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1 Introduction

Thermodynamic properties of black holes are expected to give us important clues in un-
derstanding the quantum nature of gravity [1–3]. The development of black hole thermo-
dynamics has involved many significant results, such as the intimate connection among the
laws of gravitation with the laws of thermodynamics [4, 5], intrinsic relationships between
black hole entropy and Noether charges associated with diffeomorphism symmetry [6], and
thermal phase transitions due to the presence of a negative cosmological constant [7]. In
this regard, the discovery of the three-dimensional black hole by Bañados, Teitelboim, and
Zanelli (BTZ) [8, 9] was of particular importance since it allowed us to investigate in a more
straightforward way the nature of black holes and their relationship to basic foundations
of quantum physics. Further developments of three-dimensional black holes can be found
in [10–20] and references therein.

It is well known that three-dimensional gravity with a negative cosmological con-
stant can be formulated as a Chern-Simons (CS) theory for the anti-de Sitter group
SO(2, 2) [21, 22]. The gauge field takes values in the Lie algebra so(2, 2) and is writ-
ten in terms of the dreibein ea(x) and the spin connection ωa(x), as independent degrees
of freedom. The equations of motion imply constant (Riemannian) curvature and van-
ishing torsion, so the theory is purely metric on-shell. However, there are interesting
trends motivated by gauge-theoretic arguments for considering gravity models based on
Riemann-Cartan geometry containing both metric and affine properties of spacetime as
generic ingredients of the gravitational dynamics (see, for instance, [23–25], and references
therein). In three-dimensions, Riemann-Cartan gravity is studied in [26]. Further devel-
opment along these lines led to several interesting results, such as a stationary black hole
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solution [27], asymptotic symmetries, thermodynamic properties, and microscopic descrip-
tion of the entropy [28–30]. An important observation in this context is that entropy differs
from the Bekenstein-Hawking result by an additional contribution, which depends on the
presence of spacetime torsion.

In this work, we study the thermodynamic properties of another black hole solution
with torsion, originally reported in [31]. The theory behind this solution is a three-
dimensional CS model genuinely invariant under the semi-simple extension of the Poincaré
gauge symmetry [32]. This semi-simple enlargement is equivalent to an S-expansion proce-
dure of the AdS algebra in any dimension and is often referred to as AdS-Lorentz (AdSL)
Lie algebra [33–35]. The AdSL group was introduced to describe the symmetries of a
particle moving in AdS spacetime in the presence of a constant electromagnetic field [36].
Moreover, AdSL symmetry is also related to the so-called Maxwell group [37] through an
Inönü-Wigner contraction. In the context of CS theories of gravity, expanded symmetry
algebras have many interesting properties. For instance, any expanded algebra may include
new generators, increasing the gauge symmetry of the particular theory. In such cases, it
also means including compensating gauge fields apart from the dreibein and spin connec-
tion. Interestingly, in three-dimensions, this extra gauge field codifies the affine structure
of geometry so that gauge invariance is preserved.1 [34, 42].

Here, we start by highlighting the fact that three-dimensional AdSL gravity naturally
contains torsion. Moreover, we show that the stationary solution [31] is characterized by
the standard constants of motion M, J, of Einstein’s gravity, and a new constant b related
to the presence of spacetime torsion. The presence of this constant generalizes the “exotic”
thermodynamics analysis of Townsend and Zhang [43] by including the torsion in both the
global charge and entropy formulas. Specifically, we present the modifications in entropy
caused by torsion and the additional term in the first law, which comes from the new global
charge. For completeness, we display the Smarr formula with the effects of torsion taken
into consideration. For this purpose, we employ the methods used in the CS formalism
proposed in [44–46].

This paper is organized as follows. In section 2.1, we review the AdSL symmetry lead-
ing properties and the construction of a CS principle action. In section 2.2, we explain the
stationary solution of this theory and review the BMS-like gauge for the field content that
allows solving the field equations. In section 2.3, we review the corresponding asymptotic
symmetry and the derivation of the asymptotic gauge connection useful for the computa-
tion of the entropy. The study of the computation of the global charges, entropy, first law,
and Smarr formula is developed in section 3. Finally, section 4 is devoted to discussing the
results and future directions.

2 Three-dimensional AdS-Lorentz gravity

This section briefly reviews the formulation of a CS theory of gravity quasi invariant under
the AdSL group [34]. Some subtleties in deriving the black hole solution of this gravity

1There are other interesting examples of black hole solutions for theories with extended symmetries,
such as higher spin systems [38–41].
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theory are highlighted.

