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1 Introduction

Weak decays of charmed baryons provide useful information for understanding the inter-
play of weak and strong interactions, complementary to the information obtained from
charmed mesons [1, 2]. The lightest charmed baryon Λ+

c is the cornerstone of all charmed
baryon spectroscopy, and the measurement of the properties of the Λ+

c provides essential
inputs for studying other heavy-quark baryons, such as the singly- and doubly-charmed
baryons [3] and b-baryons [4]. Contrary to the significant progress made in the studies of
the heavy meson decay, advancement in the arena of heavy baryons, on both theoretical and
experimental sides, has been very slow [5]. Since 2014, much progress has been made by
BESIII, Belle and LHCb experiments in studying Λ+

c decays. This includes measurements
of absolute branching fractions (BFs) and observation of new Λ+

c decay modes [6–24], mea-
surements of weak decay asymmetries of Λ+

c decays [25, 26], determination of Λ+
c spin [27],

lifetime [28, 29] and search for the rare Λ+
c decays [30]. All of this supplies rich data for

improving theoretical models [31]. The external W -emission process is factorizable, but in-
ternal W -emission and W -exchange processes are not, and non-factorizable contributions
have sizeable theoretical uncertainties. The W -exchange process is particularly relevant
for charmed baryons, where it is not suppressed by helicity and color as in the meson
case. Therefore, more precise measurements of the W -exchange decays of the Λ+

c play an
important role in the identification of the non-factorizable contribution in different theo-
retical calculations [31, 32]. The two decay modes Λ+

c → Σ+φ and Λ+
c → Σ+K+K− are

expected to proceed entirely through non-factorizable W -exchange diagrams [33], as shown
in figures 1(a) and 1(b).

Complementary studies of charmed baryons, such as the problem of the Ξ+
c lifetime [34],

are considered in the framework of Heavy-Quark Expansion [35], which can be expressed
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Figure 1. Feynman diagrams of (a)Λ+
c → Σ+φ, (b)Λ+

c → Σ+K+K− and (c)(d)Λ+
c → Σ+K+π−

processes.

in terms of measurable inclusive quantities of the other two charmed baryons belonging
to the same SU(3) flavor multiplet in a model-independent way. In such a treatment, the
inclusive decay rates of singly Cabibbo-suppressed decay modes play a prominent role. Two
such modes, Λ+

c → Σ+K+π− and Λ+
c → Σ+K+π−π0, are expected to proceed entirely

through internal and external W -emission diagrams as shown in figures 1(c) and 1(d),
respectively. Measurements of the Λ+

c singly Cabibbo-suppressed decay rates can improve
our understanding of the lifetime hierarchy [36–38]. The BFs of both Λ+

c → Σ+K+π− and
Λ+
c → Σ+K+K− are predicted to be (0.025± 0.03)% [39], and Λ+

c → Σ+φ is predicted to
be (0.39± 0.06)% [40].

The ratios of the BFs (RBFs) of Λ+
c → Σ+φ and Λ+

c → Σ+K+K− relative to Λ+
c →

pK−π+ were measured by CLEO to be 0.069 ± 0.023 ± 0.016 and 0.070 ± 0.011 ± 0.011
respectively [41]. In 2002, Belle reported the RBFs of Λ+

c → Σ+K+K−, Λ+
c → Σ+φ and

Λ+
c → Σ+K+π− relative to Λ+

c → Σ+π+π−, which are 0.076±0.007±0.009, 0.085±0.012±
0.012 and 0.047± 0.011± 0.008, respectively [32].

In this work, we present the measurements of the RBFs of the signal decays Λ+
c →

Σ+K+K−, Σ+K+π−, Σ+φ, Σ+K+K−(non-φ) and Σ+K+π−π0, relative to the reference
decay Λ+

c → Σ+π+π−, by analyzing 4.5 fb−1 data taken at the center-of-mass energies√
s = 4.600, 4.612, 4.628, 4.641, 4.661, 4.682 and 4.699GeV [42] with the BESIII detector

at the BEPCII collider. Throughout this paper, charge-conjugate modes are implicitly
assumed. In section 2, the BESIII detector and the data samples used in this analysis are
described. The event selection is introduced in section 3 and the determination of the BF
is presented in section 4. The systematic uncertainties are discussed in section 5. Finally,
section 6 summarizes the results.
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2 BESIII detector and Monte Carlo simulation

