

e2
Ar

6 (W
(A)
µ +W (B)

µ )2.

(3.24)
We interpret this result as follows. There are two U(1) global symmetries in the QFT,
holographically they are represented by the invariance of the metric under changes in ψA
and ψB. These global symmetries are broken to discrete groups ZNB

and ZNA
, as indicated

by eq. (3.17). This breaking is an effect of the lack of invariance of the gauge potential
C2. The breaking of the global symmetries is addressed in this section without appeal to
the Ramond potentials, by observing that gauging the metric isometries ∂ψA,B

leads to a
breaking of the gauge symmetry, by a mass term. These mass terms are dependent on the
radial coordinate.

Contrary to what happens for the duals to N = 1 SYM, the metric in eq. (2.3) does
not break these discrete isometries to Z2. In other words, there is not a radial-regime
in the metric that explicitly breaks the isometry ∂ψA,B

. We interpret this result as the
(anomalous) breaking of the two U(1)A,B in the QFT not being followed by a further
spontaneous breaking. One might argue that VEVs are not allowed in a two dimensional
QFT, hence no further breaking can take place by the formation of a condensate. This
argument is not completely rigorous, as our QFT is two dimensional in the far IR, but get
UV completed around the confining scale to a higher dimensional QFT.

We study now a different observable that gives an approximate idea of the number of
degrees of freedom as a function of the energy (a density of states).
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3.6 Holographic central charge

Consider a generic holographic background dual to a QFT in (d+1) spacetime dimensions,
with metric and dilaton given by

ds2 = a(r, yi)
[
dx2

1,d + b(r)dr2
]
+ gij(r, yi)dyidyj , Φ(r, yi). (3.25)

Following [23], we define quantities Vint, H according to

Vint =
∫
dyi
√
e−4Φa(r, yi)d det[gij ], H = V 2

int.

From these we define the holographic central charge (or free energy),

chol = dd
b(r) d

2H
2d+1

2

G
(10)
N (H ′)d

, (3.26)

where G(10)
N = 8π6 is (in our conventions), the ten-dimensional Newton constant.

The holographic central charge of eq. (3.26) makes perfect sense for backgrounds with
an AdS-factor. In those cases the quantity in eq. (3.26) is a number depending on the
parameters of the background and it was successfully matched with the free energy of the
CFT. In contrast for our case, without an AdS-factor we use eq. (3.26) to give an indication
of the number of degrees of freedom of the QFT.

Let us first compute the quantities in eqs. (3.25)–(3.26) for the solution in eq. (2.1),
dual to a (2 + 1) dimensional QFT. We find,3

d = 2, a(r, yi) = r, b(r) = 8
(e2
A + e2

B)r2 , Vint = N r2, N = 8(4π)4

e3
Ae

3
B

,

H = N 2r4, chol =
2N

GN (e2
A + e2

B)
r2. (3.27)

This quantity diverges at large energies, hinting at a UV completion in terms of a system
in higher dimensions (a LST). Also, it vanishes for r = 0, indicating a gapped system.
Notice nevertheless that the calculation should not be trusted close to r = 0, as the
background (2.1) is singular there.

Let us now calculate for the background in eq. (2.3), as a dual to a (1 + 1)-dim QFT.
We find

d = 1, a(r, yi) = r, b(r) = 4
r2fs(r)

,

Vint = N r2
√
fs(r), Ĥ = N 2r4fs(r), N = (4π)4 8

e3
Ae

3
B

Lφ,

chol =
N

2GN
fs(r)r2(

fs(r) + r
4f

′
s(r)

) . (3.28)

At high energies the number of degrees of freedom grows unbounded (as r2), signalling the
UV completion in terms of a decompatified QFT in higher dimensions. At very low energies

3We thank the referee for pointing out a typo in the original version of this expression.
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the number of degrees of freedom vanish, as fs(r+) = 0. In this case, the calculation is
trustable, hence the gapped character of the system is clear.

A related calculation can be done that encodes the fact that we can think our field
theory as a three dimensional QFT with anisotropies (or a QFT with a flow across dimen-
sions). We follow the treatment described in section 8.2 of the paper [24], see also [25].
Using the notation of [24] we have,

d = 2, α0 = α1 = r, α2 = rfs(r), β = 4
r2f

3/2
s

, H = N 2r4fs(r),

N =
( 2
eAeB

)3
(4π)4,

cflow = N
GN

r2fs
(fs(r) + r

4fs(r)′)2 . (3.29)

The result in eq. (3.29) has a similar interpretation. At low energies we have no degrees of
freedom, at high energies an unbounded growth in the degrees of freedom indicates the UV
completion. Note that the growth at high energies for the flow-central-charge — eq. (3.29),
is slower than it is for the case in which we consider the QFT to be two dimensional, see
eq. (3.28). This same feature occurs when considering flows between conformal points in
different dimensions.

These results suggest that our QFT generates a mass gap at low energies. The be-
haviour of the gauge couplings at low energies, see eq. (3.12) suggest that the QFT is
also confining. To ascertain the confining behaviour we calculate Maldacena-Wilson and ’t
Hooft loops, that provide order parameters for confinement. We also investigate the En-
tanglement Entropy (EE), which gives information about the interplay between a confining
IR and the non-local UV dynamics of the QFT.

4 Maldacena-Wilson, ’t Hooft loops and Entanglement Entropy

In this section we calculate different observables to learn more about the proposed field
theory. We start calculating the Maldacena-Wilson loops [26, 27], in order to test the above
proposal that at low energies the QFT presents a mass gap and confines. We start with a
summary of the formalism to compute Maldacena-Wilson loops. This same formalism is
then adapted for the study of ’t Hooft loops and Entanglement Entropy.

4.1 General comments on Maldacena-Wilson loops and similar probes

We start summarising general results pertaining holographic Wilson loops. We follow the
treatment of [28, 29]. This generic treatment is also useful for the study of other probes
that reduce to an ‘effective string’ in the background. Hence it will apply to ’t Hooft loops,
Entanglement Entropy, as we discuss below.

Consider a generic holographic background of the form

ds2 = −gttdt2 + gxxdx⃗
2 + grrdr

2 + gijdθ
idθj . (4.1)
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We assume that gtt, gxx, grr depend only on the radial coordinate r. As usual, we propose
a string embedding (parametrised in terms of (τ, σ) the worldsheet coordinates), which
leads to a Nambu-Goto action for the F1-string of the form,

t = τ, x = x(σ), r = r(σ).

SNG = TF1

∫
dτdσ

√
gtt(r)gxx(r)x′2 + gtt(r)grr(r)r′2. (4.2)

From this action, the equations for the string moving in the generic background reduce to
(see [29] for a detailed derivation)

dr

dσ
= ±dx

dσ
Veff (r) . (4.3)

We defined the effective potential

Veff (r) = F (r)
CG (r)

√
F 2 (r)− C2 , F 2 (r) = gttgxx, G2 (r) = gttgrr. (4.4)

The constant C = F 2x′√
F 2x′2+G2r′2

is obtained from one of the equations of motion. In the
simpler case in which we take x(σ) = σ we find eq. (4.3) from the conserved Hamiltonian.
In that case C = F (r0), being r0 the turning point of the string satisfying r′(σ) = 0 (these
are called U-shaped embeddings). We set C = F (r0) in what follows. We enumerate below
a set of properties of the U-shaped embeddings.

1. This formalism applies to an open string whose end points are at r → ∞, where we
add a D-brane. Dirichlet boundary conditions for the string at r → ∞ require that
Veff |r→∞ ∼ ∞.

2. We compute the separation between the two ends of the string on the D-brane,
which can be thought as the separation between a quark-antiquark pair. The energy
of the pair of quarks calculated from the Nambu-Goto action needs regularisation,
implemented by subtracting the mass of two non-dynamical strings extended along
the whole range of the radial coordinate [r+,∞).
The separation and energy are given as functions of r0 (the distance from the origin
of the radial coordinate, r+, to the position of the turning point of the string). The
expressions for these quantities are,

LQQ (r0) = 2
∫ +∞

r0

dz

Veff(z)
, (4.5)

EQQ (r0) = F (r0)LQQ (r0) + 2
∫ +∞

r0
dz
G (z)
F (z)

√
F (z)2 − F (r0)2 − 2

∫ +∞

r+
dz G (z) .

(4.6)

3. To obtain a finite contribution coming from the upper limit of the QQ̄ pair separation
in (4.5), a further restriction on the behaviour of the effective potential at infinity is
needed. See [29] for a derivation,

Veff |r→+∞ ∼ rβ , with β > 1 . (4.7)
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4. When expanded close to the end of the space, which is at r = r+ in the case of the
background in eq. (2.3), we find Veff ∼ (r−r+)γ . If 1 ≤ γ, the separation between the
pair becomes infinite — see [29]. Otherwise (if γ < 1) we have screening behaviour.

5. There is an analytic relation between EQQ and LQQ which is

dEQQ
dr0

= F (r0)
dLQQ
dr0

−→ dEQQ
dLQQ

= F (r0). (4.8)

We have inverted the relation (4.5) as r0 = r0(LQQ).

6. For generic backgrounds, the evaluation of the integral in eq. (4.5) need not be simple
nor have an expression in terms of elementary functions. Nevertheless, the quantity

L̂QQ(r0) = π
G

F ′

∣∣∣
r0
, (4.9)

provides a reasonable approximation to eq. (4.5). We check this approximate expres-
sion for different observables studied below.

7. Following [30, 31] we define

Z(r0) =
d

dr0
L̂QQ(r0) = π

d

dr0

(
G(r0)
F ′(r0)

)
. (4.10)

The stability of the U-shaped string embedding in eq. (4.2) is guaranteed if Z(r0) <
0 [30, 31]. This is valid for any observable that can be reduced to an effective string
action of the form (4.2)4

8. In calculations like those in eqs. (4.5)–(4.6) we can introduce a cutoff rUV to regulate
divergences coming from the upper limit in the integrals. We define a quantity analog
to (4.5),

LQQ(r0, rUV ) = 2
∫ rUV

r0

dz

Veff(z)
. (4.11)

Following [30, 31] we calculate

La = lim
r0→∞

lim
rUV →∞

LQQ(r0, rUV ) and Lb = lim
rUV →∞

lim
r0→rUV

LQQ(r0, rUV ). (4.12)

Whilst Lb = 0 by definition, it is sometimes the case that La is nonzero. If in this case
the U-shaped configuration is unstable (Z(r0) > 0), there exist ‘short configurations’
(that appear very close to the cutoff). These short configurations are energetically
favoured and induce a phase transition in the observable calculated [30, 31, 38].

4It was shown in [30–33] that embeddings for which Z(r0) ≥ 0 do not satisfy two physically well motivated
criteria [34]: the force between the quark and the antiquark is always attractive and positive dEQQ

dLQQ
> 0.

It is also a non-increasing function of the separation d2EQQ

dL2
QQ

≤ 0. The proposal in [30, 31] is that the two
criteria above are equivalent to the stability of the U-shaped embedding or conversely Z(r0) < 0.
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The existence of these short configurations that appear when introducing the UV-cutoff
is not an artefact of the cutoff. They indicate that the string embedding we proposed in
eq. (4.2) is not capturing the dynamically favoured configuration. In the study of the ’t
Hooft loop and the Entanglement Entropy we encounter these short configurations, that
cure the problem of the instability of the embedding and introduce a phase transition in
the observable. We take the instability of the configuration (cured by the introduction of
a cutoff) as an indication that the dynamics of the LST is driving the observable.

Let us now apply this general treatment to our background in eq. (2.3).

4.2 Maldacena-Wilson loops in our background

Let us apply the expressions in eqs. (4.1)–(4.9) to our background in eq. (2.3). The relevant
functions are

F (r) = r, G(r) = 2√
fs(r)

, Veff(r) =

√
e2
A + e2

B

8

( 1
r0 r

)√
(r2 − r2

0)(r2 − r2
+)(r2 − r2

−).

(4.13)
The condition in eq. (4.7) to have Dirichlet boundary conditions for the string at r → ∞,
is satisfied. When expanded close to r0 = r+, Veff ∼ (r− r+), indicating that LQQ diverges
when r0 approaches the end of the space r+. This points to confining behaviour.

