
J
H
E
P
0
9
(
2
0
2
3
)
1
3
8

Published for SISSA by Springer

Received: June 27, 2023
Accepted: September 10, 2023
Published: September 20, 2023

Exact QFT duals of AdS black holes

Sunjin Choi,a Saebyeok Jeong,b Seok Kimc and Eunwoo Leec

aSchool of Physics, Korea Institute for Advanced Study,
85 Hoegiro, Dongdaemun-gu, Seoul 02455, South Korea

bNew High Energy Theory Center, Rutgers University,
136 Frelinghuysen Road, Piscataway, New Jersey 08854-8019, U.S.A.

cDepartment of Physics and Astronomy & Center for Theoretical Physics,
Seoul National University,
1 Gwanak-ro, Seoul 08826, South Korea
E-mail: sunjinchoi@kias.re.kr, saebyeok.jeong@physics.rutgers.edu,
seokkimseok@gmail.com, eunwoo42@snu.ac.kr

Abstract: We construct large N saddle points of the matrix model for the N = 4 Yang-
Mills index dual to the BPS black holes in AdS5 × S5, in two different setups. When
the two complex chemical potentials for the angular momenta are collinear, we find linear
eigenvalue distributions which solve the large N saddle point equation. When the chemical
potentials are not collinear, we find novel solutions given by areal eigenvalue distributions
after slightly reformulating the saddle point problem. We also construct a class of multi-
cut saddle points, showing that they sometimes admit nontrivial filling fractions. As a
byproduct, we find that the Bethe ansatz equation emerges from our saddle point equation.

Keywords: AdS-CFT Correspondence, Black Holes in String Theory, D-Branes

ArXiv ePrint: 2111.10720

Open Access, c⃝ The Authors.
Article funded by SCOAP3. https://doi.org/10.1007/JHEP09(2023)138

mailto:sunjinchoi@kias.re.kr
mailto:saebyeok.jeong@physics.rutgers.edu
mailto:seokkimseok@gmail.com
mailto:eunwoo42@snu.ac.kr
https://arxiv.org/abs/2111.10720
https://doi.org/10.1007/JHEP09(2023)138


J
H
E
P
0
9
(
2
0
2
3
)
1
3
8

Contents

1 Introduction 1

2 Basic setup and the areal saddle points 3

3 Alternative derivation in the collinear limit 13
3.1 A relation to the Bethe ansatz equation 21

4 Multi-cut saddle points 27

5 Conclusion 32

A Saddles from (σ + r, τ + s) parallelograms 34

1 Introduction

We want to better understand the microscopic black hole physics in AdS/CFT [1–3]. For
quantitative studies, BPS black holes [4–7] are ideal objects. In 2005, [8, 9] defined the
indices of 4d SCFTs and explored their large N behaviors. It took some time to understand
how to see the black holes from this index [10–12]. In 4d N = 4 Yang-Mills theory, we
study the black holes in AdS5 × S5. For this problem, one should study an apparently
complicated large N matrix integral (see section 2 for more precise statements),

Z(δI , σ, τ) ∼ 1
N !

N∏
a=1

∫ 1
2

− 1
2

dua ·
∏
a ̸=b

∏3
I=1 Γ(δI + uab, σ, τ)

Γ(uab, σ, τ) , uab ≡ ua − ub , (1.1)

where
∑

I δI = σ + τ (mod Z). Γ(z, σ, τ) is the elliptic gamma function. In this paper, we
construct its exact large N saddle points. Here we sketch their important features.

The integration contours of the N eigenvalues ua are real circles, ua ∼ ua + 1. One
has to set the chemical potentials δI , σ, τ complex. (See [13, 14] to understand why.) The
saddle points for ua’s are also complex. At our saddle point, the eigenvalues are typically
distributed areally, in a 2 dimensional region on the complex u plane. We have not heard of
areal distributions in holomorphic matrix models: one finds linear eigenvalue distributions
called ‘cuts’. Our claim is true only after carefully setting up the saddle point problem as
we explain shortly.

We explain our basic saddle point which corresponds to the black hole solutions of [7].
The saddle point depends on two parameters σ, τ of the elliptic gamma function, related
to the chemical potentials for the spatial rotations. ua are distributed uniformly inside
a parallelogram, whose two edge vectors are given by the complex numbers σ, τ . See
figure 1a. This is typically a 2d distribution when σ, τ are not collinear. When σ, τ are
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(a) Uniform parallelogram distribution on the complex u plane (left); linear degeneration at σ
τ

→ real ̸= 1
(middle); linear degeneration at σ

τ
→ 1 (right).

(b) Eigenvalue density ρ(x) at σ
τ

= 1
2 (middle

case of figure 1a).
(c) Eigenvalue density ρ(x) at σ = τ (right case
of figure 1a).

Figure 1. Illustrating the uniform parallelogram distribution, and how it degenerates to linear
cuts. In figures (b) and (c), x ∈ (−1, 1) parametrizes the linear cut.

collinear, the parallelogram degenerates to a line. In this limit, the density function on the
line is given by a trapezoid: see figure 1b. When σ = τ , corresponding to equal angular
momenta J1 = J2, the linear density function is triangular: see figure 1c. These linear
density functions were discovered recently in the small [14] and large [15] black hole limits,
using different approaches. Our parallelogram ansatz was inferred by guessing how to
naturally get the trapezoid limit.

For general non-collinear σ and τ , this distribution solves the following saddle point
equation. We first note the integral identity (whose proof is reviewed in section 2)∫ 1

2

− 1
2

dN u · 1
N !

∏
a<b

(1−e2πiκuab)(1−e−2πiκuab) ·f(u) =
∫ 1

2

− 1
2

dN u ·
∏
a<b

(1−e2πiκuab) ·f(u) , (1.2)

which holds for any constant κ and any permutation-invariant function f(u). For κ = 1,
the factor 1

N !
∏

a<b(1 − e2πiuab)(1 − e−2πiuab) is the Haar measure of the unitary matrix
integral and this identity leads to the so-called Molien-Weyl formula [16]. In our problem,
we shall write (1.1) in a way that it looks like the left hand side of (1.2) at κ = 1

σ or 1
τ . One

can set up the saddle point problem using either the left or right hand sides: integrals are
the same, but the saddle point problems are slightly different. Our parallelogram solves the
saddle point problem defined using the right hand side. See section 2 for the precise setup
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of this problem.1 As for the saddle point equation of the left hand side, presumably more
complicated saddles exist with same physical properties, but we have nothing concrete to
say at generic non-collinear σ, τ .

In the collinear limit, σ
τ → real, the parallelogram degenerates to linear distributions.

In this case, our ansatz solves both saddle point equations, defined using the left and right
hand sides of (1.2). We explain how the saddle point equation of the left hand side is
solved in section 3. Furthermore, at σ = τ , we show that the saddle point equation of the
left hand side of (1.2) is related to the Bethe ansatz equation for this index [18, 19], once
employing our ansatz.

Our basic saddle points account for the physics of the 4-parameter BPS black hole
solutions in AdS5 × S5 [7], carrying three angular momenta in S5 and two in AdS5.

We also find multi-cut solutions. For technical reasons, we only discuss the case with
collinear σ, τ . We find K-cut saddles given by K parallelograms degenerated as figure 1.
When σ = τ , they are related to some Bethe roots of [20], labeled by two integers K,
r. Our K-cut solutions are related to the Bethe roots at r = 0, and sometimes admit
generalization with unequal filling fractions. The solutions at r ̸= 0 may be generated
using the methods of appendix A. (At σ ̸= τ , the extra parameter r is further refined to
two integers r, s.)

This paper is organized as follows. In section 2, we derive the parallelogram saddle
point. In section 3, we discuss alternative derivation of the saddles at collinear σ, τ . Sec-
tion 3.1 explains a relation to the Bethe ansatz at σ = τ . In section 4, we derive the K ≥ 2
cut saddle points. Section 5 concludes with comments and future directions. Appendix A
discusses the (r, s)-refinements.

2 Basic setup and the areal saddle points

To highlight the key ideas, we first discuss general matrix models satisfying certain con-
ditions and derive the saddle points given by areal distribution. We shall later show that
the matrix model for the N = 4 index belongs to this class. Consider the U(N) unitary
matrix U diagonalized to U = diag(e2πiu1 , · · · , e2πiuN ). We consider the following ‘matrix
integral’

Z = 1
N !

N∏
a=1

∫ 1
2

− 1
2

dua ·
∏
a ̸=b

(
1− e

2πiuab
τ

)
· exp

−∑
a ̸=b

(Vσ(uab) + Vτ (uab))

 , (2.1)

where uab ≡ ua−ub. The potential consists of two terms, Vσ(u) and Vτ (u), which we take to
be holomorphic and periodic in two different directions given by the complex numbers σ, τ :

Vσ(u + σ) = Vσ(u) , Vτ (u + τ) = Vτ (u) . (2.2)

The functions Vσ, Vτ are assumed to contain no singularities such as poles or branch points
in the region of ua’s to be specified below.

1It is not uncommon to rewrite integrals using the symmetry of the integrand to find simplified saddle
point solutions. For instance, this idea was used in the S3 partition functions of large N quiver SCFTs [17].
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We would like to apply (1.2) at κ = 1
τ to this integral. Before this, we review how to

prove this identity. First note that

1
N !

∏
a<b

(1−exa−xb)(1−exb−xa)= 1
N !

∏
a<b

(exb−exa)(e−xb−e−xa)≡ 1
N !

∏
a<b

(λb−λa)(λ−1
b −λ−1

a ) ,

(2.3)
where λa ≡ exa ≡ e2πiκua . We then recall the following formula for the Vandermonde
matrix: ∏

a<b

(λb − λa) = det(λb−1
a ) =

∑
ρ∈SN

(−1)ϵ(ρ)
N∏

a=1
(λρ(a))a−1 , (2.4)

and similar formula for
∏

a<b(λ−1
b − λ−1

a ). SN is the permutation group, and ϵ(ρ) is the
signature of its element ρ. Applying these formulae, (2.3) can be written as

1
N !

∑
ρ,σ∈SN

(−1)ϵ(ρ)(−1)ϵ(σ)
N∏

a=1
(λρ(a))a−1(λ−1

σ(a))
a−1 . (2.5)

At fixed σ, one can relabel ρ as ρ · σ and write

1
N !
∑

σ

∑
ρ

(−1)ϵ(ρ)
N∏

a=1
(λρ(σ(a)))a−1(λ−1

σ(a))
a−1 = 1

N !
∑

σ

[∏
a

(λσ(a))−(a−1)
]
·

∏
a<b

(λσ(b)−λσ(a))


= 1

N !
∑

σ

∏
a<b

(1− λσ(a)λ
−1
σ(b)) . (2.6)

Now consider the integral (1.2) with the Haar measure like factor rewritten as the second
line of (2.6). This is given by the sum of N ! integrals labeled by σ ∈ SN , divided by N !.
Since f(u) and the integral domain −1

2 < ua < 1
2 are all invariant under the permutations,

all N ! integrals yield same values. Therefore one proves the identity (1.2).
So our matrix integral can be rewritten as

Z =
N∏

a=1

∫ 1
2

− 1
2

dua ·
∏
a<b

(
1− e

2πiuab
τ

)
· exp

−∑
a ̸=b

(Vσ(uab) + Vτ (uab))

 . (2.7)

The half-Haar measure like factor can also be exponentiated and contribute to the poten-
tial!as

−V ←
∑
a<b

log
(
1− e

2πiuab
τ

)
. (2.8)

One can regard it as modifying the τ -periodic potential Vτ . We write Z as

Z =
N∏

a=1

∫ 1
2

− 1
2

dua · exp

−∑
a ̸=b

(V (sgn(a−b))
τ (uab) + Vσ(uab))

 , (2.9)

where
V (+)

τ (u) ≡ Vτ (u) , V (−)
τ (u) ≡ Vτ (u)− log

(
1− e

2πiu
τ

)
. (2.10)

If the extra term in V (−) does not contain branch points in the region of our interest, V (±)

will also be holomorphic.
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We shall find a large N saddle point of (2.9), and deform the integral contour to reach
this saddle point. The integral domain ua ∈

(
−1

2 , 1
2

)
has a boundary. (In our Yang-Mills

matrix model, the original problem is not on an interval due to the ua ∼ ua + 1 periods,
but the integrand after applying (1.2) is not periodic.) Knowledgeable readers may be
concerned that, when the integral contour has a boundary, the saddle point problem is
well-posed only if the integrand vanishes at the boundary. (More formally, this is the
condition for the Picard-Lefschetz theory of saddle point approximation to be applicable.)
We can rephrase the saddle point approximation of our integral in the standard fashion,
along a noncompact contour with the integrand vanishing at infinity, as follows. Relabeling
the integral variables as

ua = 1
2 tanh xa , (2.11)

the domain (−1
2 , 1

2) for ua maps to the real axis (−∞,∞) for xa. The saddle point problem
can then be phrased in terms of xa, in which case one finds the extra contribution

−V (x)←
N∑

a=1
log

(1
2sech

2xa

)
(2.12)

added to the eigenvalue potential due to the Jacobian factor. Taking derivative of the net
potential with xa, the force from the original potential is at N1 order, while that from the
added potential (2.12) is at the subleading N0 order and is thus negligible. (The Jacobian
factor may well matter when computing subleading corrections in 1/N .) Therefore, even
if one considers a holomorphic integral along compact intervals, the saddle points of the
original potential ignoring (2.12) are relevant for the large N saddle point approximation.

