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1 Introduction

In this work, we take a peek at the rich algebro-geometric structure of the master space of 2d
(0,2) supersymmetric gauge theories that arise as worldvolume theories of D1-branes probing
toric Calabi-Yau 4-folds. These theories are realized by a Type ITA brane configuration
that is connected to the D1-brane at the Calabi-Yau singularity via T-duality [1, 2]. These
brane configurations and the corresponding 2d (0,2) gauge theories are known as brane
brick models and led to new interesting developments in various contexts [3-7].

In particular, these recent developments involve the study of the mesonic moduli space
of brane brick models [1, 2]. The mesonic moduli space is defined as the space of gauge
invariant operators under the J- and E-terms of the brane brick model. When the 2d theory
has only U(1) gauge groups, the mesonic moduli space is exactly the toric Calabi-Yau
4-fold associated to the brane brick model. The gauge invariant operators carry charges
under the mesonic flavor and U(1)r symmetries which combined become the isometry of
the toric Calabi-Yau 4-fold. Brane brick models and their mesonic moduli spaces have
been recently fully classified for large classes of toric Calabi-Yau 4-folds such as brane
brick models corresponding to smooth Fano 3-folds [8] and cones over the Sasaki-Einstein
7-manifolds Y?-*(CP' x CP') and Y?-*(CP?) [9].

As introduced in [1], in analogy to brane tilings [10-17] realizing 4d N’ = 1 supersym-
metric gauge theories associated to toric Calabi-Yau 3-folds, brane brick models have a



‘ Mmes ‘ frr 75 ‘ d(F) ‘ global symmetry of F?

SPP x C CxC3 6 SU(3) x SU(2) x SU(2) x U(1) x U(1)g
C*/Z4 (1,1,1,1) | [16,36] 7 SU(4) x SU(4) x U(1)g
Q111 [10, 6] 7 SU(4) x SU(2) x SU(2) x U(1)r
Y24(CP?) [18, 24] 9 SU(3) x SU(2) x SU(2) x U(1) x U(1) x U(1) x U(1) x U(1)g

Table 1. The mesonic moduli space M™% of the brane brick model, the coherent component of
the master space "' F*, the dimension of ™ F” and the full global symmetry of '™ F”. The notation
[ng,n,] denotes the number of generators n, and the number of first order relations amongst the
generators n, for "' F? if it is a non-complete intersection.

master space that is larger than the mesonic moduli space. The master space of the brane
brick model is defined as the space of chiral fields subject to the J- and E-terms constraints
and the non-abelian part of the gauge symmetry of the brane brick model, while the mesonic
moduli space requires gauge invariance under the full gauge symmetry.

In the case when the brane brick model has only U(1) gauge groups, the master space
simply takes the form of the following algebraic variety,

F’ = Spec C"™[X1,..., Xn ]/{Jas Ea) , (1.1)

where n, are the number of chiral fields X, ..., Xn,, and J, =0 and E, = 0 are the J-
and E-terms corresponding pairwise to a Fermi field A, of the brane brick model. We
note that the master space is a toric variety [18-20] given that the J- and E-terms are all
binomial relations. Furthermore, we note that the variety in (1.1) is generally reducible into
irreducible components. We call the top-dimensional irreducible component as the coherent
component " F?. In the following work, when we refer to the master space of the brane
brick model, we automatically refer to its irreducible coherent component ™ F?.

The U(1) symmetries that are not imposed on the master space become symmetries
along the additional directions that are added to the mesonic moduli space in order to
form the master space. We refer to these added directions as baryonic directions and the
U(1) symmetries as the baryonic part of the global symmetry of the master space for brane
brick models.! Out of the G U(1) symmetries in an abelian brane brick model, G — 1 are
independent because of the bifundamental nature of the chiral fields. We have also the 3
global mesonic flavor symmetries and the U(1)g-symmetry of the mesonic moduli space,
which together with the independent U(1)“~! symmetries gives us the total rank of the
global symmetry of the master space, G + 3. This also represents the dimension of the
master space for abelian brane brick models with U(1) gauge groups.

In the following work, we systematically calculate the Hilbert series [21-24] for the
master spaces of a selection of brane brick models corresponding to different toric Calabi-Yau
4-folds. The Hilbert series for the master space is a generating function that counts operators
invariant under only the non-abelian part of the gauge symmetry and are subject to the J-
and E-terms of the brane brick model. In the following work, we will concentrate on master

!These terms are borrowed from the master spaces of brane tilings [10-17].



spaces of abelian brane brick models whose gauge groups are all U(1). Even with this
restriction, we see that the master spaces exhibit extremely rich algebro-geometric properties.
For example, by the use of the plethystic programme [21-25], we obtain expressions for
the generators and defining first order relations amongst the generators of the master
space. By identifying the full enhanced global symmetry of the master space, we show how
the generators and defining relations of the master spaces transform under the full global
symmetry. We also express the generators and relations of the master spaces in terms
of GLSM fields that we obtain through the forward algorithm [1, 26, 27] for brane brick
models. Table 1 summarizes the full global symmetry of the master spaces that we study
in this work.

By studying closely the geometric structure of the master spaces for brane brick models
using the Hilbert series, we discover new phenomena specific to master spaces for brane
brick models. These new discoveries involve the occurrence of extra GLSM fields that
over-parameterize the master space for certain brane brick models, the enhancement of
global symmetries of the master spaces, and the discovery that master spaces for brane
brick models are toric but not necessarily Calabi-Yau. In the following work, we summarize
these discoveries and illustrate their connection to the master spaces for brane brick
models that correspond to SPP x C [3], C*/Z4 with orbifold action (1,1,1,1) [1, 28, 29],
QY1 [1, 2, 30-32] and Y>4(CP?) [9, 33, 34].

Our work is organized as follows. In section 2.1, we give a brief introduction to brane
brick models and discuss in section 2.2 the forward algorithm [1, 26, 27] that allows us
to construct the mesonic moduli spaces for brane brick models. We introduce the master
space for brane brick models in section 3.1 and summarize the computation for the Hilbert
series [21-24] in section 3.2, using either directly the J- and E-terms of the brane brick
model or the symplectic quotient description of the master space in terms of GLSM fields.
Section 4 illustrates our findings in four explicit examples of master spaces for brane brick
models. We conclude our work with a summary of our findings and a discussion for future
research directions in section 5.

2 Background

2.1 Brane brick models

The worldvolume theories of D1-branes probing a toric Calabi-Yau 4-fold form a large class
of 2d (0,2) supersymmetric gauge theories, which can be realized by a Type IIA brane
configuration known as a brane brick model [1, 2]. The brane brick model is connected
to the D1-branes at the toric Calabi-Yau singularity by T-duality. The Type ITA brane
configuration consists of D4-branes wrapping a 3-torus 7. They are also suspended from a
NS5-brane that wraps a holomorphic surface ¥ defined as,

Y : P(x,y,2) =0, (2.1)

where P(z,y, z) is the Newton polynomial in z,y, z € C* of the toric diagram associated to
the probed toric Calabi-Yau 4-fold. The D4-brane meets the NS5-brane precisely where



| (0 12 3 4 5 6 78 9]
D4 | x x| - x -+ x - X
NS5 | x x z

Table 2. The Type IIA brane configuration corresponding to a brane brick model on 73.

Figure 1. The four plaquettes corresponding to A;; (and its conjugate ]\”)

the holomorphic surface ¥ intersects the 3-torus 7%. Table 2 shows the Type ITA brane
configuration for brane brick models realizing 2d (0,2) supersymmetric gauge theories
corresponding to toric Calabi-Yau 4-folds.

The intersections between D4-brane and the NS5-brane form a tessellation of the 3-torus
T3. This tessellation of the 3-torus is precisely what we call as the brane brick model. The
following summarizes the dictionary between components of the brane brick model on 73
and the corresponding 2d (0,2) supersymmetric gauge theory [2]:

e Bricks. These are 3-dimensional polytopes that form the fundamental building blocks
of the tessellation of the 3-torus. Each brane brick corresponds to a U(N); gauge
group of the 2d supersymmetric gauge theory.

e Faces. The boundary of a brane brick consists of even-sided 2-dimensional polygons.
A subset of these polygonal faces are oriented along their boundary edges. Such
oriented faces correspond to bifundamental chiral fields X;; in the corresponding 2d
(0,2) theory. All other polygonal faces that are unoriented along their boundary
edges correspond to Fermi fields A;; (and their conjugate j_X”) These Fermi faces are
always 4-sided in a brane brick model. The two brane bricks adjacent to a polygonal
face correspond to the two gauge groups U(N); and U(N); under which X;; or Ay;
associated to the brick face is in the bifundamental representation.

e Edges. In a brane brick model, edges are always connected to a single brick face
corresponding to A;; and a collection of oriented brick faces corresponding to a set of
chiral fields X;;. Accordingly, each brick edge is associated to monomial terms known



as plaquettes in the brane brick model, which take one of the following forms

Aij - J*
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where J;g and Elf are monomial products of chiral fields. Plaquettes corresponding
to opposite edges of the 4-sided Fermi face are identified to either a binomial J-term
or a binomial E-term of the 2d (0,2) supersymmetric gauge theory,

Aijt in = Jt—J:

- gio i 2.3
Aij:Ei':Ei—;_Eij7 ( )

as illustrated in figure 1.

In terms of the J- and E-terms of a brane brick model and the plaquettes associated to
them, we are able to define special collections of chiral fields known as brick matchings [1, 2].
A brick matching p,, is a collection of chiral fields such that the chiral fields in the brick
matching cover the plaquettes (A;; - J;g, Ajj - J3;) or the plaquettes (]\Z-j . E;]”-, Aij - E;;)
exactly once each. We can summarize the chiral fields X,,, contained in a brick matching
py in terms of a brick matching matrix P, whose components take the following form,

1 X
Py = m € Pu (2.4)
0 X épu

Additionally, the chiral fields X,, of a brane brick model can be expressed in terms of
products of brick matchings as follows,

X =[] pim. (2.5)
17

We note that brick matchings p, correspond to GLSM fields [1, 2, 35] that describe the
mesonic moduli spaces of brane brick models.

GLSM fields play an important role in the symplectic quotient description [18, 19] of
the mesonic moduli space M™ as well as the master space F” of brane brick models.
The following sections are going to give a brief overview of GLSM fields and their role in
describing master spaces of brane brick models.

2.2 The forward algorithm

The forward algorithm first introduced in [1] for brane brick models allows us to construct
the mesonic moduli spaces of the corresponding 2d (0, 2) theories using GLSM fields. In the
following section, we review the forward algorithm and illustrate the role played by GLSM
fields to describe mesonic moduli spaces and master spaces of brane brick models.

GLSM Fields. A key step in the forward algorithm is the construction of the P-matrix
in (2.4) encoding the GLSM fields p,, in terms of chiral fields X, in the brane brick model.
We first observe that due to the binomial J- and E-terms of the 2d (0,2) theory,

(Nij, Nij) = Jj = J;; —J; =0, Eyj = Ef — E; =0, (2.6)

iJ )



where J;E and E;]E are monomial products of chiral fields X,,, not all chiral fields in the
brane brick model are independent to each other. In fact, by relabelling the independent
fields as v, we can express all chiral fields X, as products of the following form,

Xm = H’Uk[:(’mk y (27)
k

where m = 1,...,n, labels the n, chiral fields X,, in the brane brick model, and k =
1,...G + 3 labels the independent fields vy with G being the number of gauge groups. Here,
K is a ny x (G 4 3)-dimensional matrix which identifies the binomial J- and E-terms with
the independent fields vy.