2.1 Formulation of AdS-Lorentz CS gravity

In (2 + 1)-spacetime dimensions, the AdSL algebra is generated by spacetime rotations Ja,
spacetime translations Pa, and a new type of generators Za, originally introduced in [37, 47].
Commutation relations among these generators are given by

[Ja, Jb] = ϵabcJ
c , [Za, Zb] = ϵabcZ

c ,

[Ja, Pb] = ϵabcP
c , [Ja, Zb] = ϵabcZ

c ,

[Pa, Pb] = ϵabcZ
c , [Za, Pb] = ϵabcP

c ,

(2.1)

where ϵabc is the Levi-Civita symbol, such that ϵ012 = 1, ϵ012 = −1, and a = 0, 1, 2 is
a Lorentz index, raised and lowered with the Minkowski metric ηab = diag(−1, +1, +1).
As presented in (2.1), is clear that generators Za complete the semi-simple extension of
the Poincaré algebra iso(1, 2) generated by rotations Ja and translations Pa. Another
observation is that (2.1) can also be written as the direct sum so(2, 2) ⊕ so(2, 1), reason
why it is usually referred to as AdSL algebra. In fact, defining

J̃a = Za , P̃a = Pa , Z̃a = Ja − Za , (2.2)

the direct sum structure of AdS and Lorentz algebras is made explicit (see [34, 42]). This
last observation also implies that (2.1) is equivalent to the direct sum of three copies of the
Lorentz algebra. Indeed, three commuting sets of so(2, 1) generators[

J+
a , J+

b

]
= ϵabc(J+)c ,

[
J−

a , J−
b

]
= ϵabc(J−)c ,

[
Ĵa, Ĵb

]
= ϵabcĴ

c , (2.3)

reproduce (2.1) by means of redefinitions

Za = J+
a + J−

a , Pa = J+
a − J−

a , Ja = Ĵa + J+
a + J−

a . (2.4)

The most general invariant tensor associated to (2.1) has the following components

⟨Ja , Jb⟩ = α0ηab , ⟨Pa , Pb⟩ = α2ηab , (2.5a)
⟨Ja , Pb⟩ = α1ηab , ⟨Za , Zb⟩ = α2ηab , (2.5b)
⟨Ja , Zb⟩ = α2ηab , ⟨Za , Pb⟩ = α1ηab , (2.5c)

where α0, α1, and α2 are real arbitrary constants. This bilinear form is non-degenerate if
α1 ̸= α2 and α2 ̸= α0. The Cartan sub-algebra is a three-dimensional space which suggest
the presence of three independent Casimir operators constructed from these generators [34,
35].

A quasi-invariant gravity theory with AdSL symmetry can be constructed by evaluating
the CS action

I [A] = k

4π

∫
M

〈
A ∧ dA + 2

3 A ∧ A ∧ A

〉
, (2.6)

for the connection one-form A = Aµ dxµ, taking values in the algebra (2.1) spanned by
{Pa, Ja, Za}

A = 1
ℓ

eaPa + ωaJa + σaZa . (2.7)
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As usual, ea(x) denote the one-form dreibein, ωa(x) is the one-form spin connection, and the
one-form σa(x) is the compensating gauge field associated with the non-abelian generator
Za. Here, ℓ denotes the AdS radius and k is the CS level related to the Newton’s constant G

according to k = ℓ
4GN

. In terms of the gauge field components, the action takes the form2

IAdSL[e, ω, σ] = k

4π

∫
M

(LEC + Lexotic + Lσ) , (2.8)

with

LEC = α1
ℓ

(
2Raea + 1

3ℓ2 ϵabceaebec

)
, (2.9)

Lexotic = α0

(
ωa dωa + 1

3ϵabcωaωbωc

)
+ α2

ℓ2 T aea , (2.10)

Lσ = 2α1
ℓ

F aea + α2

(
2Raσa + 1

3ϵabcσaσbσc + Dωσaσa + 1
ℓ2 ϵabceaσbec

)
. (2.11)

The two-form curvatures associated to the gauge fields ωa, ea and σa are defined by

Ra = dωa − 1
2ϵabcωbωc , T a = Dωea , F a = Dωσa + 1

2ϵabcσbσc , (2.12)

where the covariant derivative is defined with respect to the full spin connection as Dωea ≡
dea − ϵabcωbec. The total Lagrangian in (2.8) consists of three pieces: the three-form LEC
is the first order generalization of the Einstein-Hilbert term with a negative cosmological
constant. The piece Lexotic contains the exotic Lorentz-Chern-Simons term [48] and a tor-
sional contribution whose exterior derivative is locally related to the Nieh-Yan topological
invariant [49, 50]. The Lagrangian three-form Lσ is the extra contribution coming from
the presence of the gauge field σa.