Since the additional potential (2.12) induced by relabelling ua → xa does not affect the
leading large N saddle points, we keep working with ua. In the large N limit, consider the
uniform distribution of N eigenvalues on a parallelogram in the u space. In the continuum
description, the eigenvalues label a can be replaced by a tuple of continuous parameters
a→ (x, y) where −1

2 < x, y < 1
2 . Our uniform parallelogram ansatz is given by

u(x, y) = xσ + yτ , ρ(x, y) = 1 . (2.13)

ρ(x, y) is the uniform areal density function satisfying
∫

dxdyρ(x, y) = 1. Since the inte-
grand of (2.7) breaks Weyl invariance, we order ua’s as follows. Here we assume Im(σ

τ ) > 0,
and order the N eigenvalues in a way that xa > xb if a < b. Then (2.8) has no branch
points in the region ua = xaσ + yaτ , xa, ya ∈ (−1

2 , 1
2) satisfying xa > xb if a < b, since∣∣∣∣e 2πiuab

τ

∣∣∣∣ = ∣∣∣∣e 2πiσxab
τ

∣∣∣∣ < 1 (2.14)

for a < b. This means that we can stay in the principal branch of log for the config-
uration (2.13) and its small deformations, implying that Vσ, V

(±)
τ is holomorphic in this

region.2 We now show that (2.13) is a large N saddle point of the integral (2.9). We
2One may think that the new Vτ defined piecewise by V

(±)
τ (xσ + yτ) has a step function singularity at

x = 0. But in the fine-grained discrete picture, we can assume that no two eigenvalues have precisely same
values of x, with minimal differences at order N− 1

2 .

– 5 –



J
H
E
P
0
9
(
2
0
2
3
)
1
3
8

consider the following force acting on the eigenvalue ua:

∑
b( ̸=a)

[
∂

∂ua
Vσ(uab) +

∂

∂ua
V sgn(a−b)

τ (uab)
]
= −

∑
b( ̸=a)

[ 1
σ

∂

∂xb
Vσ(uab) +

1
τ

∂

∂yb
V sgn(a−b)

τ (uab)
]

.

We used ∂
∂ua
∼ − ∂

∂ub
and also the fact that ub = xbσ + ybτ derivatives can be replaced

by either 1
σ ∂xb

or 1
τ ∂yb

. In the large N continuum limit, the sum over b is replaced by an
integral over xb, yb with the areal eigenvalue density ρ(x, y) = 1:

−N

∫ 1

0
dx2dy2

[ 1
σ

∂x2Vσ(u12) +
1
τ

∂y2V sgn(x2−x1)
τ (u12)

]
. (2.15)

Both terms in the integrand separately integrate to zero. For the first term, one finds∫ 1

0
dx2∂x2Vσ(u12) = Vσ(u1 − τy2 − σ)− Vσ(u1 − τy2) = 0 (2.16)

because Vσ is periodic in σ shift. As for the second term, one integrates over y2 first and
similarly finds zero, from the periodicity of V

sgn(x2−x1)
τ . This statement is invalid if branch

points are inside the integral domain. They are absent partly by assumption on Vτ , and
also because the integrand contains a half-Haar-like measure only. If one starts from the
saddle point problem with (2.1), one indeed finds a nonzero force from the terms with
branch points.

We found a class of matrix models which admits the uniform parallelogram solution:
(1) The eigenvalue potential decomposes to two functions Vσ, Vτ which have their respective
periods; (2) The potentials do not have branch points in the parallelogram domain (2.13);
(3) The matrix integrand is changed to contain a half-Haar-like measure, using the iden-
tity (1.2).

Now we show that the matrix model for the index of the N = 4 Yang-Mills theory
belongs to this class, which will be proving that our parallelogram distribution is a saddle
point. The index is defined by the trace over the Hilbert space of the radially quantized
CFT [8, 9]:

Z(∆I , ωi) ≡ Tr
[
(−1)F e−

∑3
I=1 QI∆I e−

∑2
i=1 Jiωi

]
(2.17)

where QI , Ji are U(1)3 ⊂ SO(6) R-charges and U(1)2 ⊂ SO(4) angular momenta. QI , Ji

are half-integrally quantized for spinors. Z is defined on a 4-parameter space of chemical
potentials,

∑3
I=1 ∆I −

∑2
i=1 ωi = 0, apparently mod 4πiZ at this moment from the defi-

nition (2.17). The chemical potentials should satisfy Re(∆I) > 0 and Re(ωi) > 0 for the
trace to be well-defined. The matrix integral for the index is given by (1.1), which we
repeat here:

Z(δI , σ, τ) = 1
N !

N∏
a=1

∫ 1
2

− 1
2

dua ·
∏
a ̸=b

∏3
I=1 Γ(δI + uab, σ, τ)

Γ(uab, σ, τ) ·
[
U(1)N part

]
. (2.18)

The ‘U(1)N part’ is the contribution from N diagonal matrix components of fields, which
is independent of the integral variable ua and makes an O(N1) contribution to the free

– 6 –
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energy. As we are interested in the leading (nonzero) free energy of order N2, we shall not
distinguish the two expressions (1.1) and (2.18) in this paper. The parameters δI , σ, τ are
defined by

∆I = −2πiδI , ω1 = −2πiσ , ω2 = −2πiτ . (2.19)

The elliptic gamma function is defined by

Γ(z, σ, τ) ≡
∞∏

m,n=0

1− e−2πize2πi((m+1)σ+(n+1)τ)

1− e2πize2πi(mσ+nτ) . (2.20)

It satisfies Γ(z, σ, τ) = Γ(z+1, σ, τ) = Γ(z, σ+1, τ) = Γ(z, σ, τ +1). (Other properties of Γ
will be presented below when necessary.) So the chemical potentials δI , σ, τ all have period
1 in the expression (2.18). They define an index on the following 4-parameter space:

3∑
I=1

δI = σ + τ mod Z . (2.21)

They should further satisfy Im(δI) > 0, Im(σ) > 0, Im(τ) > 0.
We first set a convenient parametrization of δI ’s, for given σ, τ . We set δI = −aI +

bI(σ + τ) with real coefficients aI , bI . From (2.21), the coefficients should satisfy a1 + a2 +
a3 ∈ Z and b1 + b2 + b3 = 1. We shall first fix the ranges of aI , bI . From Im(δI) > 0 and
δ1 + δ2 + δ3 = σ + τ mod Z, one finds 0 < Im(δI) < Im(σ + τ). So all bI ’s are in the range
bI ∈ (0, 1). The ranges of aI are fixed partly by convention, using the periodicities of δI .
Making shifts δI → δI + nI with integral nI ’s, each aI can be put in a certain interval of
length 1. For instance, one can set aI ∈ (0, 1) for all I = 1, 2, 3. With this choice, one
finds that 0 < a1 + a2 + a3 < 3, so we should take either a1 + a2 + a3 = 1 or 2.3 In the
former case, we have δ1 + δ2 + δ3 − σ − τ = −1 with aI ∈ (0, 1). In the latter case, it is
more convenient to redefine aI ’s by shifting all of them by −1, so that aI ∈ (−1, 0) and
a1 + a2 + a3 = −1. In this convention, we take δ1 + δ2 + δ3−σ− τ = +1 with aI ∈ (−1, 0).
To summarize, possible δI ’s belong to one of the following two cases:

δ1 + δ2 + δ3 = σ + τ ∓ 1 , δI = −aI + bI(σ + τ) , ±aI ∈ (0, 1) , bI ∈ (0, 1). (2.22)

In the unrefined index with all equal R-charges, we set bI = 1
3 and aI = ±1

3 for all I,
respectively. The two cases define mutually complex conjugate regions in the chemical
potential space, in which the real parts of all δI , σ, τ are sign-flipped. In other words,
if the complex numbers (δI , σ, τ) belong to the upper case, (−δ∗I ,−σ∗,−τ∗) belong to the
lower case.

Now consider the following two identities of Γ(z, σ, τ) [21, 22]

Γ(z, σ, τ) = e−πiQ+(z,σ,τ)Γ
(

z

τ
,−1

τ
,
σ

τ

)
Γ
(−z − 1

σ
,− 1

σ
,− τ

σ

)
Γ(z, σ, τ) = e−πiQ−(z,σ,τ)Γ

(
− z

σ
,− 1

σ
,− τ

σ

)
Γ
(

z − 1
τ

,−1
τ

,
σ

τ

)
(2.23)

3Here and below, we shall be loose about the boundary values, e.g. not sharply distinguishing aI ∈ (0, 1)
and aI ∈ [0, 1]. But of course the latter is correct and there are two more isolated choices a1 + a2 + a3 = 0
or 3. These two cases are equivalent, corresponding to all aI being 0. But this point is again equivalent to
a special point of (2.22), e.g. the upper case with a1 = a2 = 0, a3 = 1.

– 7 –
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where

Q± = z3

3στ
− σ + τ ∓ 1

2στ
z2 + σ2 + τ2 + 3στ ∓ 3σ ∓ 3τ + 1

6στ
z + 1

12(σ + τ ∓ 1)
( 1

σ
+ 1

τ
∓ 1

)
.

(2.24)
These are part of the SL(3,Z) transformation identities. One identity can be obtained
from another by complex-conjugating an identity and regarding (−z∗,−τ∗,−σ∗) as the new
(z, σ, τ) parameters. We shall use these identities to rewrite the integrands of the matrix
model at Im(σ

τ ) > 0, in which case all the modular parameters have positive imaginary
parts. For Im(σ

τ ) < 0, we can use the identities with the role of σ, τ flipped and proceed
similarly. The limit of collinear σ and τ , i.e. Im(σ

τ )→ 0, is singular with each Γ function.
However, the collinear limit can be smoothly taken after all the calculation is done. This
limit will be discussed in section 3.

It is convenient to use the first/second line of (2.23) for the two cases of (2.22) with
upper/lower signs, respectively. The integral for the upper case of (2.22) can be written as

Z = exp
[
−πiN2δ1δ2δ3

στ

]
1

N !

∫ N∏
a=1

dua · exp

−∑
a ̸=b

(
Vσ(uab) + Ṽτ (uab)

) (2.25)

where

−Vσ(u) ≡
1
2

3∑
I=1

log Γ
(
−δI + u + 1

σ
,− 1

σ
,− τ

σ

)
− 1

2 log Γ
(
−u + 1

σ
,− 1

σ
,− τ

σ

)
+ (u→ −u)

−Ṽτ (u) ≡
1
2

3∑
I=1

log Γ
(

δI + u

τ
,−1

τ
,
σ

τ

)
− 1

2 log Γ
(

u

τ
,−1

τ
,
σ

τ

)
+ (u→ −u) , (2.26)

and for the lower case of (2.22) can be written as

Z = exp
[
−πiN2δ1δ2δ3

στ

]
1

N !

∫ N∏
a=1

dua · exp

−∑
a ̸=b

(
Ṽσ(uab) + Vτ (uab)

) (2.27)

where

−Ṽσ(u) ≡
1
2

3∑
I=1

log Γ
(
−δI + u

σ
,− 1

σ
,− τ

σ

)
− 1

2 log Γ
(
−u

σ
,− 1

σ
,− τ

σ

)
+ (u→ −u)

−Vτ (u) ≡
1
2

3∑
I=1

log Γ
(

δI + u− 1
τ

,−1
τ

,
σ

τ

)
− 1

2 log Γ
(

u− 1
τ

,−1
τ

,
σ

τ

)
+ (u→ −u) . (2.28)

Here we averaged over the contributions from positive/negative roots to have Vσ,τ , Ṽσ,τ to
be even functions of u. The prefactor exp

[
−πiN2δ1δ2δ3

στ

]
is obtained by collecting all four

e−πiQ± factors of the identity. Namely, one obtains

− πi

[ 3∑
I=1

Q±(δI + u)−Q±(u)
]
+ (u→ −u) = −2πiδ1δ2δ3

στ
− 2πiu2∆±

στ
(2.29)

− πi
2∆3

± + 3∆2
±(σ + τ ∓ 1) + ∆±

(
σ2+τ2+3στ ∓ 3(σ + τ)+1−6(δ1δ2 + δ2δ3 + δ3δ1)

)
3στ

,

– 8 –



J
H
E
P
0
9
(
2
0
2
3
)
1
3
8

where ∆± ≡
∑3

I=1 δI − σ − τ ± 1. Since ∆± = 0 in the two cases of (2.22), respectively,
this factor simplifies to a constant −2πiδ1δ2δ3

στ in both cases. Then we can take N2−N
2 ≈ N2

2
such factors out of the integral to obtain the prefactor of (2.25).

Since the analysis is completely the same in the two cases of (2.22), here we only
discuss the case with upper signs. Apart from the prefactor, (2.25) takes the form of (2.1),
as we explain now. First of all, the Γ functions appearing in Vσ and Ṽτ are periodic in
shifting u by σ and τ , respectively. So if one does not cross the branch cuts for log Γ as one
parallel shifts u by σ and τ , one would find Vσ(u+σ) = Vσ(u), Ṽτ (u+ τ) = Ṽτ (u). We will
show that Vσ has no branch points in the parallelogram region defined by ua = σxa + τya

with xa, ya ∈
(
−1

2 , 1
2

)
, and that all log functions of the form log(1− x) can be defined by

Taylor expansion −
∑∞

n=1
xn

n . On the other hand, Ṽτ will have branch points/cuts from
a Haar-measure-like factor which looks like the left hand side of (1.2) with κ = 1

τ . After
one proves these two assertions above, one can separate the dangerous Haar-measure-like
factor and define Vτ (u) by

e
−
∑

a ̸=b
Ṽτ (uab) =

∏
a ̸=b

(
1− e

2πiuab
τ

)
· e−

∑
a ̸=b

Vτ (uab)
, (2.30)

and apply (1.2) to derive a matrix model of the form of (2.7). Then from our general
discussion earlier, the parallelogram saddle point is trivially derived.

Now we only need to prove the key assertion, about the absence of branch points for
Vσ and also for Vτ defined by (2.30), in the region ua = xaσ + yaτ , ub = xbσ + ybτ with
xa, xb, ya, yb ∈

(
−1

2 , 1
2

)
. We shall prove this when certain conditions for δI , σ, τ are met.

Namely, we shall be deriving the ‘basic parallelogram saddle point’ in a certain region of
the parameter space. In appendix A, we derive more general saddle points, virtually for
any value of δI , σ, τ .

