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1 Introduction

The C-metric, originally found by Levi-Civita [1] and subsequently by Weyl [2], was first
analysed physically by Kinnersley and Walker [3], and Bonnor [4]. It is understood as a
pair of causally disconnected black holes that accelerate due to the presence of topological
defects, specifically cosmic strings that pull (or struts that push) the black holes away from
each other. The spacetime represents a one parameter extension of the Schwarzschild black
hole that is subjected to conical defects. The C-metric has been studied extensively [5–11],
not only in General Relativity (GR) but also in Einstein-dilaton-Maxwell [12], braneworld
scenarios [13] and in the context of quantum black holes [14–17]. Even more, recently
supersymmetric extensions were constructed in D = 4 gauged supergravity [18–21]. These
solutions have been uplifted using a Sasaki-Einstein manifold SE7 to supergravity in D = 11
resulting in a smooth geometry with properly quantised fluxes.

The causal structure of the C-metric is fairly well-understood, however, its asymptotic
structure presents challenges towards a semi-classical analysis of the spacetime. Recently,
there has been significant progress in elucidating the thermodynamic behaviour of acceler-
ating black holes [20, 22–33]. A particularly fruitful approach has been where the tensions
of the cosmic strings causing the acceleration are considered as thermodynamic variables,
which serves as a key ingredient in achieving full cohomogeneity in the first law [26].

Another challenging, but less well explored, facet of accelerating black holes is the study
of acceleration from a holographic point of view. The holographic dual of an accelerating
black hole is not yet fully understood, and it remains an active area of research. Some pro-
posals suggest that the dual theory may correspond to a strongly correlated system living
in a black hole background [25, 34]. A significant step towards a formal holographic descrip-
tion has been achieved with the discovery of supersymmetric accelerating black holes and
their embedding in supergravity and M-theory [19, 35–37], providing a promising avenue
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for studying these solutions by means of the AdS/CFT correspondence; this approach also
seems to suggest the existence of higher-dimensional accelerating solutions, which from a
classical geometric perspective have not yet been discovered.

In this direction, an instructive approach is to consider a simple toy model. In this
regard, three-dimensional gravity seems to be the perfect candidate to test the boundary
properties of accelerating black holes, as the features of two-dimensional field theories are
well understood. The aim of this paper is to study boundary aspects of the accelerating
BTZ black holes, building on the previous investigations of the properties of the space of
solutions [38–40]. See [41] for the charged case.

Our paper is organised as follows: in section 2 we concisely review the three-dimen-
sional C-metric spacetime and its various classes of solutions. Among the solutions, we
focus on the case of an ‘accelerating’ BTZ black hole that is pushed by a strut (negative
tension co-dimension one topological defect), as this case exhibits more similarities with the
four-dimensional counterpart than the BTZ black hole pulled by a wall (positive tension
co-dimension one defect). Note that these solutions include both slow and rapid phases of
acceleration, i.e. solutions both without and with, respectively, an acceleration horizon in
addition to the black hole horizon. Holographically, it can be viewed as simpler to focus
on the non-rapidly accelerating solutions so that thermodynamic quantities are uniquely
defined. Next, in section 3, we describe the boundary of the spacetime by employing a radial
Arnowitt-Deser-Misner (ADM) foliation. The new “holographic” coordinate is aligned with
the conformal boundary, such that the boundary metric is easily identifiable. This makes
the construction of the stress tensor straightforward. We rewrite the stress tensor using
the fluid/gravity correspondence by identifying the pressure and energy density of the dual
theory, which lies in a positively curved background. We compute the total energy making
use of the holographic stress tensor and analyse the effect of the acceleration. Section 4
is devoted to computing the Euclidean action, showing that the standard renormalised
action for AdS3 contains an additional divergence that originates from the domain wall
and that extends from the black hole to the boundary. Nevertheless, this divergence is
controlled by the inclusion of boundary terms associated with the internal boundaries of the
spacetime. The total Euclidean action satisfies the quantum statistical relation upon proper
identification of the contribution from the domain wall. Section 5 shows the computation of
the holographic entanglement entropy by utilising the relationship between these solutions
and Rindler-AdS, finding that the total entanglement decreases with acceleration. Finally,
we conclude in section 6 with a comprehensive summary and further issues that need
to be addressed in the future. Complementary materials are provided in appendices A
and B regarding the explicit details of the FG expansion and of the so-called IC class of
accelerating BTZ solutions.