Another quick way of determining a confining behaviour is to check the function F (r+),
that intuitively represents the tension of a QCD-string at low energies in the QFT (close
to the end of the space of the geometry). In this case we find F (r+) = r+, pointing to
confining behaviour. In fact, a finite QCD-string tension leads to an energy growing with
the separation of the quark pair. Note also that the approximate formula for the separation
of the quark pair eq. (4.9), gives for the functions in eq. (4.13)

L̂QQ(r0) =
2π√
fs(r0)

. (4.14)

For r0 → ∞ this gives L̂QQ = π
√

8
e2

A+e2
B

, which refers to a characteristic length of the
UV completion (the Little String Theory scale). On the other hand, for r0 ∼ r+, the
approximate length diverges and 1√

r0−r+
. This indicates that the quark-anti-quark pair

can be infinitely separated. According to eq. (4.6), this gives an energy that scales linearly
with the separation, another signal of a confining behaviour.

The quantity Z(r0) in eq. (4.10) reads,

Z(r0) =
2
√
2πr0√

e2
A + e2

B

(
−r2

0(r2
+ + r2

−) + 2r2
+r

2
−
)[

(r2
0 − r2

+)(r2
0 − r2

−)
]3/2 . (4.15)

By inspection, one find that Z(r0) < 0 in all the range. Hence the U-shaped embeddings
are stable and no phase transition is expected for the Maldacena-Wilson loops.

The rigorous way of determining the low energy behaviour of the QFT (either confining
or screening) is to analyse the expressions for the distance and the energy of the quarks
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pair. The distance between the quark-antiquark pair and its energy are written from
eqs. (4.5)–(4.6)

LQQ (r0) =
√

32
e2
A + e2

B

r0

∫ ∞

r0
z

√
1(

z2 − r2
+
) (
z2 − r2

−
) (
z2 − r2

0
)dz , (4.16)

EQQ (r0) = r0LQQ (r0) +
√

32
e2
A + e2

B

[ ∫ ∞

r0
dz

√
z2 (z2 − r2

0
)(

z2 − r2
+
) (
z2 − r2

−
) −

∫ ∞

r+
dz

z2√(
z2 − r2

+
) (
z2 − r2

−
)
]
. (4.17)

The integrals can be performed analytically and expressed in terms of in terms of Elliptic
integrals of the first kind. It is interesting to study this in the BPS limit, when m = 0
and r2

+ = −r2
−. See appendix E for a detailed study. Let us quote the explicit results

for the separation and energy of the quark pair in eqs. (4.16)–(4.17). Defining the elliptic
integrals,

K(x) =
∫ π

2

0

dθ√
1− x sin2 θ

, E(x) =
∫ π

2

0

√
1− x sin2 θdθ, (4.18)

we can write the explicit expressions for the separation and energy of the quark-antiquark
pair, which read

LQQ (r0) = 2
√

8
e2
A + e2

B

r0/r+√
r2

0/r
2
+ − 1

K
(
1− r2

−/r
2
+

1− r2
0/r

2
+

)
, (4.19)

EQQ (r0) = 2r+

√
8

e2
A + e2

B

 r2
0/r

2
+√

r2
0/r

2
+ − 1

K
(
1− r2

−/r
2
+

1− r2
0/r

2
+

)

−E
(
1− r2

−/r
2
+

1− r2
0/r

2
+

)√
r2

0/r
2
+ − 1 + C (r−/r+)

]
,

(4.20)

where

C (r−/r+) = E
(
r2
−/r

2
+

)
+λ−K

(
1−r2

−/r
2
+

)
+iλ−K

(
r2
−/r

2
+

)
−
(
1−r2

−/r
2
+

)
K
(
r2
−/r

2
+

)
.

λ2
− = −

r2
−
r2

+
.

See appendix E for a careful derivation of these expressions. We plot these results in
figure 2. The various panels of figure 2 show some conventional and other less conventional
behaviours. First, note that the expression for L̂QQ in eq. (4.14) very well approximates
the exact expression in eq. (4.19). As is usual, the concavity of the curve EQQ(LQQ) is
‘downwards’, indicating that the Nambu-Goto string configuration of eq. (4.13) is stable, as
confirmed by the Z(r0) in eq. (4.15). Note also that for large separations between the quark
pair LQQ, the energy grows linearly (signalling confinement). What is less conventional is
that there is a minimal separation, given by the Little String Theory scale. This indicates
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Figure 2. Upper left: plot comparing the exact expression for the quark separation LQQ in
eq. (4.19) with the approximate one L̂QQ in eq. (4.14). The minimal separation as r0 grows large
hints at a LST behaviour. Upper right: plot of EQQ(r0) with r0 in units of r+. The plot is made
in the BPS limit with m = 0. Bottom left: parametric plot of EQQ(LQQ) in the BPS bound
m = 0 , r+ = eB = eA = 1. Bottom right: the profiles of different strings as they explore the
bulk. The longer the separation LQQ, the more the string approaches r0

r+
∼ 1. This is usual of the

backgrounds dual to a confining QFT behaviour.

that the far UV of the QFT dynamics is not field theoretical (but has the dynamics of the
LST). The plot of the strings profiles confirms this. Indeed, strings that barely explore
the bulk (with r0

r+
large) show a minimal fixed separation between the quark pair. On the

other hand, the strings that explore deeper into the bulk display a bigger quark separation
and carry higher energy.

Let us now focus on a second interesting observable, the ’t Hooft loop. In the next
section we propose a string-like object (for the gauge theory observer) with magnetic charge.
This characteristically is represented by a Dp brane that wraps a (p−1) cycle in the internal
space. Once the Born-Infeld action for this Dp brane is written and integrals over the
internal space are performed, we arrive at an action for the ‘effective string’. This action
is studied with the same formalism as that used for Wilson loops, described in section 4.1.

4.3 ’t Hooft loops

The ’t Hooft loop can be calculated by proposing an object with magnetic charge that
effectively appears like a string for the (1+1) dimensional QFT. The ends of this magnetic
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string appear as a pair of monopoles of oposite charge. To study this object, we adapt the
formulas summarised in eqs. (4.1)–(4.10) for the effective magnetic string.

We propose to calculate the ’t Hooft loop by studying the effective magnetic string
obtained when extending a D5 brane along the directions [t, x, φ, θA, ϕA, ψA], with r(x).
There is an analog magnetic string for the second gauge group, for the D5 in the config-
uration [t, x, φ, θB, ϕB, ψB], with r(x). We do not discuss the latter object, as its result
is analog to the one obtained below. Note that this object becomes string-like when we
consider the size of the S1

φ to be small enough to not admit excitations.
The induced metric for the above D5 is,

ds2 = r

{
−dt2 +

(
1 + 4

r2fs (r)
r′2
)
dx2 +

(
fs (r) + 2Q2

Bζ (r)2
)
dφ2

+ 2
e2
A

[
ω̂2

1 + ω̂2
2 + (ω̂3 − eAQAζ(r)dφ)2

]}
. (4.21)

Then we calculate,

e−Φ√− det gMN =
(

2
e2
A

)3/2

r2 sin θA

√(
1 + 4r′2

r2f (r)

)(
f (r) + 2Q2

Bζ (r)
2
)
. (4.22)

The action for this D5 is,

SD̂5
[r] =TD5Lφ (4π)

2
(

2
e2
A

)3/2 ∫
dtdx

√√√√(fs (r)+2Q2
Bζ (r)

2
)
r4+4r2

(
1+2Q2

Bζ (r)
2

fs (r)

)
r′2 .

Comparing with (4.2)–(4.4) we identify

F 2 =
(
fs(r) + 2Q2

Bζ(r)2
)
r4, G2 = 4

r2fs (r)
F 2 , Teff = TD5LφLt (4π)

2
(

2
e2
A

)3/2

.(4.23)

Where Teff is the effective tension of the magnetic string. Following eq. (4.4), the effective
potential

Veff (r) = r3

2C

√
fs (r)

(
fs (r) + 2Q2

Bζ (r)
2 − C2

r4

)
. (4.24)

The constant C = F (r0) =
√(

fs(r0) + 2Q2
Bζ

2(r0)
)
r2

0. In the asymptotic region the effective
potential in eq. (4.24) scales as Veff (r → ∞) ∼ r3, satisfying the condition in eq. (4.7).

The intuitive criteria discussed in the previous section applied for this case indicate
a screening behaviour. In fact F (r+) = 0 and Veff ∼ (r − r+)1/2, signalling a vanishing
tension of the magnetic QCD-string in the IR, and a finite maximal separation, after which
the monopoles are screened (more about this is discussed below).

We perform a similar analysis using the approximate expression for the separation
between the monopole-anti-monopole pair L̂MM . Replacing in eq. (4.9) the functions in
eq. (4.23), we find an involved expression that asymptotes as,

L̂MM (r0 → ∞) ∼ π

√
2

e2
A + e2

B

, L̂MM (r0 → r+) ∼ 8π
√

r+(r0 − r+)
(e2
A + e2

B)(r2
+ − r2

−)
. (4.25)
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These asymptotic behaviours indicate that at high energies in the field theory, the pair
is separated by a maximum distance characteristic of the UV completion (Little String
Theory). In this sense, the magnetic string behaves oppositely to the electric one used
to compute the Wilson loop (which shows a minimum separation). On the other hand,
at low energies the separation decreases to zero (again, oppositely to the electric string
case). We calculate Z(r0) in eq. (4.10) for this configuration and find that is positive in
all the range. This indicates the instability of the U-shaped embeddings. A more general
embedding that the one proposed here should drive the dynamics. Instead of finding this
more complicated embedding, below we introduce a UV-cutoff. New short configurations
appear close to a cutoff, that dominate the dynamics and produce a phase transition (to a
deconfining behaviour).

More formally, we write expressions for the separation between the monopole-anti-
monopole pair as those in eqs. (4.5)–(4.6). A careful analysis of these integrals is performed
in appendix E. Let us quote the exact expression for the separation for the monopole-anti-
monopole pair. We leave the study of the expression for the energy between the pair of
monopoles for appendix E). In terms of the elliptic integral of the first kind

F (y|x) =
∫ y

0

dθ√
1− x sin2 θ

, (4.26)

and the definition for K(x) in eq. (4.18), working in the BPS limit and defining η = eA/eB,
we find

LBPSMM (r0) =
2
eB

√
2
(
r2

0/r
2
+ − 1

) (
(η2 + 2) r2

0/r
2
+ + η2)

(η2 + 1)
(
r2

0/r
2
+ (η2 + 2)− 1

)
×
[
F
(
arcsin

√
2
(
−1 + (2 + η2) r2

0/r
2
+
)(

2r2
0/r

2
+ + η2 (1 + r2

0/r
2
+
)) ∣∣∣∣∣

(
1 + r2

0/r
2
+
) (

2r2
0/r

2
+ + η2 (1 + r2

0/r
2
+
))

−4 + 4 (2 + η2) r2
0/r

2
+

)

+iK
(
1−

(
1 + r2

0/r
2
+
) (

2r2
0/r

2
+ + η2 (1 + r2

0/r
2
+
))

−4 + 4 (2 + η2) r2
0/r

2
+

)]
. (4.27)

In figure 3 we compare this exact expression with the approximating function whose asymp-
totics we write in eq. (4.25). As stated above, opposite to the Wilson loop case, we en-
counter a maximal separation for the monopole pair. This maximal separation is associated
with the Little String Theory scale. We also plot the string profiles as they enter the bulk.
We observe a different behaviour to that found in the case of the Wilson loop — compare
with the lower right panel of figure 2.

For magnetic strings that barely explore the bulk, the separation between the monopole
pair is large (equal to the LST scale). As we decrease the separation between the monopole
pair, the magnetic string dives into r0 → r+. These unconventional behaviours, together
with the instability of the string embedding — note that EMM (LMM ) has upwards concav-
ity (and Z(r0) is positive), indicate the presence of a second ‘disconnected’ configuration
for which the pair of monopoles separate without energy expense, which is indicative of
screening. The transition to a disconnected configuration is dynamically favoured.
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Figure 3. Left: plot comparing the exact expression for the quark separation LMM in eq. (4.27)
with the approximate one L̂MM in eq. (4.25), both in the BPS limit. Right: the profiles of different
strings as they enter the bulk. Strings with small separation of the monopole pair penetrate deeper
into the bulk. There is a maximum separation for the pair of monopoles, associated with the Little
String Theory scale.

To avoid the ’t Hooft loop to be driven by the UV (LST) dynamics and to realise
explicitly these short configurations, we introduce a hard cutoff in the radial direction and
recalculate things. Doing so, the behaviour changes qualitatively.

In fact, the separation between the pair of monopoles does not show a maximum
value, instead we find a ‘double valued’ behaviour as displayed in the left panel of figure 4.
This leads to a phase transition in the curve EMM (LMM ). Note that the curve now has
the correct ‘downwards’ concavity, indicating that the configuration is stable. This phase
transition is the physical manifestation of the magnetic string suddenly changing into two
disconnected magnetic strings that move without energy expense. This is deconfinement
for the pair monopole anti-monopole. We are finding confinement for the quark-anti-quark
pair and screening for a pair of monopoles. These behaviours are consistent with the
(electric) confining behaviour of the dual QFT.

