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1 Introduction

Global symmetries and their associated conservation laws are one of the most fundamental
tools that we have for the quantitative understanding of nature. One of the many uses of
conventional global symmetries is to characterize phases of systems and their low-energy
dynamics. To take one example, whenever a conventional continuous global symmetry is
spontaneously broken, Goldstone’s theorem guarantees that a gapless mode is present in
the spectrum, and the low-energy dynamics is essentially completely characterized by the
pattern of symmetry breaking.

Recently, our understanding of global symmetries has undergone something of a re-
naissance. The idea that the existence of conserved quantities can be recast in terms of
the topological surface operators who count the charge has led to powerful generalizations
of the very concept of “symmetry”. Two such generalizations which will concern us in
this paper are those of higher-form symmetries — i.e. the symmetries associated with the
conservation of extended objects [1] — and non-invertible symmetries, i.e. symmetries for
which the charges do not obey a simple group composition law [2–34]. See e.g. [35] for a
recent pedagogical review of some of these developments.

In particular, consider a system (such as conventional QED with a single massless Dirac
fermion) where a current jA is nonconserved due to an Adler-Bell-Jackiw anomaly [36, 37], i.e.

d ⋆ jA = 1
4π2F ∧ F (1.1)

where the operator F ∧F on the right-hand side is constructed from a dynamical (1) photon.
It has recently been shown that though the naive symmetry is explicitly broken by the
anomaly, this is not a “generic” kind of breaking; instead the system can be understood in
terms of a novel kind of non-invertible symmetry [14, 15]. This precise characterization opens
new doors for a non-perturbative understanding of systems exhibiting such an anomaly.
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In this work, we present a variation of this construction that permits us to prove
a Goldstone theorem for such systems; i.e. we prove using Euclidean partition function
techniques that if an operator O charged under the non-invertible symmetry has a non-
zero vacuum expectation value, there must exist a gapless mode in the spectrum. As an
application, we show how many of the massless fields of string theory can be understood
as Goldstone modes of spontaneously broken non-invertible symmetries; this provides an
alternative viewpoint for their masslessness.

Note added. In the last stages of preparation of this paper, [38] appeared, where a charge
defect similar to our (2.10) (involving an extra scalar field on the defect) was constructed
for different motivations.

2 Goldstone’s theorem for non-invertible symmetries

2.1 Goldstone’s theorem in Euclidean formulation

To orient ourselves, we begin by reviewing a simple reformulation of the usual Goldstone
theorem in the language of Euclidean path integrals. This argument was first given in [39]
to prove a Goldstone theorem for higher-form symmetries.

Consider a Lorentz invariant quantum field theory with a (1) 0-form symmetry, with
associated 1-form conserved current j. For simplicity we will restrict ourselves to the case of
four spacetime dimensions. The Ward identity for the conserved current j in the presence
of a charged operator O(x) with charge q is

d ⋆ j(x)O(0) = iqO(0)δ(4)(x) (2.1)

i.e. the current is not quite conserved in the presence of the charged operator. Let us now
integrate both sides of this equation over a solid 4-ball of radius R centered at the origin,
as in figure 1. We find the equation(∫

S3(R)
⋆j

)
O(0) = iqO(0) (2.2)

where on the left hand side we have used Stokes theorem; the integral is taken over the
boundary of the 4-ball. Finally, take the expectation value of both sides:〈(∫

S3(R)
⋆j

)
O(0)

〉
= iq⟨O⟩ (2.3)

Now, if we are in a phase where the symmetry is spontaneously broken, then ⟨O⟩ is
nonzero, and the integral on the left-hand side must be both nonzero and independent of
the radius of the 3-sphere R. By spherical symmetry, we see that the correlation of the
local operator j on the 3-sphere and O must therefore depend on R as

⟨ji(x)O(0)⟩ ∼ iqniR−3 (2.4)

where ni is an outwardly pointing normal vector on the 3-sphere. The dependence on R

is fixed by the requirement that the integral over the 3-sphere result in an R-independent
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O(0)

Figure 1. Charge operator defined on an S3 of radius R wrapping operator O(0) at the origin.

constant. Thus there is a power-law correlation in the theory.1 We have shown the existence
of at least one gapless excitation: this is the Goldstone mode.