2 C-metric in 2+1 dimensions: accelerating black holes

We start by describing the three-dimensional C-metric spacetimes presented in [38–40]. A
direct truncation of the four-dimensional C-metric allows us to write, in prolate coordinates,
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Class Q(x) P (y) Maximal range of x

I 1− x2 1
A2ℓ2 + (y2 − 1) |x| < 1

II x2 − 1 1
A2ℓ2 + (1− y2) x > 1 or x < −1

III 1 + x2 1
A2ℓ2 − (1 + y2) R

Table 1. Three different classes of solutions with their maximal range of the transverse coordinate.

the following metric ansatz

ds2 = 1
Ω2

[
−P (y)dτ2 + dy2

P (y) +
dx2

Q(x)

]
, (2.1)

Ω = A(x − y) , (2.2)

where A stands for an acceleration parameter. Although these coordinates are not very
intuitive, later, we will identify y as radial coordinate and x to an angular coordinate upon
a suitable identification of their ranges. The metric polynomials are easily found from the
trace of the field equations [42], which yields two cubic polynomials P (y) and Q(x) of the
corresponding coordinates of which, in principle, all polynomial coefficients are arbitrary
constants. Imposing the polynomials onto the field equations implies precise relations be-
tween the polynomial coefficients. In addition, making use of the symmetries of the line
element (2.1), it is proven that the remaining arbitrariness of the coefficients represents
removable gauge redundancies [40]. In this manner, only sign differences between the poly-
nomial coefficients remain relevant given rise to three families of accelerating spacetimes,
see table 1. The domain of the x-coordinate is chosen such that the metric preserves its
signature.

Generically, Class I represents the geometry of accelerating particle-like solutions, al-
though a particular case dubbed as Class IC, represents an accelerating black hole solution
parametrically disconnected from the standard BTZ geometry. As expected from the three-
dimensional AdS spacetime, it is possible to find “naked singularities” (i.e. conical solutions
corresponding to a “particle”) in the energy range −π

8 ≤ M ≤ 0. Due to acceleration, a
Rindler horizon can be formed. For our purposes, besides some computations performed
in appendix B regarding the Class IC, this paper will be devoted to studying the solutions
contained in Class II.1 This class is regarded as a one parameter extension of the stan-
dard BTZ black hole [45, 46] and thus we shall denote it as the accelerating BTZ black
hole [38, 40]. Taking the parameter A → 0, we recover the standard geometry of the
one parameter family of three-dimensional black holes. This is key when comparing the
black hole solutions of Class II and Class IC. The latter exists only for a limited range of
parameters where the acceleration and mass of the black hole are bounded, and the BTZ
geometry is not included in this range, although it has a compact horizon.

1Class III does not produce black hole nor particle-like solutions for a single string/wall setting. Instead,
it is necessary to introduce a second copy of the spacetime, similar to a Randall-Sundrum scenario [43, 44].
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It is worth noting that both Class I and Class II spacetimes possess a well-defined
flat limit

lim
ℓ→∞

ds2 = 1
Ω2

(
−P∞(y)dτ2 + dy2

P∞(y) +
dx2

Q(x)

)
, (2.3)

where P∞(y) = ∓(1 − y2), and where Class I corresponds to a minus sign and Class II
for the opposite. Here Ω denotes the acceleration conformal factor. These solutions are
interpreted as accelerating particles moving on a three-dimensional flat background [47, 48].