Functional variation of (2.8) leads to the field equations

δωa : 0 = α0Ra + α1
ℓ

(
Ta + ϵabcσ

bec
)

+ α2

(
Fa + 1

2ℓ2 ϵabce
bec

)
,

δea : 0 = α1
ℓ

(
Ra + Fa + 1

2ℓ2 ϵabce
bec

)
+ α2

ℓ2

(
Ta + ϵabcσ

bec
)

, (2.13)

δσa : 0 = α1
ℓ

(
Ta + ϵabcσ

bec
)

+ α2

(
Ra + Fa + 1

2ℓ2 ϵabce
bec

)
,

so in principle the space of solutions contains different branches controlled by the possi-
ble values of the coupling constants α0, α1 and α2. However, requiring a non-vanishing
determinant of (2.13), the equations of motion reduce to

Ra = 0 , (2.14a)
Ta + ϵabcσ

bec = 0 , (2.14b)

Fa + 1
2ℓ2 ϵabce

bec = 0 . (2.14c)

This is, in fact, the generic case where the field equations completely determine the evo-
lution of the system. Notice that the full dynamics of the theory is captured by the α2

2Henceforth, the wedge product ∧ between differential forms is understood, i.e. ωa eb = ωa∧eb = −eb∧ωa.
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term in the action (2.8), regardless of the choices for α0 and α1. Otherwise, ωa would be a
redundant gauge field of the theory, and therefore the bilinear form (2.5) would be degen-
erate. Another important observation is that, in this particular dimension, the gauge field
σa is a source for torsion. This can be seen explicitly in eq. (2.14b) by splitting the Lorentz
connection ωa in terms of its torsion-free (ω̊a) and contorsion part (κa) as ωa = ω̊a +κa and
then one intermediately arrives to σa = −κa. This last result makes the theory particularly
appealing, for instance, when studying black hole solutions and their thermodynamics, as
we will see later.

2.2 Stationary black hole solution

Three-dimensional AdSL gravity admits a stationary black hole solution with rotation [31].
The line element is given by3

ds2 = −N2 dt2 + dr2

N2 + r2 (dφ + Nφ dt)2 , (2.15)

with the r-dependent functions

N2 = −M + J2

4r2 + r2

ℓ2 , Nφ = − J

2r2 , (2.16)

and M and J are integration constants. This means the BTZ triad4

ē0 = N dt ,

ē1 = N−1 dr , (2.17)
ē2 = r (dφ + Nφ dt) ,

is a solution while the torsionless part of the spin connection ˚̄ωa is solved from Dω̊ea = 0

˚̄ω0 = N dφ ,

˚̄ω1 = −Nφ

N
dr , (2.18)

˚̄ω2 = r

(dt

ℓ2 + Nφ dφ

)
.

Expressions (2.17) and (2.18) determine completely the metric part of the solution. On
the other hand, inserting σa = −κa and (2.17)–(2.18) into (2.14c) one finds the following
components for the contorsion tensor

κ̄0 = aC dt + B dr + (C − N) dφ ,

κ̄1 = aF dt +
(

E + Nφ

N

)
dr + F dφ , (2.19)

κ̄2 =
(

aI − r

ℓ2

)
dt + H dr + (I − rNφ) dφ ,

3Henceforth, we will use the convention 8GN = 1 with GN being the Newton’s constant.
4From now on, we will use bar notation both for the diagonal Minkowski metric η = diag(−1, 1, 1) and

gauge fields associated.
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where we have defined the r-dependent functions

B ≡ 1
I

dF

dr
+ HC

I
,

C ≡
√

F 2 + I2 + b , (2.20)

E ≡ 1
C

(dI

dr
+ F

I

dF

dr

)
+ FH

I
.

Therefore, the solution depends on three arbitrary functions I = I(r), F = F (r) and
H = H(r) and two additional integration constants a and b.

Let us write down this solution in the BMS gauge. To this end, we introduce the
off-diagonal Minkowski metric

ηab =

 0 1 0
1 0 0
0 0 1

 , (2.21)

and solve field equations in the direct sum basis (2.2). By doing so, the torsionless fields
ẽa and ω̃a can be set to obey standard pure gravity boundary conditions, and the gauge
field σ̃a is simply a flat Lorentz connection [51]. In the BMS gauge [52, 53], the solution is
parametrized by the local coordinates xµ = (u, r, ϕ), where u = t − f(r) and ϕ = φ + g(r)
correspond to the retarded time coordinate and new angular coordinate, respectively, with

df(r)
dr

= N−2 ,
dg(r)

dr
= −Nφ

N2 . (2.22)

The boundary is located at r = const. With this new basis and change of variables, the
metric (2.15) reads

ds2 = ηabẽ
aẽb = 2ẽ0ẽ1 +

(
ẽ2
)2

, (2.23)

and the dreibein can be chosen as

ẽ0 = 1
2ℓ2

(
ℓ2 M(u, ϕ) − r2

)
du − dr + 1

2N (u, ϕ) dϕ , (2.24a)

ẽ1 = du , (2.24b)
ẽ2 = r dϕ . (2.24c)