The introduction of the UV cutoff might seem unsatisfactory. Here we use it as a
device to show that the correct five brane embedding must be more elaborated than the
one we proposed above. It is also used to avoid the LST overtaking the dynamics. The
effect of the cutoff is clear considering the integral needed to calculate L(r0). This integral
vanishes for r0 → rMAX . This produces a double-valued L(r0) and a consequent phase
transition.

For the Entanglement Entropy a very similar behaviour occurs. We study this next.

4.4 Entanglement entropy

The Entanglement Entropy (EE) between two regions for field theories with a string dual
can be calculated as shown in [35, 36]. The method is to find a minimal area eight-surface
(Σ8, a codimension-two surface to which we refer below as RT surface) such that the
boundary of the surface coincides with the two entangled regions. We focus on the case
in which one of the regions is a strip of size LEE and the other region is the complement.
The EE between these regions is given in [35–37], minimising the quantity

SEE = 1
4GN

∫
Σ8
d8σ

√
e−4Φ det[gΣ8 ]. (4.28)

– 23 –



J
H
E
P
0
9
(
2
0
2
3
)
2
0
1

0 1 2 3 4 5 6
0

1

2

3

4

r0/r+

L
M
M
(r
0
)

rmax/r+ = 5

rmax/r+ = 10

rmax/r+ = 20

rmax/r+ = 60

0.0 0.5 1.0 1.5 2.0 2.5 3.0

-200

-150

-100

-50

0

LMM(r0,rmax/r0=10)

E
M
M
(r
0
,r
m
ax
/r
0
=
10

)

0 1 2 3 4
-1.0
-0.5
0.0
0.5
1.0
1.5
2.0

Figure 4. Left: after introducing a cutoff at rMAX , the figure shows the double-valued character
of LMM . Removing the cutoff recovers the LST behaviour (on the left panel of figure 3). Right:
with the UV cutoff at rMAX = 20, we see that EMM as a function of LMM has the ‘upwards’
concavity (indicating stability). The presence of the phase transition to a disconnected configuration
is observed.

There are various eight-surfaces that minimise SEE in eq. (4.28). Due to this, in some
cases there is a phase transition between different extremal surfaces. It was suggested
in [37] that a criterion for confinement is the presence of a phase transition in the EE. This
proposal was critically analysed in [38]–[39]. It was found in [38], that for the case of field
theories that confine, but have a non-local high energy behaviour, the phase transition in
the EE is absent. The point is subtle, as introducing a UV cutoff or UV-completing the
QFT to avoid the non-locality, recovers the phase transition.

It is in this way that the EE can serve as an order parameter for confinement, but also
as a tool to diagnose non-locality in the UV-behaviour of the QFT (when used together
with a confining Wilson loop). In [38] it was found that introducing a UV-cutoff implies
the existence of new configurations realising the phase transition (and resolving a stability
issue with the original eight-surface). Below, we perform an analysis of these features in
our background of eq. (2.3).

We follow the approach of [35, 36], in particular the treatment for non-AdS back-
grounds developed in [37, 38]. We calculate the Entanglement Entropy on a strip by
computing the area of an eight-surface [x, φ, θA, ϕA, ψA, θB, ϕB, ψB] with r = r(x) in the
background of eq. (2.3). The induced metric on the RT eight-surface, its determinant and
the Entanglement Entropy are,

ds2
st = r

{
dx2(1 + 4r′2

r2fs(r)
) + fs (r) dφ2 + 2

e2
A

[
ω̂2

1 + ω̂2
2 + (ω̂3 − eAQAζ(r)dφ)2

]
+ 2
e2
B

[
ω̃2

1 + ω̃2
2 +

(
ω̃2

3 − eBQBζ (r) dφ
)2
]}

, (4.29)

√
e−4Φ det[g8] =

(
8

e3
Ae

3
B

)√
r4fs(r) + 4r2r′2 sin θA sin θB.

SEE = 1
4GN

∫
d8x

√
e−4Φ det[g8] =

(
2(4π)4Lφ
e3
Ae

3
BGN

)∫ L/2

−L/2
dx
√
r4fs(r) + 4r2r′2.

(4.30)
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From eqs. (4.2)–(4.4), this implies

F (r) = r2
√
fs(r), G(r) = 2r. (4.31)

To minimise the SEE above, we follow the usual conserved Hamiltonian treatment. The
Entanglement Entropy needs to be regularised by the area of two eight-surfaces that hang
straight from infinity. Then, computing the regulated area for a surface that turns around
at r0, we find for the length of the interval and the Entanglement Entropy,

L = 4r2
0

√
fs(r0)

∫ ∞

r0

dr√
r2fs(r)

(
r4fs(r)− r4

0fs(r0)
) , (4.32)

SEE = N
GN

[∫ ∞

r0

√
r6fs(r)

r4fs(r)− r4
0fs(r0)

dr −
∫ ∞

r+
rdr

]
. (4.33)

As in eq. (4.9), we can write a simple expression that approximates LEE in eq. (4.32) —
see [38],

L̂EE = πG(r0)
F ′(r0)

= 2πH(r)
√
β(r)

H ′(r)
∣∣∣
r0
, with H(r) = N 2r4fs(r), β(r) = 4

r2fs(r)
. (4.34)

Using eq. (4.34) we find

L̂EE =
(
π

√
8

e2
A + e2

B

) √(r2
0 − r2

+)(r2
0 − r2

−)(
2r2

0 − r2
+ − r2

−
) . (4.35)

This function is monotonous, going from a vanishing value at r0 = r+ to a constant value at
r0 → ∞. This behaviour prevents the possibility of phase transitions, which require that for
a given LEE there are two possible values of r0. In fact, the conditions for the presence of a
phase transition (see section 2.4 of the work [38]) are not satisfied, in particular equations
(2.26)-(2.29) of [38] imply j = 2 preventing a phase transition. The absence of a phase
transition in a confining model was interpreted in [38] as an effect of the non-locality of
the completion of the QFT, in this case, by a LST.

Since Z(r0) defined in eq. (4.10) gives

Z(r0) =
√
8π(r2

+ − r2
−)2

r0fs(r0)(r2
+ + r2

− − 2r2
0)2 > 0, (4.36)

the proposed embedding is unstable. Upon the introduction of a cutoff, new surfaces appear
as found in [38, 40, 41]. These cure the instability problem of the embedding and give place
to the phase transition, in agreement with confinement.

The treatment in the papers [38, 40, 41] applies to our background, even when the IR
dynamics is different, the UV dynamics is similarly driven by a Little String Theory.

Before discussing the presence (or absence) of phase transitions we write the analytic
expressions for the values of the separation between the two entangled regions LEE(r0) and
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Figure 5. Left: plot comparing the exact expression for the separation of the entangled regions
LEE in eq. (4.37) with the approximate one L̂EE in eq. (4.35). Right: the plot of SEE(r0).

the Entanglement Entropy SEE(r0). These expressions are explicitly derived in appendix E.
Using the definitions in eqs. (4.18), (4.26) and recalling that λ2

− = − r2
−
r2

+
, we find

LEE (r0) = 2
√

8
e2
A + e2

B

√
r2

0/r
2
+ − 1

r2
0/r

2
+ + λ2

−

[
iK
( (

r2
0/r

2
+ − 1

)2(
r2

0/r
2
+ + λ2

−
)2
)

+F
(
arcsin

√
r2

0/r
2
+ − r2

−/r
2
+

1− r2
−/r

2
+

∣∣∣∣∣
(
1− r2

−/r
2
+
) (

−r2
−/r

2
+ + 2r2

0/r
2
+ − 1

)(
r2

0/r
2
+ − r2

−/r
2
+
)2

)]
,

(4.37)

and

SBPSEE (r0) =
N
GN

r2
+

[
r2

+
2r2

0

(
−r4

0/r
4
+E

(
r4

+/r
4
0

)
− K

(
r4

+/r
4
0

)
+ r4

0/r
4
+K

(
r4

+/r
4
0

))
+ 1

2

]
.

(4.38)
To analyse these expressions, it is useful to show some plots. First, we check that the
approximate L̂EE(r0) in eq. (4.35) approximates well the analytic expression in eq. (4.37),
see the left panel of figure 5. We also plot SEE(r0), see the right panel of figure 5. The plot
of SEE in terms of LEE in the left panel of figure 6, shows an upwards concavity indicating
that the configuration is unstable. This follows the prediction of [38] that indicates that
new configurations should appear as we introduce a UV-cutoff in the geometry. The profiles
of the effective strings shown in the right panel of figure 6, display a behaviour similar to
the one we encountered in the study of ’t Hooft loops (and opposite to that of the Wilson
loop), again suggesting the need for a phase transition.

In analogy with the case of the ’t Hooft loop, if we introduce a UV-cutoff, the separation
between the two entangled regions becomes multiple-valued, as shown in figure 7 (right
panel). This is at the root of the phase transition. The plot of SEE(LEE) shows the
correct concavity and the presence of a transition to the disconnected configuration is
clearly displayed. See figure 7

Following the findings of [38], we state that if a field theoretical UV completion to our
system (that is completed by a LST) were found, the phase transitions for the ’t Hooft
loops and the EE would become apparent. In this sense the UV-cutoff captures the correct
dynamics.
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Figure 7. Left: plot of LEE in eq. (4.37) imposing the presence of a UV-cutoff. Right: the plot
of SEE(LEE). Notice that the concavity has changed, indicating the stability of the configuration.
The phase transition becomes apparent thanks to the cutoff, avoiding the non-local behaviour.

5 Sigma model

In this section we review some results [13, 14], concerning the string σ-model on the back-
ground in eq. (2.1).5 To properly study the string action we move to the S-dual frame, and
work in terms of NS5 branes. After suitable coordinate changes detailed in appendix B,
the background reads,

ds2
10D = −dt2 + dx2 + dφ2 + dρ2 +NBds

2(S3
A) +NAds

2(S3
B),

H3 = 2NBVol(S3
A) + 2NAVol(S3

B),

Φ = −
√

1
NA

+ 1
NB

ρ.

(5.1)

For a careful derivation we refer the reader to appendices B and C. The background is a
product space of the form

R2,1 × Rρ × S3
NA

× S3
NB
, (5.2)

where Rρ denotes the direction (with the linear dilaton), and the subscript on the S3

denotes the square of their radius. The metric on the spheres together with the H3 flux on
5We gratefully acknowledge conversations with Lewis Cole and Gastón Giribet on the topics discussed

here.
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each of them allows us to write the σ-model on them as a WZW model on SU(2). This is
due to the fact the S3 is a group manifold. Naively, the contribution of the ρ coordinate
to the string action is (for clarity we reinstate the α′-factor)

Sρ =
1

4πα′

∫
d2σ

√
−h

(
hab∂aρ∂bρ− α′

√
1
NA

+ 1
NB

R(2)ρ

)
, (5.3)

where R(2) is the world-sheet Ricci scalar. However when ρ→ −∞ the theory becomes non-
perturbative, since gs ∼ e−ρ. In order to avoid the strong coupling region, it is necessary
to add the tachyon operator e2bρ to the action, so that

Sρ =
1

4πα′

∫
d2σ

√
−h

(
hab∂aρ∂bρ− α′QR(2)ρ+ Λe2bρ

)
. (5.4)

Here, b is related to the background charge Q =
√

1
NA

+ 1
NB

as

Q = b+ 1
b
,

such that it does not have a strong coupling region. Thus the contribution of the ρ direction
to the σ-model corresponds to a Liouville field. The complete σ-model on this geometry is

U(1)3 × Liouville × SU(2)NA
WZW × SU(2)NB

WZW (5.5)

where the subscripts denote the WZW level. One can check that this is indeed a good
σ-model by computing the central charge. Here we use

c(U(1)) = 1, c(Liouville) = 1 + 6Q2, c(SU(2)k) =
3(k − 2)

k
. (5.6)

In total we have

ctotal = 3 + 1 + 6
( 1
NA

+ 1
NB

)
+ 3(NA − 2)

NA
+ 3(NB − 2)

NB
= 10. (5.7)

To this we should add the ten free fermions, that contribute to the central charge cferm = 5.
The central charge of the SUSY system cSUSY = 15, is then cancelled by the b − c and
β − γ ghosts.

We now study the interesting case QA = QB = 0, but with m > 0. The configuration
of interest is obtained by S-dualising eq. (2.3),

ds2
10D = −dt2 + dx2 + fs(r)dφ2 + 4dr2

r2fs(r)
+NB ds

2(S3
A) +NA ds

2(S3
B),

H3 = 2NBVol(S3
A) + 2NAVol(S3

B),
Φ = − log(r).