We note that this is simply a reformulation of the usual Hamiltonian arguments; if we
appropriately deform the S3 and cut open the path integral then we obtain the commutators
of j and O that are used in the standard proofs. This Euclidean formulation will be useful
for the generalization that follows.

2.2 Axial symmetry defect operators

We now turn to the actual case of interest. In recent work [14, 15], it has been shown that
models exhibiting the Adler-Bell-Jackiw anomaly actually are invariant under a novel kind
of non-invertible symmetry. We briefly review some aspects of that discussion here.

Consider massless QED, defined by the action:

S[ψ, ψ̄, A] =
∫
d4x

( 1
4e2F

2 + iψ̄
(
/∂ − i /A

)
ψ + · · ·

)
(2.5)

The (1) gauge redundancy acts as

ψ → eiΛ(x)ψ A→ A+ dΛ . (2.6)

In this theory the axial current jµ
A = ψ̄γ5γµψ is not conserved. Instead, due to the ABJ

anomaly it satisfies the following non-conservation equation [36, 37]:

d ⋆ jA = 1
4π2F ∧ F (2.7)

We stress that the right-hand-side of this expression is a dynamical operator, and not a fixed
external source (as would be the case for a ’t Hooft anomaly). There will thus be dynamical
violation of axial charge conservation, and we cannot construct a conserved charge in the
conventional manner. There is a temptation to instead consider the following current:

⋆jnot-gauge-inv
A = ⋆jA − 1

4π2A ∧ dA . (2.8)

1This argument is of course exactly the same as the one used to obtain the inverse square electric field of
a point charge using Gauss’s law in elementary electrodynamics.
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This current is conserved, but as the notation suggests it is not gauge-invariant. Indeed it is
not possible to construct a conserved gauge-invariant local current in this theory. However
as the integral of the Chern-Simons term is gauge-invariant, one may try to construct a
charge defect operator as follows:

Ûα(M3) = exp
(
i
α

2

∫
M3

(
⋆jA − 1

4π2A ∧ dA
))

(2.9)

This is a topological operator under small deformations of M3, and thus is a candidate
operator to define a conserved axial charge defect, which acts on an operator O with integer
charge q as O → eiαq/2O.

However for general M3 — in particular those with nontrivial 1-cycles — the expres-
sion (2.9) is not gauge-invariant under large gauge transformations. Such an invariance
would require the coefficient of the Chern-Simons term to be quantized as α ∈ 2πZ, thus
resulting in a trivial action on all operators. In [14, 15] this deficiency was remedied by
adding extra degrees of freedom — a TQFT — living on M3. Their construction then
permits the topological charge defect operator to be defined on any M3, provided that the
rotation angle α is in Q/Z. Thus rather than having a continuous (1) symmetry as in the
conventional case the defect operators are now labeled by Q/Z.

In this work however, we seek to generalize the Goldstone theorem described above,
and it is important that we have some notion of a local conserved current. Thus we perform
a slightly different construction. Consider the following charge defect operator, defined on
3-manifolds Σ:

Uα(M3) =
∫

[Dθ] exp
(
i
α

2

∫
M3

⋆j̃A

)
≡
∫

[Dθ] exp
(
i
α

2

∫
M3

(
⋆jA − 1

4π2 (A− dθ) ∧ dA
))

(2.10)
Here we have introduced a new degree of freedom; this is a compact scalar θ that lives
only on the 3-manifold M3, and which transforms under the gauge redundancy (2.6) as
θ → θ + Λ. In the above expression we perform a path integral over θ. Thus the integrand
⋆j̃A is now locally gauge invariant, and there is no rationality constraint on the parameter
α, so eiα ∈ (1), and we have constructed a continuous (1) symmetry. We will show below it
is non-invertible.

It should be noted that θ really has almost no dynamics; we will restrict attention
only to the case where M3 is S3, and in that case this construction can be viewed as a
convenient way to extract the gauge-invariant information that is present in the more naive
construction (2.9).