Here, M and N are arbitrary functions to be fixed by the Einstein field equations. By
considering the AdSL algebra as the direct sum so(2, 2) ⊕ so(2, 1), the spin connection ω̃a

is torsionless and therefore is given by

ω̃0 = 1
2ℓ2N (u, ϕ) du + 1

2ℓ2

(
ℓ2 M(u, ϕ) − r2

)
dϕ , (2.25a)

ω̃1 = dϕ , (2.25b)
ω̃2 = r

ℓ2 du . (2.25c)

Finally, the gauge field σ̃a acquires the form

σ̃0 = 1
2ℓ2

(
ℓ2 M(u, ϕ) −R(u, ϕ)

)
dϕ , (2.26a)

σ̃1 = dϕ , (2.26b)
σ̃2 = 0 . (2.26c)
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with R another arbitrary function. By inserting this BMS gauge solution into the field
equations (2.14), we get (see, for instance, [52])

Ṁ(u, ϕ) = 1
ℓ2N

′(u, ϕ) , Ṅ (u, ϕ) = M′(u, ϕ) , (2.27)

where dot and prime denote derivatives with respect to the coordinates u and ϕ, respec-
tively, whose solutions are

M = L+ + L−

ℓ
, N = L+ − L− , (2.28)

with L± = L±(x±) and x± = ϕ ± 1
ℓ u. The field equation associated with the gauge field

σ̃a leads to the extra condition

Ṙ(u, ϕ) = N ′(u, ϕ) , (2.29)

which yields
R = ℓ

(
L+ + L− − 2L

)
, L = L(ϕ). (2.30)

Now, the transformation in (2.2) induces the following relationship among the gauge fields
of the BMS and the original AdSL basis

ea = ẽa , ωa = σ̃a , σa = ω̃a − σ̃a . (2.31)

Hence, the solution for AdSL CS gravity is given by

e0 = 1
2ℓ2

(
ℓ2 M− r2

)
du − dr + 1

2N dϕ , e1 = du , e2 = r dϕ , (2.32)

ω0 = 1
2ℓ2

(
ℓ2 M−R

)
dϕ , ω1 = dϕ , ω2 = 0 , (2.33)

κ0 = − 1
2ℓ2N du + 1

2ℓ2

(
r2 −R

)
dϕ , κ1 = 0 , κ2 = − r

ℓ2 du . (2.34)

It is important to remark that the integration constant a for this gauge vanishes. Moreover,
it is direct to show that enforcing the functions M, N and R to be the constants

M (u, ϕ) = M , N (u, ϕ) = −J , R (u, ϕ) = ℓ2 (b + M) , (2.35)

and the arbitrary functions to be fixed by

I(r) = rNφ , H(r) =
rN2

φ

N2 + 1
N

dN

dr
, F (r) =

b + r2N2
φ − N2

2N
, (2.36)

we connect the results of the BMS basis (2.23) with the ones written in the AdSL basis of
the stationary solution (2.15). In conclusion, the BMS gauge basis fixes the form of the
arbitrary functions I, H, F in terms of the BTZ geometric data. Then, the phase space of
this family of solutions is spanned by the integration constants M, J and b.
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2.3 Asymptotic dynamics

The thermodynamic properties of a black hole can be ascertained by assessing the Euclidean
action associated with the black hole solution. The thermodynamic functions mostly get
contributions from the boundary terms. Moreover, the extensive thermodynamic quanti-
ties, the global charges defined at infinity, depend on asymptotic symmetries. Therefore,
it is essential to understand the behavior of dynamic fields in the asymptotic region.

In order to calculate the thermodynamics of the BTZ type solution (2.15), we have to
consider suitable fall-off conditions for the gauge field at infinity. The gauge connection A

associated with the gauge fields (2.32) written in the {Ja, Pa, Za} basis is

A = 1
2ℓ2

(
N (u, ϕ) du +

(
R (u, ϕ) − r2

)
dϕ

)
Z0 + r

ℓ2 duZ2

+
( 1

2ℓ2

(
ℓ2M (u, ϕ) − r2

)
du − dr + 1

2N (u, ϕ) dϕ

)
P0
ℓ

+ P1
ℓ

du + r dϕP2

+
( 1

2ℓ2

(
ℓ2 M (u, ϕ) −R (u, ϕ)

)
dϕ

)
J0 + dϕJ1 . (2.37)

It is possible to remove the radial coordinate r by performing an appropriate gauge trans-
formation on (2.37). Indeed, doing

A = θ−1 dθ + θ−1a θ , (2.38)

with the group element θ = e−
r
ℓ

P0 . Then, the asymptotic gauge connection is

a = 1
2ℓ2 (N (u, ϕ) du + R (u, ϕ) dϕ) Z0 + 1

2ℓ
(M (u, ϕ) du + N (u, ϕ) dϕ) P0

+ du

ℓ
P1 + 1

2ℓ2

(
ℓ2 M (u, ϕ) −R (u, ϕ)