(5.8)

Recall that here φ ∼ φ + π/Q2, see eq. (2.6), with Q2 = 1
NA

+ 1
NB

, as above. Before
proceeding to the σ-model analysis, it is convenient to perform some changes of variables.
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First, we want to rewrite the background (5.8) in such a way that it reduces to (5.1) when
m = 0. For this use

r = eQρ, m̃ = m

4Q2 , (5.9)

which leads to

ds2
10D = −dt2 + dx2 + 4Q2

(
1− m̃e−2Qρ

)
dφ2 + dρ2

1− m̃e−2Qρ +NB ds
2(S3

A) +NA ds
2(S3

B),

H3 = NBVol(S3
A) +NAVol(S3

B),
Φ = −Qρ.

(5.10)
We change coordinates as,

tanh2(λ) = 1− m̃e−2Qρ, φ = ϕ

2Q2 , (5.11)

which puts the geometry in the usual cigar form (note that ϕ has period 2π)

ds2
10D = −dt2 + dx2 + 1

Q2

(
tanh2(λ)dϕ2 + dλ2

)
+NB ds

2(S3
A) +NA ds

2(S3
B),

H3 = 2NBVol(S3
A) + 2NAVol(S3

B),

Φ = − log (cosh(λ))− 1
2 log(m̃).

(5.12)

As explained in [42], for more details see section 2 of [14], the above backgrounds leads
to an exact σ-model

U(1)2 × SL(2,R)k
U(1) × SU(2)NB

WZW × SU(2)NA
WZW, (5.13)

where k−1 = Q2 = 1
NA

+ 1
NB

. To check that this is also a good string σ-model we use

c (SL(2,R)k) =
3(k + 2)

k
, c (G/H) = c(G)− c(H), (5.14)

so that
c

(SL(2,R)k
U(1)

)
= 2 + 6

k
= 2 + 6

NA
+ 6
NB

, (5.15)

from where is easy to see that ctotal = 10. We leave for future research the study of the
σ-model in the background with m,QA, QB arbitrary.

6 Conclusions and future research

The I-brane QFT, defined as the (1 + 1) field theory on the intersection of two stacks of
D5 branes, was studied in [13]. The field theory has the remarkable behaviour that as the
coupling is increased, the system gains one more dimension and enhances its SUSY (with
a peculiar SUSY algebra in (2+1) dimensions [19]). The background dual to this strongly
coupled QFT was written in [13], see our eq. (2.1). This presents a singular behaviour
for large values of the radial coordinate, where the dilaton diverges and string coupling
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effects cannot be neglected. This is solved by performing an S-duality and working with
the NS branes system. The background of eq. (2.1) is also singular for small values of
the radial coordinate, r → 0, as indicated by eq. (2.2). This ill-defined IR behaviour is
amended by our background in eq. (2.3). Our simple and explicit solution describes the
holographic dual to a (2+1) QFT that gets compactified to (1+1) dimensions, preserving
four supercharges and ending the flow with a confining and gapped behaviour.

We holographically studied different aspects of this peculiar QFT. Maldacena-Wilson
loops, ’t Hooft loops, Entanglement entropy were discussed in dedicated sections, with em-
phasis on the effects of the UV-completion in terms of LST. R-symmetry and its breaking,
a suitably defined gauge coupling and a quantity measuring the number of degrees of free-
dom as a function of the radial coordinate (the energy) are presented and discussed. By
a double Wick rotation, a black membrane solution is found. Also, some of the NS string
σ-model aspects are briefly mentioned.

It would be interesting to dedicate future efforts to

• The careful study of the black membrane solution. In particular if its entropy can be
computed in terms of a (2 + 1) field theory compactified on a torus.

• The study of the string σ-model for the full solution in eq. (2.3), in the NS5 branes
frame

• To achieve a cleaner understanding of the R-symmetry breaking in terms of anomalies
in two dimensional QFT. To relate this to the Chern Simons coefficients discussed in
eq. (3.6). Note that while we find an anomalous breaking U(1)×U(1) → ZNA

×ZNB
,

we do not find a further spontaneous breaking to Z2 × Z2, as it normally occurs in
holographic models to four dimensional N = 1 dynamics.

• Geometrically, it would be interesting to generalise the metric and fluxes in eq. (2.3)
adding warp factors in front of the ωi’s and more general fibrations. Finding a more
general classification is of interest. It may be possible to relate this to the material
in [19].

• A fair amount of papers have been written studying the background in eq. (2.1). See
for example [20, 43–45]–[46–50]. It would be interesting to understand the effects of
the resolution provided in eq. (2.3) on some of these observables.

We hope to report on some of these problems in the near future.
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A Details of the supergravity backgrounds

In this appendix we set some of the conventions used in this paper and study the SUSY
preserved by the background in eq. (2.3).

A.1 Type IIB supergravity

We start this appendix by explicitly writing the Type IIB Supergravity action and its SUSY
variations. The field content of Type IIB is split into two sector. In the NS-NS sector we
have: the metric gµν , 2-form potential B2 with field strength H3, and the Dilaton Φ. In
the R-R sector we have a set of Abelian p-form gauge fields: C0, C2, C4. By defining

F1 = dC0, F3 = dC2 − C0 ∧H3, F5 = dC4 − C2 ∧H3. (A.1)

The bosonic part of the Type IIB action in String frame is

SIIB = 1
2κ2

∫
d10x

√
−g

[
e−2Φ

(
R+ 4∂µΦ∂µΦ− 1

2 |H3|2
)
− 1

2 |F1|2 −
1
2 |F3|2 −

1
4 |F5|2

]
− 1

4κ2

∫
C4 ∧H3 ∧ F3

(A.2)
where |Fp|2 = Fµ1...µpF

µ1...µp/p! and analogously for H3. On the solutions of this theory we
need to impose6 self-duality of the F5 = ⋆F5. The equations of motion of this theory are

∇2Φ−∇µΦ∇µΦ+ 1
4R− 1

8 |H3|2 = 0,

d
(
e−2Φ ⋆ H3

)
= −F5 ∧ F3 − F1∧F7,

dF5 −H3 ∧ F3 = 0,
dF7 −H3 ∧ F5 = 0,
dF9 −H3 ∧ F7 = 0,

Rµν + 2∇µ∇νΦ− 1
2 |H3|2µν −

e2Φ

2

(
|F1|2µν + |F3|2µν +

1
2 |F5|2µν −

1
2gµν

(
|F1|2 + |F3|2

))
= 0

(A.3)
where |Fp|2µν = Fµν1...νp−1F

ν1...νp−1
ν /(p− 1)!, similarly for H3, and

F7 = − ⋆ F3, F9 = ⋆F1. (A.4)

The equations of motion are complemented by the Bianchi Identities

dF1 = 0, dF3 −H3 ∧ F1 = 0. (A.5)
6To be precise, there is no covariant action for the effective theory of the Type IIB Superstring, but the

presented here is close enough. The issue is that is not possible to implement the self-duality condition for
F5 at the level of the action.
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Due to the self-duality of F5, its equation of motion and its the Bianchi identity are
the same.

Solutions of the purely bosonic part of Type IIB has all the fermionic partners, the
dilatino λ and gravitino Ψµ, set to zero. If we are interested in finding SUSY solutions, we
need to be consistent with the fact that we turn off the fermions by asking for the SUSY
variations of these fields to vanish. In string frame, the SUSY variations of the fermionic
fields are [53],

δλ = 1
2

(
Γµ∂µΦ+ 1

2 · 3!HµνλΓµνλσ3 − eΦ
(
FµΓµ(iσ2) +

1
2 · 3!FµνλΓ

µνλσ1
))

ϵ, (A.6)

δΨµ = ∂µϵ+
1
4ω

ab
µ Γabϵ+

1
4 · 2!HµνλΓνλσ3ϵ

+ eΦ

8

(
FνΓν(iσ2) +

1
3!FνλρΓ

νλρσ1 + 1
2 · 5!FνλρστΓ

νλρστ (iσ2)
)
Γµϵ.

(A.7)

Here ω ab
µ is the spin connection of the 10D background, where the a, b indexes are flat

space ones, and σ1, σ2 and σ3 are Pauli matrices. Also

Γµ1...µp = Γ[µ1 . . .Γµp] (A.8)

Here ϵ is a 64 component spinor,

ϵ =
(
ϵ1
ϵ2

)
(A.9)

where both 32-component parts are left-handed.

A.2 Checking SUSY for the fibered background

Here we aim to compute how many supercharges are preserved by the backgrounds pre-
sented in this paper. For the un-fibered background in eq. (2.1) we refer the reader
to [13, 19], where it is shown that this solution preserves 16 Supercharges in an interesting
way: the anti-commutator of two supercharges includes the R-Symmetry generators. Now
we present the analysis for the fibered background in eq. (2.3). We perform all the analysis
in the S-dual system, in terms of NS5 branes, where we only have H3 flux.

First, note that the dilatino variation is a matrix equation of the form Mϵ = 0. In
order to have non-trivial solutions to this equation, we require M to be non-invertible, for
which we need to impose det(M) = 0. It is also possible to obtain a matrix equation from
the gravitino variation. Noting that we can write the gravitino variation as a covariant
derivative, for which we define the connection

Wµ=
1
4ω

ab
µ Γab+

1
4·2!HµνλΓνλσ3+ eΦ

8

(
FµΓµ(iσ2)+

1
3!FµνλΓ

µνλσ1+ 1
2·5!FµνλρσΓ

µνλρσ(iσ2)
)
Γµ,

(A.10)

then we can write the gravitino variation as

δψµdx
µ = (∂µϵ+Wµϵ) dxµ ≡ Dϵ. (A.11)
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We can get rid of the partial derivative of the spinor by acting with D a second time

D ∧Dϵ = (dW +W ∧W ) ϵ = 1
2Θµνdx

µ ∧ dxνϵ. (A.12)

Each of the components of Θµν defines a matrix equation, giving a total of 45 inde-
pendent equations. We need to make sure that det(Θµν) = 0 for each of the components.
The equations

Mϵ = 0, Θµνϵ = 0, (A.13)

constrain the number of independent components of the spinor. After this procedure we use
the gravitino variation to solve the dependence of the spinor on the spacetime coordinates.

Specialising to our background, the determinant of the Dilatino variation for the back-
ground in eq. (2.3) reads

det(M) ∼
(
4(eBQA − eAQB)2 +m2

)8 (
4(eBQA + eAQB)2 +m2

)8
. (A.14)

In order to have non-trivial solutions we need to impose the following BPS conditions on
the parameters of the background

eAQB = ±eBQA, m = 0. (A.15)

With this conditions it is possible to check that det(Θµν) = 0 is also satisfied. Solving these
matrix equations shows that the spinor has 8 independent components. Then, solving for
the gravitino variation shows that these components are not independents, and in fact, the
total number of independent components its reduced to 4. The solution for the spinor is

ϵ1 = 0⃗ (A.16)
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and

ϵ2 = 1
r



c1e
− 1

4 iφ(e2
A+e2

B)√eAr2 + 2QA
0
0

c1e
− 1

4 iφ(e2
A+e2

B)√eAr2 + 2QA
0

ic2e
1
4 iφ(e2

A+e2
B)√eAr2 − 2QA

ic2e
1
4 iφ(e2

A+e2
B)√eAr2 − 2QA
0
0

c1e
− 1

4 iφ(e2
A

+e2
B)√(e2

A+e2
B)(eAr2−2QA)

(eA−ieB)

− c1e
− 1

4 iφ(e2
A

+e2
B)√(e2

A+e2
B)(eAr2−2QA)

(eA−ieB)
0

ic2(eA + ieB)e
1
4 iφ(e2

A+e2
B)
√

eAr2+2QA

e2
A+e2

B

0
0

c2(eB − ieA)e
1
4 iφ(e2

A+e2
B)
√

eAr2+2QA

e2
A+e2

B

0
c3e

− 1
4 iφ(e2

A+e2
B)√eAr2 + 2QA

−c3e
− 1

4 iφ(e2
A+e2

B)√eAr2 + 2QA
0

ic4e
1
4 iφ(e2

A+e2
B)√eAr2 − 2QA
0
0

−ic4e
1
4 iφ(e2

A+e2
B)√eAr2 − 2QA

− c3e
− 1

4 iφ(e2
A

+e2
B)√(e2

A+e2
B)(eAr2−2QA)

(eA+ieB)
0
0

− c3e
− 1

4 iφ(e2
A

+e2
B)√(e2

A+e2
B)(eAr2−2QA)

(eA+ieB)
0

−ic4(eA − ieB)e
1
4 iφ(e2

A+e2
B)
√

eAr2+2QA

e2
A+e2

B

−ic4(eA − ieB)e
1
4 iφ(e2

A+e2
B)
√

eAr2+2QA

e2
A+e2

B

0



(A.17)

We have found a spinor with four arbitrary constants (c1, c2, c3, c4). Being the spinor
complex, we count four preserved supercharges.
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B How are the backgrounds obtained

In this appendix we describe the procedure followed to obtain the backgrounds in eqs. (2.1)
and (2.3). These solutions are originally obtained in gauged supergravity, together with a
lift procedure. Below, we review these steps.