Because the J- and E-terms of the brane brick model are binomial, they form a binomial
ideal which is related to toric geometry [20]. In terms of toric geometry, the K-matrix
in (2.7) defines a cone M", which is generated by non-negative linear combinations of the
vectors I?m € Z&+3 encoded in the K-matrix. The cone M has a dual cone Nt which is
generated by non-negative linear combinations of another set of (G + 3)-dimensional vectors
T;L where 4 = 1,...,c. These vectors can be combined to form a (G + 3) x c-dimensional
matrix known as the T-matrix. We note that the cones M and N are dual to each other
such that

K-T>0, (2.8)

which determines the number ¢ of distinct vectors T, -

We can use now the T-matrix to identify the independent fields vy with a set of new
fields p,, such that the chiral fields can be expressed in terms of products of p,, with strictly
positive powers,

T;
v = [P (2.9)
w

By combining the above expression with (2.7), we obtain an expression of the P-matrix
originally defined in (2.5) as follows,

PnXXc = KnXX(G—I—?)) : T(G+3)><c ) (210)
where the new fields p, with = 1,...,c are GLSM fields of the brane brick model.

The Mesonic Moduli Space and Toric Calabi-Yau 4-folds. Let us focus on abelian
brane brick models with U(1) gauge groups. The mesonic moduli space M™¢ of the
brane brick model [1, 2] is the toric Calabi-Yau 4-fold geometry probed by a single D1-brane
given that the worldvolume theory is a 2d (0,2) supersymmetric gauge theory with U(1)
gauge groups. The geometry of the toric Calabi-Yau 4-fold is encoded in the brane brick
model. In order to obtain the geometry of the toric Calabi-Yau 4-fold from the brane brick
model, we first express the J- and E-terms as well as the D-terms of the brane brick models
as U(1) charges on the GLSM fields:

e J- and FE-terms. In terms of the GLSM fields summarized in the P-matrix, the
U(1) charges under the J- and E-terms of the brane brick model are given by the
kernel of the P-matrix,

(QJE)(07G73)><C = ker an><07 (211)



where the columns correspond to GLSM fields and the rows correspond to the
U(1)¢=9=3 charges carried by the GLSM fields due to the J- and E-terms. Here G
refers to the number of gauge groups in the brane brick model.

e D-terms. Similarly, the D-terms of the brane brick model are captured in terms of
U(1) charges carried by GLSM fields as follows,

A(G—l)xnx = (QD)(G—l)Xc ’ Pct><nx ) (212)

where A is the reduced incidence matrix of the quiver for the brane brick model. The
columns of the @ p-matrix correspond to the GLSM fields that carry the U(l)G*1
charges from the D-terms of the brane brick model.

Overall, the GLSM fields carry in total U(1)¢~* charges originating from both the .J-
and F-terms and the D-terms of the brane brick model. The total charge matrix is given by

(Qt)(c—a)xc = (%ﬁ) - (2.13)

In terms of the total charge matrix Q¢, we can define the mesonic moduli space of an abelian
brane brick model as the following symplectic quotient,

MM =T/ /Qy | (2.14)

where C€ is the freely generated space of GLSM fields, where ¢ is the number of GLSM
fields in the brane brick model. In terms of the total charge matrix Q:, we can also define
the coordinate matrix for the toric diagram of the toric Calabi-Yau 4-fold,

(Gt)4><c = ker(Qt)(cfél)Xc : (215)

The columns correspond to GLSM fields which map to vertices of the toric diagram. The
coordinates of the vertices are given by 4-vertices in Z*. Under the Calabi-Yau condition,
the end-points of the 4-vertices are all on a 3-dimensional hyperplane in Z*, allowing us to
draw the toric diagram as a convex lattice polytope on Z3.

Extra GLSM Fields. It was noted in [1], that for certain brane brick models the
toric diagram of the mesonic moduli space M™¢* obtained from (2.15) exhibits additional
vertices that are not on the 3-dimensional hyperplane like the rest of the vertices of the
toric diagram. That means, under a suitable GL(4,Z) transformation on the coordinates
(w1, 2,23, 14) € Z* of the vertices of the toric diagram, the set of vertices splits into two.
The first set contains vertices that are on a 3-dimensional hyperplane GL(4, Z)-transformed
such that x4 = 1, and all other vertices are outside the hyperplane with x4 # 1. These
additional vertices with x4 # 1 correspond to what we call as extra GLSM fields [1].
Although such extra GLSM fields manifest themselves as vertices in the toric diagram
that seemingly break the Calabi-Yau condition on the mesonic moduli space M™% it was
shown in examples studied in previous work [1, 2] that the extra GLSM fields act as an
over-parameterization of M™¢®. Given that the mesonic moduli space is parameterized



by mesonic gauge invariant operators that can be expressed products of GLSM fields, the
presence or absence of extra GLSM fields does not affect the spectrum of operators. This
means that the generators and the first order defining relations formed by the generators of
the quotient in (2.14) remain unaffected by the presence or absence of extra GLSM fields.

In the following section, we describe the master space associated to a brane brick
model. Like the mesonic moduli space for brane brick models, the master space can be
parameterized in terms of GLSM fields of the brane brick model. For certain brane brick
models, the master spaces exhibit extra GLSM fields when the mesonic moduli space also
contains extra GLSM fields. The extra GLSM fields in the mesonic moduli spaces however
are not the same as the ones for the master space. For some examples, as we are going to
see in section 4, master spaces exhibit less extra GLSM fields than mesonic moduli spaces
that contain extra GLSM fields. We are going to see in section 4 that extra GLSM fields of
master spaces also have the features of an over-parameterization.

3 Master spaces for brane brick models

3.1 An introduction to the master space

The master space F’ for brane brick models with U(1) gauge groups takes the form of an
algebraic variety [12, 14, 15],

F? = Spec C™[X1,..., Xn |/ (Ju, Ea) (3.1)

where Z;5 = (J,, E,) is the quotienting ideal given by the relations J, = 0 and E, = 0
corresponding to all Fermi fields A,.? This algebraic variety is analogous to the master
space of 4d N/ = 1 supersymmetric gauge theories given by brane tilings [10-17], where the
master space here is the space of vanishing F-terms.

We can summarize the properties of the master space F° for a brane brick model
as follows:

e Because the J- and F-terms are binomial relations in chiral fields of the brane brick
model, the quotienting ideal (J,, E,) is a binomial ideal and the resulting master
space F” is a toric variety [18-20)].

« In general, the master space F? is a reducible algebraic variety, which under primary
decomposition [36, 37] can be decomposed into irreducible components. Amongst
these irreducible components, there is a top-dimensional irreducible component which
is of the same dimension and degree as F”. We call this the coherent component
of the master space and denote it by "*F?. In the following discussion, whenever we
refer to the master space of a brane brick model, we refer to the irreducible coherent
component of the master space ™ F?.

*Note that the Spec of a coordinate ring Clz,y, 2, w] gives the corresponding variety X. In a lot of the
references as well as in this work, we interchangeably refer to the coordinate ring and its corresponding
variety when we talk about mesonic moduli spaces and master spaces of supersymmetric gauge theories.



« The master space ™ F” can be expressed as a symplectic quotient of the follow-
ing form,

Irrfb _ (CC//QJE 7 (3.2)

where C¢ is parameterized by p1, ..., pe, which are the GLSM fields of the brane brick
model. The U(1) charges carried by the GLSM fields due to the J- and E-terms of
the brane brick model are given by the Q) jp-matrix, which we defined in (2.11).

o The master space ™ F” is of dimension G + 3, where G refers to the number of U(1)
gauge groups in the abelian brane brick model.

o For brane brick models with U(N) gauge groups, the master space can be obtained
by taking an additional quotient under the non-abelian SU(N) part of the gauge
symmetry,

Irrf})v _ Irrfb//SU(N)G 7 (3.3)

where G is the number of U(NN) gauge groups in the brane brick model. The resulting
non-abelian master space I“]—“]bv is expected to be non-toric. For the following
work, we concentrate on master spaces ™ F” for abelian brane brick models with U(1)
gauge groups.

Global Symmetry of the Master Space. The master space " F” of an abelian brane
brick model exhibits the following global symmetries:

o The mesonic symmetry of the master space is U(1)* or an enhancement with rank
4. The mesonic symmetry corresponds to the isometry of the mesonic moduli space,
which is the toric Calabi-Yau 4-fold associated with the brane brick model. It contains
the U(1)r symmetry and the mesonic flavor symmetries.

« The U(1)¢ gauge symmetry of the brane brick model acts as a symmetry of the master
space. This part of the global symmetry is known as the baryonic part of the global
symmetry for the master space " F?. We take the name from the master spaces for
brane tilings and 4d N' = 1 supersymmetric gauge theories [12, 14-17]. In total, we
have G — 1 independent U(1) symmetries because all chiral fields transform in the
bifundamental or adjoint representation of the U(1) in the quiver.

As a result, given the rank G — 1 baryonic part of the global symmetry and the rank
4 mesonic part of the global symmetry, the master space " F” as expected has a global
symmetry of rank G + 3. In terms of the brane brick model on the 3-torus, we can identify
the U(1)3 part of the global symmetry of the master space ™ F* with the 3 S'-cycles of the
3-torus of the brane brick model. The remaining rank G symmetry corresponds to the G
brane bricks of the brane brick model.

3.2 The Hilbert series of the master space

Hilbert Series. A quintessential tool that is used to study the geometric structure of an
algebraic variety is the Hilbert series [21-24]. Given an affine variety Y in C* over which



X is a cone, we define the Hilbert series to be the generating function for the dimension of
the graded pieces of the coordinate ring of the form

CHor, ... m) /(i) (3.4)

where (f;) is the quotienting ideal in terms of defining polynomials f; of Y. The dimension
of the i-th graded piece Y; is the number of algebraically independent degree ¢ polynomials
on the variety Y. Accordingly, the Hilbert series takes the form,

g(t:) = 3 dime(¥) (3.5)
=0

which always takes the form of a rational function. Here, the fugacity ¢ keeps track of the
degree i of the graded pieces Y;. In the case when the coordinate ring is multi-graded with

pieces Y; and grading i= (i1,...,1x), the Hilbert series takes a refined form as follows,
e . .
gt te; X) = dime(Y;) ... ), (3.6)
i=0

where the number of fugacities ¢; can be chosen to be as many as the dimension of the
ambient space or as few as the dimension of X itself.

Hilbert Series of the Master Space. In our work, X is the master space F” of a brane
brick model with the corresponding coordinate ring given by,

C™[X1,...,Xn )/ T75 (3.7)
where X, ..., X, are the n, bifundamental chiral fields of the brane brick model. I}fé is

the ideal formed by the reduced J- and E-terms in the brane brick model which correspond
to the coherent component of the master space " F?. The Hilbert series of ™' F? then can
be obtained using the definition in (3.5). Given that the coordinate ring in (3.7) is in
terms of chiral fields Xi,..., X, in the brane brick model, we can introduce a grading
corresponding to the global symmetry charges on the chiral fields. Taking mi,mo as the
fugacities for the mesonic flavor part of the global symmetry, by, ..., bg_1 as the baryonic
part of the global symmetry, and ¢ as the fugacity for the U(1)g symmetry, a chiral field
X, carrying charges under the mesonic flavor part (¢f, ¢5), charges under the baryonic part
(¢%,-..,q¢42), and a U(1)g charge q¢ 3 can be associated with the following combination
of fugacities,

yo = M m® B .. plo+2 quors (3.8)
Accordingly, the general form of the refined Hilbert series of the master space ™ F” based
on (3.6) is as follows,

e] . )
g(t, g, b ) =3 ng mitmk b - bSTE ie (3.9)
i=0

The refined Hilbert series counts operators in terms of chiral fields that carry charges under
the full global symmetry of the master space ™ F7. n; € 7t is the number of operators

~10 -



for a particular charge combination i. We can scale the fugacity t in such a way that it
counts simply the overall degree of the operator. Given the coordinate ring in (3.7) and its
grading under the global symmetry of the master space " F? the corresponding refined
Hilbert series in (3.9) can be obtained using Macaulay2 [36].