)
dϕJ0 + dϕJ1 . (2.39)

Since we are interested in the thermodynamic properties of the solution (2.32), it is con-
venient to rewrite (2.39) in the basis {J+

a , J−
a , Ĵa}, then

a =
(
a+

u + a−
u

) du

ℓ
+

(
a+

ϕ + a−
ϕ + âϕ

)
dϕ , (2.40)

where

a±
ϕ = 1

ℓ
L±(u, ϕ)J±

0 + J±
1 , (2.41)

âϕ = 1
ℓ
L(ϕ)Ĵ0 + Ĵ1 , (2.42)

and

L±(u, ϕ) = 1
2 (ℓM(u, ϕ) ± N (u, ϕ)) , L = 1

2ℓ

(
ℓ2 M(u, ϕ) −R(u, ϕ)

)
. (2.43)

The asymptotic gauge fields a+
u and a−

u will be specified below. On the other hand, the
asymptotic form of the connection (2.37) is preserved under gauge transformations of the
form δλa = dλ + [a, λ], where λ is zero-form a gauge parameter

Λ = θ−1λθ , λ = 1
ℓ

εa (u, ϕ) Pa + χa (u, ϕ) Ja + γa (u, ϕ) Za . (2.44)

– 8 –
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Note that λ = λ(u, ϕ) depends only on spacetime coordinates u and ϕ because we gauged
away its r-dependence. The functions εa, χa, and γa are the symmetry parameters along the
generators of the AdSL algebra. Taking the connection (2.39) and the r-independent gauge
parameter (2.44), one can show its components can be solved in terms of three arbitrary
functions, i.e. λ = λ(Y, f, h), with Y = Y (ϕ), f = f(u, ϕ), and h = h(u, ϕ). Explicitly,

λ =
( 1

2ℓ2

(
ℓ2 M−R

)
Y − Y ′′

)
J0 + Y J1 − Y ′J2 + 1

2ℓ

(
Mf + NY + Nh − 2f ′′)P0

+ f

ℓ
P1 −

f ′

ℓ
P2 + 1

2ℓ2

(
ℓ2 Mh + N f + RY − 2ℓ2h′′

)
Z0 + hZ1 − h′Z2 , (2.45)

whenever the functions M,N and R transform according to [51]

δλM = M′Y + 2MY ′ − 2Y ′′′ − 2h′′′ + hM′ + 2Mh′ + 2N f ′

ℓ2 + fN ′

ℓ2 , (2.46a)

δλN = M′f + 2Mf ′ − 2f ′′′ + N ′Y + 2NY ′ + 2Nh′ + hN ′ , (2.46b)
δλR = ℓ2 (M′h + 2Mh′ − 2h′′′) + N ′f + 2N f ′ + R′Y + 2RY ′ . (2.46c)

We will now determine the asymptotic form of the gauge fields along time evolution. By
considering one of the components of the field equations, we find

Fiu = 0 =⇒ Ȧi = ∂iAu + [Ai, Au] , (2.47)

with i = 1, 2 denoting the spatial coordinates. From here, one can recognize the structure
of a gauge transformation equation for the gauge field Ai. Therefore, we can interpret this
equation as the time evolution of Ai as a gauge transformation generated by the parameter
Au. To preserve the asymptotic symmetries, the Lagrange multiplier must be Au = θ−1auθ,
with

au = λ (µ, ξ, ρ) , (2.48)

where we have included the chemical potentials µ, ξ and ρ, following the analysis presented
in [45]. Therefore, the time evolution of the gauge fields in the asymptotic region is given
by the following set of differential equations

Ṁ = M′µ + 2Mµ′ + M′ρ + 2Mρ′ + N ′ξ

ℓ2 + 2N ξ′

ℓ2 − 2µ′′′ − ρ′′′ , (2.49a)

Ṅ = M′ξ + 2Mξ′ + N ′µ + 2Nµ′ + N ′ρ + 2Nρ′ − 2ξ′′′ , (2.49b)
Ṙ = ℓ2M′ρ + 2ℓ2Mρ′ + N ′ξ + 2N ξ′ + R′µ + 2Rµ′ − 2ℓ2ρ′′′ . (2.49c)

It is clear from these equations that configurations with constant values of M,N and R, as
well as their corresponding chemical potentials µ, ξ and ρ, solve the field equations (2.49).
Considering (2.48), the gauge connection (2.39) takes the form

a = au du +
(1

2
(
ℓ2 M−R

)
J0 + J1 + N

2ℓ
P0 + R

2ℓ2 Z0

)
dϕ , (2.50)

with

au(µ, ξ, ρ) = 1
2ℓ2

(
ℓ2 M−R

)
µJ0 + µJ1 + 1

2ℓ
(Mξ + Nµ + Nρ) P0 + ξ

ℓ
P1

+ 1
2ℓ2

(
ℓ2Mρ + N ξ + Rµ

)
Z0 + ρZ1 . (2.51)