The BESIII detector [43] records symmetric e+e− collisions provided by the BEPCII storage
ring [44], which operates with a peak luminosity of 1 × 1033 cm−2 s−1 in the center-of-
mass energy range from 2.0 to 4.95GeV. BESIII has collected large data samples in this
energy region [45]. The cylindrical core of the BESIII detector covers 93% of the full
solid angle and consists of a helium-based multilayer drift chamber (MDC), a time-of-flight
system (TOF), and a CsI(Tl) electromagnetic calorimeter (EMC), which are all enclosed
in a superconducting solenoidal magnet providing a 1.0 T magnetic field. The solenoid is
supported by an octagonal flux-return yoke with resistive plate counter muon identification
modules interleaved with the steel.

The charged-particle momentum resolution at 1GeV/c is 0.5%, and the dE/dx resolu-
tion is 6% for electrons from Bhabha scattering. The EMC measures photon energies with
a resolution of 2.5% (5%) at 1GeV in the barrel (end cap) region. The time resolution
in the TOF barrel region is 68 ps, while that in the end cap region is 110 ps. The end
cap TOF system was upgraded in 2015 using multi-gap resistive plate chamber technology,
providing a time resolution of 60 ps [46–48]. About 87% of the data used were collected
after this upgrade.

Simulated data samples producedwith the geant4-based [49]MCpackage BOOST [50],
which includes the geometric and material description of the BESIII detector [51, 52]
and the detector responses, are used to determine detection efficiencies and to estimate
backgrounds. The simulation models the beam energy spread and initial state radiation
(ISR) in the e+e− annihilations with the generator kkmc [53, 54]. The inclusive MC
sample includes the production of open charm processes, the ISR production of vector
charmonium(-like) states, and the continuum processes. All particle decays are generated
with evtgen [55] using BFs either taken from the Particle Data Group (PDG) [56], when
available, or otherwise estimated with lundcharm [57, 58]. Final state radiation (FSR)
from charged final state particles is incorporated using the photos package [59]. For the
MC production of the e+e− → Λ+

c Λ−
c events, the cross section line-shape from BESIII

measurements is taken into account. The signal decay processes include an incoherent
sum of intermediate state resonances, while for the reference mode Λ+

c → Σ+π+π−, a
partial-wave analysis is performed to obtain the amplitude model.

3 Event selection and data analysis

In this work, both the signal and reference Λ+
c decays are fully reconstructed. Charged

tracks detected in the MDC are required to be within a polar angle (θ) range of |cosθ| <
0.93, where θ is defined with respect to the z axis, which is the symmetry axis of the MDC.
The distance of closest approach to the interaction point (IP) must be less than 10 cm
along the z axis and less than 1 cm in the transverse plane.

Particle identification (PID) for charged tracks combines measurements of the energy
deposited in the MDC (dE/dx) and the flight time in the TOF to form likelihoods L(h) (h =
p,K, π) for each hadron h hypothesis. Tracks are identified as protons when the proton
hypothesis has the greatest likelihood (L(p) > L(K) and L(p) > L(π)), while charged kaons

– 3 –
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Decay mode Requirement (GeV)
Σ+K+K− −0.017 < ∆E < 0.008
Σ+K+π− −0.014 < ∆E < 0.008

Σ+K+π−π0 −0.028 < ∆E < 0.012
Σ+π+π− −0.040 < ∆E < 0.032

Table 1. Requirements on ∆E for different Λ+
c decay modes.

and pions are identified by comparing the likelihoods for the kaon and pion hypotheses,
L(K) > L(π) and L(π) > L(K), respectively.

Photon candidates are reconstructed using showers in the EMC. The deposited energy
of each shower must be more than 25MeV in the barrel region (| cos θ| < 0.80) and more
than 50MeV in the end cap region (0.86 < | cos θ| < 0.92). To exclude showers that
originate from charged tracks, the angle subtended by the EMC shower and the position
of the closest charged track at the EMC must be greater than 10 degrees as measured
from the IP. To suppress electronic noise and showers unrelated to the event, the difference
between the EMC time and the event start time is required to be within [0, 700] ns.

All γγ combinations are considered as π0 candidates, and the reconstructed mass
M(γγ) is required to fall in the range of 0.115GeV/c2 < M(γγ) < 0.150GeV/c2. A
kinematic fit is performed to constrain the γγ invariant mass to the known π0 mass [56],
and candidates with the fit quality χ2 < 200 are retained.