We first show that Ṽτ contains branch points only from the Haar measure like factor

∏
a ̸=b

(
1− e

2πiuab
τ

)
. (2.31)

It suffices to show that Γ
(

δI+u12
τ ,− 1

τ , σ
τ

)
and Γ

(
u12
τ ,− 1

τ , σ
τ

)
has no zeros or poles when

u1, u2 are both in the parallelogram, except for the zeros from (2.31). We first consider
the function

Γ
(

δ + u12
τ

,−1
τ

,
σ

τ

)
=

∞∏
m,n=0

1− e2πi
(
− δ+u12

τ
−m+1

τ
+ (n+1)σ

τ

)
1− e2πi

(
δ+u12

τ
−m

τ
+ nσ

τ

) , (2.32)

where δ ≡ −a + b(σ + τ) with a, b ∈ (0, 1) is either δ1,2,3. If the exponential factors
appearing in the denominator always have their absolute values smaller than 1 for any
m, n, the denominator will not have poles. This is true if the following imaginary part is
always positive:

Im
[

δ + u12
τ

− m

τ
+ nσ

τ

]
= Im

(
−1

τ

)
[m + a +N (n + b + x12)] (2.33)
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where N ≡ Im(σ
τ )

Im(− 1
τ )

is a positive number. One finds

m + a +N (n + b + x12) ≥ a−N (1− b) , (2.34)

where the inequality is saturated at m = n = 0 and x12 = −1. Therefore, this quantity
remains positive when N < a

1−b . This is one of the conditions that we shall assume for
the chemical potentials. Now considering the numerator of (2.32), we similarly check if the
imaginary part of the exponent is always positive. The relevant imaginary part is

Im
[−δ − u12

τ
− m + 1

τ
+ (n + 1)σ

τ

]
= Im

(
−1

τ

)
[m+1−a+N (n+1−b−x12)]≥ 1−a−bN ,

(2.35)
where the inequality is saturated at m = n = 0 and x12 = 1. So we find that the imaginary
part is positive when N < 1−a

b , which we also assume. So for

N ≡
Im
(

σ
τ

)
Im
(
− 1

τ

) < min
[

aI

1− bI
,
1− aI

bI

]
, (2.36)

log Γ
(

δI+u12
τ ,− 1

τ , σ
τ

)
is holomorphic in our ua domain. We can make a similar analysis for

Γ
(

u12
τ

,−1
τ

,
σ

τ

)−1
=

∞∏
m,n=0

1− e2πi(u12
τ

−m
τ

+ nσ
τ )

1− e2πi
(
−u12

τ
−m+1

τ
+ (n+1)σ

τ

) . (2.37)

This is actually repeating the studies of imaginary parts above, at δ = 0. As for the
denominator, one similarly finds its log is holomorphic at no extra condition. Log of
the numerator at given m, n will be holomorphic if m + N (n + x12) is positive for all
−1 < x12 < 1. (We ignore the edges at x12 = ±1, in that no eigenvalues will sharply
assume the edge values in the fine-grained picture. Anyway, such edge factors will make
measure 0 contributions in the large N limit.) This condition is always met except when
m = n = 0.4 In other words, the only factor in the numerator whose log fails to be
holomorphic is collected as (2.31). So, as asserted, the integrand containing Ṽτ of (2.26)
can be written as (2.30), where Vτ is holomorphic if the conditions (2.36) are met.

The branch cuts/points of Vσ can be studied in a completely analogous way. After the
analysis of the poles/zeros of the functions Γ

(
− δ+u12+1

σ ,− 1
σ ,− τ

σ

)
and Γ

(
−u12+1

σ ,− 1
σ ,− τ

σ

)
,

one finds that there are no branch cuts if we assume

Im
(
− τ

σ

)
Im
(
− 1

σ

) < min
[1− aI

1− bI
,
aI

bI

]
. (2.38)

This follows by repeating the analysis of the previous paragraph.
To summarize, the Yang-Mills matrix model in the sector

δ1 + δ2 + δ3 = σ + τ − 1 , δI = −aI + bI(σ + τ) with aI , bI ∈ (0, 1) (2.39)
4One may think an extra condition N < 1 is required for (m, n) = (1, 0), but this is always implied

by (2.36).
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at Im(σ
τ ) > 0 can be written as

Z = exp
[
−πiN2δ1δ2δ3

στ

]∫ N∏
a=1

dua ·
1

N !
∏
a ̸=b

(
1− e

2πiuab
τ

)
· exp

−∑
a ̸=b

(Vσ(uab) + Vτ (uab))

 ,

(2.40)
which is basically (2.1) multiplied by a prefactor. Vσ, Vτ satisfy all the required condi-
tions (periods, holomorphicity) supposing that the chemical potentials satisfy the condi-
tions (2.36) and (2.38), which we write more intrinsically as

Im
(

σ − δI

τ

)
< 0 , Im

(1 + δI

τ

)
< 0 , Im

(1− τ + δI

σ

)
< 0 , Im

(
δI

σ

)
> 0 . (2.41)

In the same sector (2.39) at Im(σ
τ ) < 0 (i.e. Im

(
τ
σ

)
> 0), one rewrites the matrix model

by using a modular identity which exchanges the role of σ, τ , arriving at a matrix model
of the form (2.40) with σ, τ flipped. The corresponding Vσ, Vτ again satisfy periodicities
and holomorphy when the σ ↔ τ flipped version of (2.41) is met. So applying the iden-
tity (1.2) with either κ = 1

τ or 1
σ to set up the saddle point problem, one finds the uniform

parallelogram saddle point with the two edges given by σ, τ .
The complex conjugate sector

δ1 + δ2 + δ3 = σ + τ + 1 , δI = −aI + bI(σ + τ) with − aI , bI ∈ (0, 1) (2.42)

can be studied similarly, by using the second modular transformation of (2.23). If Im
(

σ
τ

)
>

0, one obtains

Z = exp
[
−πiN2δ1δ2δ3

στ

]∫ N∏
a=1

dua ·
1

N !
∏
a ̸=b

(
1− e

2πiuab
σ

)
· exp

−∑
a ̸=b

(Vσ(uab) + Vτ (uab))

 ,

(2.43)
where the potentials Vσ, Vτ are periodic and holomorphic if

Im
(

σ
τ

)
Im
(
− 1

τ

) < min
[1− |aI |
1− bI

,
|aI |
bI

]
,

Im
(−τ

σ

)
Im
(
− 1

σ

) < min
[ |aI |
1− bI

,
1− |aI |

bI

]
(2.44)

or more intrinsically

Im
(

δI − τ

σ

)
< 0 , Im

(1− δI

σ

)
< 0 , Im

(1 + σ − δI

τ

)
< 0 , Im

(
δI

τ

)
< 0 . (2.45)

Similar matrix model can be derived at Im(σ
τ ) < 0, with the roles of σ, τ flipped. So again

we find the saddle given by the uniform parallelogram distribution with edges σ, τ .
We also consider the large N free energy at our parallelogram saddle point

logZ = −πiN2δ1δ2δ3
στ

−N2
∫ 1

2

− 1
2

dx1dy1dx2dy2 [Vσ(σx12 + τy12) + Vτ (σx12 + τy12)] (2.46)

in all cases summarized above, where one of Vσ, Vτ includes the half-Haar-like measure,
which we called V

(±)
σ or V

(±)
τ in (2.10). We first evaluate∫ 1

2

− 1
2

dx1dy1 [Vσ(u12) + Vτ (u12)] (2.47)
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at fixed u2. As for the integral of Vσ, we compute the integrals of the form

−
∫ 1

2

− 1
2

dx1 log
(
1− f(u2, y1)e±2πix12

)
, (2.48)

where |f | < 1 in the whole integration domain. This can be computed by Taylor-expanding
the integrand, since the integral domain is within the radius of convergence:

∞∑
n=1

f(u2, y1)n

n

∫ 1

0
dx1e±2πix12 = 0 . (2.49)

Similarly, the log terms contained in Vτ trivially integrates to zero for the same reason,
by Taylor-expanding and integrating over y1 first. So the contribution from the second
term of (2.46) vanishes. The large N free energy of our parallelogram saddle point is thus
given by

logZ = −πiN2δ1δ2δ3
στ

= N2∆1∆2∆3
2ω1ω2

, (2.50)

in both sectors with
∑

I δI = σ+τ∓1 (or
∑

I ∆I = ω1+ω2±2πi). This completely accounts
for the entropy function of the BPS black holes in AdS5 × S5 discovered in [23]. The two
sectors of (2.22) with upper/lower signs provide saddles in the mutually complex conjugate
regions. This paired structure plays an important role in realizing the macroscopic index
with oscillating signs upon Legendre transformation to microcanonical ensemble [13].

The conditions (2.41) or (2.45) are nontrivial if σ, τ are not collinear. Let us first show
that these conditions are trivially met in the collinear limit, σ

τ = real. For simplicity, here
we just discuss the first case (2.41). At σ

τ = real, these conditions reduce to

Im
(

δI

τ

)
> 0 , Im

(1 + δI

τ

)
< 0 , (2.51)

which together with Im(τ) > 0 demand 0 < aI < 1. This is the condition already met
in the upper sector of (2.22), basically set by the periodic shifts of δI ’s. Therefore, the
condition (2.41) is always met in the collinear limit.

If σ, τ are non-collinear, (2.41) or (2.45) nontrivially constrain the parameters δI , σ, τ

for our basic parallelogram to solve the saddle point equation. We shall analyze in ap-
pendix A what kind of constraints are imposed by these conditions. These conditions are
very reminiscent of the stability conditions of the Euclidean black hole solutions against
D3-brane instantons wrapping S3 ⊂ S5 and S1 ⊂ S3 ⊂ AdS5 [24]. Their contributions
to the partition function are given by Z ← eiSD3 with SD3 = ±2πN δI

σ or ±2πN δI
τ in the

two cases of (2.22). Our conditions imply their stability conditions Im(SD3) > 0, which
makes our results consistent with the gravity analysis. Our conditions are stronger than
their stability conditions, leading us to conjecture that there are more stability constraints
from other instantons not discussed in [24]. Since our conditions (2.41), (2.45) come from
the requirement that no branch points of the potential are included in the parallelogram,
it would be interesting to establish a direct connection between the forces generated by
the branch points and the gravitational instability. It would be interesting to study the
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parameter regime outside the conditions (2.41) or (2.45), especially the physics of the corre-
sponding black holes. For instance, the thermodynamic instability of small spinning black
holes have been already discussed in [14].

We can also construct generalized parallelogram saddles with the edge vectors given by
(σ + r, τ + s), where r, s ∈ Z. To discuss these generalized solutions, we set the convention
for δI ’s so that one of the two conditions (2.22) is met with σ, τ replaced by σ + r, τ + s.
Then repeating the calculus of this section, one finds that the parallelogram ansatz with
edges given by σ + r, τ + s solves the saddle point equation if (2.41) or (2.45) is met after
replacing σ, τ by σ+r, τ +s. In appendix A, we show that (2.41) or (2.45) is always met by
many choices of r, s, at least for typical choice of σ, τ which satisfies σ

τ ̸= real and Im(σ)
Im(τ) ̸=

rational. Following [24], we interpret our r, s as labelling multiple Euclidean solutions
which map to the same Lorentzian solution once we decompactify the temporal circle.

3 Alternative derivation in the collinear limit

Our analysis so far demands that σ, τ are not collinear, at least at the intermediate steps.
Otherwise the modular parameters σ

τ , − τ
σ in the identity (2.23) become real and make

individual Γ functions ill defined. However, the full integrand is smooth at real σ
τ . So even

if we are interested in the case with collinear σ, τ , we may slightly deform them with small
Im(σ

τ ) and remove this regulator after the calculations. This way, one obtains linear cut
distributions for collinear σ, τ . As shown in figure 1, the eigenvalue distribution along the
linear cut is no longer uniform. We can parametrize the eigenvalues as u(x) = σ+τ

2 x with
x ∈ (−1, 1) in the collinear limit. Defining real R ≡ σ

τ , the linear eigenvalue density ρ(x)
is given by

ρ(x) = 1

1−
(

1−R
1+R

)2

(
1− 1

2

∣∣∣∣x + 1−R

1 + R

∣∣∣∣− 1
2

∣∣∣∣x− 1−R

1 + R

∣∣∣∣) . (3.1)

ρ(x) satisfies
∫ 1
−1 dxρ(x) = 1, and the eigenvalue sum is replaced by

∑
a → N

∫ 1
−1 dxρ(x).

As shown in figure 1b, ρ(x) has a trapezoid shape. We hope this shape is intuitively visible
from the degeneration shown in figure 1a. This ρ(x) has been already derived in the small
black hole limit at real σ

τ [14], using the standard large N matrix model techniques. In the
sector given by the upper signs of (2.22), the small black hole limit is given by

σ → 1
2 + iγ

2π
, τ → 1

2 −
iγ

2π
(3.2)

in the notation of [14]. (The imaginary part of σ + τ approaches zero because small black
hole limit is a kind of high temperature limit.) When σ = τ , or R = 1 (J1 = J2), (3.1)
becomes triangular. The triangular distribution was found in the small black hole limit [14],
and also from the subleading correction to the Cardy limit for large black holes [15].

Here we emphasize that the linear distributions at collinear σ, τ were found in special
cases without changing the saddle point problem using the identity (1.2) [14, 15]. In fact,
one can make an alternative derivation of our linear distributions at collinear σ, τ , without
changing the integrand using (1.2) and also without using the modular identity (2.23).
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For simplicity, we only consider the upper case of (2.22) in this section. The 2-body
eigenvalue potential (including the Haar measure) is given by

−V (u) = 1
2

3∑
I=1

log Γ(δI + u;σ, τ)− 1
2 log Γ(u;σ, τ) + (u→ −u) . (3.3)

As before, there is an issue of how we define log functions concerning the choice of branch
sheets on the u space. In the full discrete setup, they only affect 2πiZ constants of logZ

and is thus irrelevant. In the continuum limit, the most natural and useful setup is to define
the log functions to be smooth on the eigenvalue cut of our ansatz, so that their derivatives
(force) are well defined everywhere. As we explain in a moment, with a careful definition
of our ansatz, this will be possible everywhere except when two eigenvalues approach each
other, where one finds the usual repulsive singularity. We know how to continue the log
functions across such repulsive singularities, by making a principal-valued definition of log
functions. Therefore, we shall be able to define the log functions based on continuity on
the eigenvalue cut.