B.1 4D N = 4 SU(2) × SU(2) Gauged Supergravity

The action of the bosonic part of the Freedman-Schwarz (FS) gauged Supergravity is

SFS =
∫
d4x

√
−g(4)

(
−R

(4)

4 + 1
2(∂ϕ)

2 + 1
2e

4ϕ(∂a)2 − V (ϕ)

−e
−2ϕ

4 Tr
(
F(A)mnF

mn
(A) + F(B)mnF

mn
(B)

)
− a

2 Tr
(
F̃(A)mnF

mn
(A) + F̃(B)mnF

mn
(B)

))
.

(B.1)
Here g(4) and R(4) are the determinant of the 4D metric and the 4D Ricci scalar, ϕ

is the 4D dilaton, a is a pseudo-scalar called axion and F(A)mn and F(B)mn are the field
strengths of two SU(2) gauge fields Am and Bm,

F i(A)mn = ∂mA
i
n − ∂nA

i
m + eAϵijkA

j
mA

k
n (B.2)

F i(B)mn = ∂mB
i
n − ∂nB

i
m + eBϵijkB

j
mB

k
n (B.3)

where eA and eB are the gauge couplings of Am and Bm respectively. Here the index
i = 1, 2, 3 transform in the adjoint of each of the copies of SU(2). Also, the duals of the
field strengths are

F̃(A)mn = 1
2√−g

ϵmnλρF(A)mn, F̃(B)mn = 1
2√−g

ϵmnλρF(B)mn, (B.4)

B.1.1 A BPS solution

This theory admits a series of BPS solution preserving some amount of supersymmetry.
Our main focus is the 1/4 BPS soliton presented in [51]. As we will review, this solution is
particularly interesting because it manages to resolve a singularity by introducing a thermal
cycle that preserves some SUSY (in the usual case, the non-extremal factor completely
breaks SUSY). The field configuration of the Soliton is7

ds2
4D = −ρdt2 + dρ2

g(ρ) + g(ρ)dφ2 + ρdx2, (B.5)

ϕ(ρ) = −1
2 log(ρ), (B.6)

A1 = 0, A2 = 0, A3 = QAζ(ρ)dφ, (B.7)
B1 = 0, B2 = 0, B3 = QBζ(ρ)dφ, (B.8)

7In [51] the solution was presented in the mostly-minus signature. We write the solution in the mostly-
plus one.
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where
g(ρ) = e2

A + e2
B

2 ρ−m− 2Q
2
A +Q2

B

ρ
(B.9)

which has a zeros

ρ± =
m±

√
4(e2

A + e2
B)(Q2

A +Q2
B) +m2

(e2
A + e2

B)
. (B.10)

Also
ζ(ρ) = 1

ρ
− 1
ρ+
, (B.11)

where the last term ensures that both of the gauge fields vanish at ρ = ρ+.
In order for the cycle φ to close smoothly at ρ = ρ+, the period of φ needs to be

βφ = 4π
g′(ρ+)

= 8πρ2
+

(e2
A + e2

B)ρ2
+ + 4(Q2

A +Q2
B)
. (B.12)

This solution was shown to preserve 4 supercharges [51], when the parameters
(eA, eB, QA, QB,m) satisfy

eAQB = ±eBQA, m = 0. (B.13)

In what follows it is convenient to perform the change of coordinates ρ = r2. The
background configuration now reads

ds2
4D = −r2dt2 + 4dr2

f(r) + r2f(r)dφ2 + r2dx2, (B.14)

ϕ(r) = − log(r), (B.15)
A1 = 0, A2 = 0, A3 = QAζ(r)dφ, (B.16)
B1 = 0 B2 = 0, B3 = QBζ(r)dφ, (B.17)

with
f(r) = e2

A + e2
B

2 − m

r2 − 2Q
2
A +Q2

B

r4 , ζ(r) = 1
r2 − 1

r2
+
. (B.18)

B.2 Lift to 10D supergravity

It was shown in [52] that the FS Supergravity has a Kaluza-Klein interpretation as a
compactification of N = 1 Supergravity in 10D on the group manifold S3 ×S3. The action
of the 10D theory is

S10D = −1
4

∫
d10x

√
−g

(
R− 2∂µΦ̃∂µΦ̃− e2Φ̃

3 H̃µνλH̃
µνλ

)
, (B.19)

where R is the 10D Ricci scalar, Φ̃ the 10D Dilaton and H̃µνλ is a 3-form field strength
H̃3 = dB̃2. We split the indexes as

xµ =
{
xm = t, r, φ, x ; ziA = ψA, θA, ϕA ; ziB = ψB, θB, ϕB

}
. (B.20)

The of the lift to 10D is

ds2
10D = e3ϕ/2ds2

4D + 2e−ϕ/2
(
Θi
AΘi

A +Θi
BΘi

B

)
(B.21)
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where the 1-forms

Θi
A = Ai − 1

eA
ωiA, (B.22)

Θi
B = Bi − 1

eB
ωiB, (B.23)

with ωiA and ωiB are the Maurer-Cartan forms of the two different SU(2), is so that Θi
A

and Θi
B realise a fibration of the two 3-spheres.

The 10D Dilaton Φ̃ is written in terms of the four dimensional one ϕ

Φ̃ = −ϕ2 , (B.24)

while the 3-form field strength is written in term of the non-Abelian gauge fields and the
SU(2) Maurer-Cartan forms as

H̃3 = −
3∑
i=1

F iA ∧Θi
A −

3∑
i=1

F iB ∧Θi
B + eAΘ1

A ∧Θ2
A ∧Θ3

A + eBΘ1
B ∧Θ2

B ∧Θ3
B. (B.25)

B.2.1 A note on conventions

We are interested in lifting the theory to Type II Supergravity, when the field content is
purely of the NS-NS sector. The action in eq. (B.19) can be mapped to Type II, after the
field redefinitions

Φ̃ → Φ = −2Φ̃, H̃3 → H3 = 2H̃3. (B.26)
The action corresponds to the Type II in Einstein frame

SType II, E = −1
4

∫
d10x

√
−g

(
R− 1

2∂µΦ∂
µΦ− e−ϕ̂

12 ĤµνρĤ
µνρ

)
. (B.27)

We move to String frame by g(S)
µν = e

1
2 Φg

(E)
µν , then the action reads

SType II, S = −1
4

∫
d10x

√
−ge−2Φ

(
R+ 4∂µΦ∂µΦ− 1

2 · 3!HµνρH
µνρ
)
. (B.28)

In this frame, the lift of the 4D FS Supergravity reads

ds2
10D = e2ϕds2

4D + 2
(
Θi
AΘi

A +Θi
BΘi

B

)
, (B.29)

H3 = 2
(
−

3∑
i=1

F iA ∧Θi
A −

3∑
i=1

F iB ∧Θi
B + eAΘ1

A ∧Θ2
A ∧Θ3

A + eBΘ1
B ∧Θ2

B ∧Θ3
B.

)
,

(B.30)
Φ = ϕ(xm). (B.31)

It is convenient to write the lift in the S-dual frame, where instead of H3 flux, we have
a F3 flux, the Dilaton is Φ′ = −Φ and the metric now is g′µν = e−Φgµν , explicitly this is

ds2
10D = eϕds2

4D + 2e−ϕ
(
Θi
AΘi

A +Θi
BΘi

B

)
, (B.32)

F3 = 2
(
−

3∑
i=1

F iA ∧Θi
A −

3∑
i=1

F iB ∧Θi
B + eAΘ1

A ∧Θ2
A ∧Θ3

A + eBΘ1
B ∧Θ2

B ∧Θ3
B.

)
,

(B.33)
Φ = −ϕ(xm). (B.34)
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B.2.2 Lift of the BPS solution

Following the explicit construction of the lift, we now read the lift of the 4D solution that
preserves 4 Supercharges. In the S-dual frame of eqs. (B.32), we have

ds2
st = r

{
−dt2 + dx2 + fs (r) dφ2 + 4

r2fs (r)
dr2 + 2

e2
A

[
ω̂2

1 + ω̂2
2 + (ω̂3 − eAQAζ(r)dφ)2

]
+ 2
e2
B

[
ω̃2

1 + ω̃2
2 + (ω̃3 − eBQBζ (r) dφ)2

]}
, (B.35)

F3 = dC2 = 2ζ ′(r)dr ∧ dφ ∧
(
QA
eA

ω̂3 +
QB
eB

ω̃3

)
+ 2
e2
A

ω̂1 ∧ ω̂2 ∧ (eAQAζ(r)dφ− ω̂3)

+ 2
e2
B

ω̃1 ∧ ω̃2 ∧ (eBQBζ(r)dφ− ω̃3) ,

C2 = ψA

(
2QA
eA

ζ ′ (r) dr ∧ dφ− 2
e2
A

sin θAdθA ∧ dϕA

)
+ 2
eA

cos θAQAζ (r) dφ ∧ dϕA

+ψB
(
2QB
eB

ζ ′ (r) dr ∧ dφ− 2
e2
B

sin θBdθB ∧ dϕB

)
+ 2
eB

cos θBQBζ (r) dφ ∧ dϕB .

C6 = −16eAr2

e3
B

dt ∧ dx ∧ dφ ∧ Vol(S3
B) +

16eBr2

e3
A

dt ∧ dx ∧ dφ ∧ Vol(S3
A),

−64QB
e3
Ae

2
B

cos(θB)dt ∧ dx ∧ Vol(S3
A) ∧ dϕB + 64QA

e3
Be

2
A

cos(θA)dt ∧ dx ∧ Vol(S3
B) ∧ dϕA,

Φ = log r .

This is the background in eq. (2.3). In the case for which QA = QB = m = 0, the
background fields read (note that we S-dualise moving to the NS5 brane frame),

ds2
10D = −dt2 + dx2 + e2

A + e2
B

2 dφ2 + 8
e2
A + e2

B

dr2

r2 + 8
e2
A

ds2(S3
A) +

8
e2
B

ds2(S3
B),

H3 = − 16
e2
A

Vol(S3
A)−

16
e2
B

Vol(S3
B),

Φ = − log(r).

(B.36)

This is the background in eq. (2.1). We can rescale φ to absorb the prefactor. Also, it is
convenient to set as in eq. (2.9)

NA = 8
e2
B

, NB = 8
e2
A

, (B.37)

and perform the change of coordinates

r = e

√
1

NA
+ 1

NB
ρ
, (B.38)

after changing H3 → −H3, the background reads

ds2
10D = −dt2 + dx2 + dφ2 + dρ2 +NBds

2(S3
A) +NAds

2(S3
B),

H3 = 2NAVolS3
A + 2NBVolS3

B,

Φ = −
√

1
NA

+ 1
NB

ρ.

(B.39)
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This is the background written in section 5 to study the string σ-model on this field
configuration.

C On the unfibered geometry

Here, we review a different derivation of the background (5.1). The S-dual of this back-
ground, (2.1), was first introduced in [13, 15, 16]. Here we review the derivation of the pure
NS-NS frame for simplicity. Let us consider two stacks of NS5-branes, the first extended
in (t, x, y1, y2, y3, y4) and while the second one spans (t, x, w1, w2, w3, w4). These stacks
intersect in the (t, x) directions, thus in the weak coupling regime, the effective theory on
the intersection is 1+1 dimensional and preserves 8 Supercharges.

We now move to the strong coupling regime. For this, we write the space R4
y =

(y1, y2, y3, y4) in spherical coordinates (rA, S3
A), and similarly for R4

w we use (rB, S3
B). In

terms of the harmonic functions

HA(rA) = 1 + NB

r2
A

, HB(rB) = 1 + NA

r2
B

, (C.1)

the backreacted fields are given by

ds2
10D = dx2

1,1 +HA(rA)
(
dr2
A + r2

Ads
2(S3

A)
)
+HB(rB)

(
dr2
B + r2

Bds
2(S3

B)
)
,

H3 = 2NBVol(S3
A) + 2NAVol(S3

B),

Φ = 1
2 log(HA(rA)HB(rB)).