– 9 –



J
H
E
P
0
9
(
2
0
2
3
)
1
8
5

Writing these results above in the basis {J+
a , J−

a , Ĵa}, the time evolution of the gauge fields
is given by

L̇± = L±′ν± + L±′ν + 2L±ν ′
± + 2L±ν ′ − ℓ

(
ν ′′′
± + ν ′′′) , (2.52)

L̇ = L′ν + 2Lν ′ − ℓν ′′′ , (2.53)

where
ν± = ρ ± ξ

l
, ν = µ , (2.54)

are the chemical potentials in this basis. Finally, in the rest frame, the asymptotic gauge
connection (2.50) reads

a =
(
a+

u + a−
u + âu

)
du +

(
a+

ϕ + a−
ϕ + âϕ

)
dϕ , (2.55)

with

a±
u = ± (ν± + ν)

(1
ℓ
L±J±

0 + J±
1

)
, (2.56)

âu = ν

(L
ℓ

Ĵ0 + Ĵ1

)
, (2.57)

where a±
ϕ and âϕ are given in eqs. (2.41) and (2.42). In the following section, we will

compute the black hole entropy following the known formulae of the three-dimensional CS
theory [46].

3 Thermodynamics

We now study the thermodynamics of the stationary solution (2.32). For this purpose, we
follow for a large part the treatment presented in [44–46]. In general, black hole entropy
is determined by establishing regularity conditions and global charges. In a CS gauge
theory of gravity, regularity conditions are achieved by requiring trivial holonomies along
contractible cycles.

3.1 Entropy

To set regularity conditions easily, we will use the results obtained on the basis {J+
a , J−

a , Ĵa}.
The connection one-form takes values in the three copies of the Lorentz algebra such that

A = A+ + A− + Â , (3.1)

with
A± =

(
ωa ± ea

ℓ
+ σa

)
J±

a , Â = ωaĴa . (3.2)

For this gauge connection, the CS action (2.8) is rewritten as

ICS [A] = ICS
[
A+

]
+ ICS

[
A−] + ICS

[
Â
]

, (3.3)

where we have considered the following non-vanishing components of the invariant tensor〈
J±

a , J±
b

〉
= 1

2 (α2 ± α1) ηab ,
〈
Ĵa, Ĵb

〉
= (α0 − α2) ηab . (3.4)

– 10 –
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In the microcanonical ensemble, the entropy can then be obtained from the following
expression [46]

S = k
(〈

a+
u , a+

ϕ

〉
+

〈
a−

u , a−
ϕ

〉
+ ⟨âu , âϕ⟩

) ∣∣∣∣∣
on-shell

. (3.5)

Following the nomenclature of [46], without loss of generality, we shall make the assumption
that we are in a “rest frame” such that the functions {L±,L} and {ν±, ν} are constants at
r → ∞, i.e.

L± (u, ϕ) −−−→
r→∞

L±
0

2π
, L(u, ϕ) −−−→

r→∞
L0
2π

, ν±(u, ϕ) −−−→
r→∞

ν±
0

2π
, ν(u, ϕ) −−−→

r→∞
ν0
2π

.

(3.6)
In addition, we conveniently rescale the fields {L±,L}, such that

a±
ϕ = 4π

k
L±J±

0 + J±
1 , (3.7a)

âϕ = 4π

k
LĴ0 + Ĵ1 , (3.7b)

a±
u = (ν± + ν)

(4π

k
L±J±

0 + J±
1

)
, (3.7c)

âu = ν

(4π

k
LĴ0 + Ĵ1

)
. (3.7d)

From these results and considering the formulas (3.4)–(3.5), we deduce the general expres-
sion for the entropy

S = 4π
(
2α0νL+α1

(
(ν+ +ν)L+ +(ν−+ν)L−

)
+α2

(
(ν+ +ν)L+−(ν−+ν)L−−2νL

))
.