In the next subsection, we summarise the main details behind the construction and
interpretation of the solutions contained in Class II. As we shall shortly observe, to con-
struct the solutions it is necessary to introduce a domain wall in the spacetime and to use
Israel junction conditions to identify the tension (positive or negative) of the wall, which is
responsible for the “acceleration” [40]. The wall extends from the horizon to the boundary,
therefore affecting the definition of holographic quantities as we will explicitly demonstrate.

Inserting a domain wall. In dimension four a straightforward inspection of the axes of
symmetry of the C-metric line element reveals the existence of conical singularities. It is
the difference in deficit angle of the conical singularity at both north and south poles that
gives rise to the acceleration. This conical singularity can be either an angular deficit or
excess, but the singularity can be removed along an axis by choosing the periodicity of the
azimuthal coordinate. This transfers the full defect to one polar axis, usually an angular
deficit along the south pole. Physically, this is then interpreted as a cosmic string that
extends all the way from the horizon to conformal infinity, and that pulls the black hole
producing its acceleration [49–52].

In (2 + 1)-dimensions the situation is remarkably different. The first difference relies
on the fact that with one dimension less the topological defect causing acceleration, which
is linear in nature, will now have co-dimension one — i.e. will be a domain wall rather than
a cosmic string. The second difference relates to the nature of the angular coordinate. In
three dimensions the metric functions depend on an azimuthal angle (not polar as in the
four-dimensional case) and therefore the domain of this coordinate also behaves differently.
It was shown in [40] that in order to have a compact horizon the x-coordinate needs to be
properly identified, which is precisely determined by the inclusion of the domain wall that
is responsible for the black hole acceleration.

To construct the accelerating Class II BTZ geometry the following procedure is taken:

(i) First, we define a finite domain for the x-coordinate, [x0, xmax], where x0 is either
greater than 1 or smaller than −1, see table 1. The value of xmax is constrained
according with the number of Killing horizons we allow our geometry to contain.
Generically, P (y) provides two Killing horizons located at

yA =
√
1 + A2ℓ2

Aℓ
, yh = −

√
1 + A2ℓ2

Aℓ
. (2.4)

Here, yA and yh represent the acceleration and black hole horizons respectively. No-
tice that yA > 1. The position of xmax then determines the number of horizons
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according to whether xmax < yA, in which case only the black hole horizon is present,
or xmax > yA, in which case both horizons are present.

(ii) After specifying the interval [x0, xmax], we proceed with the construction of a compact
horizon by identifying two copies of the spacetime along two surfaces of constant x,
mirroring along x0 = 1 and xmax (we take x0 = 1 so that the “wall” along the
mirrored surface has zero tension). This is carried out by including a domain wall at
xmax, of which the induced line element reads,

ds2DW = γMN dxM dxN = 1
A2(xmax − y)2

(
−P (y)dτ2 + dy2

P (y)

)
, (2.5)

where N, M = (τ, y) are the domain wall coordinates. The wall is sourced by a
localised energy-momentum tensor, of which the integration over the thin wall con-
figuration, using Israel equations, provides

4πG

∫ +

−
TMN = [KMN ]

∣∣+
− − γMN [K]

∣∣+
− = 4πGσγMN , (2.6)

where TMN is the energy stress tensor of the domain wall. Here G is the Newton’s
constant, the brackets [K]|+− correspond to the difference of the extrinsic curvature
along each side of the domain wall, and KMN := 1

2LnγMN is the extrinsic curvature
of the hypersurface at x = xmax which is given by the covariant derivative of the
outward pointing normal

nx = 1
A(x − y)

√
Q

∂

∂x

∣∣∣∣
xmax

, (2.7)

yielding

σ = − 1
4πG

[K]|+− = ± A

4πG

√
Q(xmax) . (2.8)