Now we discuss our ansatz for collinear σ, τ in more detail, in the original saddle point
problem without using the identity (1.2). First of all, it is still convenient to parametrize
the eigenvalues ua’s using two parameters, u(x, y) = xσ + yτ with x, y ∈

(
−1

2 , 1
2

)
and

ρ(x, y) = 1. This is no longer a regular parallelogram, but we can label the eigenvalues this
way. A point on the physical eigenvalue cut in the u space is mapped to a segment in the
square region x, y ∈

(
−1

2 , 1
2

)
. logZ is given by a double sum

∑N
a,b=1, which in the large N

continuum limit is replaced by the double integral

logZ = −N2
∫

dx1dy1

∫
dx2dy2V (u1 − u2) . (3.4)

One finds u = xσ + yτ = τ (Rx + y) with a real R. Regarding x and ỹ ≡ y + Rx as the
integral variables, one can first trivially integrate over x at fixed ỹ. The allowed ranges of
x at given ỹ determine the linear eigenvalue density ρ(ỹ). For instance, if R < 1, they are
given by

0 < ỹ < R : 0 < x <
ỹ

R
→ ρ(ỹ) = ỹ

R
(3.5)

R < ỹ < 1 : 0 < x < 1 → ρ(ỹ) = 1

1 < ỹ < 1 + R : ỹ − 1
R

< x < 1 → ρ(ỹ) = 1− ỹ − 1
R

which is (3.1) upon reparametrizing ỹ. Here we emphasize that our collinear ansatz with
the original potential (without using (1.2)) will demand a small refinement to make it a
saddle point. Namely, we take the precise ansatz to be

u(x, y) = e−iϵ(xσ + yτ) = τe−iϵ(Rx + y) , ρ(x, y) = 1
(
−1
2 < x, y <

1
2

)
(3.6)

with ‘infinitesimal’ ϵ > 0. During most of the calculus, we can simply turn off ϵ = 0. Below
we shall keep small ϵ > 0 only when necessary.
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Employing the ansatz u1,2 = σx1,2 + τy1,2 + O(ϵ), it will be useful to rewrite the u1
integral of log Γ(z ± u12) as∫ 1

2

− 1
2

dx1dy1 log Γ(z ± u12, σ, τ) (3.7)

=
∫ 1

2

− 1
2

dx1dy1

∞∑
m,n=0

[
− log(1− e2πi(±u1+mσ+nτ∓u2+z))+log(1−e2πi(∓u1+mσ+nτ+σ+τ−z±u2))

]
=
∫ ∞

− 1
2

dxdy
[
− log(1− e2πi(u∓u2+z)) + log(1− e2πi(u+σ+τ−z±u2))

]
.

On the last line, we defined u = σx+τy as u ≡ ±u1+mσ+nτ , with x ∈
(
−1

2 + m, 1
2 + m

)
,

y ∈
(
−1

2 + n, 1
2 + n

)
, and patched the infinitely many integrals labeled by m, n into a single

integral over x, y ∈
(
−1

2 ,∞
)

(at ϵ → 0). This integral is a useful object for a couple of
reasons. Firstly, if we further integrate once more with x2, y2, it will give the contribution
of each supermultiplet to the free energy logZ. Also, taking u2 derivative, one obtains a
force acting on the eigenvalue located at u2. The natural and useful convention for the log
functions on the last line is to define them as a continuous function of x, y ∈

(
−1

2 ,∞
)
,

except for the principal-valued singularity when z = 0 and u ∓ u2 = 0. We shall call this
the Haar measure singularity below. We now show that such continuous definitions of log
are possible.

At large x, y, we naturally stay on a branch of log function which yields log 1 = 0 at
x, y → ∞, and attempt to define the log function as a continuous function in the whole
x, y domain, if necessary by moving on to different branch sheets. Although we employ a 2
dimensional parametrization, the eigenvalues are on a linear cut (labeled by Rx+y) so that
there will be no ambiguities in 1 dimension to make such a continuous extension except at
the Haar measure singularity. We shall establish the details of this continuation below.

Firstly, when z = δI , u∓ u2 + δI and u+ σ + τ − δI ± u2 have positive imaginary part
for large x, y, in which case the two log functions on the last line of (3.7) are defined on
the standard branch with log 1 = 0. As long as their imaginary parts are positive, the log
function can be defined by the standard Taylor expansion log(1 − x) = −

∑∞
n=1

xn

n . We
study when this definition has to be modified by analytic continuation, by the imaginary
parts changing sign. For the first log on the last line of (3.7), the sign changes at the
following line on the x, y space:

0 = Im(u∓ u2 + δI) = Im(τ) [R(x + bI ∓ x2) + (y + bI ∓ y2)] . (3.8)

(When z = δI , the refined definition (3.6) plays no role.) On this line, its real part

Re(u∓ u2 + δI) = −aI +Re(τ) [R(x + bI ∓ x2) + (y + bI ∓ y2)] = −aI (3.9)

is in the range −1 < −aI < 0. In particular, the branch point is never crossed when
analytic continuation is needed to define this log. So when z = δI , the first log function
of (3.7) in the region Im(u∓ u2 + δI) < 0 is continuously extended using the formula

log(1− e2πiz) = log(1− e−2πiz) + 2πiz + πi if Im(z) < 0 and Re(z) ∈ (−1, 0) . (3.10)
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The log on the right hand side is defined by Taylor expansion. Similarly, as for the second
log of (3.7), we regard −δI as −δI−1 in the infinity branch, which is just a phase convention
for the fugacity. Then one finds Im(u + σ + τ ± u2 − δI − 1) = 0 at

0 = Im(τ) [R(x− bI ± x2 + 1) + (y − bI ± y2 + 1)] . (3.11)

Then its real part is given by

aI − 1 + Re(τ) [R(x− bI ± x2 + 1) + (y − bI ± y2 + 1)] = aI − 1 (3.12)

which is in the range −1 < aI − 1 < 0. So we can again use (3.10) to define this log by
analytic continuation, after replacing −δI by −δI − 1.

When z = 0, only the first log of (3.7) can hit the branch point, while the second log
can always be defined by Taylor expansion. For the first log, the branch with log 1 = 0
chosen at infinity extends smoothly to the region Im(u ∓ u2) > 0, whose boundary is the
line Im(u∓u2) = 0. Had we defined our ansatz as u(x, y) = σx+ τy rather than (3.6), the
real and imaginary parts of u∓ u2 become zero at the same point,

Rx + y = ±(Rx2 + y2) , (3.13)

meaning that the branch point is on the eigenvalue cut. Here our refined definition (3.6)
has a finite effect even at ϵ→ 0+. Since u ≡ ±u12 + mσ + nτ with m, n ≥ 0, one finds

u∓ u2 = τ
[
±e−iϵ(Rx12 + y12) + mR + n

]
. (3.14)

Namely, due to ϵ > 0 in our ansatz, the real and imaginary parts of u ∓ u2 do not si-
multaneously vanish unless Rx12 + y12 = 0 and m = n = 0. The last point is the Haar
measure singularity. Our ϵ deforms other branch point singularities slightly away from the
eigenvalue cut.

Let us explain this in detail. On the quadrant defined by x, y ∈
(
−1

2 ,∞
)
, the line

after which analytic continuation is needed is

0 = Im(u∓ u2) = Im(τ) [± cos ϵ(Rx12 + y12) + mR + n]∓ Re(τ) sin ϵ(Rx12 + y12)
≈ Im(τ) [±(Rx12 + y12) + mR + n]∓ ϵRe(τ)(R12 + y12) (3.15)

up to linear order in ϵ. The leadingO(ϵ0) shape of these lines Rx1+y1 = Rx2+y2∓(Rm+n),
or Rx + y = ±(Rx2 + y2), are shown on the (x, y) space in figure 2. On this line, the real
part of u∓ u2 is given by

Re(u∓ u2) = Re(τ) [± cos ϵ(Rx12 + y12) + mR + n]± Im(τ) sin ϵ(Rx12 + y12)

≈ ±ϵ

(
Re(τ)2

Im(τ) + Im(τ)
)
(Rx12 + y12) (3.16)

again up to O(ϵ1), where we inserted the condition Im(u ∓ u2) = 0. Therefore, unless
Rx12+y12 = 0 (i.e. u1 = u2), a small real part of u∓u2 is generated by ϵ on the line (3.15),
represented by the red/blue/orange/magenta parts of the line in figure 2.
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Figure 2. Singular points of the potential for the naive ansatz at ϵ = 0, from u = −u2 (purple
line) and u = u2 (red/green/blue/orange/magenta). Each square region bounded by dotted lines
is a fundamental region of (x1, y1), whose integrand is the log potential at certain (m, n). Each
colored line segment represents a point on the eigenvalue cut. Green/purple lines are the Haar
measure singularities, which remain after the ansatz deformation by ϵ. Other singularities (red,
blue, orange, magenta) are lifted after the deformation. (R ≡ σ

τ = .35, Rx2 + y2 = .47).

We explain the situation of figure 2 in more detail. For illustration, we chose R = 0.35
and Rx2+y2 = .47 > 0. The two lines with green/purple colors in the region −1

2 < x, y < 1
2

represent the Haar measure singularities, for which Re(u∓ u2) = 0 exactly. These are the
only branch points on the eigenvalue cut at nonzero ϵ, for which we shall review in a
moment how the functions are extended across the singularity (in a standard manner).
The regions requiring continuations across these lines are also shown as shades with the
same colors. Other line segments in red/blue/orange/magenta colors for Im(u − u2) = 0,
are for the line Rx1 + y1 ≈ (Rx2 + y2)− (Rm + n) with (m, n) = (0, 1), (1, 0), (2, 0), (3, 0)
respectively at O(ϵ0). For these, note that Rx12 + y12 = −(Rm + n) < 0. So from (3.16),
all parts of the line (3.15) except for the Haar measure singularities (green/purple) have
small negative Re(u − u2) ∼ O(ϵ1) < 0. Since −1 < Re(u − u2) < 0, one can apply the
analytic continuation (3.10) across these lines to the regions shaded with the same colors.

So except for the Haar measure contributions, which is the integral (3.7) in the domain
x, y ∈

(
−1

2 , 1
2

)
(the square region including green/purple segments in figure 2), the log

functions in (3.7) are defined either by the Taylor expansion or the continuation (3.10).
The Haar measure contribution∫ 1

2

− 1
2

dxdy
[
log

(
1− e2πi(σ(x−x2)+τ(y−y2))

)
+ log

(
1− e2πi(σ(x+x2)+τ(y+y2))

)]
(3.17)

has to be treated as the principal-valued integral. One way of doing this calculus is to
eliminate the ε neighborhood of the singularity, and send ε → 0+ after the calculation.
Another equivalent way is to average over the ±iε deformations of the integration contour.
This amounts to averaging over the integral done with the analytic continuation (3.10) and
another integral with alternative continuation

log(1− e2πiz) = log(1− e−2πiz) + 2πiz − πi if Im(z) < 0 and Re(z) ∈ (0, 1) . (3.18)
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The two calculations differ by whether one uses ±πi on the last terms of (3.10) and (3.18),
in the region shaded with green/purple colors in figure 2. So they are just different by
integrating constants over these regions. If one averages over the two, the integrations of
±πi cancels. Therefore, (3.17) computed using (3.10) and (3.18) prescriptions are related
to the principal-valued integration of (3.17) by having the following additional constants,
respectively:

±πi [area(green shaded region) + area(purple shaded region)] = ±πi . (3.19)

At the last step we used the fact that the sum of the areas of the two regions is equal to
the area of the square −1

2 < x, y < 1
2 , which is 1. Therefore, even for the Haar measure

integral we may employ a unified prescription to analytically continue with (3.10), and add
a trivial constant −πi to get the principal-valued integral for the Haar measure potential.
In fact for most purposes, we can ignore this constant −πi. For the force calculation, this
constant factor does not matter. Also, for the free energy calculation, this constant will
provide an extra imaginary constant −πi(N2−N)

2 ∼ −πiN2

2 to the free energy logZ. This

factor provides an overall sign factor (or phase factor) for Z ← (−1)
N2−N

2 , but otherwise
does not affect the large N thermodynamics. So we ignore this constant term from now
and proceed by universally employing the analytic continuation (3.10) for (3.7).

We have set all the rules of calculus in the collinear case. In a moment we will show
that the force vanishes, and then compute the free energy. Before the calculations, we
pause to interpret what small ϵ > 0 may mean. Certainly ϵ is part of our ansatz. In
our leading large N calculus, only the sign of ϵ will matter. Our ansatz (3.6) is a saddle
point for ϵ > 0, but not for ϵ < 0. Regarding it literally as an infinitesimal parameter
appears to be unrealistic, since it measures the distance of a potential singularity from the
eigenvalue configuration and it cannot happen in the discrete calculus that the saddle point
is infinitesimally away from a point where the force diverges. So we interpret infinitesimal ϵ

as emerging from the large N continuum limit. For instance, if one can make a subleading
calculus in 1

N , it may be related to N by ϵ ∼ 1
Nα with a positive number α. (We expect

α < 1, for ϵ to be larger than the minimal eigenvalue separation ∼ 1
N .) Of course if one

can actually do a subleading calculus, the saddle will be more complicated than (3.6).
Our (3.6) merely prescribes how the branch point is avoided at large N . Here we note
that a similar ϵ deformation was needed to get the saddle point of this index in the Cardy
limit [15]. We expect their ϵ should be interpreted similarly, as a small number related to
the large charges.