Alternatively, the Hilbert series of the master space ™ F° can be calculated using
the symplectic quotient description of the master space in (3.3). Given the @ jp-matrix
from (2.11), the refined Hilbert series of the master space " F” is defined by the Molien
integral formula [21, 24] as follows,

— QuEl 1
ta; ") H -7{le 127”21 H H\QJE| (QJE)ja’ (3.10)

a=1

where c is the number of GLSM fields p, in the brane brick model and |Q j| is the number
of U(1) charges encoded in the @ jp-matrix. The fugacity y, identifies the global symmetry
charges carried by the GLSM field p, as follows,

to = m;h m22 bq" : quH (3.11)

where the GLSM field p,, carries charges (¢f, ¢3') under the mesonic flavor part of the global
symmetry and the charges (¢5,...,q@&, o) under the baryonic part of the global symmetry
for the master space " F?. We can choose the fugacity ¢ to count the degree in GLSM fields
Do instead of the U(1)r charge.

Note that the Hilbert series in (3.9) under fugacities for global symmetry charges
carried by chiral fields X, is identical to the Hilbert series in (3.10) under the fugacities for
global symmetry charges carried by GLSM fields since both Hilbert series describe the same
master space ™ F?. The two Hilbert series can be mapped to each other under a fugacity
map between fugacities in (3.11) and fugacities in (3.8) using the expression of chiral fields
in (2.5) in terms of products of GLSM fields.

Plethystics. The generators and the defining first order relations formed by the generators
characterize the geometry of the master space "' F?. The plethystic logarithm [21-25] of
the Hilbert series of the master space ™ F? allows us to identify the generators and the first
order relations formed by them. The plethystic logarithm is defined as

PL[g( ta,h”r}"b Z plk log [g tk;hr}'b)} , (3.12)

where p(k) is the Mobius function, and ¢, and y, are fugacities of the Hilbert series
corresponding to the GLSM fields p, and the charges carried by them under the global
symmetries of I'* F?.

If the expansion of the plethystic logarithm is finite, the master space " F? is a
complete intersection generated by a finite number of generators subject to a finite
number of first order relations. In the case when the expansion is infinite, the master
space "' F? is a non-complete intersection, where the first order relations amongst the
generators form higher order relations known as syzygies [21-24]. In the expansion of the
plethystic logarithm, the first positive terms refer to the generators and the first negative
terms in the expansion refer to the first order relations amongst the generators.
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Figure 2. The quiver diagram for the SPP x C model.

4 Examples

4.1 The master space for SPP x C

The quiver diagram for the SPP x C model [3] is shown in figure 2. The corresponding J-
and E-terms take the following form,

J E
A1r: X13 - X31 — X12- X1 Q11 - Xy — Xy1 - Py
Ao Xio-Xo3- X320 — X1 - Xpo Pog - Xo1 — Xo1 - Py
Az : Xop - X1 — Xo3-X32- X911 @11+ Xy9 — Xy9- P2 (4.1)
Azr: Xi3-X39-Xog — Xq1- X3 P33 X33 — X371 - Py .
A1z X31-X11 — X329+ Xo3- X311 P11+ Xy3 — X3~ P33

Agp: Xo1-Xio- Xog — Xog- X31- Xq3 P33+ X3o — X3o- Pop

Aozt X3o-Xop- Xio — X31- X3+ X32 Pog- Xoz — Xog - P33
where we note that the SPP x C model can be obtained by dimensional reduction of
the 4d N' = 1 supersymmetric gauge theory corresponding to the suspended pinch point
(SPP) [11, 38].
We can rewrite the J- and E-terms in terms of G 4+ 3 = 6 independent new variables,
which are

vy = P11, vg = Xoz, v3 = X32, v4 = X13, v5 = Xo1, v6 = X12. (4.2)

These independent fields are related to the rest of the chiral fields in the SPP x C model.
This relationship is encoded in the following K-matrix,

U1 V2 V3 V4 Us Vg
®11|1 000 00
Pyp|1 00 0 00
®33/1 00 0 00
X011 000

K=]|Xx3l010 000 (4.3)
X320 01 0 00
X300 00 1 00
X500 00-111
X1[000 0 10
X120 00 0 01
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Using the forward algorithm, we obtain the P-matrix as follows,

=
3
v
3
w3
s
=
=
ot
=
o
S
3J

(4.4)

O R O R O OO o o O
_ O = O OO O o O o O
= O O = O OO o o o O
O = = OO O o o o o

3
O O O OO = FEHOOO
O OO O O OO O
O O O O O O O K~ ==

where p1,...,p7 are the GLSM fields of the brane brick model.

In order to obtain the toric diagram for the master space " F? of the SPP x C model,
we first summarize the U(1) charges on the GLSM fields due to the J- and E-terms of the
SPP x C model. These charges are summarized in the @) jg-matrix as follows,

(P p2p3|pa ps|ps pr
QJE(000—1—11 1)’ (4:5)

where we note that all GLSM fields carry charges under the J- and E-terms. Additionally,
the GLSM fields carry U(1) charges due to the D-terms of the SPP x C model. These
charges are summarized in the Q) p-matrix as follows,

P1 P2 pa‘m Ps ‘ps p7
@p=|1-10[0 -1/0 1 |. (4.6)
11 0|-10/0 1

We observe that the @ jp- and @) p-matrices together indicate that the mesonic moduli
space M5 has a completely broken symmetry of the form,

U(l)fl X U(l)f2 X U(l)f3 X U(l)R . (47)

In comparison, when we focus on the master space "™ F”, the Qp-matrix indicates that
the global symmetry of ™ F? is enhanced to

SU(3)(zy,22) X SU(2)y x SU(2), x U(1)p x U(1)g, (4.8)

where the total rank of the global symmetry of the master space "™ F” is as expected
G + 3 = 6. Here we note that the SU(3) enhancement in the global symmetry of " 7 is
due to the fact that the GLSM fields (p1, p2, p3) carry the same @ jg charges. Furthermore,
the SU(2) enhancements in the global symmetry are due to the fact that the GLSM fields
(pa,ps) and (pg, p7) carry the same Qg charges. The charges on the GLSM fields due to
the global symmetry in (4.8) are summarized in table 3.
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| [ SUB) e | SU@) | SUER). | UMW), | U | fugacity
P1 (+1, 0) 0 0 +2 71 t1 = x1b2t
D2 (—1, +1) 0 0 +2 9 to = xflxngt
p3 | (0, —1) 0 0 +2 T3 t3 = x5 bt
D4 0 +1 0 -3 T4 ty = yb_gt
D5 0 -1 0 -3 5 ts = y_lb_3t
Pe 0 +1 0 T6 t6 =zt
Y i 0 0 -1 0 r7 tr = 271t

Table 3. The global symmetry charges of the master space "™ F” on the GLSM fields p, for the
SPP x C model.

Given that the J- and E-terms in (4.1) are all binomial, the master space "™ F? is toric
and has a 5-dimensional toric diagram which is given by

,_.
B
I\
]

3| P4 Ps5|P
10

(=}

p

3

GIrrIb _

¢ (4.9)

—lo o o o ol
= O o o o
—lo = O o o
|
—_

o
—lo o~ o
—lo oo~ o
—lo oo o R

where the GLSM fields p1, ..., p7 correspond to extremal vertices of the toric diagram.
Using the symplectic quotient description of the master space It 7% and the corre-
sponding formula in (3.10) for the Hilbert series, we obtain the Hilbert series of B
as follows,
1 — tatstety
(1 — tl) (1 — tz) (1 — tg) (1 — t4t6) (1 — t5t6) (1 — t4t7) (1 — t5t7) ’

where the fugacities t, correspond to the GLSM fields p, in the brane brick model. By

g(to; TF) = (4.10)

taking all fugacities to be t, = t, we can write down the unrefined Hilbert series of the

master space ' F?,
1+ ¢

(1= )31 —12)3”

where the palindromic numerator indicates that the master space "™ F? is Calabi-Yau. As

g(t; ) = (4.11)

a result, the master space "™ F? is a 6-dimensional toric Calabi-Yau manifold. When we
calculate the plethystic logarithm,

PL [g(ta; I”fb)} — 1+t + b3 4 tats + tate + taty - tsty — tatstety, (4.12)

we further note that the master space " F” is a complete intersection.
Using the P-matrix, we can express the chiral fields of the brane brick model as products

of GLSM fields as follows,

Oy =p3, Po=p3, P3z=p3, Xi1=pip2, Xoz=p1, X3 =p2,
X13 =pape, X3z1=pspr, Xo1 =papr, Xi2=pspe- (4.13)
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When we define a coordinate ring in terms of chiral fields, we can assign every chiral field
a grading that corresponds to the degree of GLSM fields p, in the expressions in (4.13).
Under primary decomposition of the J- and E-terms in (4.1), the coherent component takes
the following form,

INE = (Pag — Bsg, P11 — P33, X135 X1 — X1 X12, Xo3Xap — X11) (4.14)
The master space "™ is then given by
IrrJ,—_~b = Spec Clo[@ii, XZ]]/I}rE . (4.15)

Using Macaulay?2 [36], with the chiral fields graded in terms of the corresponding degree in
GLSM fields p,, we obtain as expected exactly the same Hilbert series as in (4.11).
Using the following fugacity map,

2/3 1/3,1/3
b T T AT T AT T - 131 - t' "ty
1 bty ty U5 g U7, 151/3151/3 t§/3 ’
1/2 1/2 2/21,2/21,2/21
y:t4— z:tG— b= it (4.16)
9 ) 9 N
téﬂ t;/? ti/Mté/Mté/Mt%/M

we can rewrite the refined Hilbert series in (4.10) in terms of characters of irreducible
representations of the global symmetry of the master space ™ F”. The refined Hilbert
series in terms of characters of irreducible representations of the global symmetry takes the
following form,

o0
g(ta$i7y727b; IrrJ—_'b) = Z [nl’0;n2;n2]b2n1—3n2tn1+2n2 ) (417)
n1,n2=0
where [my,mo;n; k] = [my, mQ]SU(?))(xl’x?) [n]su(2), [Flsu),- The corresponding highest

weight generating function [39] is given by,

1
(1 —pq b%t) (1 — vk b3t2)

h (Mi, v, K, b,t,lrr]:b) = (4.18)

m1, m2.n .k

where pi"! g 2V K" ~ [m1, malsus)[nlsu(e), [klsu(z).. The plethystic logarithm of the refined
Hilbert series takes the form,

PL{g(t, 2,y,2,b; " F)] = [1,0;0; 0]6°¢ + [0,0; 1; 1]p~* — b~ (4.19)

From the plethystic logarithm, we identify the generators of the master space ™ F” as,

A = (Xa3, Xgp, P11 = Pog = B33) & +[1,0;0;0b%, (4.20)
By = (iiz 21 )jk & +[0,0;1; 16732, (4.21)

The single relation at order —b~6¢* is given by,
det B=0 <« —b 5%, (4.22)
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generators GLSM fields ‘ SU(3) (21 ,22) ‘ SU(2), ‘ SU(2). | U(1)s ‘ U)gr ‘
Al = Xos D1 (+1, O) 0 0 +2 o
Ay = X3 D2 (—1, +1) 0 0 +2 9

Az = 1 = ®gp = P33 D3 (0, +1) 0 0 +2 T3
By = X3 P4D6 (0, 0) +1 +1 -3 | ra+re
Ba = X3 D57 (0, 0) -1 -1 =3 | rs+r7
Bz = X9 Dap7 (0, 0) +1 -1 =3 | ra+ry
Bs1 = X9 D5D6 (0, 0) -1 +1 -3 s + 76

Table 4. Generators of the master space " F” for the SPP x C model with the global symme-
try charges.

where we note that the subspace C*[B;x]/(det B = 0) corresponds to the conifold C [40, 41].
As a result, we identify the master space " F? of the SPP x C brane brick model as the
following 6-dimensional product space,

I — ¢ xC?, (4.23)

where C? is generated by A; and the conifold C is generated by Bjj. Table 4 summarizes
the generators of the master space ™ F” with the corresponding charges under the global
symmetry of I F?.