With these steps at hand, the construction of the Class II solutions is complete. One
sector of solutions is constructed from x > 1, while the other follows x < −1. In both cases
x− y > 0. For the x > 1 case the domain wall has negative tension, contrary to its x < −1
cousin for which the domain wall acquires a positive tension. These geometries are dubbed
as the accelerating BTZ black hole pushed by a strut and the accelerating BTZ black
hole pulled by a wall, respectively. In this paper, we will mostly focus on the spacetime
described by x > 1. Within these solutions, we note that if xmax > yA, the acceleration
horizon is included in our spacetime for the region x > yA this is the situation referred to
as rapid acceleration. This phenomenon does not occur for the accelerating BTZ pulled by
a wall, as the defect on the horizon in this case has a positive energy density. Since the
wall pulls the horizon far from the conformal boundary, no rapid accelerating phase takes
place. The causal structure of both solutions and their construction by gluing is depicted
in figure 1.
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Figure 1. Here, we provide the schematic construction of the three different kinds of black hole
solutions contained in class II. They are ordered as follows: row I shows the construction of the
accelerating BTZ black hole pushed by a strut for which the x-coordinates satisfies x > 1 and where
both event and accelerating horizons are part of the spacetime causal structure. The second row
expresses the construction of the same previous solution, but in the case in which the accelerating
horizon is absent. Finally, the third row shows the construction of the accelerating BTZ black hole
pulled by a domain wall, solution for which x < −1. All diagrams correspond to a constant time
coordinate. The first picture of each row represents the preliminary causal structure, in prolate and
polar coordinates, of the given solutions. This allows us to understand the range of the coordinates
and the position of the corresponding horizons. The second pictures correspond with the mirroring
of the first ones, while the third represents the final form of the spacetime once the gluing has
been performed.
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Accelerating BTZ black hole pushed by a strut. We now focus on the accelerating
BTZ black hole pushed by a strut. While the prolate coordinates (x, y) are useful for
describing the construction and causal structure of the solutions, it is convenient to move
to the more intuitive polar coordinates (r, ϕ) to describe the holographic properties of the
spacetime. Just as in the four-dimensional C-metric, the coordinate y is easily identified
with the radial polar direction r. Although, x is in principle non-compact, due to the
procedure to introduce the domain wall and have a proper black hole interpretation it
becomes compact and can be related with an angle. Thus, we introduce a mass parameter
and new coordinates via2

r = − 1
Ay

, x = cosh(mϕ), t = m2A
α

τ , (2.9)

where A = A/m, and α is a constant that will be used to identify the proper time of an
asymptotic observer [26]. The resulting metric reads

ds2 = 1
Ω2

(
−f(r)dτ2

α2 + dr2

f(r) + r2dϕ2
)

, (2.10)

where

f(r) = r2

ℓ2
− m2(1−A2r2) , Ω = 1 +Ar cosh(mϕ) . (2.11)

The tension of the wall is regulated by the parameter m = arcosh(xmax)/π that is chosen to
ensure that the coordinate ϕ lies in the interval (−π, π). This is consistent with the standard
interpretation of mass of three-dimensional black holes [46]. Nevertheless, the non-trivial
extrinsic curvature over the x = const surface modifies the original identifications used to
construct the BTZ black hole. Moving forward, our main focus will be on describing this
specific solution, although all of our results can be applied to the positive tension scenario
with ease.

Considering now the Euclidean version of the solution, the horizon radius, Hawking
temperature, and entropy are easily read off as [40]

rh = mℓ√
1 + m2A2ℓ2

, (2.12)

T = |f ′(rh)|
4πα

= m
√
1 + m2A2ℓ2

2πℓα
,

S = Area
4G

= ℓ

G
arctanh

[(√
1 + m2A2ℓ2 − mAℓ

)
tanh

(
mπ

2

)]
,

where Area refers to the area of the black hole horizon and the conformal boundary is now
given by rcb = −(A cosh(mϕ))−1. The wall lies along ϕ = ±π, with tension

σ = −mA sinh(mπ)
4πG

. (2.13)