More physically, the singularities which are ϵ-distance away from our ansatz come from
the gaugino operators dressed by derivatives. In the notation of [25], the gaugino ‘letter’
(∂++̇)p(∂+−̇)qλ̄±̇ in the a’th row and b’th column of the N ×N matrix is weighted by the
following effective fugacity factor in the matrix integral:

e2πiuab · e2πiσ( 1
2±

1
2 +p)e2πiτ( 1

2∓
1
2 +q) . (3.20)

This is a product of the ‘color fugacity’ factor e2πiuab which is not a physical fugacity, and
the rest which is the physical fugacity. Since ua in our ansatz is on the straight line interval
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(−σ+τ
2 , σ+τ

2 ) in the ϵ = 0 limit, uab is on the interval (−(σ+τ), σ+τ). Therefore, although
the physical fugacity has its absolute value smaller than 1, the factor e2πiuab may be larger
than 1 and make (3.20) close to 1 for certain ua, ub. If this happens, the potential V (uab)
will almost diverge. The integrand of the vector multiplet can be simplified as

∏
a ̸=b

Γ(uab, σ, τ)−1 = exp

−∑
a ̸=b

∞∑
p=1

1
p

e2πipuab

(
1 +

∞∑
m=1

e2πipmσ +
∞∑

n=1
e2πipnτ

) . (3.21)

The term 1 in the exponent comes from the Haar measure. The terms e2πipmσ and e2πipnτ

come from the letters (∂++̇)m−1λ̄+̇ and (∂+−̇)n−1λ̄−̇, respectively. They are responsible
for the divergences which are ϵ-distance away from the red/blue/orange/magenta lines of
figure 2, labeled by either (m, 0) or (0, n) with m, n ̸= 0. So our saddle point configuration is
very close to the point where these charged operators become massless. The fact that these
fermionic operators are very light (with mass at order ϵ) at our saddle point may provide
important clues on the microstates of the dual black holes or further generalizations to hairy
black holes. Interestingly, a Fermi surface model for these black holes has been proposed
in [26, 27], precisely based on using the gaugino letters discussed above. Although the
simplest operators of [26] acquire nonzero anomalous dimensions above the BPS bound [27],
minor corrections to their ansatz may be relevant for better understanding the microstates
of the BPS black holes. We hope our findings provide helpful insights.

We now compute the force and free energy. To compute both quantities, we first study

−N2
∫ 1

2

− 1
2

dx1dy1V (u12)=
N2

2
∑
±

∫ ∞

− 1
2

dxdy

[
log

(
1−e2πi(u∓u2)

)
− log

(
1−e2πi(u±u2+σ+τ)

)

−
3∑

I=1

(
log

(
1−e2πi(u∓u2+δI)

)
− log

(
1−e2πi(u±u2+σ+τ−δI−1)

)) ]
(3.22)

where we inserted (3.3) and (3.7). Whenever the analytic continuation has to be made for
the log functions, one uses (3.10) with the exponents as specified in the formula (including
the −1 term on the last term). The continuation formula (3.10) is a special case of the
identities for the polylog functions Lis(e2πiz). This function is defined by Taylor expansion

Lis
(
e2πiz

)
=

∞∑
n=1

e2πinz

ns
(3.23)

when Im(z) > 0, and by the analytic continuation

Lis
(
e2πiz

)
= −(−1)sLis

(
e−2πiz

)
− (2πi)s

s! Bs(z + 1) , (3.24)

when Im(z) < 0 and −1 < Re(z) < 0. Bs(z) are the Bernoulli polynomials. Eq. (3.10) is a
special case of (3.24) at s = 1, with Li1(e2πiz) = − log(1− e2πiz) and B1(z) = z− 1

2 . These
formulas are relevant for computing (3.22) since ∂

∂zLis(e
2πiz) = 2πiLis−1(e2πiz). After

– 19 –



J
H
E
P
0
9
(
2
0
2
3
)
1
3
8

integrating twice with x and y, one obtains

−N2
∫ 1

2

− 1
2

dx1dy1V (u12) =−
N2

8π2στ

∑
±

[
− Li3

(
e2πi(∓u2−σ+τ

2 )
)
+ Li3

(
e2πi( σ+τ

2 ±u2)
)

(3.25)

+
3∑

I=1

(
Li3

(
e2πi(δI∓u2−σ+τ

2 )
)
− Li3

(
e2πi( σ+τ

2 ±u2−δI−1)
)) ]

.

Any Li3 functions are defined by the right hand side of (3.24) at s = 3 when they need
analytic continuations, since they are obtained by integrating (3.10). On the first line,
the second term is always defined by Taylor expansion while the first term needs to be
defined by the right hand side of (3.24). On the second line, it is always that one of the
two terms is defined by Taylor expansion while the other term is defined by the right hand
side of (3.24). In both cases, one universally obtains the following expression:

−N2
∫ 1

2

− 1
2

dx1dy1V (u12)

= −πiN2

6στ

∑
±

[ 3∑
I=1

B3

(
δI∓u2−

σ + τ

2 +1
)
−B3

(
∓u2−

σ + τ

2 +1
)]

= πiN2

6στ

∑
±

[∑
I

((
σ + τ

2 ± u2−δI−
1
2

)3
− 1

4

(
σ + τ

2 ± u2−δI−
1
2

))

−
(

σ + τ

2 ± u2−
1
2

)3
+ 1

4

(
σ + τ

2 ± u2−
1
2

)]

= −πiN2

στ

[
δ1δ2δ3 +

∆3

12 −
∆
4

(1
3 + 2δ1δ2 + 2δ2δ3 + 2δ3δ1 − δ2

1 − δ2
2 − δ2

3

)
+∆u2

2

]

= −πiN2δ1δ2δ3
στ

, (3.26)

where ∆ ≡
∑

I δI − σ − τ + 1. We used

B3(z) = z3 − 3
2z2 + 1

2z → B3(z + 1) =
(

z + 1
2

)3
− 1

4

(
z + 1

2

)
. (3.27)

on the second line, and ∆ = 0 on the fourth line for the upper case of (2.22).
Now one can immediately compute the force, by taking the u2 derivative of (3.26).

Since the final expression contains no u2 dependence, one finds that

− ∂

∂u2

∫
dx1dy1V (u1 − u2) = 0 , (3.28)

proving that our ansatz solves the saddle point equation. Eq. (3.26) fails to be u2-
independent if one uses the ansatz (3.6) with ϵ < 0. We can also compute the saddle
point free energy, by integrating (3.26) once more in x2, y2:

logZ = −N2
∫ 1

2

− 1
2

dx2dy2

∫ 1
2

− 1
2

dx1dy1V (u1 − u2) = −
πiN2δ1δ2δ3

στ
. (3.29)

This again agrees with the free energy of the BPS black holes in AdS5 × S5 [23].
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3.1 A relation to the Bethe ansatz equation

We would like to provide an interpretation of the vanishing of the force that we have just
proven. We first consider

∂

∂u2

∫
dx1dy1 log Γ(z ± u12, σ, τ)

= ∓ 1
σ

∫ ∞

− 1
2

dydx
∂

∂x

[
Li1

(
e2πi(u∓u2+z)

)
+ Li1

(
e2πi(u+σ+τ−z−1±u2)

)]
where Li1 is defined using analytic continuation if necessary, and we replaced ∂

∂u2
by ∓ 1

σ
∂

∂x

and ± 1
σ

∂
∂x for the first and the second term. Instead of double-integrating these to Li2

functions, similar to what we did so far in this section, we integrate with x only to obtain

∂

∂u2

∫
dx1dy1 log Γ(z ± u12, σ, τ)

= ± 1
σ

∫ ∞

− 1
2

dy
[
Li1

(
e2πi(yτ∓u2+z−σ

2 )
)
− Li1

(
e2πi(yτ+σ+τ−z−1±u2−σ

2 )
)]

.

This can be understood as

∓ 1
σ

∫ 1
2

− 1
2

dy1

∞∑
n=0

[
− log

(
1− e2πi(±u12+z−σ

2 +nτ))+ log
(
1− e2πi(∓u12+ σ

2 −z−1+(n+1)τ))]
(3.30)

where u1 ≡ y1τ . (This definition of u1 will be assumed below when accompanied only by
single integration

∫
dy1.) The −1 shift in the exponent of the second log is again a helpful

convention if this log is defined by the analytic continuation (3.10). Formally, we can write
this as

∓ 1
σ

∫ 1
2

− 1
2

dy1

∞∑
n=0

log
[(
1− e2πi(z−σ

2 ±u12)e2πinτ
) (

1− e−2πi(z+1−σ
2 ±u12)e2πi(n+1)τ

)]
‘ ≡ ’∓ 1

σ

∫ 1
2

− 1
2

dy1 log θ

(
z − σ

2 ± u12, τ

)
, (3.31)

where θ(z, τ) is the ‘q-theta function’ with q ≡ e2πiτ defined by

θ(z, τ) ≡
∞∏

n=0
(1− e2πize2πinτ )(1− e−2πi(z+1)e2πi(n+1)τ )

∼
∞∏

n=0
(1− e2πize2πinτ )(1− e−2πize2πi(n+1)τ ) . (3.32)

(We shall often write it as θ(z) if no confusions are expected.) Let us explain the meaning
of this calculus. Had one been sloppy about taking log of functions, an apparently similar
result could have been obtained by a much neater calculation,

∂

∂u2

∫
dx1dy1 log Γ(z ± u12, σ, τ) = − 1

σ

∫ 1
2

− 1
2

dy1dx1
∂

∂x1
log Γ(z ± u12, σ, τ) (3.33)

= − 1
σ

∫ 1
2

− 1
2

dy1 log
Γ
(
z ± u12 ± σ

2 , σ, τ
)

Γ
(
z ± u12 ∓ σ

2 , σ, τ
) = ∓ 1

σ

∫ 1
2

− 1
2

dy1 log θ

(
z − σ

2 ± u12, τ

)
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if one can apply the identity
Γ(z + σ, σ, τ)
Γ(z, σ, τ) = θ(z, τ) (3.34)

inside the log. However, it is obscure what it means to apply an identity inside the log, in
particular if some log functions are defined by analytic continuations. The precise meaning
of the last expression of (3.33) is given by the first line of (3.31), with continuations (3.10)
understood. We have already specified the correct branch sheet of each log function. With
these understood, we study the force F defined by

F ≡ 2N

∫
dx1dy1∂u2V (u1 − u2) =

2N

σ

∫
dx1dy1∂x2V (u1 − u2)

= −2N

σ

∫
dx1dy1∂x1V (u1 − u2) . (3.35)

Applying (3.31), one obtains

F = N

σ

∫ 1
2

− 1
2

dy1 log
[

θ
(
−u12 − σ

2 , τ
)

θ
(
u12 − σ

2 , τ
) ∏

I

θ
(
δI + u12 − σ

2 , τ
)

θ
(
δI − u12 − σ

2 , τ
)] (3.36)

where u1 ≡ y1τ , and all log θ functions are understood in the sense of (3.31).
Let us study the following function

f(u) ≡
θ
(
−u− σ

2 , τ
)

θ
(
u− σ

2 , τ
) ∏

I

θ
(
δI + u− σ

2 , τ
)

θ
(
δI − u− σ

2 , τ
) (3.37)

in more detail, which appears inside the log in (3.36). We first study its properties in the
usual manner, without worrying about taking the log, to first get intuitions. We shall then
make all the calculations rigorously inside the log. Using

θ(z + τ, τ) = −e−2πizθ(z, τ) , θ(z − τ, τ) = −e2πize−2πiτ θ(z, τ) , (3.38)

one finds

f(u + τ) =
−e−2πiτ e−2πi(u+ σ

2 )θ
(
−u− σ

2 , τ
)

−e−2πi(u−σ
2 )θ

(
u− σ

2 , τ
) ∏

I

−e−2πi(u+δI−σ
2 )θ

(
δI + u− σ

2 , τ
)

−e−2πiτ e2πi(δI−u−σ
2 )θ

(
δI − u− σ

2 , τ
)

= e−4πi(
∑

I
δI−σ−τ) ·

θ
(
−u− σ

2 , τ
)

θ
(
u− σ

2 , τ
) ∏

I

θ
(
δI + u− σ

2 , τ
)

θ
(
δI − u− σ

2 , τ
) = f(u) , (3.39)

upon using
∑

I δI − σ − τ ∈ Z. So the function f(u12) appearing in the log in (3.36) is
double-periodic, u12 + 1 ∼ u12 + τ ∼ u12. Of course after taking the log, log f is periodic
in both directions up to 2πiZ which we shall clarify shortly.
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More specifically, we consider the case with σ = τ . Then the function f can be
written as

f(u) =
θ
(
−u− τ

2 , τ
)

θ
(
u− τ

2 , τ
) ∏

I

θ
(
δI + u− τ

2 , τ
)

θ
(
δI − u− τ

2 , τ
) (3.40)

=
−e2πi( τ

2 −u)e−2πiτ θ
(
−u + τ

2 , τ
)

θ
(
u− τ

2 , τ
) ∏

I

θ
(
δI + u− τ

2 , τ
)

−e2πi( τ
2 −u+δI)e−2πiτ θ

(
δI − u + τ

2 , τ
)

= e2πi(2u−
∑

I
δI+τ) ·

(
−e2πi( τ

2 −u))∏
I

θ
(
δI + u− τ

2 , τ
)

θ
(
δI − u + τ

2 , τ
)

= −e2πi(u− τ
2 )
∏
I

θ
(
δI + u− τ

2 , τ
)

θ
(
δI − u + τ

2 , τ
)

where we used (3.38) on the second line, θ(−z, τ) = −e−2πizθ(z, τ) and
∑

I δI = 2τ (mod
Z) on the third line, again without worrying about taking log. Note that u − τ