We now discuss some properties of the defect operator Uα(M3).

1. It is topological under small variations of M3. This can be seen heuristically by
imagining some extension of θ off of the defect, and then noting that d ⋆ j̃A = 0 for
any such extension. In appendix A we provide a somewhat more detailed explanation
of this fact.

2. As usual for a 0-form defect operator, when the defect operator is collapsed onto an
appropriately charged local operator it performs an axial rotation by an angle α, i.e.
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if O(x) carries axial charge q then

Uα(S3)O(x) = e
iαq

2 O(x) (2.11)

if the S3 in question is a small sphere wrapping x.

3. We may immediately imagine interesting phenomena whenever θ is allowed to have
non-trivial winding, i.e. when (a) M3 is a manifold with non-trivial 1-cycles, or (b) in
the presence of ’t Hooft lines. We discuss some such properties — which do not affect
our Goldstone proof — in a subsequent section.

2.3 Goldstone’s theorem for non-invertible symmetry

We may now use this object to prove a variant of Goldstone’s theorem by generalizing
slightly the arguments used in section 2.1. We begin by considering the setup of (2.11),
where Uα is defined on an S3 of radius R. Now take a derivative with respect to α and set
α to 0: we then find 〈

i

(∫
S3(R)

⋆j̃A

)
O(0)

〉
= iq⟨O⟩ (2.12)

Note that the expectation value on the left-hand side now involves the path integral over θ
defined on the defect as well. j̃A is now defined only on the defect.

Now imagine that we are in a phase where ⟨O⟩ ̸= 0, i.e. an operator charged under
the non-invertible symmetry has a non-vanishing expectation value. Then, just as in (2.4),
by spherical symmetry we see that the correlation function must depend on R in a very
specific way:

⟨j̃i
A(R)O(0)⟩ ∼ iqniR−3 (2.13)

with ni an outwards pointing normal vector on the S3. We thus see that there is a non-
trivial power-law correlation between an operator O in the bulk and a current j̃A defined
on the defect. Thus there must exist at least one massless mode in the bulk, which is the
Goldstone mode.

In this formulation the proof is essentially the same as in the conventional invertible
symmetry case, except that the current j̃A is now defined only on the defect. Note that
there is no way for the new degree of freedom θ living only on the defect to create such a
correlation between bulk and defect operators unless the bulk is gapless.2 This completes
the proof.

The effective theory describing this low energy Goldstone mode (usually called an
axion) is well understood. Denoting the axion by ϕ, the first few terms in the derivative
expansion are:

S[A, ϕ] =
∫
R4

( 1
2γ2dϕ ∧ ⋆dϕ+ 1

2e2F ∧ ⋆F + igϕF ∧ F
)

(2.14)

2It might be helpful to note that the expression above coincides with the connected correlator, as the
expectation value of the defect-localized current without a local operator inserted is ⟨j̃A⟩ = 0, by the same
argument as above with q = 0. Thus the connected correlator displays power-law behavior, requiring a
gapless mode:

⟨j̃A(R)O(0)⟩ − ⟨j̃A(R)⟩⟨O⟩ ∼ iqR−3 .

– 5 –
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It was shown in [14] that this theory does indeed exhibit the non-invertible symmetry if
g = 1

4π2 . It is easy to verify that the ϕ field saturates the Ward identity (2.13), where the
charged operator O is realized as O ∼ eiqϕ.

An example of a microscopic theory which realizes this phase is if one adds a complex
scalar Φ(x) and a Yukawa coupling hΦ(x)ψ̄ψ + h.c. to the Dirac action (2.2), and then
arranges a potential V (Φ†Φ) to condense the scalar Φ; ϕ(x) may then be viewed as the
phase of Φ(x) (or equivalently the phase of the fermion condensate ψ̄ψ).

Another example (discussed in [14]) is QCD with massless quarks, where the (non-
invertible) axial symmetry is spontaneously broken, and indeed the anomaly famously
provides the dominant channel for pion decay to two photons. We now see that the π0 can
be viewed as a Goldstone boson of this breaking; the effective Lagrangian takes the form
above with ϕ identified with the π0 (and with other interactions involving the photon A).