(C.2)

By taking the near-horizon geometry we are led to

ds2
10D = dx2

1,1 +NB
dr2
A

r2
A

+NA
dr2
B

r2
B

+NBds
2(S3

A) +NAds
2(S3

B),

H3 = 2NBVol(S3
A) + 2NAVol(S3

B),

Φ = − log(rA)− log(rB) +
1
2 log(NANB).

(C.3)

Under the change of coordinates rA = eρA/
√
NB and rB = eρB/

√
NA we obtain

ds2
10D = dx2

1,1 + dρ2
A + dρ2

B +NBds
2(S3

A) +NAds
2(S3

B),
H3 = 2NBVol(S3

A) + 2NAVol(S3
B),

Φ = −
√

1
NB

ρA −
√

1
NA

ρB + 1
2 log(NANB).

(C.4)

Finally, taking the linear combination√
1
NA

+ 1
NB

ρA =
√

1
NB

ρ−
√

1
NA

φ,√
1
NA

+ 1
NB

ρB =
√

1
NA

ρ+
√

1
NB

φ,

(C.5)
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we reach the background fields in (5.1)

ds2
10D = −dt2 + dx2 + dφ2 + dρ2 +NB ds

2(S3
A) +NA ds

2(S3
B),

H3 = 2NB Vol(S3
A) + 2NA Vol(S3

B),

Φ = −
√

1
NA

+ 1
NB

ρ,

(C.6)

where we cancelled the constant term of the Dilaton by a suitable shift of its zero mode.
Note that the Dilaton in (C.4) has functional dependence in two of the coordinates of the
background, while the one in (C.6) only depends only on one coordinate. This allows us to
interpret the extra flat direction of (C.6) as being part of the Field Theory ones. In this
way, we see that in the strong coupling regime, the theory on the intersection acquires an
extra dimension, becoming (2+1) dimensional. There is also a SUSY enhancement from 8
to 16 supercharges. We refer the reader to [13] to cover this matter.

D R-symmetry breaking

In this appendix we give a detailed derivation of the symmetry breaking pattern of three
U(1) directions present in our background. In order to do this, we gauge this symmetries
by introducing a gauge field A and a scalar ϵ. The presence of a mass term in the effective
action of the gauge field, i.e. an explicit symmetry breaking of the gauge symmetry, signals
the breaking of this U(1) symmetry on the dual field theory. In the QFT, the breaking of
the global symmetry can be either spontaneous or anomalous.

D.1 U(1) R-symmetry of ψA and ψB

Let us start by recalling the R-R C2 potential

C2 =ψA

(
2QA
eA

ζ ′ (r) dr ∧ dφ− 2
e2
A

sin θAdθA ∧ dϕA

)
+ 2
eA

cos θAQAζ (r) dφ ∧ dϕA

+ ψB

(
2QB
eB

ζ ′ (r) dr ∧ dφ− 2
e2
B

sin θBdθB ∧ dϕB

)
+ 2
eB

cos θBQBζ (r) dφ ∧ dϕB .

(D.1)

Since this potential is not invariant under ψA,B → ψA,B+4π, we expect this symmetry
to be broken in the dual field theory. We gauge these isometries by doing the following
replacements in the R-R potential and the metric

dψA,B → dψA,B +AA,B, ψA,B → ψA,B + ϵA,B. (D.2)

Where AA,B is a U(1) gauge field and ϵA,B is a scalar charged under the gauged U(1)
symmetry, which makes the combination DA,Bϵ = ∂A,BϵA,B − AA,B is gauge invariant
(here ∂A,B = ∂/∂ψA,B). These fields only depend on the coordinates of the field theory
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directions, i.e. (t, x). After these replacements the metric and the R-R 3-form read

ds2 = ds2
(0) +

4r
e2
A

(ω̂3 − eAQAξ(r)dφ)AAµdxµ +
2r
e2
A

AAµAAνdx
µdxν

+ 4r
e2
B

(ω̃3 − eBQBξ(r)dφ)AB µdxµ +
2r
e2
B

AB µAB νdx
µdxν

(D.3)

F3 =F
(0)
3 − 2dϵA ∧

(
−QA
eA

ξ′(r)dr ∧ dφ+ 1
e2
A

Vol(S2
A)
)

− 2dϵB ∧
(
−QB
eB

ξ′(r)dr ∧ dφ+ 1
e2
B

Vol(S2
B)
) (D.4)

where ds2
(0) and F (0)

3 denotes the metric and the 3-form of the configuration before gauging
the U(1) symmetries and Vol(S2

A,B) = sin(θA,B)dθA,B ∧ dϕA,B. Now we want to obtain
an effective lagrangian for AA,B and ϵA,B. In order to do this, we consider how the Ricci
scalar and the kinetic term of F3 change under the gauging of the symmetry. Explicitly,
the Ricci scalar transforms as

R = R(0) − 1
4
2r
e2
A

F 2
A − 1

4
2r
e2
B

F 2
B, (D.5)

where F 2
A,B = FA,B µνF

µν
A,B and FA,B µν is the field strengh of AA,B µ, while the kinetic term

of the R-R potential reads

1
12FµνλF

µνλ = 1
12F

(0)
µνλF

µνλ
(0) + 1

2r2

(
Q2
Ar

2

e2
A

ξ′(r)2 + 1
)
(AA − dϵA)2

+ 1
2r2

(
Q2
Br

2

e2
B

ξ′(r)2 + 1
)
(AB − dϵB)2 + QAQB

eAeB
(AA − dϵA) · (AB − dϵB) .

(D.6)
Finally, replacing this expression in the Type IIB action (in string frame), leads to the

following effective lagrangian

L = −1
4

2
e2
Ar
F 2
A − 1

4
2
e2
Br
F 2
B − 1

2r2

(
Q2
Ar

2

e2
A

ξ′(r)2 + 1
)
(AA − dϵA)2

− 1
2r2

(
Q2
Br

2

e2
B

ξ′(r)2 + 1
)
(AB − dϵB)2 − QAQB

eAeB
(AA − dϵA) · (AB − dϵB)

(D.7)

Due to the coupling between AA,B and ϵA,B the gauge field obtains a mass. This is
the same as the Stueckelberg mechanism. Defining WA,B = AA,B − dϵA,B, we obtain an
action for the massive gauge field.

L = −1
4

2
e2
Ar
F 2
A − 1

4
2
e2
Br
F 2
B − 1

2r2

(
Q2
Ar

2

e2
A

ξ′(r)2 + 1
)
WAµW

µ
A

− 1
2r2

(
Q2
Br

2

e2
B

ξ′(r)2 + 1
)
WB µW

µ
B − QAQB

eAeB
WAµW

µ
B

(D.8)
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D.2 U(1) R-symmetry of φ

Now we repeat the same procedure as above for the φ direction. The only difference is at
the starting point. The potential (D.1) does not depend on φ. We need to perform a gauge
transformation to give it φ dependance, after which

C2 = 2QA
eA

φ
[
ξ′(r) (dψA + cos (θA) dϕA) ∧ dr + ξ(r)Vol(S2

A)
]
− 2
e2
A

ψAVol(S2
A)

+ 2QB
eB

φ
[
ξ′(r) (dψB + cos (θB) dϕb) ∧ dr + ξ(r)Vol(S2

b )
]
− 2
e2
A

ψBVol(S2
B).

(D.9)

As before, we gauge the symmetry along φ by shifting the metric and the R-R potential
as follows

dφ→ dφ+Aφ, φ→ φ+ ϵφ. (D.10)

Repeating the procedure of the previous section lead to the following shifts for Ricci
scalar

R = R(0) − 1
4
(
rfs(r) + 2(Q2

A +Q2
B)rξ(r)2

)
F 2
φ (D.11)

where F 2
φ = FφµνF

µν
φ , with Fφµν the field strenght of Aφ, and the kinetic term of the R-R

potential

1
12FµνλF

µνλ= 1
12F

(0)
µνλF

µνλ
(0)

+1
4

( 2
r2 ξ(r)

2
(
e2
AQ

2
A+e2

BQ
2
B+(Q2

A+Q2
B)2r2ξ′(r)2

)
+(Q2

A+Q2
B)fs(r)ξ′(r)2

)
(Aφ−dϵφ)2

(D.12)
which leads to the effective lagrangian

L=−1
4
(
fs(r)+2(Q2

A+Q2
B)ξ(r)2

)
F 2
φ

− 1
4

( 2
r2 ξ(r)

2
(
e2
AQ

2
A+e2

BQ
2
B+(Q2

A+Q2
B)2r2ξ′(r)2

)
+(Q2

A+Q2
B)fs(r)ξ′(r)2

)
(Aφ−dϵφ)2

(D.13)
As before, we see from the action that after a gauge transformation the gauge field

obtains a mass via Stueckelberg mechanism. Explicitly by defining Wφ=Aφ−dϵφ we obtain

L=−1
4
(
fs(r)+2(Q2

A+Q2
B)ξ(r)2

)
F 2
φ

− 1
4

( 2
r2 ξ(r)

2
(
e2
AQ

2
A+e2

BQ
2
B+(Q2

A+Q2
B)2r2ξ′(r)2

)
+(Q2

A+Q2
B)fs(r)ξ′(r)2

)
WφµW

µ
φ

(D.14)

E Maldacena-Wilson, ’t Hooft loops and EE. Detailed calculations

In this appendix, we study the integrals needed to compute the Wilson loops, ’t Hooft
loops and Entanglement Entropy. We express the analytic results in terms of r0.
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Let us define the following quantities that allow us to write the integrals in a sim-
pler way

λ0 = r0
r+

, ξ = r

r+
, η = eA

eB
, (E.1)

λ2
− = −

r2
−
r2

+
≡ 1− m

r2
+
(
e2
A + e2

B

) , (E.2)

where λ− ∈ [0, 1], λ0 > 1 and η > 0.
All the problems we will address here can be reduced to a one-dimensional problem

for the function r = r (x) which minimises the functional in eq. (4.2) once we impose that
the parameter x(σ) = σ. Then, the equation for the function r(σ) = r(x) reduces to

dr

dx
= ±Veff (r) , (E.3)

for a suitable effective potential which is case-dependent. In most cases the function r (x)
can be interpreted as a string (or a section of a higher dimensional surface) with end points
at r → ∞. The profile of the string subject to the initial condition x (r0) = 0, can be
obtained by performing the integral

x (r) = ±
∫ r

r0

dr

Veff (r) . (E.4)

From here we compute the end points separation as

L (r0) ≡ lim
r→∞

2x (r) . (E.5)

The definition in eq. (E.5) coincides with the quark-anti-quark separation, monopole-anti-
monopole separation and the interval length for the Maldacena-Wilson loop, t’ Hooft loop
and entanglement entropy, respectively.

The results of the integrals that we compute analytically are given in terms of elliptic
integrals. The elliptic integral of first kind F (ϕ|m) and the complete elliptic integral of
first kind K (m) are defined as

F (ϕ|m) =
∫ ϕ

0
dθ

1√
1−m sin2 θ

, (E.6)

K (m) = F
(
π

2

∣∣∣∣m) , (E.7)

respectively for −π
2 < ϕ < π

2 . The elliptic integral of second kind E (ϕ|m) and the complete
elliptic integral E (m) are defined respectively as

E (ϕ|m) =
∫ ϕ

0

√
1−m sin2 θdθ , (E.8)

E (m) = E
(
π

2

∣∣∣∣m) , (E.9)

where −π
2 < ϕ < π

2 .
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E.1 Wilson loop

The effective potential in terms of the variable ξ defined in (E.1) reads

Veff (ξ) =

√
e2
A + e2

B

8
r+
λ0ξ

√(
ξ2 − λ2

0
) (
ξ2 + λ2

−
)
(ξ2 − 1) .

The string profile, considering the change of variables in eq. (E.1)

x (ξ) = ±
√

8
e2
A + e2

B

∫ ξ

λ0

λ0ξdξ√(
ξ2 − λ2

0
) (
ξ2 + λ2

−
)
(ξ2 − 1)

,

= ±
√

8
e2
A + e2

B

λ0√
λ2

0 − 1
(E.10)

×

−F

arcsin
√
λ2

0 − 1
ξ2 − 1

∣∣∣∣∣∣ 1 + λ2
−

1− λ2
0

+ K
(
1 + λ2

−
1− λ2

0

) .
The definition of the quark-antiquark separation given in eq. (4.16) can be expressed in
terms of the limit (E.5) of the string profile. Replacing in eq. (E.10) we find

LQQ (λ0) = 2
√

8
e2
A + e2

B

λ0√
λ2

0 − 1
K
(
1 + λ2

−
1− λ2

0

)
.