2 in the
last expression is given by u1 −

(
u2 + τ

2
)
, where u1 = y1τ is on the segment

(
− τ

2 , τ
2
)

and
u′

2 ≡ u2 + τ
2 is on the segment

(
−σ

2 , σ+2τ
2

)
→
(
− τ

2 , 3τ
2

)
at σ = τ . If u′

2 ∈
(
− τ

2 , τ
2
)
, then

u′
2 is in the same range as u1. If u′

2 ∈
(

τ
2 , 3τ

2

)
, we can use the τ shift invariance of f(u) to

replace all u′
2 arguments by u′

2 − τ ∈
(
− τ

2 , τ
2
)
. So let us define

uBethe
2 =

 u′
2 for u2 ∈

(
− τ

2 , τ
2
)

u′
2 − τ for u2 ∈

(
τ
2 , 3τ

2

) (3.41)

satisfying uBethe
2 ∈

(
− τ

2 , τ
2
)
. Then one can write

f(u1 − u2) = f

(
u1 − uBethe

2 +τ

2

)
= −e2πi(u1−uBethe

2 )∏
I

θ(δI + u1 − uBethe
2 , τ)

θ(δI − u1 + uBethe
2 , τ)

. (3.42)

Here we note that the last expression for f is same as the function Q(u) appearing in the
Bethe ansatz equation of [18, 19], defined by

Q(u) = −e6πiu θ(δ1 − u)θ(δ2 − u)θ(δ3 − u− 2τ)
θ(δ1 + u)θ(δ2 + u)θ(δ3 + u− 2τ) = −e−2πiu

3∏
I=1

θ(δI − u)
θ(δI + u) (3.43)

where we used θ(z−2τ, τ) = e4πize−6πiτ θ(z, τ). Namely, f
(
u1−uBethe

2 + τ
2

)
= Q(uBethe

2 −u1).
With these understood, now we review the Bethe ansatz equation. Suppose we have

N variables ua (a = 1, · · · , N) given by ua = − τ
2 + aτ

N . In the continuum limit, they
are distributed uniformly on the interval

(
− τ

2 , τ
2
)
. They satisfy the following Bethe ansatz

equation
1 = Qa({u}) ≡

∏
b( ̸=a)

Q(ua − ub) (3.44)

with Q(u) given by (3.43). This is the Bethe root of [20] at K = 1, r = 0. The continuum
version of this equation is

0 =
∑

b( ̸=a)
logQ(ua−ub)→ N

∫ 1
2

− 1
2

dy1 logQ(uBethe
2 −u1) = N

∫ 1
2

− 1
2

dy1 logf

(
u1 − uBethe

2 + τ

2

)
.

(3.45)
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We renamed the continuum variables ub → u1 ≡ y1τ and ua → uBethe
2 , both in the range(

− τ
2 , τ

2
)
. This is precisely the vanishing condition of the force (3.36) of our interest. So

we have shown that the saddle point equation at σ = τ is equivalent to the log of the
Bethe ansatz equation within our ansatz. In this viewpoint, the uniform Bethe root on
a segment is obtained by projecting (partially summing over) the uniform parallelogram
distribution along one direction. What is unclear at this stage is the 2πiZ ambiguities when
applying identities inside the log, but it still establishes the relation solidly. The Bethe
ansatz equation is usually discussed without taking log, and all the subtleties of 2πiZ in our
calculus are collected to the question of what log 1 is on the left hand side of (3.44). In the
remaining part of this section, we want to address what this constant is within our setup.

It suffices to reconsider all the theta function identities used to establish (3.42), (3.43),
rigorously stating their log versions with our conventions. We have used the ±τ shift
identities (3.38) and the inversion identity θ(−z, τ) = −e−2πizθ(z, τ) during the derivation.
Consider the log of the function f(u12) defined by (3.37), where u1 = y1τ and u2 =
σx2 + τy2. Note that

log θ

(
−u12 −

τ

2 , τ

)
=

∞∑
n=0

(
log

(
1− e2πi(−u12− τ

2 )e2πinτ
)
+ log

(
1− e−2πi(−u12− τ

2 +1)e2πi(n+1)τ
))

= log
(
1− e2πi(−u12− τ

2 )
)
− log

(
1− e2πi(u12+ τ

2 −1))
+

∞∑
n=0

(
log

(
1− e2πi(−u12+ τ

2 )e2πinτ
)
+ log

(
1− e−2πi(−u12+ τ

2 +1)e2πi(n+1)τ
))

= −2πi

(
u12 +

τ

2

)
+ πi + log θ

(
−u12 +

τ

2 , τ

)
,

(3.46)

where one of the two logarithms in the second line is defined by the Taylor series and the
other is defined by an analytic continuation. In any of the two cases, we can use the contin-
uation formula which yields the same result given by the last line. In a similar way, we get

log θ

(
δI − u12 −

τ

2 , τ

)
=

∞∑
n=0

(
log

(
1− e2πi(δI−u12− τ

2 )e2πinτ
)
+ log

(
1− e−2πi(δI−u12− τ

2 +1)e2πi(n+1)τ
))

= log
(
1− e2πi(δI−u12− τ

2 )
)
− log

(
1− e2πi(−δI+u12+ τ

2 −1))
+

∞∑
n=0

(
log

(
1− e2πi(δI−u12+ τ

2 )e2πinτ
)
+ log

(
1− e−2πi(δI−u12+ τ

2 +1)e2πi(n+1)τ
))

= 2πi

(
δI − u12 −

τ

2

)
+ πi + log θ

(
δI − u12 +

τ

2 , τ

)
.

(3.47)

Lastly, let us consider

log θ

(
−u12 +

τ

2 , τ

)
= − log

(
1− e2πi(u12− τ

2 −1))+ log
(
1− e−2πi(u12− τ

2 )
)

(3.48)

+
∞∑

n=0
log

(
1− e2πi(u12− τ

2 −1)e2πinτ
) (

1− e−2πi(u12− τ
2 )e2πi(n+1)τ

)
.
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The first logarithm in the last line has to be defined by analytic continuation when

Im
(

u12 −
τ

2 − 1 + nτ

)
= Im τ

(
n− 1

2 + y12 − x2

)
< 0⇔ n < x2 − y12 +

1
2 . (3.49)

The number of such non-negative integers n is M ≡ max{⌈x2− y12 + 1
2⌉, 0}. Similarly, the

second logarithm in the last line is defined by analytic continuation when

Im
(
−u12 +

τ

2 (n + 1)τ
)
= Im τ

(
n + 3

2 − y12 + x2

)
< 0⇔ n < y12 − x2 −

3
2 . (3.50)

There is no such non-negative integer n, since the y12 − x2 < 3
2 . Note that

∞∑
n=0

log(1− e2πi(u12− τ
2 −1)e2πinτ ) = −2πiM +

∞∑
n=0

log(1− e2πi(u12− τ
2 )e2πinτ ) (3.51a)

∞∑
n=0

log(1− e−2πi(u12− τ
2 )e2πi(n+1)τ ) =

∞∑
n=0

log(1− e−2πi(u12− τ
2 +1)e2πi(n+1)τ ), (3.51b)

by the analytic continuation formula. We can explicitly write the non-negative integer M as

M =

⌈x2 − y12 + 1
2⌉ if x2 − y12 ≥ −1

2

0 if − 3
2 ≤ x2 − y12 < −1

2
. (3.52)

Thus, we can write

log θ

(
−u12 +

τ

2 , τ

)
= −2πi

(
u12 −

τ

2

)
+ πi− 2πiM + log θ

(
u12 −

τ

2 , τ

)
(3.53)

Combining (3.46), (3.47), (3.53), we obtain

log f(u12) = log θ

(
−u12 −

τ

2 , τ

)
− log θ

(
u12 −

τ

2 , τ

)
+

3∑
I=1

log θ

(
δI + u12 −

τ

2 , τ

)
− log θ

(
δI − u12 −

τ

2 , τ

)
(3.54)

= 2πi

(
u12 −

τ

2 + 1
2−M

)
+

3∑
I=1

log
(

δI + u12 −
τ

2 , τ

)
− log θ

(
δI − u12 +

τ

2 , τ

)
,

where we have used
∑3

I=1 δI = 2τ − 1 in the second equality.
Now recall the definition of u′

2 ≡ u2 + τ
2 ∈

(
− τ

2 , 3τ
2

)
and uBethe

2 (3.41). Then one
obtains

log f(u12) = log f

(
u1 − uBethe

2 + τ

2

)
= 2πi

(
u1 − uBethe

2 + 1
2 −M

)
+

3∑
I=1

log θ
(
δI + u1 − uBethe

2 , τ
)

(3.55)

− log θ
(
δI − u1 + uBethe

2 , τ
)
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when u′
2 ∈

(
− τ

2 , τ
2
)

and

log f(u12) = log f

(
u1 − uBethe

2 + 3τ

2

)
= 2πi

(
u1 − uBethe

2 + τ + 1
2 −M

)
+

3∑
I=1

log θ
(
δI + u1 − uBethe

2 + τ, τ
)
− log θ

(
δI − u1 + uBethe

2 − τ, τ
)

= 2πi

(
u1 − uBethe

2 − 1
2 −M

)
+

3∑
I=1

log θ
(
δI + u1 − uBethe

2 , τ
)

− log θ
(
δI − u1 + uBethe

2 , τ
)

(3.56)

when u′
2 ∈

(
τ
2 , 3τ

2

)
. All the log functions are defined using our convention (3.30). This is

the precise meaning of the log of (3.42), where u1, uBethe
2 are defined to be on the segment(

− τ
2 , τ

2
)
.

Finally, again applying (3.47), one finds

log f(u12) =− 6πi(u1 − uBethe
2 ) + 2πi

(1
2 −M

)
+ log θ(δ1+u1−uBethe

2 )

− log θ(δ1−u1+uBethe
2 ) + log θ(δ2+u1−uBethe

2 )− log θ(δ2−u1+uBethe
2 )

+ log θ(δ3+u1−uBethe
2 −2τ)− log θ(δ3−u1+uBethe

2 −2τ)

when u′
2 ∈

(
− τ

2 , τ
2
)
, and

log f(u12) =− 6πi(u1 − uBethe
2 )− 2πi

(1
2 + M

)
+ log θ(δ1+u1−uBethe

2 )

− log θ(δ1−u1+uBethe
2 ) + log θ(δ2+u1−uBethe

2 )− log θ(δ2−u1+uBethe
2 )

+ log θ(δ3+u1−uBethe
2 −2τ)− log θ(δ3−u1+uBethe

2 −2τ)

when u′
2 ∈

(
τ
2 , 3τ

2

)
. These are what we precisely mean by logQ(uBethe

2 − u1) in (3.45).
Note that the significance of the ϵ deformation (3.6) became obscure in our final ex-

pression for the Bethe ansatz equation. For instance, had one chosen the wrong sign for
ϵ < 0, one would have got −πi on the last line of (3.46) instead of +πi. This would have
affected the final expression for log f only by an extra constant of the form 2πiZ, whose
exponentiation yields the same Bethe equation. So we find that the map of the saddle
point to the Bethe root is at best one-sided, e.g. the Bethe roots being unable to detect the
sign of ϵ. Recall that this deformation was needed because otherwise there are eigenvalues
u1 and u2 which differ by u12 = τZ ̸= 0 that makes some gaugino operators massless. This
was explained in the paragraph containing (3.20). To repeat the explanation at σ = τ , the
eigenvalues lie on an interval (−τ, τ). So there exists a pair u1 to any u2 which hits one
of the singularities u12 = ±τ which demands regularized definition of the ansatz. On the
other hand, the Bethe root obtained (in our viewpoint) by projecting the parallelogram
along x direction is distributed on the reduced interval

(
− τ

2 , τ
2
)
, causing no divergence
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problems. So it is natural that the Bethe ansatz equation does not detect the subtle details
of the true saddle point such as the sign of ϵ.

Similarly, for a more general case of collinear σ and τ with σ/τ ∈ Q, the relation
between our ansatz and the Bethe ansatz equation studied in [45] can be shown as follows.
Since σ/τ ∈ Q, one can define σ ≡ aω, τ ≡ bω where (a, b) are co-prime integers. The force
equation (3.36) can be rewritten as follows.

F ∝
b−1∑
i=0

∫ 1

0
dy1 log

[
θ
(
u2 + iω + ωy1 − σ+τ

2 , bω
)

θ
(
iω + ωy1 − u2 − σ+τ

2 , bω
) 3∏

I=1

θ
(
δI + iω + ωy1 − u2 − σ+τ

2 , bω
)

θ
(
δI + u2 + iω + ωy1 − σ+τ

2 , bω
)] .

(3.57)
Therefore,

F ∝
∫ 1

0
dy1 log

[
θ
(
u2 − ωy1 + ω − σ+τ

2 , ω
)

θ
(
ωy1 − u2 − σ+τ

2 , ω
) 3∏

I=1

θ
(
δI + ωy1 − u2 − σ+τ

2 , ω
)

θ
(
δI + u2 − ωy1 + ω − σ+τ

2 , ω
)] , (3.58)

where we use
∏b−1

i=0 θ(x + iω, bω) = θ(x, ω). We further define n1, n2 and x as follows
σ + τ

2 − ω − u2 = (n1 − x)ω,
σ + τ

2 + u2 = (n2 + x)ω. (3.59)

Note that n1 and n2 are integers and x ∈ [0, 1). Finally, let ωy1 − ωx = u′
12, so that

F ∝
∫ 1

0
dy1 log

[
θ(u′

21 − n1ω, ω)
θ(u′

12 − n2ω, ω)

3∏
I=1

θ(δI + u′
12 − n2ω, ω)

θ(δI + u′
21 − n1ω, ω)

]
(3.60)

Using equation (3.38), one can show that

F ∝
∫ 1

0
dy1 log

[
−e−6πiu′

12
θ(δ1 + u′

12, ω)
θ(δ1 − u′

12, ω)
θ(δ2 + u′

12, ω)
θ(δ2 − u′

12, ω)
θ(−δ1 − δ2 + u′

12, ω)
θ(−δ1 − δ2 − u′

12, ω)

]
= 0, (3.61)

which is the continuum limit of the Bethe ansatz equation.
Note that the ‘off-shell’ integrand of our matrix model and that of the Bethe ansatz

approach are different. In this subsection, we found a relation between their on-shell
conditions, at least for particular saddle points. In this sense, our approach is also related
to the elliptic extension approach of [46, 47]. In [46], the on-shell physical quantities of
their saddle points were shown to agree with those of the corresponding Bethe roots. So
in a broader sense, all three approaches yield the same on-shell results. Also, the elliptic
extension approach is similar to our approach in that both use the periodic nature of the
integrand.