4.2 The master space for C*/Z4 (1,1,1,1)
The J- and E-terms of the brane brick model for C*/Z4 (1,1,1,1) [1, 28, 29] take the

following form,
J E
Als: Zsa Yy — Yau-Zy PraXog — X12Pa3
Als: Xsq-Zoy — Z3a- Xa1 ProYos — YioPag
ASs: Yau - Xy — Xaa - Y1 PiaZog — Z12Pog
Ay o Zu Yo — Yar - Z1o Po3Xas — XosPa
A} 0 Xu1 - Zho — Za1 - X1o2 PasYss — YasPay
A3y : Yar - Xig — X1 - Yio Pr3Zsy — ZogPay (4.24)
ALy Zio Yoz — Yia - Zoz PsaXu1 — X34Pni
A% Xio - Zog — Zio- Xog PaaYu — YsuaPp
A3y Yio- Xog — X1o- Yoy PsaZun — ZsaPn
Aly: Zog-Yas — Yoz - Zsa PuXi2 — Xa1Pro
A%y 0 Xog - Zsa — Zoz - Xsa PuYia — Y1 Pro
A%y : Yog - Xag — Xoz - Ysu PuiZia — Zan Pro

The corresponding quiver diagram is shown in figure 3.
Because the binomial J- and E-terms are not all independent, we can rewrite them in
terms of G + 3 = 7 independent new variables, which are

v =Pa, vo=PFP3, v3=Xo, v4=Xz, vs=Xay, ve=VY2, vr=Z2.
(4.25)
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These independent variables are then used to rewrite the J- and E-terms. This is encoded
in the K-matrix, which takes the following form
V1 V2 U3

00
0

<
N

—_

(4.26)

o O = OO0 O = O o O
[l ol s B el ev i en )l e B an)

N
=

]

o
o
o
o

S

NS
|

—_

—_

o

= O OO = O o0 O oo~ OoOOo
[==]

o

- 0o oo oolroool~ro ool

== =IO OO0 00 O 0 oo o

Zs] 0 0 —1

[==]
(=]

Following the forward algorithm, we obtain the P-matrix

D1 P2 P3 P4
000

s
o
s
=3
i~
3
=
3]

I

£ 2

= )

(= el
o O OO0 © O
o = OO0 © = O

o
]
o
(]

(4.27)

S O OO0 O O O == EFEIOoO oo
O O Ol = PO O OO o oo
_ O OO0 = O OO0 = O oo ~=O O

O O O HO OO RO OOoO~,ROOO
= O O Ol OO0 Ol O oo~k o oo

O O O oo o o o
e i i el R R e B e B an)
O O = OO0 O+ O

o
o
o

where p1,...,ps are the GLSM fields of the C*/Z, (1,1,1,1) model.

In order to obtain the toric diagram for the master space "™ F?, we first identify the
U(1) charges on the GLSM fields due to the J- and E-terms of the C*/Z4 (1,1,1,1) model.
These charges are summarized in the @) jp-matrix as follows,

_ (P IJ2P3P4‘P5 Peé P7 P8
Qe = (1 L1 1|-1-1-1 —1)’ (4.28)

where we note that all GLSM fields carry charges under the J- and E-terms. The GLSM
fields also carry U(1) charges coming from the D-terms of the brane brick model, which are
summarized in the () p-matrix as follows,

P1 P2 P3 p4‘]75 b6 P17 P8

looo0o0[=11 00
Qo=|g000lo-110] (4.29)

000O0/0 0-11
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Figure 3. The quiver diagram for the C*/Z4 (1,1,1,1).

[ SUM) eais) | SU@) (o) | UWR | fugacity |

p1 (—l—l 0, 0) 0 1 t1 = a1t
D2 ( 1,+1, 0) 0 9 to = $1_1x2t
D3 (0, -1 +1) 0 3 t3 = xz_lxgt
yo (0, 0, 1) 0 T4 ty = .Tg t
y2s) 0 (—‘rl, 0 0) Ts t5 = ylt
Pe 0 (—1,+1,0) re | te =y 'yt
pr 0 (0,-1,+1) rro |ty = yz_lyzat
ps 0 (0, 0,—1) rs ts =y3't

Table 5. The global symmetry charges of the master space " F” on the GLSM fields p, for the
C4/Z4 (L 1,1, 1) [Pga <0>]

The Q ;- and @ p-matrices together indicate that the mesonic moduli space My, has
a symmetry of the form,

SU(4)(11712713) X U(l)R . (4.30)

The SU(4) enhancement is due to the GLSM fields py, ..., ps carrying the same @ jp- and
Q p-charges. When we focus on the master space " F?, the Qp-matrix indicates that the
global symmetry of ™ F? is of the form

SU(4) X SU(4)( X U(l)R, (4.31)

(w1,22,23) Y1,92,Y3)

where the total rank of the global symmetry of the master space ' F > is as expected
G + 3 = 7. Here the two SU(4) enhancements are due to the fact that the GLSM fields
(p1,...,p4) and (ps,...,ps) carry the same @ jg-charges. We note that the SU(4) mesonic
flavor symmetry in (4.30) is carried over to the global symmetry of the master space " F b,
The second SU(4) factor in (4.31) can be identified as the baryonic part of the global

symmetry of the master space ""F?. Table 5 summarizes the charges on the GLSM fields
due to the global symmetry of the master space ™ F”.
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Because the J- and E-terms in (4.24) are all binomial, the master space ™ F” is toric
and has a 6-dimensional toric diagram which is given by

P1 P2 P3 P4|P5 P6 P7 P8
1 000(0O0O0 1
01000001
Irr b 00100001

G, 7= 4.32

t 0001(000 1|’ (4.32)
000O0I10O0-1
000O0/010-1
1 11 1(j1 111

where the GLSM fields pq, ..., pg correspond to extremal vertices of the toric diagram.

The symplectic quotient description of the master space ™ F > and the corresponding
formula in (3.10) for the Hilbert series gives us the Hilbert series for ™ F? as follows,

Llrr _ P(ta)
9(ta; ") = (1 —tits)(1 — tite) (1 — tity) (1 — tatg) (1 — tats)(1 — tate) (1 — taty)
1
0 tate) (1 — tata) (1 — tato) (1 — fatr) (1 — fats) (1 — tata)(1 — tato)

1
. (1 —tat7)(1 — tytg)’
where P(t,) is the numerator of the Hilbert series and the fugacities t,, count the degrees
in GLSM fields pq.

We can unrefine the Hilbert series by taking all fugacities to be t, = t. This gives us

1 —36t1 +160t0 — 315t + 288¢10 — 288¢14 + 315¢16 — 160¢'8 4 36120 — 24

(1 _ t2)16 ’

(4.34)

(4.33)

g(t; Irr]_-b) _

where the palindromic numerator indicates that the master space ™ F? is Calabi-Yau.
Accordingly, the master space "*F? is a 7-dimensional toric Calabi-Yau manifold. When we
calculate the plethystic logarithm,

PL [Q(ta;hrfb)} = (tits+tats+tats+tals+ti1ts+tats+tats+tats+titr+taty
+tatr+tatyHtitg+tats +istg+tats) — (titatste+titstste +titatsts +iatatsts
+lotatste+tstatste+t1tatslr+t1l3tsty +E1tatslr +tolststy +tatatstr +t3tatsty
+it1totsty+t1t3tsts +E1tatsts +latststs +latatsts +t3tatsts+E1tatetr +t1tstslr
+l1tatelr+tatstetr +tatatelr +tstlatety +E1tatels+t1l3tets +1E1tatlals +1atlatets
+totatets +istatets +titatrts+titstrts+titatrtg+latstrts+tatatrts+tstatrts)
T (4.35)

we obtain an infinite series which indicates that the master space ™ is a non-complete

intersection.
We can express the chiral fields of the brane brick model as products of GLSM fields

using the P-matrix in (4.27),

Py =pips, Pa3z=pipé, Psa=pip7r, Pu =pips,
Xi2 = pops, Xoz =pape, Xsa=pop7, Xa1 = paps,
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Yio =p3ps, Yoz =p3ps, Ysa=p3pr, Ya =paps,

Zi2 =paps, Zo3 =pipe, Zsa=papr, Za1 = Ppaps. (4.36)
For the coordinate ring in terms of chiral fields, we can assign every chiral field a grading
that corresponds to the degree of GLSM fields p,, in the expressions in (4.36). The coherent

component can be obtained using primary decomposition of the J- and E-terms in (4.24).
It takes the following form,

Ii5 = ( XsaYur — YauXu1, YauZay — Z3aYa1, Z3aXar — XsaZa1
X34Pyy — PsaXan, YsaPun — PaaYu, Z3aPn — PsaZa
Xo3Y3q4 — Yo3X34, Yo3234 — Z23Y34, Z23 X34 — X23Z34,
XogPsy — Pa3X3a, YosPsy — Pa3Yas, ZozPsy — PagZsa,
XaYie —YuXae, YuZio — ZaYie, ZuXi2 — Xa1Z12,
X1 Pro — PnXio, YunPio — PuYia, ZuPio — PnZaa,
Xi12Yo3 — Y12 Xo3, Y12Z93 — Z12Ya3, Z12X23 — X12Z03,
X12Po3 — P1aXos, Yi2Pe3 — P12Yos, Z12Pe3 — P1aZos,
X12Ysq — Y12 X34, Y12234 — Z12Y34, Z12 X34 — X12Z34,
X19P34 — P1o X34, Y12P34 — P1oYsa, Z12P34 — P12Z34,
Xa1Yos — Y Xoz, YinZog — ZnYos, Za1Xo3 — Xa1203,
Xy Poz — P Xog, Yy Pog — PuYos, Zy1Poz — PuZas ) . (4.37)

The master space " F” is then given in terms of the ideal in (4.37) as follows,
" = Spec C'[Py, Xij, Vi, Zij) | Ti; (4.38)

where the coordinate ring is in terms of the 16 chiral fields of the brane brick model. By
grading the chiral fields in terms of their corresponding degree in GLSM fields p,, we can
use Macaulay2 [36] in order to obtain the Hilbert series for the master space "™ F’. As
expected the Hilbert series takes exactly the same form as in (4.34).