(3.8)
In order to fix the chemical potentials, we require the holonomies H along the thermal
circle to be trivial, namely

H = eiau(r+)
∣∣∣∣∣
on-shell

= −1 , (3.9)

where 1 is the identity generator of the AdSL algebra and r+ is the largest root of N(r) = 0.
Then, for each temporal gauge connection (3.7) satisfying the regularity condition (3.9),
we obtain a set of equations that allows us to find ν± and ν. According to this condition,
the eingenvalues of iau are given by ± iπ. Therefore,

tr
[(

a+
u

)2
]

= 2π2 , (3.10a)

tr
[(

a−
u

)2] = 2π2 , (3.10b)

tr
[
(âu)2

]
= 2π2 . (3.10c)

On the other hand, because of the isomorphism so(2, 1) ≃ sl(2, R), then we conveniently
choose

Ĵ±
0 ≃ j0 , Ĵ±

1 ≃ j1 , (3.11)

– 11 –
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where j0 and j1 are both sl (2, R) elements.5 This isomorphism allows us to use the sl (2, R)
matrix representation to compute the holonomy (3.10). Therefore, from (3.10), ν± and ν

are given by

ν+ + ν =

√
πk

2L+ , ν− + ν =

√
πk

2L− , ν =

√
πk

2L . (3.12)

Then, by considering (3.6) and (3.12) the entropy (3.5) turns out to be

S = 2π
√

k

(
α1

(√
L+

0 +
√
L−

0

)
+ α2

(√
L+

0 −
√
L−

0

)
+ 2 (α0 − α2)

√
L0

)
. (3.13)

From the expression (2.43) we can rewrite (3.13) in terms of the integration constants M ,
J and b as

S = π
√

2k
(
α1

(√
ℓM −J +

√
ℓM +J

)
+ α2

(√
ℓM −J −

√
ℓM +J

)
+4

√
−ℓb(α0−α2)

)
.

(3.14)
Notice that the term proportional to α2 gives the standard result of the BTZ black hole.
However, we now have the contribution of the exotic term α1 and also from the integration
constant b. At this level, we cannot set α0 − α2 = 0 because the bilinear form (2.5)
degenerates. One can also write the entropy in terms of the global charges associated with
the isometries of this new geometry. To this end, in the next section, we compute the
global charges and show the appearance of a new conserved charge.

3.2 Global and gauge charges

Let us consider diffeomorphisms and gauge symmetries together, both parameterized by
ϵ = (ξ, λ), with ξ a vector field and λ a Lie algebra valued gauge parameter. Thus, a
general infinitesimal symmetry transformation reads6

δAϵ = LξA − DAλ′ = ξ⌟F − DAλ , (3.15)

where we have defined the exterior covariant derivative DA(·) ≡ d(·) + [A, (·)] and the
displaced parameter λ = λ′−ξ⌟A. Following [55], to define a conserved charge, we demand
the so-called exact symmetry condition, which consists in standing the infinitesimal gauge
transformations (3.15) to zero and solve for the parameters ϵ = (ξ, λ). For instance,
the global charges associated with the invariance under time displacements (mass) and
rotations (angular momenta) are computed using, respectively, the Killing vectors ξµ

(u) =
(1, 0, 0) and ξµ

(ϕ) = (0, 0,−1), respectively. The formula to derive these charges, with
u = const, is given by

δQ [λ] = − k

2π

∫
dϕ ⟨λ, δa⟩ . (3.16)

where we considered the expression for the asymptotic gauge field a (2.39).7 By choosing
λ = −ξ⌟a, the exact symmetry condition δϵA = 0 is solved for the Killing vectors ξµ

(u) and

5See, for instance, appendix of [54]
6We use the notation ξ⌟ = iξ for the interior product, for instance ξ⌟ea = ξµea

µ.
7It is worth noting here that the quasi-local treatment for the charge conservation ensures, given a

spacetime with exact symmetries, the independence of the radius r.
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ξµ
(ϕ), only. The charges associated with these isometries become

δQ
[
ξµ

(u)

]
≡ δm = k

2ℓ

(
α1δM − α2

ℓ
δJ

)
, (3.17)

δQ
[
ξµ

(ϕ)

]
≡ δj = k

2ℓ
((α0 − α2) ℓ δb + α1δJ − α2ℓδM) . (3.18)

The integration along ϕ is trivial because the charges are coordinate independent. More-
over, since the phase space variation is linear, this integration is trivial as well. Setting
k ≡ 2ℓ, we get the finite charges

m = α1M − α2
ℓ

J , (3.19)

j = (α0 − α2) ℓb + α1J − α2ℓ M . (3.20)

Notice that the rotating BTZ case corresponds to (α0, α1, α2) = (0, 1, 0), and the case
(α0, α1, α2) = (0, 0,−1) with b = 0, corresponds to the exotic BTZ charges, where a
reversion of the mass and angular momentum is observed. Therefore, here we find that
global charges essentially generalize the exotic case found by Townsend and Zhang [43] and
contain, in addition, a torsional correction proportional to b in j.