4 Multi-cut saddle points

In this section, we construct multi-cut saddle points. For a technical reason, we only
consider the case with collinear σ, τ .5 Our K-cut ansatz is roughly given by

uA(x, y) ≡ A

K
+ σx + τy (4.1)

5For non-collinear σ, τ , they do not satisfy the saddle point equation. Also, we could not find a mod-
ification of the saddle point problem like section 2 which makes them saddle points. Unlike the single-
parallelogram ansatz, we find that after SL(3,Z) modular transformation there are extra poles included in
the parallelogram as well as the zeros from the Haar measure, causing more complications. We feel that
this is related to the gravitational stability issue of [24].

– 27 –



J
H
E
P
0
9
(
2
0
2
3
)
1
3
8

with x, y ∈
(
−1

2 , 1
2

)
, and A = 0, 1, · · · , K−1 labels the K groups of eigenvalues forming K

cuts. The ‘ϵ deformations’ of this ansatz will be specified below, depending on the values of
chemical potentials. Although these are linear cuts, we again make a 2-parameter labelling
of eigenvalues with uniform 2d distributions. Each cut contains N

K eigenvalues, at equal
filling fraction, so the density function is given by ρA(x, y) = 1

K .
The large N free energy logZ of (4.1) in the continuum limit is given by

−N2

K

∫ 1
2

− 1
2

dx1dy1

∫ 1
2

− 1
2

dx2dy2

K−1∑
A=0

V

(
u12 +

A

K

)
≡ −N2

K

∫ 1
2

− 1
2

dx1dy1

∫ 1
2

− 1
2

dx2dy2VK(u12) ,

(4.2)
where V is given by (3.3), and VK(u) ≡

∑K−1
A=0 V (u + A

K ). The force on the eigenvalue at
u2 in the A = 0 cut is given by

F = 2N

K

∫
dx1dy1

∂

∂u2
VK(u12) (4.3)

after plugging in our ansatz. If this F is zero, the forces on eigenvalues in the other cuts
also vanish by cyclicity. F = 0 can be shown by confirming that∫

dx1dy1VK(u12) (4.4)

is independent of u2. We start by noting that VK(u) can be written in terms of

log Γ(z, σ, τ) + Γ
(

z + 1
K

, σ, τ

)
+ · · ·+ log Γ

(
z + K − 1

K

)
= log Γ(Kz, Kσ, Kτ ) . (4.5)

So the calculation of (4.4) can be done in a manner similar to the case with K = 1, by
replacing parameters by K times them. Here we have to be careful about the ranges of
the imaginary parts of δI , σ, τ , since multiplying them by K takes them away from our
convention (2.22). To be definite, we consider δI ’s in the upper case of (2.22), satisfying∑3

I=1 δI = σ+ τ −1. Recall that such δI ’s were parametrized as δI = −aI + bI(σ+ τ), with
0 < aI < 1, 0 < bI < 1 satisfying

∑
I aI =

∑
I bI = 1. Then KδI ’s and Kσ, Kτ satisfy

KδI = Kσ + Kτ −K . (4.6)

Here we define {KaI} ≡ KaI −⌊KaI⌋, which measures the fractional part of KaI ∈ [0, 1).
Then one finds

∑3
I=1{KaI} ∈ [0, 3), which has to be an integer since

∑
I aI = 1. The

case with
∑3

I=1{KaI} = 0 is very exceptional, which can be met only if all three KaI are
integers (because we should have {KaI} = 0 for all I’s). This is possible for fine-tuned
choices of aI ’s, e.g. at a1 = a2 = a3 = 1

3 and K = 3 or a1 = a2 = 1
4 , a3 = 1

2 and K = 4,
etc. We shall understand these special cases with small deformations, so that they satisfy
either

∑3
I=1{KaI} = 1 or 2. For instance, for a1 = a2 = a3 = 1

3 and K = 3, slightly
reducing a1, a2 and slightly increasing a3 will make {3a1} = {3a2} ⪅ 1 and 0 < {3a3} ≪ 1,
making them satisfy

∑
I{3aI} = 2. (Slightly reducing a1 and slightly increasing a2, a3

will yield
∑

I{3aI} = 1.) With these understood, we define new parameters as σ′ ≡ Kσ,
τ ′ ≡ Kτ and

δ′I =
{
−{KaI}+ bI(σ′ + τ ′) if

∑3
I=1{KaI} = 1

1− {KaI}+ bI(σ′ + τ ′) if
∑3

I=1{KaI} = 2
. (4.7)

In the upper and lower cases, δ′I and σ′, τ ′ satisfy
∑

I δ′I − σ′ − τ ′ = ∓1, respectively.
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To compute (4.4), we should compute∫ 1
2

− 1
2

dx1dy1 log Γ(Kz ±Ku12, Kσ, Kτ) (4.8)

at z = δI or z = 0, which can again be done by integrating two log functions over x, y ∈(
−1

2 ,∞
)

after a manipulation similar to (3.7). In fact one can recycle the calculation at
K = 1 as follows. At the infinity branch where log functions can be defined by Taylor
expansion, we regard KδI as δ′I by trivial period shifts valid at infinity. So the parameters
δ′I , σ′, τ ′ belong to one of the two cases of (2.22). Also, in the ansatz for the first cut
A = 0, u′ ≡ Ku given in terms of σ′, τ ′ takes precisely the same form as the single-cut
configuration. Therefore, the calculations for the single-cut can be literally repeated here.
As for the three terms at z = δI , the continuous extensions of log functions can be made
similarly, using (3.10). As for the terms at z = 0, we need to refine the ansatz with ϵ

like (3.6), depending on which condition of (2.22) is met by δ′I . In the upper case of (2.22)
(or (4.7)), the ansatz deformation is precisely given in the same direction as (3.6), i.e.

uA(x, y) = A

K
+ e−iϵ(σx + τy) , ϵ > 0 . (4.9)

This deformation yields u2-independent (4.4), implying F = 0. In the lower case of (2.22)
or (4.7), this is the ‘conjugate sector’ so the ansatz deformation guaranteeing F = 0 is
given by

uA(x, y) = A

K
+ e+iϵ(σx + τy) . (4.10)

In both cases, the integral (4.4) is given by

−N2

K

∫ 1
2

− 1
2

dx1dy1VK(u12) = −
πiN2δ′1δ′2δ′3

Kσ′τ ′ (4.11)

by repeating (3.26). This is independent of u2, which proves F = 0. Integrating (4.11)
once more in x2, y2, one obtains the following large N free energy

logZ = −πiN2δ′1δ′2δ′3
Kσ′τ ′ . (4.12)

Inserting the values of primed variables, one obtains

logZ =


−

πiN2
∏3

I=1

(
δI+ ⌊KaI⌋

K

)
στ for the upper case of (4.7)

−
πiN2

∏3
I=1

(
δI+ ⌊KaI⌋

K
+ 1

K

)
στ for the lower case of (4.7)

. (4.13)

Note again that δI ’s are in the sector defined by the upper signs of (2.22). Also, the cases
with all KaI ’s being integral should be understood with care, by slightly moving them
away from the integral values as illustrated above (4.7).

The entropy can be obtained by Legendre transforming the entropy function at fixed
charges:

S(QI , Ji; δI , σ, τ) = logZ(δI , σ, τ)− 2πi
∑

I

δIQI − 2πiσJ1 − 2πiτJ2 . (4.14)
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After extremizing this function with δI , σ, τ subject to the constraint
∑

I δI − σ − τ = −1,
one takes the real part Re(S) to get the entropy [11, 13, 28]. This computation can be
done easily using the universal form (4.12), by noting that primed variables δ′I , σ′, τ ′ are
K times δI , σ, τ apart from real constant shifts. Namely, the entropy function is given by

S = −πiN2δ′1δ′2δ′3
Kσ′τ ′ − 2πi

∑
I

(
δ′I + · · ·

) QI

K
− 2πiσ′J1

K
− 2πiτ ′J2

K
, (4.15)

where · · · are real constants which only affect S by an imaginary constant. To compute
Re(S), we can ignore them. So without these terms, the Legendre transformation takes
completely same form as that at K = 1, with replacements N2, QI , Ji → N2

K , QI
K , Ji

K . The
entropy at K = 1 is homogeneous degree 1 in scaling N2 and all the other extensive
quantities with a same factor (which is a basic property of AdS5 black holes). Therefore,
the entropy of the K-cut saddles is related to that of the basic saddle at K = 1 by
SK(QI , Ji) = 1

K SK=1(QI , Ji). So they would be subdominant saddle points, compared
to the basic saddle at K = 1, of the Euclidean quantum gravity. Ref. [24] suggested the
gravity duals of these saddles at general K as ZK quotients of the analytically continued
Euclidean saddle for the Lorentzian black hole at K = 1.

When σ = τ , the final results for logZ are same as the K-cut Bethe roots of [20] at
r = 0, although the eigenvalue configurations are different. Our linear density function is
triangular on each cut, which is a segment (−τ, τ). On the other hand, each cut in the
Bethe root is a uniform distribution along a segment

(
− τ

2 , τ
2
)
. Similar to our analysis of

section 3, we expect that integrating the force function F over either x or y first will project
our saddle point equation to the Bethe ansatz equation. We shall not study the details here.

We comment that when the complex chemical potentials are in a particular regime,
we find a one parameter generalization of the K-cut solution when K ≡ 2m is even.
To understand this, let us again start from the following ϵ-deformed ansatz with a free
parameter ν ∈ [0, 1]

u(x, y) =


A
K + e−iϵ(σx + τy) , ρ(x) = 2ν

K if A = even
A
K + e−iϵ(σx + τy) , ρ(x) = 2(1−ν)

K if A = odd
. (4.16)

Namely, there are 2Nν
K eigenvalues in each cut at even A = 0, 2, · · · , 2m − 2, and 2N(1−ν)

K

eigenvalues at odd A = 1, 3, · · · , 2m− 1. The force is given by the u2 derivative of

∫ 1
2

− 1
2

dx1dy1

m−1∑
l=0

[
νV

(
u12 +

2l

K

)
+ (1− ν)V

(
u12 +

2l + 1
K

)]

=
∫

dx1dy1

[
(1− ν)

K−1∑
A=0

V

(
u12 +

A

K

)
+ (1− 2ν)

m−1∑
l=0

V

(
u12 +

l

m

)]

=
∫

dx1dy1 [(1− ν)VK(u12) + (1− 2ν)Vm(u12)] (4.17)

when u2 is on the A = 0 cut. If this vanishes for arbitrary ν ∈ [0, 1], then the forces acting
on eigenvalues on different cuts also vanish. Now repeating the discussions below (4.8),
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one finds that the ϵ-deformed ansatz (4.16) makes
∫

dx1dy1VK(u12) to be u2-independent if
ϵ > 0 and

∑
I{KaI} = 1, or if ϵ < 0 and

∑
I{KaI} = 2. Similarly,

∫
dx1dy1Vm(u12) would

be u2-independent if ϵ > 0 and
∑

I{maI} = 1, or ϵ < 0 and
∑

I{maI} = 2. Therefore, if∑
I{KaI} and

∑
I{maI} =

∑
I{K

2 aI} have same value between 1 and 2, one can set the
sign of ϵ so that both terms on the last line of (4.17) separately vanish. So in this case, we
have constructed a saddle point which admits a nontrivial filling fraction of eigenvalues.
The free energy is given by

logZ = −πiN2

στ

[
(1− 2ν)2

3∏
I=1

(
δI +

⌊maI⌋
m

)
+ 4ν(1− ν)

3∏
I=1

(
δI +

⌊KaI⌋
K

)]
(4.18)

if
∑

I{KaI} =
∑

I{maI} = 1, and

logZ = −πiN2

στ

[
(1−2ν)2

3∏
I=1

(
δI +

⌊maI⌋
m

+ 1
m

)
+ 4ν(1− ν)

3∏
I=1

(
δI +

⌊KaI⌋
K

+ 1
K

)]
(4.19)

if
∑

I{KaI} =
∑

I{maI} = 2.
To be concrete, we consider the case with K = 2. aI ’s would satisfy the condition∑

I{2aI} =
∑

I{aI} = 1 if a1, a2 ∈ (0, 1
2) and a3 ∈ (1

2 , 1). The fundamental domain of this
solution is ν ∈ [0, 1

2 ] since it has a symmetry under ν → 1 − ν combined with an overall
shift of ua → ua + 1

2 . It continuously interpolates the one-cut solution (K, r) = (1, 0) at
ν = 0 and the two-cut solution (K, r) = (2, 0) at ν = 1

2 . The free energy is given by

logZ = −πiN2

στ

[
(1− 2ν)2δ1δ2δ3 + 4ν(1− ν)δ1δ2

(
δ3 +

1
2

)]
= −πiN2δ1δ2 (δ3 + 2ν(1− ν))

στ
. (4.20)

Its Legendre transformation at fixed charges QI , Ji can be easily done by noting that

logZ − 2πi
∑

I

δIQI − 2πiσJ1 − 2πiτJ2

∼ (1− 2ν + 2ν2)
[
−πiN2δ̂1δ̂2δ̂3

σ̂τ̂
− 2πi

∑
I

δ̂IQI − 2πiσ̂J1 − 2πiτ̂J2

]
(4.21)

where ∼ holds up to an irrelevant imaginary constant, and δ̂I , σ̂, τ̂ defined by

δ̂1,2 ≡
δ1,2

1− 2ν + 2ν2 , δ̂3 ≡
δ3 + 2ν(1− ν)
1− 2ν + 2ν2 , σ̂ ≡ σ

1− 2ν + 2ν2 , τ̂ ≡ τ

1− 2ν + 2ν2 (4.22)

satisfy
∑

I δ̂I− σ̂− τ̂ = −1. The extremization of the expression inside the square bracket is
completely the same as the free energy at K = 1. So taking the real part of the extremized
entropy function, the entropy of our new saddle point at filling fraction ν is given by

ReSK=2,ν(QI , Ji) = (1− 2ν + 2ν2)ReS1(QI , Ji) . (4.23)

It will be interesting to seek for the gravity duals of these solutions, for instance in Euclidean
quantum gravity by generalizing [24].
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5 Conclusion

In this paper, we found exact large N saddle points of the N = 4 index which are dual
to BPS black holes in AdS5 × S5. We employed two different approaches. Firstly, when
the complex chemical potentials σ, τ for the two angular momenta J1, J2 in AdS are non-
collinear, we showed that a novel areal distribution of eigenvalues illustrated in figure 1
solves the saddle point equation defined after applying the integral identity (1.2). SL(3,Z)
modularity of the elliptic gamma function was used to prove this. Secondly, when σ, τ are
collinear, we showed that linear distributions obtained by collapsing the areal distribution
also solves the traditional saddle point equation. The saddle points we constructed precisely
account for the entropies of the dual black holes [7]. In the remaining part of this section,
we emphasize several subtle structures of our results, and also suggest possible future
directions.