The Σ+ candidates are reconstructed from the combinations of pπ0 with an invariant
mass in the range of 1.174GeV/c2 < M(pπ0) < 1.200GeV/c2. This requirement cor-
responds to approximately ±3σ (standard deviations) around the known Σ+ mass [56].
To reject the possible backgrounds for Λ+

c → Σ+K+π− and Σ+π+π− modes including
Λ→ pπ− in the final states,M(pπ−) is required to be outside the range (1.11, 1.12)GeV/c2.
In addition, to remove the K0

S decays in the mode Λ+
c → Σ+π+π−, events with M(π+π−)

in the range (0.48, 0.52)GeV/c2 are vetoed.
To improve the signal purity, the energy difference ∆E = Ecand−Ebeam for Λ+

c candi-
dates are required to satisfy a mode-dependent ∆E requirement shown in table 1. These
ranges are obtained by optimizing signal yield significance with the inclusive MC sample.
Here Ecand is the total reconstructed energy of the Λ+

c candidate and Ebeam is the beam
energy. Only one candidate with the minimal |∆E| is accepted. The Λ+

c signal is identified
using the beam constrained mass MBC =

√
E2

beam/c
4 − p2/c2, where p is the measured Λ+

c

momentum in the center-of-mass system of the e+e− collision. After the event selection,
there is no obvious peaking background in the MBC distribution for each tag mode, as
shown in figure 2.

4 Determination of the branching fractions

The RBF between the signal and reference modes is calculated with

RBF ij = Bi
Bj

= Ni · εj · Bjinter
Nj · εi · Biinter

, (4.1)
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Figure 2. The MBC distributions of candidates for (a) Λ+
c → Σ+π+π−, (b) Λ+

c → Σ+K+π−,
(c) Λ+

c → Σ+K+K− and Λ+
c → Σ+φ, and (d) Λ+

c → Σ+K+π−π0 in data and inclusive MC
samples. The black points with error bars are from the combined data at all seven energy points,
the green and blue histograms are signal processes. The cyan and red histograms are the Λ+

c and
open charm backgrounds, respectively.

where εi and εj are the detection efficiencies, Ni and Nj are the signal yields of the signal
mode i and the reference mode j, respectively. The Binter is the product of the BFs of
the intermediate states (Σ+ → pπ0, π0 → γγ, and φ → K+K− for Λ+

c → Σ+φ), and the
charge-conjugate channel is included in the simulation. The observables in equation (4.1)
are determined as follows.

• Reference mode Λ+
c → Σ+π+π−.

To obtain the yield of the reference mode, an unbinned maximum likelihood (UML)
fit is performed on the MBC distribution separately at each energy point for data.
In each fit, the signal shape is described by the MC simulated shape convolved with
a Gaussian function with floating mean and width, in order to take into account
the resolution difference between data and MC simulation. The distribution of the
combinatorial backgrounds is modeled with an ARGUS function [60]

fARGUS ∝MBC

√
1−

(
MBC · c2

Ebeam

)2
e
a

(
1− MBC·c2

Ebeam

)2

, (4.2)

where the parameter a is free in the fit. The fitted yields of the reference mode at
different energy points are given in table 2. In addition, the detection efficiencies are

– 5 –



J
H
E
P
0
9
(
2
0
2
3
)
1
2
5

Decay mode 4.600 GeV 4.612 GeV 4.628 GeV 4.641 GeV 4.661 GeV 4.682 GeV 4.699 GeV
Σ+π+π− 1123±47 200±21 1003±46 1026±48 1025±48 3132±85 942±47

Σ+K+K− 14.1±1.5 2.3±0.2 11.7±1.3 13.0±1.4 12.1±1.4 43.0±4.5 14.1±1.4
Σ+φ 14.3±2.8 2.4±0.5 12.7±2.5 13.2±2.7 14.2±2.7 47.2±8.9 14.9±2.9

Σ+K+K−(non-φ) 9.2±1.7 1.6±0.3 8.1±1.5 8.6±1.6 9.0±1.6 29.0±4.0 9.1±1.6
Σ+K+π− 30.5±3.6 5.8±0.7 29.3±3.5 29.6±3.5 26.1±3.4 80.3±9.5 22.3±2.6

Table 2. Signal yields in data for various decay modes, where the uncertainties are statistical only.
Λ+
c → Σ+K+π−π0 has no significant signal observed.