This is our result in eq. (4.19).
In order to get an analytic expression for the energy in eq. (4.17) we compute the

integrals
EQQ = F (r0)LQQ (r0) + I2 + I3 (E.11)

where

I2 =
√

32
e2
A + e2

B

∫ +∞

r0
dz z

√
z2 − r2

0(
z2 − r2

−
) (
z2 − r2

+
) , (E.12)

I3 = −
√

32
e2
A + e2

B

∫ ∞

r+
dz

z2√(
z2 − r2

−
) (
z2 − r2

+
) . (E.13)

Considering the change of variable ξ = z/r+ and the definitions (E.1) the integrals become

I2 = 4
√
2r+√

e2
A + e2

B

∫ +∞

λ0
dξ ξ

√
ξ2 − λ2

0(
ξ2 + λ2

−
)
(ξ2 − 1) , (E.14)

I3 = − 4
√
2r+√

e2
A + e2

B

∫ ∞

1
dξ

ξ2√(
ξ2 + λ2

−
)
(ξ2 − 1)

. (E.15)

We perform the indefinite integral of I2 giving∫ ξ

dξ ξ

√
ξ2 − λ2

0(
ξ2 + λ2

−
)
(ξ2 − 1) =

√(
ξ2 − λ2

0
) (
λ2
− + ξ2)√

ξ2 − 1
(E.16)

+
√(

λ2
0 − 1

)
EE

arcsin
√
λ2

0 − 1
ξ2 − 1

∣∣∣∣∣∣ 1 + λ2
−

1− λ2
0

 .
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Taking the limits

lim
ξ→∞

∫ ξ

dξ ξ

√
ξ2 − λ2

0(
ξ2 + λ2

−
)
(ξ2 − 1) = lim

ξ→∞
ξ +O

(1
ξ

)
, (E.17)

lim
ξ→λ0

∫ ξ

dξ ξ

√
ξ2 − λ2

0(
ξ2 + λ2

−
)
(ξ2 − 1) =

√(
λ2

0 − 1
)
EE

(
1 + λ2

−
1− λ2

0

)
. (E.18)

Hence,

I2 = 4
√
2r+√

e2
A + e2

B

[
lim
ξ→∞

ξ −
√(

λ2
0 − 1

)
EE

(
1 + λ2

−
1− λ2

0

)]
. (E.19)

The indefinite integral of I3 gives

∫ ξ

dξ
ξ2√(

ξ2 + λ2
−
)
(ξ2 − 1)

= iλm

[
E
(
arcsin ξ

∣∣∣∣∣− 1
λ2
−

)
− F

(
arcsin ξ

∣∣∣∣∣− 1
λ2
−

)]
. (E.20)

Computing the limits we get

lim
ξ→∞

∫ ξ

dξ
ξ2√(

ξ2 + λ2
−
)
(ξ2 − 1)

= lim
ξ→∞

ξ + Iλ− +O
(
ξ−1

)
,

lim
ξ→1

∫ ξ

dξ
ξ2√(

ξ2 + λ2
−
)
(ξ2 − 1)

= iλ−
[
E
(
−λ−2

−

)
− K

(
−λ−2

−

)]
,

where

Iλ− =
[
iλ−E

(
−λ−2

−

)
− E

(
−λ2

−

)
− λ−K

(
1 + λ−2

−

)
−2iλ−K

(
−λ−2

−

)
+ K

(
−λ2

−

)
+ λ2

−K
(
−λ2

−

)]
.

Therefore, the integral becomes

I3 = − 4
√
2r+√

e2
A + e2

B

[ lim
ξ→∞

ξ − E
(
−λ2

−

)
− λ−K

(
1 + λ−2

−

)
−iλ−K

(
−λ−2

−

)
+ K

(
−λ2

−

)
+ λ2

−K
(
−λ2

−

)]
.

Replacing into the energy in eq. (E.11), we find the result in eq. (4.20)

EQQ (λ0) = 2r+

√
8

e2
A + e2

B

 λ2
0√

λ2
0 − 1

K
(
1 + λ2

−
1− λ2

0

)

+E
(
−λ2

−

)
+ λ−K

(
1 + λ−2

−

)
+ iλ−K

(
−λ−2

−

)
−
√(

λ2
0 − 1

)
E
(
1 + λ2

−
1− λ2

0

)
−
(
1 + λ2

−

)
K
(
−λ2

−

)]
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E.2 t’ Hooft loop

The effective potential Veff is given in eq. (4.24). Replacing explicitly the functions and
using the definition in eq. (E.1) leads to

Veff = r+eB
2

√
η2 + 11

ξ

√(
ξ2 − λ2

0
)
(ξ2 − 1)

(
ξ2 + λ2

−
)

(E.21)

×

√√√√√
(
4Q2

Br
−4
+ e−2

B

(
ξ2 + λ2

0 − 2
)
+ (η2 + 1)

(
ξ2 + λ2

0 − 1 + λ2
−
))

2
(
λ2

0 − 1
) [

4Q2
Br

−4
+ e−2

B

(
λ2

0 − 1
)
+ (η2 + 1)

(
λ2

0 + λ2
−
)] .

We compute analytically the integrals in the BPS bound in which λ− = 1 andQB = ± eB
eA
QA

implying QA = eA
2 r

2
+. In this limit the effective potential simplifies to

V BPS
eff = r+

1
2

√
e2
A + e2

B

2
(
λ2

0 − 1
) ((

e2
A + 2e2

B

)
λ2

0 + e2
A

)
×
√

1
ξ2
(
ξ2 − λ2

0
)
(ξ4 − 1)

(
e2
A

(
ξ2 + λ2

0
)
+ 2e2

B

(
ξ2 + λ2

0 − 1
))
.

The indefinite integral (E.4) gives

∫ ξ dξr+
V BPS

eff
= 2
eB

√
2
(
λ2

0 − 1
) (

(η2 + 2)λ2
0 + η2)

η2 + 1

×
∫

ξdξ√(
ξ2 − λ2

0
)
(ξ4 − 1)

(
η2 (ξ2 + λ2

0
)
+ 2

(
ξ2 + λ2

0 − 1
)) ,

= 1
eB

√
2
(
λ2

0 − 1
) (

(η2 + 2)λ2
0 + η2)

(η2 + 1)
(
λ2

0 (η2 + 2)− 1
)

×F
(
arcsin

√
2
(
−1 + (2 + η2)λ2

0
)
(ξ2 − 1)(

2λ2
0 + η2 (1 + λ2

0
)) (

ξ2 − λ2
0
) ∣∣∣∣∣
(
1 + λ2

0
) (

2λ2
0 + η2 (1 + λ2

0
))

−4 + 4 (2 + η2)λ2
0

)
.

Taking the limit ξ → r0 we find

lim
ξ→λ0

r+

∫ ξ dξ

Veff
(E.22)

= 1
eB

√
2
(
λ2

0 − 1
) (

(η2 + 2)λ2
0 + η2)

(η2 + 1)
(
λ2

0 (η2 + 2)− 1
) (−i)K

(
1−

(
1 + λ2

0
) (

2λ2
0 + η2 (1 + λ2

0
))

−4 + 4 (2 + η2)λ2
0

)
.

Therefore, the profile of the string is

±x (ξ) = 1
eB

√
2
(
λ2

0 − 1
) (

(η2 + 2)λ2
0 + η2)

(η2 + 1)
(
λ2

0 (η2 + 2)− 1
) (E.23)

×
[
F
(
arcsin

√
2
(
−1 + (2 + η2)λ2

0
)
(ξ2 − 1)(

2λ2
0 + η2 (1 + λ2

0
)) (

ξ2 − λ2
0
) ∣∣∣∣∣
(
1 + λ2

0
) (

2λ2
0 + η2 (1 + λ2

0
))

−4 + 4 (2 + η2)λ2
0

)

+iK
(
1−

(
1 + λ2

0
) (

2λ2
0 + η2 (1 + λ2

0
))

−4 + 4 (2 + η2)λ2
0

)]
.
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The monopole-anti-monopole separation can be deduced easily from the above expression
by taking the limit (E.5). We obtain,

LBPSMM (λ0) = 2
eB

√
2
(
λ2

0 − 1
) (

(η2 + 2)λ2
0 + η2)

(η2 + 1)
(
λ2

0 (η2 + 2)− 1
) (E.24)

×
[
F
(
arcsin

√
2
(
−1 + (2 + η2)λ2

0
)(

2λ2
0 + η2 (1 + λ2

0
)) ∣∣∣∣∣

(
1 + λ2

0
) (

2λ2
0 + η2 (1 + λ2

0
))

−4 + 4 (2 + η2)λ2
0

)

+iK
(
1−

(
1 + λ2

0
) (

2λ2
0 + η2 (1 + λ2

0
))

−4 + 4 (2 + η2)λ2
0

)]
.

We compare it with the approximate function (4.9) for the separation, replacing the func-
tions explicitly we find

L̂MM (r0) =
π
√
2√

e2
A + e2

B

(
e2
A + 2e2

B

)
r2

0/r
2
+ + e2

A(
e2
A + 2e2

B

)
r2

0/r
2
+ − e2

B

√
r2

0/r
2
+ − 1

r2
0/r

2
+ + 1 . (E.25)

For the energy of the t’ Hooft loop we have a similar expression to the one obtained
when computing the energy of the Wilson loop,

EMM (r0) = F (r0)LMM (r0) + I2 + I3 , (E.26)

where

I2 = 4r2
+√

η2 + 1

∫ +∞

λ0
dξ

√
ξ2 (ξ2 − λ2

0
) (
η2 (ξ2 + λ2

0
)
+ 2

(
ξ2 + λ2

0 − 1
))

ξ4 − 1 , (E.27)

I3 = −2
∫ +∞

r+
dzG (z) = −

4r2
+√

(1 + η2)

∫ ∞

1
dξ ξ

√
2ξ2 + η2 (ξ2 + 1)

(1 + ξ2) . (E.28)

These integrals are quite involved and present technical difficulties to be performed in
terms of known functions. Therefore we compute them numerically up to a large value of
the upper limit ξ̃max. Since ξ̃max is finite the integrals are convergents and we can write
them together in terms of a single integral which depends on ξ̃max

EMM (r0) = F (r0)LMM (r0)−
[

4r2
+√

1 + η2

∫ λ0

1
ξ

√
2ξ2 + η2 (ξ2 + 1)

(1 + ξ2) (E.29)

− lim
ξ̃max→∞

∫ ξ̃max

λ0
dξ

√ξ2 (ξ2 − λ2
0
) (
η2 (ξ2 + λ2

0
)
+ 2

(
ξ2 + λ2

0 − 1
))

ξ4 − 1

−ξ
√

2ξ2 + η2 (ξ2 + 1)
(1 + ξ2)

)]
.

We verify that the integral converges to a limiting value for ξ̃max large enough and much
bigger than λ0 = r0/r+.

The limiting value of the function LMM (r0) when r0 → ∞ is non-zero and is given
in terms of a characteristic length of the Little String Theory (LST). This asymptotic
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behavior matches with the asymptotic behavior of the background (2.1), to see this fact
explicitly we compute the separation length of the ’t Hooft loop of the background (2.1)
by taking the limit of the end-points separations (E.5). The relevant functions for the t’
Hooft loop of the background (2.1) are the metric function

fs (r) =
1
2
(
e2
A + e2

B

)
, (E.30)

and the effective potential

Veff (r, r0) =

√
2
(
e2
A + e2

B

)
4r2

0

√
r2 (r4 − r4

0
)
. (E.31)

Then, the profile of the string in the bulk is

±x (r) =
√

2
e2
A + e2

B

arctan


√
r4 − r4

0

r2
0

 . (E.32)

The end-point separation is given by the limit (E.5) and leads to the following constant

LMM (r0) = π

√
2

e2
A + e2

B

.

Thus, all the strings in the background (2.1) that explores the bulk has the same end
points separation. This value coincides with the limiting value of the separation length of
the background (2.3) and with a LST characteristic length. Therefore the UV behavior of
the dual theory is driving by the LST. To capture the field theory behavior we introduce a
cut-off to rule out the non-local effects of the LST. In that case the system present a phase
transition between the unstable configurations to the short strings configuration.

The energy of the t’ Hooft loop of the background (2.1) is given by (4.6) with

F (r) =

√
e2
A + e2

B

2 r2, G (r) = 2
√
e2
A + 2e2

B

e2
A + e2

B

r . (E.33)

We find that the energy is zero. This implies that energy of the t’ Hooft loop of the
disconnected solution is the same to the connected one.