In the collinear case, we found that an ‘iϵ type’ deformation is needed to precisely
define our large N saddle point ansatz. We interpreted that ϵ is related to small 1

N .
Without such a refined definition, the continuum eigenvalue distribution hits the singularity
of the potential. Unlike the principal-valued integral which excludes the unphysical self-
interaction from the Haar measure potential, this singularity comes from interactions of
distinct eigenvalues so should be avoided in any sensible large N ansatz. In our leading
large N calculus, only the sign of ϵ mattered.

More physically, these singularities very close to our saddle point configurations are
where the matrix elements of the gaugino operators become massless. For some eigenvalue
pairs, these operators have ‘effective fugacities’ greater than 1 which means these operators
may condense. More generally, whenever we made analytic continuations of log functions in
section 3, using (3.10), the corresponding operators could have condensed. Understanding
their structures may shed more light on more general types of black holes, for instance
related to the hairy AdS black holes where certain operators assume nonzero expectation
values in the dual CFT. For instance, hairy black holes in AdS5 and AdS5 × S5 were
constructed [29–32]. Also, it will be interesting to see a more direct connection between
our light gaugino operators and the light near-horizon modes on the BPS black holes.

Perhaps as a related matter, we also discuss the integration contour and poles/residues.
The subtleties summarized in the previous two paragraphs appear because the matrix
integral contour is analytically continued. Since our final saddle point has many pairs
of eigenvalues whose log potentials require analytic continuations beyond their radii of
convergence, it is quite likely that the full contour deformation would cross the poles
(bosonic branch points) of the integrand. When the contour crosses a pole, various terms
can appear. The first term is the full N dimensional contour integral, where the contour
passed through the pole. This is the term that we studied in this paper. On the other
hand, when a contour crosses a pole, one also finds an extra term from its residue. One
may replace n (< N) of the N integral variables by their pole values, obtaining a term of
the form

(residue of n dimensional integral)× (N − n dimensional contour integral) . (5.1)
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We are tempted to interpret the first factor as the n dual giant gravitons [33, 34] formed
outside the event horizon of a core black hole made of N − n eigenvalues. This inter-
pretation sounds heuristic to us for the following reasons. There are two types of giant
gravitons [33, 34], which are D3-branes wrapping contractible S3 cycles in either AdS5 or
S5. The dual giant gravitons are pointlike in S5, while occupying a spatial S3 in AdS5 at
a fixed AdS radius. They are domain walls in AdS5, reducing the RR 5-form flux inside
it by 1 unit. So inside n dual giant gravitons, the core black hole will feel only N − n

units of RR-flux. Since the second factor of (5.1) takes the form of rank N − n integral, it
would yield a black hole like saddle point in certain U(N − n) gauge theory, qualitatively
agreeing well with the bulk picture. Also note that the first factor has definite values of
n eigenvalues, which are often viewed as the radial locations of dual giant gravitons in
AdS [8, 35]. Finally, there are studies on the color superconductivity using these branes in
the gravity dual [36], which in the BPS sector should necessarily include the hairs carrying
other global charges.

Even if this picture is correct, such configurations look somewhat different from the
hairy black holes of [29–32] constructed with the condensation of the Kaluza-Klein gravitons
within the gravity approximation. In the vacuum AdS5, shrinking the dual giant graviton
by reducing its energy makes the S3 small, converging to the point-like graviton picture
when the energy is small. The giant graviton expanded in S5 can also shrink to the same
point-like graviton, and the two brane descriptions provide complementary descriptions
of the 1

8 -BPS sector [35, 37]. Once there is a core black hole at the center of AdS, giant
gravitons are still contractible in S5. But a dual giant graviton in this black hole background
can ‘shrink’ only until its radial position reaches the event horizon. In fact we have made a
provisional study of both types of giant graviton probes in the background of [4]. The
behaviors of giant gravitons in S5 are well connected to the point-like gravitons, and
appear to exhibit features somewhat similar to the BPS hairy black holes reported in [32]
constructed using the KK graviton modes. The dual giant graviton probes are somewhat
trickier for us to interpret. In any case, we think there are many interesting questions in
this direction.

In section 4, we constructed multi-cut solutions, whose physics is the same as the
multi-cut Bethe roots of [20]. We also provided further generalizations of these multi-cut
solutions with nontrivial filling fractions on the cuts. Within our ansatz, such generalized
filling fractions were allowed only when the chemical potentials δI are in a particular regime.
It will be interesting to find their gravity duals.

We also note that some of the large N techniques explored in this paper might find
applications to study black holes in AdS4/CFT3, AdS6/CFT5 or AdS7/CFT6. These prob-
lems have been studied in [38–42] and [11, 43, 44], but we think we can do more interesting
large N studies.

We finally remark that the treatment of our section 2, applying the identity (1.2) to
slightly change the saddle point problem, might find useful applications in other matrix
models. Although this technique is familiar in some branches of our community (e.g.
enumerating BPS operators more efficiently via contour integral), we are not aware of this
idea applied to construct large N saddle points. The solutions we got after this procedure
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also look quite novel, in that we found areal distributions rather than traditional linear cut
distributions. This approach might be helpful in other matrix model problems.
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A Saddles from (σ + r, τ + s) parallelograms

In this appendix, we shall find more parallelogram saddle points, extending the ideas of
section 2. We shall find saddles which take the form of (σr, τs) ≡ (σ+r, τ+s)-parallelograms
for given δI , σ, τ where r, s ∈ Z. For simplicity, we only consider the case with upper sign
in (2.22), with

∑
I δI − σ − τ = −1. At given σr, τs, one can always find unique n

(r,s)
I ∈ Z

so that δ
(r,s)
I ≡ δI + n

(r,s)
I belong to one of the following two cases:

δ
(r,s)
I = δI + n

(r,s)
I = −a

(r,s)
I + bI(σr + τs) , ±a

(r,s)
I ∈ (0, 1), bI ∈ (0, 1) ,

δ
(r,s)
1 + δ

(r,s)
2 + δ

(r,s)
3 − σr − τs = −

3∑
I=1

a
(r,s)
I = ∓1 ,

3∑
I=1

bI = 1 . (A.1)

Results in the two cases are related to each other by the transformation

(δ(r,s)
I , σr, τs)→ (−(δ(r,s)

I )∗,−σ∗
r ,−τ∗

s ) . (A.2)

Our ansatz for the large N distribution u(x, y) = xσr + yτs with uniform density for
0 < x, y < 1 will satisfy the saddle point equation when

0 < Im
(

σr

τs

)
< Im

(
δ

(r,s)
I

τs

)
< −Im

( 1
τs

)
& 0 < Im

(
δ

(r,s)
I

σr

)
< Im

(
τs − 1

σr

)
(A.3)

or

0 < Im
(

τs

σr

)
< Im

(
δ

(r,s)
I

σr

)
< −Im

( 1
σr

)
& 0 < Im

(
δ

(r,s)
I

τs

)
< Im

(
σr − 1

τs

)
, (A.4)

for the case with upper sign in (A.1). For the case with lower sign, the saddle point equation
is solved when the condition obtained by applying the transformation (A.2) to (A.3), (A.4)
is met. When one of the above inequalities is satisfied, (σr, τs)-saddle contributes to the
large N free energy as following:

logZ(δI , σ, τ) = −πiN2δ
(r,s)
1 δ

(r,s)
2 δ

(r,s)
3

σrτs
. (A.5)
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One may take Im
(

τs
σr

)
→ 0 limit from either condition of the above. Then, since

0 < aI < 1, both conditions are trivially satisfied. Also, as all final quantities are regular
in this limit, we can safely conclude that at Im

(
τs
σr

)
= 0, i.e. τs = kσr (k ∈ R), the large

N saddle point equation is always satisfied.
The condition ‘(A.3) or (A.4)’ can be merged into the following set of inequalities:

−min [Im(σ), Im(τ)] ≤−min
[

a
(r,s)
I Im(σ)
1− bI

,
(1− a

(r,s)
I )Im(σ)

bI
,
a

(r,s)
I Im(τ)

bI
,
(1− a

(r,s)
I )Im(τ)
1− bI

]
< Im(σ)Re(τs)− Im(τ)Re(σr)

< min
[

a
(r,s)
I Im(τ)
1− bI

,
(1− a

(r,s)
I )Im(τ)
bI

,
a

(r,s)
I Im(σ)

bI
,
(1− a

(r,s)
I )Im(σ)
1− bI

]
≤ min [Im(τ), Im(σ)] . (A.6)

These are the conditions to be met in the case with upper sign in (A.1). For the case with
lower sign, the condition to be met is obtained by acting (A.2) on (A.6). Remarkably, the
last condition takes the form of (A.6) with a

(r,s)
I replaced by ã

(r,s)
I ≡ a

(r,s)
I +1. a

(r,s)
I satisfy∑

I a
(r,s)
I = 1, while ã

(r,s)
I satisfy

∑
I ã

(r,s)
I = 2.

We want to find integers (r, s) which meet the above inequalities at I = 1, 2, 3, when
δI , σ, τ are given. We have employed an algebraic procedure to solve (A.6) systematically.
From (A.6) we can get geometric reasonings of our statements below. We shall only present
the results.

i. τ
σ

∈ R: collinear case.

1) σ = τ . In this case, (A.6) is satisfied iff r = s. These correspond to the (K, r) = (1, r)
Bethe roots when σ = τ . According to [24], the stable Euclidean black hole solution exists
iff r = s as we found.

2) τ = q
p
σ (p, q are coprime integers). In this case, (A.6) is satisfied iff s = q

pr.
These correspond to the (K, r) = (1, r) Bethe roots when τ = q

pσ [45]. These saddles are
labelled by an integer l as (r, s) = (pl, ql).

3) τ = kσ (k ∈ R\Q). In this case, there are ‘infinitely many’ choices of (r, s)
satisfying (A.6), but we cannot explicitly write down possible (r, s). They depend on
δI , Im(σ), Im(τ). (See the comments at the end of this appendix for the true meaning of
‘infinitely many.’)

ii. τ
σ

/∈ R: non-collinear case.

1) Im(τ ) = q
p
Im(σ) (p, q are coprime integers). In this case, depending on (σ, τ)

the solutions may or may not exist. If there exist solutions, there are infinitely many.
Given one solution (r0, s0) satisfying (A.6), all other solutions (r, s) are related to (r0, s0)
by (r, s) = (r0 + pl, s0 + ql) for some integer l. (However, not all values of l are allowed
in general.) The case i-2 is the special case when r0 = s0 = 0 and (A.6) is satisfied for all
integers l.
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2) Im(τ ) = kIm(σ) (k ∈ R\Q). In this case, there exist ‘infinitely many’ choices of
(r, s) satisfying (A.6) just as the case i-3. We cannot explicitly write down possible (r, s).
They depend on δI , Im(σ), Im(τ).

In summary, when Im(τ)
Im(σ) ∈ Q, there can be either ‘infinitely many’ saddle points or no

saddle points. When Im(τ)
Im(σ) /∈ Q, ‘infinitely many’ saddle points exist.

When we have multiple saddle points labelled by (r, s), we should sum over their
contributions to the index. One can easily show that their leading large N entropies after
the Legendre transformation are all the same. Namely, the real part of the following entropy
function does not depend on the integer shifts r, s, n

(r,s)
I ,

S = −πiN2δ
(r,s)
1 δ

(r,s)
2 δ

(r,s)
3

σrτs
− 2πiδ

(r,s)
I QI − 2πiσrJ1 − 2πiτsJ2 + 2πi(n(r,s)

I QI + rJ1 + sJ2) ,

(A.7)
since the dependence on n

(r,s)
I , r, s is collected to a pure imaginary constant (the last term).

It is known that there are finite numbers of Bethe roots at K = 1 [20], labeled by
finitely many independent r’s due to the symmetry r ∼ r + N . This happens because N

eigenvalues are exactly equal-spaced. It would be interesting to ask if our r, s enjoy similar
symmetries. However, such a property is impossible to study in our large N continuum
formalism. Therefore, when we say that we have found ‘infinitely many’ solutions for (r, s),
this might imply finitely many solutions whose number scales with large N .

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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