Decay mode 4.600 GeV 4.612 GeV 4.628 GeV 4.641 GeV 4.661 GeV 4.682 GeV 4.699 GeV
Σ+π+π− 26.12±0.05 25.21±0.05 24.90±0.05 24.96±0.05 24.78±0.05 24.44±0.05 24.23±0.05

Σ+K+K− 4.22±0.02 3.92±0.02 3.98±0.02 4.11±0.02 4.30±0.02 4.53±0.02 5.19±0.02
Σ+φ 3.66±0.02 3.38±0.02 3.46±0.02 3.55±0.02 3.75±0.02 4.02±0.02 4.19±0.02

Σ+K+K−(non-φ) 4.81±0.02 4.50±0.02 4.53±0.02 4.70±0.02 4.88±0.02 5.07±0.02 6.24±0.02
Σ+K+π− 16.30±0.04 15.78±0.04 15.20±0.04 15.06±0.04 14.56±0.04 14.75±0.04 14.20±0.04

Σ+K+π−π0 5.16±0.02 4.72±0.02 4.55±0.02 4.59±0.02 4.73±0.02 4.72±0.02 4.74±0.02

Table 3. Detection efficiencies (in unit of %) for various decay modes, where the uncertainties are
statistical only. The efficiencies do not include the BF of the sequential decay of π0, φ or Σ+.

estimated according to MC simulations, as listed in table 3. The total fit to data
summing over all the energy points is shown in figure 3(a).

• Signal mode Λ+
c → Σ+K+π−.

The simultaneous UML fit is performed using seven energy point data samples for
signal mode, to obtain a more precise result. For this purpose, a common RBF is fitted
at various energy points, where the signal yields can be derived from equation (4.1)
with the input yields of the reference mode in table 2 and the detection efficiencies
in table 3. The uncertainties of the input values are taken into account in systematic
uncertainties, as listed in table 5. In the fit, the signal shape is extracted from
the corresponding signal MC sample and convolved with a Gaussian function with
floating mean and width. The background shape is described by an ARGUS function
in equation (4.2). The summed fit to data from all of the energy points is shown
in figure 3(b). The RBF results obtained from the fit are given in table 4, and the
signal yields at different energy points are calculated, as listed in table 2.

• Signal mode Λ+
c → Σ+K+K−.

To separate the φ contribution for Σ+K+K− mode, a two-dimensional simultaneous
UML fit is performed on the MBC vs. the MK+K− distributions, in which common
RBF values are estimated. Four components (Σ+φ, Σ+K+K−(non-φ), φ background
and non-φ background) are considered in this fit, as shown in figures 3(c) and 3(d).
All the signal shapes are extracted from MC samples and convolved with a Gaussian
resolution function with floating mean and width. In the MBC distribution, the
combinatorial background is described using the ARGUS function. In the MK+K−

distribution, we use a second-order Chebyshev function to describe the background of
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Figure 3. Fit results for different decay modes. The plots show the MBC distributions of Λ+
c →

Σ+π+π− (a), Λ+
c → Σ+K+π− (b) and Λ+

c → Σ+K+π−π0 (e) processes. Other plots (c) and (d)
show the distributions of MBC and MK+K− , respectively, for the projections of the 2-D fit used to
separate the Λ+

c → Σ+φ and Λ+
c → Σ+K+K−(non-φ) processes. The points with error bars are

combined from data at all energy points, the red curves are the overall fit result, the blue and green
dashed curves are the signal shapes, the black and pink dashed curves are the background shapes.
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Sample Ecms (MeV) L (pb−1)
4.600 4599.53±0.07±0.74 586.90±0.10±3.90
4.612 4611.86±0.12±0.30 103.65±0.05±0.55
4.628 4628.00±0.06±0.32 521.53±0.11±2.76
4.641 4640.91±0.06±0.38 551.65±0.12±2.92
4.661 4661.24±0.06±0.29 529.43±0.12±2.81
4.682 4681.92±0.08±0.29 1667.39±0.21±8.84
4.699 4698.82±0.10±0.36 535.54±0.12±2.84

Table 4. The center-of-mass energy Ecms and the integrated luminosity measured L we used in
this analysis.