We make two statements about generalizations of this Goldstone theorem:

1. It may appear that the construction above requires access to a weakly coupled photon
description of the theory. However the essential information of the ABJ anomaly can
be phrased in a universal way3 in terms of the combined symmetry structure of a
conserved 2-form current J and the non-conserved axial current jA:

d ⋆ jA = 1
4π2J ∧ J d ⋆ J = 0 (2.15)

We believe the argument can be extended to any theory with this structure. The
second equation implies that we can locally write J = 1

2π ⋆ dA in terms of an effective
photon A. A will not have a simple action, but we can nevertheless use it to construct
the operator (2.10) on a topologically trivial S3 and run the argument above.

2. Similar arguments can be made for a higher-form continuous non-invertible symmetry
(e.g. as in [19, 20]) by changing the dimensionality of the defect manifold M3 and of
the charged operator O (which will generically become an extended object), as was
done in [39, 41] for (invertible) higher-form symmetries. The statement then is that if
the charged object exhibits a perimeter law (i.e. its expectation value depends only
locally on geometric data characterising its worldvolume), then there exists a gapless
mode in the spectrum.

2.4 Behaviour in the non-zero flux sector

For the proof above we were only required to construct the defect operator Uα on an S3

embedded inside R4. In the interest of completeness, we would like to highlight some
properties of this defect on more general manifolds, particularly those with non-trivial
homology groups.

Let us consider formulating our bulk theory on S1 × S1 × S2. We are interested in
studying a sector of the path integral where there is (1) electromagnetic flux 2πn on the

3See e.g. [40] where a similar characterization was used to understand finite-temperature physics from
holography.
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S2, i.e. ∫
S2
F = 2πn (2.16)

where n ∈ Z.
Now let us place the defect operator Uα(M3) on an M3 = S1 × S2, where it fills one

of the two S1’s, i.e. we evaluate

⟨Uα(M3)⟩ =
〈

exp
(
i
α

2

∫
M3

(
⋆jA − 1

4π2 (A− dθ) ∧ dA
))

. (2.17)

We consider performing the path integral over θ first, keeping A fixed. Note that the
dependence on θ is only through its characteristic class (i.e. the winding), and any other θ in
the same class can be obtained by adding a topologically trivial θ to a fixed representative
of its characteristic class. We have∫

M3
dθ ∧ dA = 4π2wn (2.18)

with w ∈ Z the winding of θ on the S1 factor. Large gauge transformations act as

G : (a,w) ∼ (a+ n,w + n) (2.19)

where a is the holonomy of A on the S1. In this calculation we treat A as a background and
we do not impose these identifications when summing over w; in a more complete treatment
they will be taken into account when performing the full path integral over A (where they
reduce the effective range of the holonomy).

The result of the path integral over θ, including the winding sectors, is therefore
proportional to ∑

w∈Z
exp

(
i
αwn

2

)
. (2.20)

Performing the sum over w, we find a delta function in αn that only has support if

αn

2 ∈ 2πZ . (2.21)

We thus see that for irrational α
2π our operator annihilates the path integral unless n = 0.

This is a very non-invertible operator indeed. It would be interesting to further understand
the properties of this defect and compare to the operator of [14, 15], which is defined for
rational α

2π .

3 Goldstone bosons and string theory

One of our original motivations for seeking an extension of Goldstone’s theorem that applied
to non-invertible symmetries was the observation that in string theory there are fields which
appear to be exactly massless, even in non-supersymmetric configurations (as in [44–48],
for instance). The masslessness of some of these fields is usually explained from the fact
that they are connections for higher-form abelian gauge symmetries.