2Notice that the parametrisation is such that the limit A → 0 renders the metric identical to the standard
BTZ black hole with mass parameter m2.
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Figure 2. Accelerated horizon radius as a function of the azimuthal coordinate ϕ, for different
values of the parameter A that characterises the acceleration of the black hole. The solid purple
line corresponds to the case A = 0, where both horizons coincide, and therefore remain at a
constant value of z. The orange dotted curve corresponds to A = (2ℓm sinhmπ)−1, an intermediate
value where the horizon remains smooth throughout. The green dashed curve corresponds to the
critical value A = (ℓm sinhmπ)−1, where the horizon touches the conformal boundary exactly
at the endpoints ϕ = ±π. The blue dot-dashed curve corresponds to A = 3(ℓm sinhmπ)−1,
which is below the critical bound and the red dots indicate the points where the horizon meet the
conformal boundary.

As already mentioned, there is a rapid phase when the wall position is xmax >
√
1 + (mAℓ)−2,

implying the appearance of a non-compact accelerating horizon [40]. In order to avoid this
feature for the holographic analysis of the solution, one restricts m to be positive and to
satisfy the condition

mAℓ sinh(mπ) < 1 , (2.14)

which is referred to as the condition of slow acceleration.
Accelerating black holes pulled by a domain wall (positive tension) can be found by

changing the sign of the acceleration A → −A. In that case, there is no rapid accelerating
phase, and therefore the only constraint for the acceleration is given by requiring a positive
radial coordinate. See figure 2. It is also possible to recover the accelerating particle
solutions of Class I by taking m2 → −m2, noting that the hyperbolic cosine becomes
a cosine in the conformal factor Ω (the Class Ic solutions require a slightly more subtle
transformation). Finally, it is worth mentioning that the solution can be mapped to a
three-dimensional Rindler geometry

ds2 = −
(

R2

ℓ2
− 1

)
dT 2 + dR2

R2

ℓ2 − 1
+ R2dΘ2 , (2.15)

with R ∈ (ℓ,∞), by means of

R2

ℓ2
− 1 = f(r)

α2m2Ω2 , R sinhΘ = r sinh(mϕ)
mΩ , (2.16)
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provided that

T = mτ , α2 = 1 + m2A2ℓ2 . (2.17)

This identifies the Rindler time T and the value of α.
In the next section, we will introduce an alternative coordinate system that simplifies

the identification of the boundary structure, and use it to characterise the holographic
stress tensor.

3 Holographic stress tensor

ADM-like coordinates. A crucial step towards the identification of the thermodynamic
quantities and holographic data is to have at hand a robust description of the spacetime
boundary. In this regard, the asymptotic structure of the C-metric poses a challenge, as
the conformal boundary is not given by a constant value of the radial coordinate.

The standard recipe, when treating asymptotically AdS spacetimes, is to apply a
Fefferman-Graham (FG) expansion near the boundary, identifying the holographic coordi-
nate. In the case of the C-metric, however, this process is not trivial but rather compli-
cated. This was first noticed for the four-dimensional accelerating black hole in [26], where
an asymptotic expansion for both the radial and angular coordinates was derived in terms
of the FG holographic coordinate that is perpendicular to the boundary (see appendix A
for the procedure in the three-dimensional case).

Solving Einstein’s equations order by order in the expansion reconstructs the spacetime
and gives a boundary metric g0, which is defined up to a conformal representative ω. In
four dimensions, the Euclidean action and conserved quantities (such as the mass) are
independent of the conformal representative of the boundary metric. However, in three
dimensions, the situation is different. The conformal invariance is broken at the quantum
level, and the dual two-dimensional CFT has a conformal anomaly. The anomaly itself
is independent of the conformal factor and reproduces the value of the Brown-Henneaux
central charge [53] for any representative Class [40]. Nevertheless, the choice of ω is crucial
to identify the mass and the other thermodynamic quantities since the dual stress tensor,
which is employed to obtain the holographic mass, is not a primary operator and transforms
non-trivially under conformal transformations. For a discussion on how the energy, action,
and other holographic quantities depend on the conformal representatives, see [54].