E.3 Entanglement entropy

The profile of the 8-dimensional surface is governed by the function r = r (x) with equations
coming from the minimisation of eq. (4.30) which gives an equation like (E.3) for the
effective potential

Veff = 1
2r2

0
√
fs (r0)

√
r2fs (r)

(
r4fs (r)− r4

0fs (r0)
)
. (E.34)
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The integration of (E.34) for this potential subject to the initial condition x (r0) = 0 gives

±x (ξ) =
∫ r

r0

2r2
0
√
fs (r0)dr√

r2fs (r)
(
r4fs (r)− r4

0fs (r0)
)

=
√

8
e2
A + e2

B

√(
λ2

0 − 1
) (
λ2

0 + λ2
−
)

×
∫ ξ

λ0

ξdξ√(
ξ2 − λ2

0
)
(ξ2 − 1)

(
ξ2 + λ2

−
) (
ξ2 + λ2

0 + λ2
− − 1

) .
Performing the indefinite integral

IL (ξ) ≡
∫ ξ ξdξ√(

ξ2 − λ2
0
) (
ξ2 + λ2

−
)
(ξ2 − 1)

(
ξ2 + λ2

0 + λ2
− − 1

)
= 1
λ2

0 + λ2
−

F
(
arcsin

√(
λ2

0 + λ2
−
)
(ξ2 − 1)(

λ2
− + 1

) (
ξ2 − λ2

0
) ∣∣∣∣∣
(
1 + λ2

−
) (
λ2
− + 2λ2

0 − 1
)(

λ2
0 + λ2

−
)2

)
.

The limit ξ → λ0 gives

lim
ξ→λ0

IL (ξ) = − i

λ2
0 + λ2

−
K
( (

λ2
0 − 1

)2(
λ2

0 + λ2
−
)2
)
. (E.35)

Thus, the profile of the surface in the bulk is

±x (ξ) =
√

8
e2
A + e2

B

√
λ2

0 − 1
λ2

0 + λ2
−

[
iK
( (

λ2
0 − 1

)2(
λ2

0 + λ2
−
)2
)

(E.36)

+F
(
arcsin

√(
λ2

0 + λ2
−
)
(ξ2 − 1)(

λ2
− + 1

) (
ξ2 − λ2

0
) ∣∣∣∣∣
(
1 + λ2

−
) (
λ2
− + 2λ2

0 − 1
)(

λ2
0 + λ2

−
)2

)]
.

The length of the interval is given by the limit in eq. (E.5). In term of the variables in
eq. (E.1) gives

LEE (λ0) = 2
√

8
e2
A + e2

B

√
λ2

0 − 1
λ2

0 + λ2
−

[
iK
( (

λ2
0 − 1

)2(
λ2

0 + λ2
−
)2
)

(E.37)

+F
(
arcsin

√(
λ2

0 + λ2
−
)(

λ2
− + 1

) ∣∣∣∣∣
(
1 + λ2

−
) (
λ2
− + 2λ2

0 − 1
)(

λ2
0 + λ2

−
)2

)]
.

This is our expression in eq. (4.37).
We cannot see a phase transition in this background. However, if we put a cutoff at

ξcutoff = rcutoff
r+

the coordinate λ0 < ξ < ξcutoff, the double-valued character of LEE shows,
as in figure 7.

The renormalized EE in eq. (4.33) written in the variables of eq. (E.1) reads

SEE (λ0) =
N
GN

r2
+

[∫ ∞

λ0
dξ

√
ξ2 (ξ2 + λ2

−
)
(ξ2 − 1)(

ξ2 − λ2
0
) (
ξ2 + λ2

0 + λ2
− − 1

) − ∫ ∞

1
ξdξ

]
.

– 49 –



J
H
E
P
0
9
(
2
0
2
3
)
2
0
1

This integral can be done analytically. In the BPS limit it becomes particularly simple,

SBPSEE (λ0) =
N
GN

r2
+

[∫ ∞

λ0
dξ

√
ξ2 (ξ4 − 1)(

ξ2 − λ2
0
) (
ξ2 + λ2

0
) − ∫ ∞

1
ξdξ

]
. (E.38)

The indefine integral reads

IBPSS (ξ) =
∫ ξ

dξ

√
ξ2 (ξ4 − 1)(

ξ2 − λ2
0
) (
ξ2 + λ2

0
)

= 1
2E

(
arcsin ξ

2

λ2
0

∣∣∣∣∣λ4
0

)
. (E.39)

Expanding for large ξ and ξ → λ0 we find

lim
ξ→∞

IS (ξ) = lim
ξ→∞

1
2ξ

2 + 1
2λ2

0

[
−λ4

0E
(
λ−4

0

)
+ λ2

0E
(
λ4

0

)
− K

(
λ−4

0

)
+ λ4

0K
(
λ−4

0

)]
+O

(
ξ−2

)
, (E.40)

lim
ξ→λ0

IS (ξ) = 1
2E

(
λ4

0

)
. (E.41)

Replacing in these expressions in the entanglement entropy of the BPS configuration (E.38)
we obtain the expression in eq. (4.38),

SBPSEE (λ0) =
N
GN

r2
+

[ 1
2λ2

0

(
−λ4

0E
(
λ−4

0

)
− K

(
λ−4

0

)
+ λ4

0K
(
λ−4

0

))
+ 1

2

]
. (E.42)

The limiting of the interval length (4.37) value when r0 → ∞ is non-zero and coincides
with the characteristic length of the Little String Theory. The background (2.1) and the
fibred one coincides in the UV leading to a regime in which the LST dominates the behavior
of dual theory. To verify this point we compute profiles of the strings in the bulk

±x (r) =
√

2
e2
A + e2

B

arctan


√
r4 − r4

0

r2
0

 , (E.43)

which end points separation at r → ∞ gives interval length

LEE (r0) = π

√
2

e2
A + e2

B

. (E.44)

One again, in order to capture the field theoretical behaviour of the dual theory we add a
cut-off to the observables which allow us to recover expected behaviour of a confining field
theory.

F Charges of the black membrane background

We compute the charges of the configuration considering the Noether-Wald method [54].
The bulk action principle in string frame of IIB in the metric-dilaton-F3 sector is

SIIB,bulk = 1
2κ2

∫
d10x

√
−g

(
R− 1

2 (∂Φ)2 − 1
12e

ΦFµνρF
µνρ
)
=
∫
d10x

√
−gL , (F.1)
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A general variation of the action gives

δSIIB,bulk =
∫
d10x

√
−g

[
δgµνE(g)

µν + δΦE(Φ) + δCνρEνρ(F3) +∇µΘµ (f , δf)
]
. (F.2)

where f denotes the fields collectively and

Θµ (f , δf) = 1
2κ2

(
gδηδΓµηδ − gδµδΓλλδ − δΦ∂µΦ− eΦδCνρF

µνρ
)
, (F.3)

E(g)
µν = 1

2κ2

[
Rµν −

1
2gµνR (F.4)

−1
2

(
∂µΦ∂νΦ− 1

2gµν∂ρΦ∂
ρΦ
)

−1
2e

Φ
(1
2FµδρF

δρ
ν − 1

12gµνFδρσF
δρσ
)]

,

= 1
2κ2

(
Gµν −

1
2T

(Φ)
µν − 1

2T
(F3)
µν

)
,

E(Φ) = 1
2κ2

(
∇ρ∇ρΦ− 1

12e
ΦFµνρF

µνρ
)
, (F.5)

Eνρ(F3) = 1
2κ2∇µ

(
eΦFµνρ

)
. (F.6)

The Noether current is defined by

Jµ = Θµ (f ,Lξf)− ξµL , (F.7)

where L is the Lagrangian scalar under diffeomorphisms in (F.1) and Lξ is the Lie derivative
along the vector ξ. The Noether current is conserved on-shell, thus it can be written locally
as Jµ = ∇νq

µν . The Noether current (F.7) for our system gives

Jµ = − 1
κ2∇ν

(
∇[µξν] + 1

2e
Φ2CλρξλFµνρ

)
(F.8)

+2ξλEµ(g)λ − 2ξλCλρEµρ(F3) ,

on-shell it defines the Noether pre-potential:

qµν (ξ) = − 1
κ2

(
∇[µξν] + 1

2e
Φ2CλρξλFµνρ

)
. (F.9)

The Hodge dual of the Noether pre-potential gives the 8-form

Q [ξ] = 1
2
1
8!
√
−gϵµνρ1...ρ8q

µνdxρ1 ∧ · · · ∧ dxρ8 , (F.10)

that in differential forms is

Q [ξ] = − 1
κ2

(
⋆dξ + eΦξ¬C2 ∧ ⋆F3

)
. (F.11)

¬ stands for the contraction operator.
The boundary term that allow us to have a well posed action principle and finite

mass is
Sfull = SIIB,bulk +

∫
∂M

d9x
√
−h 1

κ2

(
K − e−

1
4 Φ
)
, (F.12)
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where the first term in the integral is the Gibbons-Hawking-York term and the last term
corresponds to a counter term, that depends only on intrinsic quantities, that allow us to
renormalize the mass term. The extrinsic curvature is defined in terms of the normal unit
outwards vector nµ to the boundary of the spacetime by

Kµν = hρµh
σ
ν∇ρnσ , (F.13)

and the induced metric is hµν = gµν − nµnν for our case.
Following [54] the energy, angular momentum and entropy are defined by

E [t] =
∫
∞
(Q [t]− ξ¬B) , (F.14)

J [ψ] = −
∫
∞
Q [ψ] , (F.15)

S [ξ] = 1
T

∫
H
Q [ξ] . (F.16)

The boundary terms are in the 9-form

B = − 1
κ2

(
K − e−

1
4 Φ
)
⋆ n . (F.17)

t is the time-like Killing vector at infinity properly normalized, ψ is the rotation generator
and ξ is the horizon generator

ξ = t+Ωψ . (F.18)

ξ is null at the Horizon which defines the angular velocity Ω and satisfies the geodesic
equation at the horizon

ξµ∇µξ
ν = κsξ

ν , (F.19)

defining the surface gravity κs that is related to the temperature as T = κs
2π . In this case

we are in general relativity, therefore the entropy give one-quarter of the horizon area.
Let us consider the black membrane configuration in Einstein frame (2.11), with

ζ(r) = 1
r2 , Φ → Φ− 2 log

(
e2
A + e2

B

2

)
, F3 → e2

A + e2
B

2 F3. (F.20)

The in-going Eddington-Finkelstein coordinates are well-defined at the horizonl, their de-
fined by

dt = dv − 2dr
rfbh (r)

, (F.21)

dψA = dψ′
A − 2eAQAζ (r)

rfbh (r)
dr , (F.22)

dψB = dψ′
B − 2eBQBζ (r)

rfbh (r)
dr . (F.23)
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Then, the metric becomes

ds2
E =

√
r

{
dy2 + dx2 − fbh (r) dv2 + 4

r
drdv (F.24)

+ 2
e2
A

[
dθ2
A + sin2 θAdϕ

2
A +

(
dψ′

A + cos θAdϕA − eAQAζ (r) dv
)2]

+ 2
e2
B

[
dθ2
B + sin2 θBdϕ

2
B +

(
dψ′

B + cos θBdϕB − eBQBζ (r) dv
)2]}

,

In this coordinates we consider the vector

ξ = t+ΩAψA +ΩBψB (F.25)

where

t = −1
2
∂

∂v
, ψA = ∂

∂ψA
, ψB = ∂

∂ψB
. (F.26)

The vector ξ is null at the horizon located at r+ when

ΩA = eAQA
r2

+
, QB = eBQB

r2
+

. (F.27)

Due to the fact that the spacetime that we are considering is not asymptotically Minkowski
times S3 × S3, instead is conformal to Minkowski times S3 × S3, it is not clear how we
should normalize the vector t time-like at infinity. This ambiguity propagates to the energy
and the temperature. Therefore we expect to obtain the temperature in 4D up to a factor.
The energy (F.14), angular momentum (F.15), temperature defined through (F.19) and
the entropy give

E = E [t] = 2m
e3
Ae

3
Br

2
0κ

2

(
16π2

)2
LxLy , (F.28)

JA = J [ψA] = − 8QA
e4
Ae

3
Aκ

2

(
16π2

)2
LxLy , (F.29)

JB = J [ψB] = − 8QB
e4
Ae

3
Aκ

2

(
16π2

)2
LxLy , (F.30)

T = e2
A + e2

B

16π − 4
(
Q2
A +Q2

B

)
16πr4

+
, S = 2r2

0
e3
Ae

3
BG10

(16π)2 LxLy . (F.31)

They satisfy the first law of thermodynamics

dE = TdS +ΩAdJA +ΩBdJB . (F.32)
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