The following fugacity map,

3/4 1/2,1/2 1/4,1/4,1/4
b fL/8,L/8,1/8,1/8,1/8,1/8,1/8,1/8 B t1/ _ t1/ t2/ _ 751/ t2/ t3/
=ttty bty by te b7ty s TI= Ay aa Y27 a0 U3T EYZE
ty' 13ty 3ty ty
3/4 1/2,1/2 1/4,1/4,1/4
(17417417 RIERTE 7

allows us to rewrite the refined Hilbert series in (4.33) in terms of characters of irreducible
representations of the global symmetry of the master space ™ F” in (4.31). The refined
Hilbert series in terms of characters of irreducible representations of the global symmetry
takes the following form,

o0
9(t,zi,y;; ™ F) =Y [n,0,0;n,0,00*", (4.40)
n=0

—90 —



generators | GLSM fields ‘ SU4) (2, w9.,23) ‘ SU4) (4,1 y2.05) ‘ U()gr

Ay = Pio P1Ds (+1, 0, 0) (+1, 0, 0) | r1+75
Ajp = Po3 P1P6 (+1, 0, 0) (=1,4+1,0) | ri+76
A3 = Py p1p7 (+1, 0, 0) 0,-1,41) | ri+7rr
A1y = Py pP1Ps (+1, 0, 0) (O, 0, —1) 1+ 78
A9 = X12 P2ps (—=1,+1,0) (+1, 0, 0) | ra+73
Agz = Xo3 D2D6 (—1,+1,0) (=1,4+1,0) | ro+rg
Agg = X34 D2p7T ( 1,+1, 0) (O, 1, -l—l) ro + 17
Agy = Xy P2ps (-1,+1,0) (0, 0,=1) | ra+rs
Azl = Y12 P3ps (0, -1,+1) (+1, 0, 0) | r3+73
Azz = Y3 P3P6 (0,—-1,+1) (—=1,+1,0) | r3+re
Azz = Y34 p3p7 (0,—1,+1) (0,—-1,+1) | r3+ry
A3y =Yp P3ps (0,—1,41) (0, 0,-1) |rsg+rs
Ag1 = Z12 P4ps (0, 0,-1) (+1, 0, 0) | ra+rs
Ago = Zo3 P4pe (0, 0,-1) (—=1,41,0) | ra+ 76
Agz = Z34 p4p7 (0, 0,-1) (0,—1,41) | ra+rr
Aag = Zay DaPs (0, 0, —1) (0, 0, —1) T4+ 178

Table 6. Generators of the master space ™ F” for the C*/Z (1,1,1,1) with the global symme-
try charges.

where [mq, ma, mg;ny1,ng, ng) = [ml,mg,mg]SU(4)(zl,12,I3)[n1,ng,ng]SU(4)(y1’y2,y3). The high-
est weight generating function [39] takes the form,
b (t, vy ) = _ (4.41)
i V53 1— H1V1t2 .
where p1"" 5" s S vt vy vg? ~ [m17m2,m3]SU(4)(xl,m2,13)[nl’n27”3]SU(4)(y1,y2,y3)' In terms

of characters of irreducible representations of the global symmetry, the plethystic logarithm
of the refined Hilbert series of ™ F” takes the form,

PL[g(t, zi,y;; ™ F°)] = [1,0,0;1,0,0]t> — [0,1,0;0,1,0]t* + ... . (4.42)
From the plethystic logarithm, we identify the generators of the master space " F” as,

Py Pos P3y Py
Aij = );1122 )y(;j ifjj )}Z‘j & +(1,0,0;1,0,0]¢% . (4.43)
Z1o Loz Z3q Zan i
The relation at order —[0,1,0;0, 1, 0]t* is given by,
Nklmn _ ghlivizemngugz Npoo Moo =0+ —[0,1,0;0,1,0]¢*, (4.44)

where Nkimn — _ Ntkmn — _ Nkinm - Table 6 summarizes the generators of the master space
I 7 with the corresponding global symmetry charges.
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Figure 4. The quiver diagram for the Q%! model.

4.3 The master space for Q11!

The J- and E-terms of the Q%! model [1, 2, 30-32] are as follows,

J FE
A3y : Xig-Yoq Yy -Yig — Yig- Yaz - Va1 - Xpo KXoz - X31 — Xoa- Xnn
A3 : Yig- Xog- Y1 - X12 — X1g- Yoz - Xa1 - Yoo Xoz - Ya1 — You - Xy
A3 0 Xig-Yaq- X1 Yio — Yig - Xog - Va1 - Xio Xoa - Yy — Yoz - X1 ;
A3y Xig - Xog - X31 - Yig — Yig - Xog - Xu1 - X1 Yo3- Y31 — Yo - Yy
Ay3: Y31 - Yo - Xog — X31- Y12~ You Xa1 - Xq2 - Yoz — Yar - Xy - Xog
Azy : Yy - Yo Xog — Xy - Y12~ Yo3 X1+ X12-Yog — Y31 - X9 - Xog

(4.45)
where figure 4 shows the corresponding quiver diagram. The J- and E-terms can be
rewritten in terms of G + 3 = 7 independent new variables, which are

vy =Xz, va=Yie, v3=Xo3, va=Xs3, vs=VYs, ve=Xg, vri=VYy.
(4.46)
These independent fields under the J- and E-terms are encoded in the K-matrix, which
takes the form

U1 V2 U3 V4 U5 Ve U7
X201 0000 00
Yi2/0 1. 000 0 0
X310 0010 0 0
Y300 0001 00

K=|X3/00000 10 (4.47)
Y0 0000 01
X001 10-10
Y240 01 01 -10
X230 0100 0 0
Yo3/0 001 0 0 —11
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Following the forward algorithm, we obtain the P-matrix, which takes the following form

s
[y
]
V]
s
w
bS]
=
sl
ot
S
=
i~
3

X2

(4.48)

O O O O O - O o O
O R, OO O = O o oo
_ OO O O = O O O o O
— == O OO OO O OO0

£
O O O O O o o o o
O O O O O o o o~ o
S OO =R OO o H+-HOO
OO OO =B OO

The P-matrix defines the GLSM fields p1,...,pr in terms of the chiral fields of the Q1!
model. We also have an extra GLSM field, which we call 0. Note that, in comparison to
the mesonic moduli space of the Q1! brane brick model [1, 2], which has two extra GLSM
fields, we identify for the master space "™ F” only a single extra GLSM field. We will see
later why we only have a single extra GLSM field for the master space "™ F” when we look
at its toric diagram.

In order to obtain the toric diagram of the master space "™ F?, we identify the U(1)
charges due to the J- and E-terms on the GLSM fields of the brane brick model. These
charges are summarized in the following @) yg-charge matrix,

_ (p1p2|ps pa ps ps|prfo
QJE_(O 0[-1-1 = —111)‘ (4.49)

Additionally, the GLSM fields carry U(1) charges due to the D-terms of the brane brick
model. These charges are summarized in the following () p-matrix,

D1 pz‘P3p4P5P6‘P7‘O

{1 1fo 00 o=1o
Qo= 0 0l11 0 0|10 (4.50)

00001 1|-10

Combined, the @ g- and @ p-matrices indicate that the pairs of GLSM fields (p1,p2),
(p3,pa) and (ps, ps) carry the same U(1) charges under the J-, E- and D-terms of the brane
brick model. We note from this that the global symmetry of the mesonic moduli space
M™¢ of the brane brick model is enhanced to

SU(2), x SU(2), x SU(2). x U(1)z, (4.51)

with 3 SU(2) factors each corresponding to a pair of GLSM fields carrying the same Q jg-
and @)p-charges. When we focus only on the charges given by the @ jg-matrix, we note
that the GLSM fields (p1,p2) and (ps, p4, ps, pe) carry the same charges. This indicates that
the global symmetry for the master space "™ is enhanced to

SU(4)($1’$2@3) X SU(Q)y X U(l)b1 X U(l)b2 X U(l)R, (4.52)
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’ ‘ SU(4)(x1,a:2,$3) ‘ SU(Q)y ‘ U(l)bl ‘ U(]‘)bQ ‘ U(l)R ‘ fugacity

D1 0 +1 -2 +1 = t1 = yby 2bot
D2 0 -1 —2 +1 79 to = y_lbIQth
P3 (+1, 0, 0) 0 +1 0 3 ts = x1b1t
P4 (—1,+1,0) 0 +1 0 T4 ty = xl_lxgblt
ps | (0,—1,+1) 0 +1 0 s ts = x5 'wsbit
ps | (0, 0,—1) 0 +1 0 e te = a3 byt
pr 0 0 0 —2 r7 tr = by °t

0 0 0 0 0 0 u=1

Table 7. The global symmetry charges of the master space ™ 7 on the GLSM fields p, for the
QY1! model.

where the total rank of the global symmetry of the master space " F” is as expected
G + 3 = 7. Table 7 summarizes how the GLSM fields of the Q!'!"! model are charged under
the global symmetry of the master space "' F.

Given that the J- and E-terms in (4.45) are all binomial, the master space "7 is
toric and has a 6-dimensional toric diagram which is given by

s
=

s}
S

i3
9

bS]
=
3
ot
S
S

3
3J

Glrr]:b _

; (4.53)

= o O © O O =
o O O O = O
= o O O = O O
— o © = O O O
_ o = O O O O
=l O O O O O
o ©O O O o o
W O O = = = =9

We note here that the toric diagram, a convex polytope on a 6-dimensional hyperplane is
made of 7 extremal vertices corresponding each to one of the GLSM fields p1,...,p7. The
extra GLSM field o corresponds to a vertex which lies outside the 6-dimensional hyperplane
in Z7. Tt is not part of the toric diagram of the master space "™ F? of the Q*!! brane brick
model and we can identify the extra GLSM field o as an over-parameterization of the master
space ™" F?. In other words, when we identify the generators and defining relations of the
master space ""F? in terms of GLSM fields, the presence or absence of the extra GLSM o
does not affect the shape and number of generators and defining relations of the master
space "

This over-parameterization of the master space " F? by the extra GLSM field o is
best observed when we calculate the Hilbert series of "™ F” in terms of fugacities that
count degrees in GLSM fields. We can calculate the Hilbert series of the master space
I 79 in terms of fugacities corresponding to GLSM fields by using the symplectic quotient
description of "™ F” and the corresponding Molien integral formula for the Hilbert series
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in (3.10). Accordingly, the Hilbert series for ™" F” takes the form

9(ta, u; Irr]—"b) = (1 — utstyty — utststy — utstety — utststy — utstety — utstety
+ ultstytsty + ultstatety + utststety + ultatstety + utstatsts 4+ utstytet?
+ utststet? + utststets — utstatstets — utstatstets — uitstatstety)
1
X
(1 — tl)(l — tg)(l — utg)(l — ut4)(1 — ut5)(1 — utﬁ)(l — t3t7)(1 — t4t7)

1
) (1 —tstr)(1 —tetr) (4.54)

where the fugacities ¢, correspond to the GLSM fields p, and the fugacity u corresponds
to the extra GLSM field o. Even if we set the fugacity u = 1, the Hilbert series in (4.54)

describes the same master space " F” for the Q%! brane brick model. This is because,
when we calculate the corresponding plethystic logarithm of the Hilbert series,

PL [g(ta, u: I”fb)} — )+ to - uty - uty + uts + utg + taty + taty + tsty + tety (4.55)
— (ut3t4t7 + Ut3t5t7 + Ut3t6t7 + Ut4t5t7 + Ut4t6t7 + Ut5t6t7) + ...,
the negative terms corresponding to first order generator relations describe the same first
order relations between the generators with or without the fugacity u counting the degree
in the extra GLSM field 0. The plethystic logarithm also indicates that the master space
It 75 here is a non-complete intersection.