An alternative way of obtaining the boundary data is to follow [20, 34] and define a
new coordinate z according to

1
r
:= z −A cosh(mϕ) . (3.1)

In this new coordinate frame, the location of the conformal boundary is at zcb = 0. We
introduce an infrared cutoff at z = δ, where δ ≪ 1.

Following the standard prescription [55], we first compute regularised holographic
quantities close enough to the boundary at z = δ, to then take the limit δ → 0. In
this coordinate system, the horizon is described by a function zh = zh(z, ϕ). The acceler-
ated horizon is plotted in figure 2, and considering both horizons the considered region can

– 9 –
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Figure 3. Domain of the z coordinate in the presence of the two horizons. The upper thick curve
corresponds to the black hole horizon and the bottom one corresponds to the accelerating horizon
touching the conformal boundary at the two dark dots. The shaded region corresponds to the
region where spacetime is defined.

be seen in figure 3. The slow acceleration condition (2.14) ensures that the horizon does
not touch the conformal boundary zcb.

This coordinate transformation sets the metric into an ADM-like decomposition

ds2 = N2dz2 + hij(dxi + N idz)(dxj + N jdz) , (3.2)

where hij is the induced metric in the z = const hypersurface, N the lapse function and
N i represents the shift vector. Notice that the induced metric hij depends on z and ϕ. We
can identify the background in which the holographic CFT lies to be

ds2(0) = g(0)ijdxidxj = lim
δ→0

δ2hijdxidxj = G(ξ)
(
−dτ̃2 + dξ2

)
, (3.3)

where the corresponding coordinates

τ = αℓτ̃ , ξ = arctanh (α tanh(mϕ))
mα

, (3.4)

and conformal factor

G(ξ) = 2α2

2 + α2 (1 + cosh(2mξα)) . (3.5)

The extrinsic curvature associated with the boundary metric hij reads

Kij := 1
2Lngij = − 1

2N
(∂zhij −∇iNj −∇jNi) , (3.6)

with ∇i the covariant derivative respect to hij , and where the outward-pointing normal to
the z = const. hypersurface is

n = 1
N

(
N i∂i − ∂z

)
. (3.7)
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Finally, its trace is taken with respect to the boundary metric, K = hijKij . An important
cross-check of the behaviour of the solution consists of analysing the leading order term of
the extrinsic curvature near the boundary

Ki
j ∼

(1
ℓ
+O (z)

)
δi

j . (3.8)

The asymptotic behaviour described above represents the minimum requirement in which
the gravitational action has a well-posed variational principle, enabling the definition of
holographic conserved quantities in AdS3 [56]. It should be noticed that the coordinate z

defined in (3.1) matches the FG coordinate only at the leading order, which is sufficient
for constructing the holographic stress tensor and the boundary conformal classes g(0).
However, it is important to highlight that the holographic free energy is not guaranteed
to match in this coordinate frame due to the discrepancy between the two gauges. In the
presence of an odd-dimensional bulk, the conformal freedom in the FG frame transforms the
free energy non-trivially and therefore, the free energy depends on the choice of conformal
representative of the boundary theory [54]. We explore this issue in section 4.

Boundary stress tensor and holographic energy. The holographic energy-momen-
tum tensor is given by the variation of the regularised action with respect to the first term
of the FG expansion g(0). This has been written in terms of quantities depending on the
induced metric [57], which in dimension three yields

⟨Tij⟩ = lim
z→0

− 1
8πG

(
Kij − Khij +

1
ℓ

hij

)
. (3.9)

Using (2.10) we obtain

⟨T τ
τ ⟩ = − m2ℓ

32πG

(
2 + m2A2ℓ2 − 3m2A2ℓ2 cosh(2mϕ)

)
,

⟨T ϕ
ϕ⟩ =

m2ℓ

32πG

(
2 + m2A2ℓ2 + m2A2ℓ2 cosh(2mϕ)