– 7 –
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This argument is somewhat unsatisfactory on its own; a gauge redundancy is after all a
statement about a description of a system. We should instead seek an explanation in terms
of realizations of (possibly approximate) global symmetries. Given our lack of understanding
of the non-perturbative aspects of string theory, a systematic argument based on symmetry
principles alone, valid for arbitrary compactifications, seems to be of some value.4

Consider, as an example, the operator measuring the D4 “Page” charge [50]5,6

Ûα(Σ4) = exp
(

2πiα
∫

Σ4
F̃4 +A1 ∧H3

)
, (3.1)

where F̃4 ≡ dA3 −A1 ∧H3, A1 and A3 are RR potentials, and H ≡ dB2 is the NSNS field
strength. Here Σ4 is a 4-surface linking a 5-manifold X5 where we have placed a D4 brane.
We include no other background fields, and for avoidance of tadpoles we take the directions
transverse to the D4 to be non-compact.

Importantly, we will first treat the D4 brane as an infinitely heavy object, so that we
may consider it as a defect operator D(X5) in the effective supergravity field theory. We
will eventually incorporate the fact that the tension is finite below.

In this setting — when the D4 branes are infinitely massive — Ûα(Σ4) is topological, and
would naively define a 5-form (1) symmetry. This is not so for a number of reasons. First, for
generic α the resulting expression is not gauge invariant under large gauge transformations
of A1 if H1(Σ4;R) ̸= 0, and H3 generic. We can fix these issues by taking Σ4 to be S4. We
also note that the background we discuss does not source H3, so we might be tempted to
simply claim that Uα(Σ4) is gauge invariant. But our goal is to argue that the presence of
Goldstone bosons is robust, so we will not set H3 = 0. Instead, we introduce an additional
dynamical scalar on the charge defect, as above:

Uα(Σ4) = exp
(

2πiα
∫

Σ4
F̃4 + (A1 − dθ) ∧H3

)
, (3.2)

with θ transforming as θ → θ+λ under a A1 → A1 + dλ gauge transformation. This defines
a non-invertible symmetry analogous to (2.10).

The D4 brane is charged under Uα(Σ4), so we may write:

Uα(Σ4)D(X5) = eiαD(X5) (3.3)

Now the insertion of the defect operator D(X5), i.e. a D4 wrapping X5, in the string theory
partition function will give a contribution proportional to the volume of X5, arising from
the Dirac-Born-Infeld coupling on the brane worldvolume. In terms of standard language,
it obeys a “perimeter law”, so this nonzero expectation value implies a form of spontaneous
symmetry breaking. We can, in particular, run a straightforward generalisation of the
argument given above (see [39, 41] for details) that implies the existence of a Goldstone

4A different argument for the masslessness of the photon, based on swampland considerations, was given
in [49].

5See [51] for other notions of charge.
6The integrand F̃4 + A1 ∧ H3 can alternatively be written as dA3, but the way we have written it makes

it clearer that it is not gauge invariant under gauge transformations of A1.
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mode. The minimal possibility saturating (3.3) is that we have a 5-form C5 in the spectrum,
with a coupling

exp
(
i

∫
X5
C5

)
(3.4)

to the D4 brane worldvolume. We identify this massless field as the ordinary RR 5-form field.
Clearly, this argument generalises with minor modifications to all branes in string

theory, implying the exact masslessness of the fields that they are charged under.
So far we have worked in a semi-classical approximation to string theory, where the

branes are infinitely massive objects. In actual string theory, this is not the case: branes are
dynamical objects, and this means that there are no longer any exact global symmetries or
completely topological objects [52–54]. Nevertheless it seems reasonable that a large mass
for these objects should not affect questions in the extreme infrared, such as the masslessness
of putative Goldstone modes. An argument to this effect for 1-form symmetries was given
in [55]. In our context, the main physical effect is expected to be screening from “virtual”
D4-branes. This makes the value of the measured Page charge depend on the distance R
between the surface where we measure the charge and the brane, i.e. (3.3) becomes

Uα(Σ4)D(X5) = eiαf(R)D(X5) (3.5)

for some nontrivial function of R. We are not aware of a systematic treatment of this effect
for the case at hand, but related cases are analysed in detail in [56]. Extrapolating the main
features of the cases discussed in that paper, we expect that the operator we have described
above will be topological — i.e. f(R→ ∞) approaches a constant — up to exponentially
suppressed effects, for scales larger than the inverse of the brane tension.