Source Σ+K+K− Σ+K+π− Σ+K+π−π0 Σ+φ Σ+K+K−
non-φ

K± PID 2.0 1.0 1.0 2.0 2.0
π± PID 2.0 1.0 1.0 2.0 2.0

π0 reconstruction — — 1.0 — —
∆E requirement 1.4 3.0 3.5 1.4 1.4

MBC fit 3.3 3.0 5.9 6.1 3.0
Signal model 1.8 2.9 — 1.0 0.7

Reference mode 1.9 1.9 1.9 1.9 1.9
Binter 0.6 0.6 0.6 1.2 0.6
Total 5.3 5.7 7.4 7.3 4.8

Table 5. Relative systematic uncertainties in the RBF measurements, in %.

the non-φ process and use the φ line-shape distribution extracted from the Λ+
c → Σ+φ

signal MC sample to describe the φ background.

• Signal mode Λ+
c → Σ+K+π−π0.

The simultaneous UML fit is also performed for Λ+
c → Σ+K+π−π0, as shown in

figure 3(e). Since there is no significant signal observed, the upper limit on the BF of
this decay is estimated with a likelihood scan method which takes into account the
systematic uncertainties as follows

L(BF) =
∫ 1

−1
Lstat [(1 + ∆) BF] exp

(
− ∆2

2σ2
syst

)
d∆. (4.3)

Here, L(BF) is the likelihood expression of BF, Lstat is the statistical likelihood given
by the data without considering the systematic uncertainties when taking the nominal
BF obtained, ∆ is the relative deviation of the estimated BF from the nominal value
and σsyst is the total systematic uncertainty given in table 5. The likelihood curve
calculated according to equation (4.3) is shown in figure 4. The upper limit on the
BF of Λ+

c → Σ+π−π+π0 mode at the 90% confidence level (C.L.) is estimated to be
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the systematic uncertainty. The black points are the initial curve, the red curve is the result with
the systematic uncertainty, and the blue arrow points to the upper limit on the BF at the 90% C.L.

0.11% by integrating the likelihood curve in the physical region and considering the
BF of the reference mode and systematic uncertainties.

5 Systematic uncertainty

The sources of systematic uncertainties in the RBF measurements are summarized in ta-
ble 5. The systematic uncertainties of MC statistics is 0.1% for each channel and can be
neglected. The systematic uncertainties in Σ+ reconstruction in both signal and reference
modes are canceled in the RBF calculation. The systematic uncertainties of tracking effi-
ciency for charged tracks are also canceled. For each signal decay, the square root of the
quadratic sum of all the uncertainties is taken as the total systematic uncertainty.

• PID and π0 reconstruction efficiencies.
The uncertainties associated with PID efficiencies are estimated to be 1.0% for each
charged track by studying the control samples of e+e− → π+π−π+π−, K+K−π+π−

and pp̄π+π− based on data taken at energies above
√
s = 4.0GeV. However, the PID

uncertainty for the p(p̄) common to signal and reference modes cancels, as does that
for any common π±. The uncertainty of π0 reconstruction efficiency is assigned to
be 1.0% per π0 by studying the control sample of e+e− → ωπ0 process.

• ∆E requirement.
The resolution difference between data and MC simulation need to be considered.
Thus a Gaussian function is used to smear MC sample and obtain a new efficiency.
The changes in the efficiencies are assigned as the corresponding uncertainties of
∆E. The resolution difference is extract by using signal MC shape smeared with the
Gaussian function to fit the ∆E distribution in data.

• MBC fit.
The uncertainty in the MBC fit is mainly due to free parameters of the Gaussian and
ARGUS functions and the background description. The relevant systematic uncer-
tainty is estimated with an alternative signal shape without smearing the Gaussian
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resolution function and an alternative background shape which varies the high-end
cutoff of the ARGUS function by±0.005GeV/c2. The largest result change is assigned
as the systematic uncertainty. For Λ+

c → Σ+φ process, due to that a two-dimensional
maximum likelihood fit is performed on the MBC and MK+K− distribution, the un-
certainty of MK+K− fit is also considered by studying the difference of φ signal shape
convolved with or without a Gaussian resolution function. In addition, the shape
of the backgrounds from Λ+

c inclusive decays can not be different from the ARGUS
function. To account for this discrepancy, an additional component of the Λ+

c decay
backgrounds, which is extracted from the Λ+

c inclusive MC samples, is included in
the MBC fit. The resultant changes on the RBF are taken as the systematic un-
certainties. For Λ+

c → Σ+K+π−π0 process, an alternative fit to data with MBC
larger than 2.27GeV is implemented and the relative changes on the fitting results
are taken into account as systematic uncertainties. All the above items are summed
over in quadrature.