Using the P-matrix, we can express the chiral fields of the brane brick model as products
of GLSM fields as follows,

Xi2=p1, Yi2 =p2, X31=p3pr7, Y31 =papr7, X41=psp7, Y41 = pepr,
Xog=p3o, You=pso,  Xoz3=pso, Ya3 =1pgo. (4.56)

Using primary decomposition of the J- and E-terms in (4.45), we obtain the coherent
component as follows,

I0 = ( XoaVi1 — Ya3Xa1, YauXu1 — Xo3Ya1,
Xoa Xy — Xo3X31, You Yy — Yo3Y3y,
XosYu1 — Yo3Xu1, XoaYs1 — YouX31 ). (4.57)

The master space " F? is then given by the following quotient,
IH]:b = Spec (CIO[Xij, mj]/.'[‘l]% . (4.58)

Under the following fugacity map,

3/4 1/2,1/2 1/4,1/4,1/4
b T TTATT T T B tg/ _ t3/ t4/ _ t3/ t4/ t5/
=ty by ty b e by Ut T =g, T2 = ps I3 34
ty t5 g t5' g tg
1/2 3/28,3/28,3/28,3/28 47 1/14,1/14,1/14,1/14,1/14,1/14 57
4 T T BT e e i =l P Tl (4.59)
Yy="13> 917 1/7,1)7,1/7 v 27 3/7 ’ :
12} t' 1y 13 t7
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we can rewrite the refined Hilbert series in (4.54) in terms of characters of irreducible
representations of the global symmetry of the master space ™ F?. Note that here again, we
can set the fugacity for the extra GLSM field to u = 1 without loss of generality.

The refined Hilbert series in terms of characters of irreducible representations of the
global symmetry of the master space ™ F” takes the following form,

o0
g(m Y, bj; Irr]_—b) — Z [nl + no, 0’ 0; ng]b7111+n2—2n3bg3—2n1tn1+2n2+n3 , (4.60)
ni,n2,n3=0
where [mq1,ma, mg;n] = [ml,mg,mg}SU(@m v Ig)[n]SU(Q)y. We can write the character
expansion in (4.60) as a highest weight generating function [39]. The corresponding highest
weight generating function takes the form,
1

(1= wby2bat) (1 = purbat) (1= pubiby %)

h <t7ui,y, bj;l”fb) = (4.61)

where 7" 5" ps v ~ [mq, me, m3]SU(4)(zl,,,»2,z-3) [n]su(a),- The plethystic logarithm of the

refined Hilbert series in terms of characters of irreducible representations of the master
space global symmetry takes the following form,

PL[g(t,x,y,bj; " F")] = [0,0,0; 1]b7 2bat + [1,0,0;0]b1t + [1,0,0;0]by by 2t
—[0,1,0; 0163523 4 ... . (4.62)

From the plethystic logarithm, we identify the generators of the master space ™ F” as,

Ai = (X12, Ylg)l' ~—  + [0, 0, O; 1]b;2b2t . (463)
B; = (X31,Y31, X41,Yn1); < +[1,0,0;0]b1t. (4.64)
Cy = (Xo4,Yo4, Xo3,Ya3)p <> +[1,0,0;0]b1b5¢>. (4.65)

The relation at order —[0, 1, 0; 0]b3b5 243 is given by,
N'm = dmikp.Cp =0 < —[0,1,0;0)b2by %3 (4.66)

where N = —N™_ As noted above, the presence or absence of the extra GLSM field o
does not affect the algebraic description of the generators and first order relations of the
master space " F? of the Q11! brane brick model. Table 8 summarizes the generators of
the master space ™ F? with their global symmetry charges.

We have in this section identified the master space " F? of the Q%' brane brick model
to be a 7-dimensional affine toric variety. However, although so far we have encountered
master spaces " F? for brane brick models which were toric and Calabi-Yau, the master
space " F? of the Q11! brane brick model appears to be toric but not Calabi-Yau. This
phenomenon can be seen when we unrefine the Hilbert series of the master space ™ F” of
the Q1! brane brick model in (4.54) by setting the fugacities t, = ¢t and v = 1. This
results in the unrefined Hilbert series of the form

1—6t3 + 4t +3t> —¢6 —¢7
(1—1)5(1—2)4 ’

glt; ) = (4.67)
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generators | GLSM fields ‘ SU(4) (21 w0,23) ‘ SU(2), ‘ U(1)p, ‘ U(1)p, ‘ U(l)r ‘

Ay = X 1 0 +1 -2 +1 ol
Ay =Y1o D2 0 -1 -2 +1 79
B = X31 P37 (+1, 0, 0) 0 +1 0 r3 417
Bay = Y31 Pap7 (—1,41,0) 0 +1 0 T4+ 17
By = Xy P5D7 (0,—1,+1) 0 +1 0 s + 17
By =Yy P6PT (0, 0,-1) 0 +1 0 r6 + 17
Ci1 = Xoy P30 (—|-1, 0, 0) 0 +1 -2 T3
Car = You P40 (—1,4+1,0) 0 +1 -2 T4
Cia = Xo3 P50 (0,—1,+1) 0 +1 -2 Ts
Co1 = Yoz P60 (0, 0,-1) 0 +1 -2 6

Table 8. Generators of the master space "™ F? for the Q"' model with the global symmetry charges.

where we discover that the numerator of the unrefined Hilbert series is not palindromic. By
Stanley’s theorem [42], the numerator of the Hilbert series in rational form is palindromic
if the corresponding coordinate ring is Gorenstein and the variety is Calabi-Yau. While
the coherent component of the J- and E-terms of the Q%! brane brick model is binomial,
implying that the master space ™ F? is toric [18, 19], the non-palindromic numerator of
the unrefined Hilbert series in (4.67) indicates that the master space " F? is indeed not
Calabi-Yau.

4.4 The master space for Y24(CP?)

The quiver diagram for the Y24(CP?) model [9, 33, 34] is shown in figure 5. The corre-
sponding J- and E-terms take the following form,

Alg: Xe3- P35 Y51 — Y3 Pos - Xs1 Z1o- Qo — Qua - Zas
Alg: Yo3-Pss-Zsi — Zes- Pss - Ys1  Xi2- Qo — Qua - Xue
ASg: Zos - Pss- X51 — Xez - Pss - Zs1 Yi2-Qas — Qua - Yag
Ay o Xio-Pas-Yag — Yiz- Pay- Xag Zez- Q31 — Qos - Zs1
Ag1: Yio-Pay-Zig — Z1a- P~ Yis X3 Qs1 — Qps - Xs1
A}t Zhg- Pos- Xug — X12-Pos-Zag Yo3- Q31 — Qes - Va1 - (4.68)
Aljs: Pss- X51-Qua — Q31- X12- Pa Yag - Ze3 — Zag - Yo3
Af3: Pi5-Ys1-Qua — Qs1-Yi2- Py Zus - Xes — Xug - Ze3
Afs: Pss-Zs1-Qua — Qa1+ Z12- Py Xus - Yes — Yag - Xes
Aby: Poy- Xus- Qo5 — Qoo - X3+ P35 Ys1- Z1a — Zs1 - Yio
AZy: Poy-Yis-Qos — Qo Yoz Pss  Zsy- X12 — Xs1- 212
A3y : Poy-Zus- Qos — Qo6 - Zez- P35 Xs1-Yio — Yo1- X1o
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Figure 5. The quiver diagram for the Y2*(CP?) model.

We can rewrite the J- and E-terms in terms of G 4+ 3 = 9 independent new variables,
which are

vy =Poy, v2=~PFP5, v3=0Q14, va=C31, v5=CQe5, V6= 2,

v = Zss, v8=Xs51, V9= Yis. (4.69)

These independent fields are related to the rest of the chiral fields in the Y24(CP?) model.
This relationship is encoded in the following K-matrix,

U1 V2 U3 V4 Vs Vg V7 US Vg
P[0 1.0 000000
Pyl 0 0 0 0 0000
Xgl-1 1 0-101 010
Yig 0 0 00001
Zi|0O 0 0 0 0 0 100
Xppl-11 1100010
Y20 01 0 0-1001
Zi2[0 001 0 0-1100

K=|X5/0 00000010 (4.70)
Ysil1 =10 1 0-100 1
Zsi|1 =101 0-1100
Xe3/0 0 0-11 0010
Yes|1 =10 0 1 =10 0 1
Zgz[1 =10 0 1 -1100
Qs 0 00001 000
Q4]0 0 1.0 0 0 000
Q3]0 00100000
Qss|0 0001 0 000
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Using the forward algorithm, we obtain the P-matrix as follows,

3
[y
3
1\
3
o
b}
i
i}
ot
=
(=)
3
J
=
o0
=
<

P10 P11|01 02
0 1

(4.71)

Zg3
Q26
Q14
Q31
Q65

&

O OO O OO OO H OO, OORKROO
O OO OO OO OO0, OO+, OOOoO
O O O O OO OO KFr OO RFrRr OO OoOOo
O OO OO OO OO OO OO0 O OO =
o= == O O O 000000000 o o
O O O FHF OO O O OO OO O FHMFE OO
O O = O O OO O O OO HFHMFERFEFOOO OO
O O OO OO MR, PRPROOODODODO OO
— O OO R KRR~ OOOOOOOoOOoOOoOOoOOo
O O H H OO OO OO OO0 OO o o

—_H = O O O O O O O OO oo oo oo

O O O OO OO O O OO RFFE KB O
O O O O R M H R OO0 OO ~=O

where the columns of the P-matrix correspond to the GLSM fields of the Y24(CP?) model.
P1, ... p11 correspond to regular GLSM fields, whereas o1, 02 correspond to extra GLSM
fields for the master space "™ F” of the Y2*(CP?) model. We will see later on how we have
identified the extra GLSM fields oy, 0o from the toric diagram of the master space ™ F7.

In order to obtain the toric diagram for the master space " F' > we first summarize the
U(1) charges on the GLSM fields due to the J- and E-terms of the Y24(CP?) model. These
charges are summarized in the following @ jp-matrix,

5| ps pr|ps po|pio pifor o
“1-1]0 0|0 —1]1 0
-1 -1|-1-10 010 0 |, (4.72)
0 0/0 0|-1-1/0 0
0 0|-1-1/-1 00 1

b
i
i~

]

s
o~
3
N
3

o O = O
o O = O
o O = O
o = O O
—_ = = =

where we note that all GLSM fields, including both extra GLSM fields, carry charges under
the J- and E-terms. In addition to the charges due to the J- and E-terms, the GLSM fields
also carry charges due to the D-terms of the Y2’4((C]P’2) model. These are summarized in,

=3
Iy
s
N
3
9

b

=
b~

5|P6 P7|P8 P9 P10 P11|01 02
0 —-1j0 0|1 00O
0 0 -1/ 0 1
-1 0
0 -1
0 0

@p = (4.73)

o O O o O
o O O o O
o O O o O
o O O O O
o O O O O
—
[an)

0
0
1
0

= o O
o O O O
o O O O
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| 1 SUB)wmsl | SU@)y [ SUR): | UMy [ UMy, [ UMy, [ UM, | UMk | fugacity

P1 (-l—]., 0) 0 0 0 0 0 0 1 t1 =zt
pa | (—1,+1) 0 0 0 0 0 0 ) ty = ]  wot
p3 | (0, —1) 0 0 0 0 0 0 3 t3 = a5 't
P4 0 0 0 +1 +1 0 0 T4 ty = b1bot
s 0 0 0 ~1 +1 0 0 s ts = by ot
6 0 +1 0 0 -1 +1 0 76 te = yby "bst
pr 0 ~1 0 0 -1 +1 0 rr | tr =y by that
s 0 0 +1 0 0 -1 0 TS tg = 2bg 't
Py 0 0 -1 0 0 -1 0 o tg = 2 b3 't
P10 0 0 0 0 0 0 +1 710 t10 = bat
pu1 0 0 0 0 0 0 -1 11 t1n = by 't
o1 0 0 0 0 0 0 0 uy =1

09 0 0 0 0 0 0 0 0 up = 1

Table 9. The global symmetry charges of the master space ™ F” on the GLSM fields p, for the
Y24(CP?).