This is good news: any small mass for the would be Goldstone would dramatically affect
our argument for large enough radii (the relevant correlator would become exponentially
suppressed), but it is precisely in this regime that the screening effect itself becomes
exponentially suppressed. So we conclude that screening effects, while they do break the
symmetry, cannot give a mass to the Goldstone boson. This is perhaps not much of a
surprise: giving mass to a Goldstone boson for a higher form symmetry, since it is vector-like,
is a discontinuous operation, so these Goldstone modes are much more robust than ordinary
0-form Goldstone scalars (which have the same degrees of freedom whether they are massive
or not).

A summary of what we have just found is that the massless form fields in string theory
are massless because branes are heavy. This motivates a final speculative comment: if we
try to think what it would take to gap the spectrum of supergravity, by the arguments
above it will necessarily involve making the branes tensionless. This resonates well with
the idea that gapped phases of gravity should be thought of as phases where the metric
vanishes. (We refer the reader to [57, 58] and the final comments in [59] for further references
and discussion of such ideas.) Indeed recent work on emergent higher-form symmetries
associated with the gravitational sector alone [60, 61] may eventually allow us to make such
ideas concrete.
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A Topological invariance of defect operator

Here we discuss the topological properties of the new coupling added to the action of the
defect operator in (2.10), i.e.

exp
(
i
α

8π2

∫
M3

dθ ∧ F
)

(A.1)

In particular, when placed in the path integral, is this invariant under deformations of M3?
Heuristically, if we extend θ off of the defect, then we can consider deforming M3 to a

nearby surface M′
3; comparing the integral over the two regions we then find we then find∫

M3
−
∫
M′

3

(dθ ∧ F ) =
∫
M4

d(dθ ∧ F ) = 0 (A.2)

where ∂M4 = M3 ∪M′
3.

We can present a slightly more abstract formulation of the argument which shows the
relationship between the above relation and the 1-form symmetry. Consider coupling an
external 2-form source b using the 1-form symmetry of QED:

S[ψ, ψ̄, A; b] =
∫
d4x

( 1
4e2F

2 + iψ̄
(
/∂ − i /A

)
ψ + i

2πb ∧ F
)

(A.3)

(Such a coupling is possible for any conserved 2-form current J , where in this particular
case we have J ≡ 1

2πF ). As b couples to a conserved 2-form current, it is always true that

Z[b] = Z[b+ dΛ] (A.4)

for an arbitrary 1-form Λ.
Now we turn on the following source for b, parametrized by a choice of 3-surface M3:

b = bM3 = α

4πd (ΘM3(x)dθ(x)) (A.5)

Here θ(x) is a scalar field defined on R4 which will eventually be restricted to the defect
worldvolume M3. ΘM3(x) is a scalar function with ΘM3(x) = 0 if x is “on one side” of
M3 and ΘM3(x) = 1 if x is on the “other side” of M3. (E.g. if we were studying the simple
case where M3 is the flat plane x0 = 0, we would have ΘM3(x) = Θ(x0) with Θ the usual
Heaviside step function.) To make the manipulations well-defined, let us imagine that this
interpolation from 0 to 1 takes place over a small length scale.

– 10 –
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Now as the choice for b in (A.5) is exact, the invariance (A.4) means that the partition
function does not change under inserting this source. In particular it does not care about
the choice of M3, independently of the value of θ, i.e.

Z[bM3 ] = Z[bM′
3
] (A.6)

This invariance also does not care about details on how the Heaviside function above is
regulated. However in the limit where the step function is made arbitrarily sharp, we find
that dΘM3 becomes a 1-form localized on the defect, and we have:

i

2π

∫
R4
bM3 ∧ F = iα

8π2

∫
M3

dθ ∧ F (A.7)

Thus we have constructed the coupling desired and confirmed that it is invariant under
shifts of M3. At the final stage we see that it depends only on θ(x) on the defect. This
argument is essentially the same as that leading to (A.2), but this presentation highlights
the relationship between the topological character of the operator and the unbroken 1-form
symmetry.

Data access statement. There is no additional research data associated with this work.
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