There is an extra charge associated with a gauge symmetry in this solution. This
charge is computed using the gauge parameter λ satisfying the exact symmetry condition
for ϵ = (0, λ), so that

δλa = dλ + [a, λ] = 0 , (3.21)

where λ is the algebra valued parameter given in (2.44) and a the gauge connection ap-
pearing in (2.39). This exactness condition admits the solution for εa = 0 and χa = −γa,
we get

λw ≡ − b

2J0 + J1 + b

2Z0 − Z1 . (3.22)

Then, replacing (3.22) into (3.16), and integrating both in ϕ spacetime coordinate and in
phase space, we obtain the new gauge charge

Q [λw] ≡ w = (α0 − α2) ℓb . (3.23)

This is a novel result of this work. Although AdSL symmetry has three Casimir opera-
tors [34], and this new charge is expected, the surprising result here is how the torsion
supports it. It could be interesting to study the possible relationship between the constant
electromagnetic field of the AdSL particle analysis [36, 47] and this new charge. We leave
this for a future work.

From these charges in hand, it is possible to write the entropy (3.14) in terms of the
global charges m, j and w. We find

S = 2π
√

ℓ

(√
(ℓm+j−w)(α1−α2)+

√
(ℓm−j +w)(α1 +α2)+4

√
w(α2−α0)

)
, (3.24)

or in terms of the inner/outer horizons r± and the integration constant b becomes

S = 4π
(
α1r+ − α2r− + 2 (α0 − α2) ℓ

√
−b

)
, (3.25)
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noticing that the integration constant b < 0 holds. Here we have assumed that α0 > α2.
The case α0 < α2 is permissible as well, giving a minus sign in front of the last term. To
recover the result found in [43], one should set α2 → −α̃2, with α̃2 > 0 and b = 0.

This expression for the entropy differs from the standard and exotic formula because
of the term proportional to the new gauge charge w. Due to that, this charge is related
to the integration constant appearing in the solution for σa = −κa gauge field, this result
indicates that spacetime torsion modifies both the black hole entropy and the first law of
thermodynamics, as we will see below.

3.3 The first law and Smarr formula

By studying the thermodynamics of the black hole with torsion (2.35), calculation of the
entropy formula (3.14) revealed the existence of a new extensive variable associated with
the integration constant b. Therefore, we can establish the first law of black hole mechanics
for this family of black hole solution spanned by the parameters M, J , and b. With all the
global charges at hand, the first law of thermodynamics reads

δm = TδS + Ω δj + µδw , (3.26)

where we have used the standard formulas to compute the extensive quantities

T =
(r2

+ − r2
−)

2πℓ2 r+
, (3.27)

Ω = r−
ℓr+

, (3.28)

µ =
2(r2

+ − r2
−) −

√
|b|ℓr−√

|b|ℓ2 r+
= 4πT√

|b|
− Ω . (3.29)

All of these quantities might be further identified with standard physical ones: a temper-
ature (Hawking thermal radiation) T , angular velocity of the horizon Ω, and a chemical
potential µ associated with the gauge charge w.

Finally, by considering the fact that the entropy is a homogeneous thermodynamical
function of degree 1/2 for m, j and w, one easily obtains the Smarr formula for this black
solution

S = 2
T

(m − Ωj − µw) . (3.30)

When w = 0, this expression reduces to the Smarr formula for the BTZ black hole solution.
Lastly, using these state variables and the thermodynamic functions shown, it is possible to
find other quantities, such as the heat capacity and fluctuation modes, that will be needed,
for example, to study the critical behavior and phase transition of this torsional black hole.

4 Conclusions

In this paper, we have examined the thermodynamics of BTZ-type black holes in the
presence of spacetime torsion. After a suitable gauge fixing, we show that the solution is
characterized by three integration constants: M, J as in standard GR plus a new constant
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b related to torsion. The presence of this constant generalizes the “exotic” thermodynamics
analysis of Townsend and Zhang by including spacetime torsion in both the global charge
formulas and entropy. The solution has been obtained from a CS action valued on a semi-
simple enlargement of the Poincaré gauge symmetry, namely the AdSL symmetry. This
enlargement includes new gauge fields that allow the notion of a torsion different from zero.
Further, we found a novel conserved quantity related to torsion. This implies the presence
of this new gauge charge in the laws of black hole thermodynamics.

Investigating the thermodynamics in the ℓ → ∞ limit of the torsional black hole would
be interesting. This observation is motivated by taking the flat limit of the stationary
solutions in AdSL gravity, arriving at the cosmological solution of Maxwell CS theory [56].
Moreover, it is also interesting to analyze whether it is possible to recover the entropy
formula obtained through a microscopic description from the Cardy formula. This is a
work in progress. Including matter fields in the AdSL CS theory is another important topic
to discuss. Since fermionic fields interact with torsion, this might be the most intriguing
scenario to investigate. A more comprehensive interpretation of the conserved torsional
charge may be attainable by doing so. Finally, thermodynamic phenomena such as phase
transitions and critical behavior are interesting additional topics to investigate in this
torsional black hole. These phenomena involving a conserved torsional charge have not
been described previously.
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