We observe that the Q) jg- and Q) p-matrices together indicate that the mesonic moduli
space M,.s has a symmetry of the form,

SU(?))(M,IQ) X U(l)f X U(l)R. (4.74)

The SU(3) enhancement is due to the fact that the GLSM fields (p1, p2,ps3) carry the same
charges under the J-, F- and D-terms of the Y2’4((C]P’2) model. In comparison, when we
focus just on the master space " F?, the @ sp-matrix indicates that the global symmetry of
Irr b

Fis

SU(3)(351,362) x SU(Q)?J X SU(Q)Z X U(l)b1 X U(l)b2 X U(l)ba X U(l)b4 X U(l)Ra (4'75)

where the total rank of the global symmetry of the master space ' F > is as expected
G + 3 =9. Here, we note that the additional SU(2) enhancements are due to the fact that
the pairs of GLSM fields (pg, p7) and (ps, pg) carry the same charges in the @ jgp-matrix.

Given that the J- and E-terms in (4.68) are all binomial, the master space "7 is
toric and has a 8-dimensional toric diagram which is given by

P1 P2 p3
00

s
>
=
o
=
S
3
3

D8 P9 [P10 P11]|01 02
0 0

Irrfb .
G, =

S O = =

(4.76)

|
—_

-1
0
2

RO O O O o o O
RO O O O o o
O O O O O+~ O
O OO Ok O oo
RO OO, OO oo
o O = O O O O O
o = O O O O O O
Rl O O OO oo o
_HOoO OO0 oo oo
O O O = = O O
NI = = O = O O O

Here, we note that the toric diagram is a convex polytope on a 8-dimensional hyperplane
consisting of vertices corresponding to the GLSM fields p1, ..., p11. Two vertices are outside
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the 8-dimensional hyperplane and correspond to the extra GLSM fields o; and 02. We can
identify these two extra GLSM fields o1 and o2 as an over-parameterization of the master
space "' F? for the Y24(CP?) model. This is because, as we can see in table 9, they do
not carry any global symmetry charges and their absence from the parameterization of the
master space " F? does not affect the algebraic description of ™" F? in terms of generators
and defining first order relations.

We can observe this by calculating the Hilbert series using the symplectic quotient
description of the master space " F?. The Hilbert series takes the following rational form,

P
g(ta’UhUQ;Irr]:b) - (1—ultltﬁ)(1—U1t2t6)(ft—a;;f;;:62))(l—U1t1t7)(1—ult2t7)
1
% (1—U1t3t7)(1—Ugtﬂ?g)(l—ﬂgtgts)(l—’LLthtg)(l—UQtltg)(l—’U,thtg)
1
% (1—wuatste)(1—ustat1o) (1 —tstetio) (1 —tstrtio)(1—uitatsn)(1—tststqn)
1
X Atotot)” (4.77)

where the numerator P(tq,u1,u2) contains 1886 terms. The fugacities t, count degrees in
the regular GLSM fields p,, whereas fugacities u; and uo count degrees in the extra GLSM
fields 01 and o9, respectively. The corresponding plethystic logarithm takes the form,

PL[g(to,u1,us; Irrfb)] =urt1te+urtate +uitste+urtity +urtoty +uststy
Fugtits +ustats +uststs +ustito+ustaty +uststo+uststio+uitatsn
+tstiote+tstrtio+tststin +tstotin — (uTtitately +uitytatets +uitatstety
Fuiugtitotets +uijustitztets +uiustatstets +uiustitotrtg +uiusttstrts
Fugugtotstrts+uiustitateto +uiustitsteto +uiustatsteto +uiuatitatyly
Fuyugtytslrto +usustatlstzto+uititsletztiotuitatstetztiio+uitslststzlio
+udtytaotgty+ustitatsto+udtatstste+ustitststoty +ustatststotsy
+uatstststotin)+... . (4.78)

We note that the master space "™ F” has 18 generators that satisfy 24 first order relations.
Given that the plethystic logarithm is not finite, the master space is a non-complete
intersection. Furthermore, we note that if we set the fugacities corresponding to the extra
GLSM fields to u; = 1 and ug = 1, the 18 generators still satisfy the same 24 first order
relations according to the plethystic logarithm. We will see this in more detail when we
explicitly construct the generators and first order relations later in this section.

First, let us illustrate that the Hilbert series calculated from the symplectic quotient
description of the master space ™ F” is identical to the Hilbert series obtained from the
quotienting ideal given by the .J- and E-terms of the Y2*(CP?) model. We can express the

~ 31—



chiral fields of the Y*4(CP?) brane brick model as products of GLSM fields as follows,

P35 = pap11o1, Pag = pap1o0z,

Xa6 = p1p601, Yag = p2peo1, Zis = P3P6O1

Xi2 = pipro1, Yi2 =papro1, Zi2 = p3pro1,

X51 = p1psoz, Ys1 = papso2, Zs1 = p3psoz,

X6z = p1p9o2, Y3 = papeo2, Ze3z = P3p9oz,

Q26 = pspep1o, (14 = psprpio, (31 = pspspi, (es = pspopii - (4.79)

Under primary decomposition of the J- and E-terms in (4.68), the coherent component

takes the following form,

i —
Qe5Y51 — Yo3Q31, X12Q26 — Q14 X6, QesX51 — X63Ws1, Y12Q26 — Q14Y46,
Z19Q26 — Q14246 , Z63Q31 — Qo5 251, Xe3Ys1 — X51Ye3, ZesYs1 — Z51Y63,
Yi6Z51 — Za6Ys1, Y2451 — Z12Y51, X12Yae — Y12 Xu6, Xe3Yae — Xa6Yes3
X51Ya6 — Xa6Y51, Zo3Yas — ZaeYe3, ZacX12 — Z12X46, Za6X63 — Ze3 X6,
Y12 X63 — X12Ye3, Z12X63 — ZesX12, ZasX51 — Z51X46, Y12X51 — X12Y51,
Ze3X51 — Xe3251, Z12X51 — X12251, Y12Z46 — Z12Ya6, ZesY12 — Z12Y63
P24QesYa6 — P35Q26Y63, 24Q31Ya6 — P35Q26Y51, P350Q26X63 — P2aQ65 X146 ,
P35Q14X63 — P2aQe5X12, P35Q26X51 — P24Q31Xu6, P35Q14X51 — PuQ31X12,
P2yQ31Z46 — P35Q26 251, P35263Q26 — P2aQesZa6, P2uQesY12 — P35Q14Y63,

P2yQ31Y12 — P35Q14Ys1, Z12P2uQ31 — P3sQuaZs1, PisZe3Qia — Z12P2aQes ) -
(4.80)

We note that the coherent component is still made of binomial relations. Accordingly, the
master space " F? is given by the following toric variety

P = Spec C'¥[Py;, Qij, Xij, Vi, Zis) /I (4.81)

whose corresponding Hilbert series can be calculated using Macaulay2 [36]. By an appro-
priate map between fugacities corresponding to chiral fields and fugacities corresponding
to GLSM fields, following the relations in (4.80), one can show that the two Hilbert series
are identical.

Given that the global symmetry of the master space ™ F? is SU(3) (21,2) X SU(2)y x
SU(2), x U(1)p, x U(1)p, x U(1)p, x U(1)p, x U(1)R, we can introduce a fugacity map that
maps global symmetry fugacities (x1,x2,y, b1, b2, t) to fugacities corresponding to GLSM
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fields (tq,u1,u2). This map is given by,

1/11,1/11,1/11,1/11,1/11,1/11,1/11,1/11,1/11,1/11,1/11 2/11 2/11
t:tl/ tz/ t3/ t4/ t5/ t6/ t7/ ts/ t9/ tlé t1{ U1/ Uz/ )

23 £33 £1/2 £1/2
NIRRT e YEum fT
9/22 9/22,4/33,4/33,4/33,5/11 4/11,4/11,4/11,4/11
b1 = 67111/ 1/25/1/23/1/23/1/53/1/23/1/22 b= 3/11_ 3/11 10/t343/ 1ot/53/3 1t01/633 tal/{m 3/22,3/22,3/22°
5 te' Tty tg Tty iyt (O SR S 2 S A 7 U, 79
O SR S~ 7 S 7 uy' Tty

In terms of the above fugacity map, we can rewrite the refined Hilbert series in (4.77) in
terms of characters of irreducible representations of the global symmetry of the master
space ' F?. Note that even if we set the fugacities for the extra GLSM fields to u; = 1 and
uz = 1, the corresponding fugacity map in (4.82) will allow us to rewrite the refined Hilbert
series in (4.77) in terms of the same characters of irreducible representations of the global
symmetry of the master space ™ F.

The corresponding highest weight generating function [39] is given by

1 — pvkbot”
h(t, i, v, 1, by 1) =
(& p ! ) (1 — bybaby 2)(1 — bybabst?)(1 — pyvby 'bst?)
1

X , 4.83
(1 — puykbz 42) (1 — by bgbat3) (1 — kby bobs 1oy 113) (4.83)

mi, m2.n, .k

where py"! g 2 v Y ~ [ma1, malsu(s) )[n]SU(Q)y[k}SU(z)z. The plethystic logarithm of the

(z1,22
refined Hilbert series in terms of global symmetry fugacities takes the form,

PL[g(t,2i,y,bj; ™ F”)] = [0,0;0;0]b1baby 't +[0,0;0;0)b1 babat®+[1,0;1;0]by ' b3t>
+[1,0;0; 1]b3 240,05 1;0]b; *b3bat®+[0,0;0; 1]by *boby tby 113
—([0,1;0;0]b5 2b3t* 40, 1; 0;0]b3 24 +[0, 15 1; 1]by 1 #*+[1,0; 0; 0]b *by 1 b3b4t®
+[1,0;0;0]b; *baby 2by 7)Y+ (4.84)

From the plethystic logarithm, we identify the generators of the master space "™ F” and the
associated irreducible representations under the global symmetry of the master space ™ F?

as follows,

A= P35 < +][0,0;0;0]b1boby 't (4.85)
B =Py < +10,0;0;0]bybabyt?, (4.86)

Xu6 Yae Zas 1, 9
Cii = & 41,0, 1;0]by tbst? . 4.87
J <X12 }/12 Z12> [ ] 2 3 ( )

X51 Y51 Z51 1,4

Dii = & +[1,0;0; b3t 4.88
! <X63 Ye3 Z63> | Jbs (4.88)
Ei=(Qu Qu) ¢ +[0,0;1;00b; bybat’ (4.89)
Fi=(Qn Qo) < +100,0;0;1]by boby by ' (4.90)
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generators | GLSM fields | SU(3) (4, .4y) | SU2)y | SUR): [ ULy, [ Uy, | Uy, [ U, | UM)g |
A= Py P4p1101 0 0 0 +1 +1 0 -1 T4+ 711
B = Py P4P1002 0 0 0 +1 +1 0 +1 | 744710
Cn = Xus P1P601 (+1, 0) +1 0 0 -1 +1 0 1+ 76
Cra =Yg P2P601 (—1,+1) +1 0 0 -1 +1 0 ro+ g
Ci3 = Zas P3P601 (0, —1) +1 0 0 -1 +1 0 r3 + 76
Co1 = Xi2 p1p701 (+1, 0) -1 0 0 -1 +1 0 L+
Caog = Y9 P2p701 (—1, +1) -1 0 0 -1 +1 0 ro + 17
Coz = Z12 P3pP7O1 0, —1) -1 0 0 -1 +1 0 r3 417
D11 = X5 P1P802 (+1, 0) 0 +1 0 0 -1 0 r1+7rs
D1y = Ys P2ps02 (—1,+1) 0 +1 0 0 ~1 0 | rotrs
D13 = Zx, P3P8g02 (0, - 1) 0 +1 0 0 -1 0 r3+ 718
Dy = Xg3 P1P902 (+1, 0) 0 -1 0 0 -1 0 1+ 79
Doy = Y3 P2P902 (—1, +1) 0 -1 0 0 -1 0 ro + 19
Do3 = Zg3 D3D902 0, —1) 0 -1 0 0 -1 0 re + 19
E1 = Qg P5P6P10 0 -1 0 -1 0 +1 +1 s+ 76
Ey =Qu P5P7P10 0 -1 0 -1 0 +1 +1 | rs+rr
i =Q3 D5Pspil 0 0 0 -1 +1 -1 -1 s+ 18
Fy = Qes P5P9pi1 0 0 0 -1 +1 -1 -1 5+ 79

Table 10. Generators of the master space "™ F” for the Y24(CP?) model with the global symme-
try charges.