• Signal model.
The influence of the assumed signal model on the BF measurement comes from the
estimation of the signal efficiency. Decay processes with intermediate resonances
listed in the PDG [56] are included in the signal simulation. Examples include
Λ+
c → Σ+φ and Λ+

c → Ξ∗0K+ (Ξ∗0 → Σ+K−) processes for Λ+
c → Σ+K+K−

and Λ+
c → Σ+K∗(892)0 (K∗(892)0 → K+π−) for Λ+

c → Σ+K+π−. In the nominal
analysis, the BFs that are used in the generator are taken from the PDG [56]. Their
effects on the new BF measurements are estimated by varying the input BF of the
intermediate decay by ±1σ in the generator. The relative efficiency deviation is taken
as the uncertainty.

• Reference mode.
For the reference mode Λ+

c → Σ+π+π−, the TF-PWA [61] is used to perform the sim-
ple Partial Wave Analysis and consider the possible intermediate resonance states,
In the estimation of systematic uncertainty, we remove the low significance state.
The difference of efficiency (1.1%) is taken as the systematic uncertainty. For the
statistical uncertainties of the fitted yields in the reference mode, a relative uncer-
tainty (1.6%) is transferred into the systematic uncertainty of the RBF. In total, a
quadrature sum of the systematic uncertainty (1.9%) is assigned.

• BFs of the intermediate states.
The BFs of π0 → γγ, φ→ K+K− and Σ+ → p+π0 are used as inputs in the baseline
analysis, and their uncertainties [56] are propagated as the systematic uncertainty.

6 Summary

Based on 4.5 fb−1 data taken at
√
s = 4.600 to 4.699GeV with the BESIII detector at

the BEPCII collider, the non-factorizable W -exchange-only processes, Λ+
c → Σ+φ, Λ+

c →
Σ+K+K−(non-φ) and the non-factorizable W -emission processes Λ+

c → Σ+K+π− and
Λ+
c → Σ+K+π−π0 have been studied. The BF of Λ+

c → Σ+K+π−π0 relative to Λ+
c →
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Decay mode RBF (This work) RBF (Belle) BF (This work) BF (PDG)
Σ+K+K− 8.38± 0.93± 0.44 7.6± 0.7± 0.9 0.377± 0.042± 0.020± 0.021 0.35± 0.04
Σ+K+π− 4.44± 0.52± 0.25 4.7± 1.1± 0.8 0.200± 0.023± 0.011± 0.011 0.21± 0.06

Σ+K+π−π0 < 2.5 — <0.11 —
Σ+φ 9.2± 1.8± 0.7 8.5± 1.2± 1.2 0.414± 0.080± 0.030± 0.023 0.39± 0.06

Σ+K+K−(non-φ) 4.38± 0.79± 0.21 — 0.197± 0.036± 0.009± 0.011 —

Table 6. Comparison of our RBF and BF results with the Belle results [32] and the PDG values [56]
(in unit of %). Except for the mode Σ+K+π−π0, in all our RBF results, the first uncertainties
are statistical, and the second are systematic. The third uncertainties of our BF results are from
external input of the branching fraction of Λ+

c → Σ+π+π−.

Σ+π+π− is measured for the first time. The precisions of BFs for other channels relative
to Λ+

c → Σ+π+π− are improved. Combining with the world average B(Λ+
c → Σ+π+π−) =

(4.50 ± 0.25)% [56], the BFs of the aforementioned decays are obtained. Table 6 shows
the comparison of our results with the PDG values [56] and the Belle results [32]. The
uncertainties of the BFs of Λ+

c → Σ+K+K− and Λ+
c → Σ+φ are comparable to those in

references [32, 56]. For Λ+
c → Σ+K+π−, the precision of the BF is improved by a factor

of two. The theoretical predictions of the BFs of Λ+
c → Σ+φ, Λ+

c → Σ+K+K− and Λ+
c →

Σ+K+π− in reference [39, 40] differ from our results by about 2σ and our results will be
helpful to correct the theoretical model. The combined results are essential to understand
the non-factorizable W -exchange and W -emission contributions to the decays of Λ+

c .
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