The first order relations formed by the generators are given by,

1 g _

M™ = §em’“lewcikcﬂ =0 <« —[0,1;0;0]by%b3t", (4.91)
1 -

N™ = §emklewDikDﬂ =0 ¢ —[0,1;0;0]b5 %", (4.92)
1 .

P = 567"]’0”1)“ =0 & —[0,1;1;1]by 14, (4.93)

Qr=€1CpE; =0 <« —[1,0;0;0]b; *by 'b3bst® (4.94)

Ry =¢"DyF; =0 < —[1,0;0;0]b; 'baby b, 115 . (4.95)

Table 10 summarizes the generators of the master space ™ F” and shows them in terms of
GLSM fields and their global symmetry charges.

We have identified the master space ™ F? of the Y2*(CP?) model as a 9-dimensional
toric variety. By calculating the plethystic logarithm of the Hilbert series in (4.84), we
further identified the master space ™ F” as a non-complete intersection. However, when we
unrefine the Hilbert series by setting the fugacities t, = t, u; = 1 and us = 1, we obtain

g(t; TP = (1 — 181 — 61° 4 52t° + 127 — 6015 4 52¢° + 4210 — 2261 — 82412
+ 345¢13 4 158¢14 — 242415 — 93416 4 5817 — 110t — 6¢19 + 212¢%0 + 46¢%!

1
(1 -2 (1 —13)t

— 138122 — 50123 4 401** 4 181%° — 4¢%0 — 129) x (4.96)

where we can see that the unrefined Hilbert series in rational form has a numerator, which
is not palindromic. This indicates, under a theorem by Stanley [42], that the corresponding
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master space "' F” of the Y24(CP?) model is not Calabi-Yau. This is another case, where
the master space "™ F” of a brane brick model is toric, but not Calabi-Yau, whereas the
mesonic moduli space is a toric Calabi-Yau 4-fold.

5 Observations and discussions

In this work, we have for the first time systematically studied the master space of brane brick
models which realize a large class of 2d (0,2) supersymmetric gauge theories corresponding
to toric Calabi-Yau 4-folds. The master space for brane brick models is defined as the space
of chiral fields subject to the J- and E-terms constraints and the non-abelian part of the
gauge syminetry.

In this work, we focused on the master spaces for brane brick models with U(1)“
gauge groups. The dimension of the master space is then G + 3, where 4 come from the
mesonic and G — 1 come from the baryonic directions of the master space. As for 4d N =1
supersymmetric gauge theories realized by brane tilings corresponding to toric Calabi-Yau
3-folds [10-17], U(1)¢~! decouple from the gauge symmetry and contribute as baryonic
directions to the master space. The global symmetry of the brane brick model including
contributions from these baryonic directions is a rank G + 3 symmetry. Since the master
space is larger than the mesonic moduli space, the mesonic flavor and U(1)r symmetry
are contained in the full global symmetry of the master space. We saw in some of the
examples studied in this work that the global symmetry of the master space can be further
enhanced, containing non-abelian symmetry factors that have equal or even higher rank
than non-abelian symmetry factors of the mesonic symmetry. Such enhancements of the
global symmetry of the master space are not new, because similar enhancements of the
global symmetry of the master space have been observed for brane tilings [43].

Even though master spaces of brane brick models have many similarities to master
spaces of brane tilings, we have observed in our work that there are also significant differences.
In the following, we summarize the two main new features that we have observed in this
work for master spaces of abelian brane brick models:

o Extra GLSM Fields. With G U(1) gauge groups, the master spaces for brane
brick models are (G + 3)-dimensional and toric. The toric diagram for the master
spaces is a convex polytope and consists of vertices that are on a (G + 2)-dimensional
hyperplane. The vertices in the toric diagram correspond to GLSM fields of the brane
brick model. For certain brane brick models, some of the vertices in the toric diagram
are located outside the (G + 2)-dimensional hyperplane. We refer to the GLSM fields
corresponding to these vertices as extra GLSM fields. When we express the generators
of the master space in terms of GLSM fields of the brane brick model, we can either
include or exclude the extra GLSM fields. Either way, the set of defining first order
relations amongst the generators remains unaffected indicating that the extra GLSM
fields act as an over-parameterization of the master space. Such extra GLSM fields
have appeared also in relation to the mesonic moduli spaces of abelian brane brick
models [1, 2]. We note however that the extra GLSM fields for the master space are
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not necessary related to the extra GLSM fields that appear for the mesonic moduli
space. For some examples, we have observed that there are less extra GLSM fields for
the master space than for the mesonic moduli space.

For example, for the brane brick model corresponding to Q! in section 4.3, the
mesonic moduli space exhibits two extra GLSM fields, denoted as p7 and pg in the
G4-matrix of the mesonic moduli space,

D1 P2 P3 P4 P5 P6|P
010101
00 -1
0 -1 0
11 1

3
3
3

G't/\/lmes . (51)

=lo o
== o
N O =

1
010
1

In comparison, the corresponding master space has only one extra GLSM field denoted
by pg in the corresponding master space Gy-matrix,

P1 P2 P3 P4 P5 P6 P7|P8
1 00000O0O0]|1
01 0O00O0O0f1
G =1 00010001 (2
000O0T1O0O0|0
000O0O0T1TQO0|0
11111113

where we set 0 = pg from (4.53). From this comparison, we note that the vertex
corresponding to the extra GLSM field p;7 in the mesonic moduli space becomes an
ordinary extremal vertex of the toric diagram of the master space.

Moreover, when we look at the U(1) charges carried by the GLSM fields under the J-
and E-terms from (4.49),

P1 P2 P3 P4 P5 Pe6 P7 P8
= 5.3
Qe (00—1—1—1—111)’ (5:3)

and the U(1) charges carried by the GLSM fields under the D-terms from (4.50),

P1 P2 P3 P4 P5 Pe P17 P8
110000-10
Qp = (5.4)

001100-10
000011-10

we note that even though the extra GLSM fields p7 and pg in the mesonic moduli
space act as an over-parameterization of the mesonic moduli space, p; carries U(1)
charges due to the D-terms meaning that it plays an essential role in parameterizing
the corresponding master space of the brane brick model.

Identifying the relationship between extra GLSM fields that occur in relation to the
mesonic moduli space and extra GLSM fields that occur in relation to the master
space of a brane brick model is an interesting problem that we hope to investigate
further in future work. Moreover, to predict when extra GLSM fields appear in the
mesonic moduli space as well as in the master space of a brane brick model is an open
problem that we plan to address in future work.
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e Master Spaces that are not Calabi-Yau. The master space of brane brick
models is toric and Calabi-Yau. It is toric because the J- and E-terms of the brane
brick model are binomial relations and under primary decomposition the coherent
component remains a binomial ideal [20]. We also identify the master space as Calabi-
Yau by calculating the Hilbert series of the master space, which in rational form has
a numerator that is palindromic. By Stanley’s theorem [42], when the numerator of
the Hilbert series in rational form is palindromic, the corresponding coordinate ring
is Gorenstein and the variety is Calabi-Yau.

When however the master space is over-parameterized by extra GLSM fields, we
observe that the master space is not anymore Calabi-Yau. The Hilbert series of
the quotient ring describing the coherent component of the master space can be
directly computed from the reduced binomial J- and E-terms using Macaulay2 [36].
We observe that when the master space has extra GLSM fields, its Hilbert series in
rational form has a non-palindromic numerator.

The simplest example that exhibits this property is the master space for the brane
brick model corresponding to Q'!!. The master space takes the form,

T 7> — Spec C01 X5, Vi,1 /255 (5.5)
where the quotient is given by the reduced binomial J- and E-terms,

TV = Xo4Yia1 — Yo3X31, YouXu1 — Xo3Ya1, XoaXa1 — Xo3X31,
YoaYu1 — YasYs1, XosVay — Yoz Xu1, XoaYs1 — You X3y ), (5.6)

as originally shown in (4.57). Note that the ideal in (5.6) defines the coherent
component of the master space under primary decomposition of the original J- and
E-terms. When we grade all chiral fields X;;,Y;; the same and count their degrees
with the same fugacity ¢, the Hilbert series of the master space ™ F? obtained using
Macaulay?2 takes the form,

1 — 6% + 8% — 3t*

g(E P = L . (5.7)

We clearly see that the numerator of the Hilbert series is not palindromic.

We can also express the chiral fields X;;,Y;; in terms of GLSM fields, including the
extra GLSM field o, as follows

Xi2=p1, Yio=p2, Xgi=p3pr, Y1 =pap7, Xu1=psp7, Ya1=pep7,
Xog=p30, You=pso, Xoz=pso, Ya3=pgo, (5.8)

as first shown in (4.56). Using fugacities ¢, for GLSM fields p,, and fugacity u for extra
GLSM field o, we can use the symplectic quotient description of the master space,

IrrJT;b — (CC//QJE , (59)
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with ¢ being the number of GLSM fields and

_ (pip2|ps pa s pe|pr|o
QJE_(O 0—1-1-1 —111)’ (5.10)

in order to calculate the following unrefined Hilbert series for the master space ™ F' b,

1—6t1 485 — 38
(1—1)2(1 —t2)8

glta =t,u=1t;""F) = (5.11)
We note that here again, the numerator of the Hilbert series is not palindromic.
Taken into account the interpretation that the extra GLSM fields correspond to an
over-parameterization of the master space, we can set the fugacity for the extra GLSM
field to u = 1 to obtain,

1—6t% + 4t + 3> — 6 —¢7

o = :1_Irr AN
g(t t,u ) f) (1—t)6(1—t2)4

(5.12)

The numerator of the Hilbert series above is still not palindromic. Comparing the
unrefined Hilbert series of the master space ™F” in (5.7), (5.11) and (5.12), we
conclude that the master space for the abelian brane brick model corresponding to
QY11 is toric but not Calabi-Yau.

In this work, we make similar observations for the master space for the abelian brane
brick model corresponding to Y24(CP?).

The above features that we have observed for master spaces of brane brick models
realizing 2d (0, 2) supersymmetric gauge theories have not been observed for master spaces
of brane tilings realizing 4d N’ = 1 supersymmetric gauge theories [10-17]. We believe that
with the increase of dimensionality of the probed toric Calabi-Yau singularity, the master
spaces of the worldvolume theories living on the probe branes not only increase in their
dimension, but also exhibit much richer and surprising algebro-geometric features.
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