)
, (3.10)

which is, indeed, covariantly conserved with respect to the boundary metric g(0), viz.,
∇(0)

i T ij = 0. In addition, it should be pointed out that the stress tensor exhibits a non-
vanishing trace, indicating the breakdown of Weyl invariance in the quantum theory, and
resulting in the emergence of the conformal anomaly

⟨T i
i⟩ =

c

24π
R[g(0)] . (3.11)

Here, c = 3ℓ/2G matches the Brown-Henneaux central charge [53] and R[g(0)] = 2m4A2ℓ2

·cosh(2mϕ) is the curvature of the boundary metric, which is always positive. Additionally,
it is worth noting that the stress tensor can be expressed in the form of a perfect fluid3

⟨Tij⟩ = (p + ρ)uiuj + pg(0)ij , (3.12)
3In 1+1 dimensions there is no shear nor viscosity and it is still possible to have non-constant pressure

while maintaining the form of a perfect fluid. See [58] for an analysis of two-dimensional holographic fluids.
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Figure 4. Holographic mass of the accelerated BTZ pushed by a strut with respect to Aℓ, with
m2 = 0, 0.8, 1, 1.2 for the dot-dashed purple, dotted orange, dashed green, and solid blue curves,
respectively.

on a curved background g(0) and with timelike velocity ui given by

ui = 1√−g(0)tt

(
∂

∂t

)i

, uiujgij
(0) = −1 . (3.13)

The energy density ρ and pressure p read

ρ = m2ℓ

32πG

{
2 + m2A2ℓ2 [1− 3 cosh(2mϕ)]

}
,

p = m2ℓ

16πG

[
1 + m2A2ℓ2 cosh2(mϕ)

]
. (3.14)

We observe that the energy density ρ generates the energy flow of the fluid since uiT
ij =

−ρuj . It is noteworthy that this is different from the dual of the four-dimensional accel-
erating black hole, where the stress tensor cannot be expressed in the form of a perfect
fluid, and corrections due to the acceleration parameter cause the boundary metric to be
non-conformally flat, leading to non-trivial stress tensor components [25, 26].

Finally, we can compute the energy of the theory with respect to ∂τ by integrating the
energy density of the fluid, thus

M =
∫ π

−π
dϕ
√
−g(0)⟨T τ

τ ⟩ =
m2 [2π(2 + m2A2ℓ2)− 3mA2ℓ2 sinh(2πm)

]
32πGα

, (3.15)

of which the zero-accelerating limit gives

lim
A→0

M = m2

8G
. (3.16)

This precisely represents the BTZ mass normalised such that the pure vacuum energy
corresponds to m2 → −1. The behaviour of the mass can be seen in figure 4 and figure 5.
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Figure 5. Holographic mass of the accelerated BTZ pushed by a strut with respect to m2, with
Aℓ = 0, 1, 2, 3 for the dot-dashed purple, dotted orange, dashed green, and solid blue curves,
respectively.

4 Euclidean action: counterterms and domain wall

Holographic quantities are known to suffer from UV divergences. These are shown to
be mapped to IR divergences appearing in the gravitational sector of theories on asymp-
totically anti-de Sitter spaces. Consequently, defining observables requires having a well-
defined renormalised action. This has been achieved in [13, 55, 57, 59] by adding coun-
terterms that depend only on intrinsic quantities of the boundary. For AdS3 gravity, the
renormalised Euclidean action consists of the Einstein-Hilbert action supplemented with
the Gibbons-Hawking-York (GHY) term and the Balasubramanian-Kraus counterterm, en-
suring a well-posed variational principle. However, the identifications performed in section 2
in order to construct the accelerating BTZ black hole, suggest that we need to identify the
contributions coming from the x = const. surface. Following [60–62], the dynamics of the
domain wall can be captured by considering the contributions of the Gibbons-Hawking
terms associated with the surface (along each side) and the domain wall action [63], pro-
ducing the Israel equation (2.6). Then, the Euclidean action can be separated into two
contributions

IE = Iren + IDW , (4.1)

where

Iren = − 1
16πG

∫
M

d3x
√

g (R − 2Λ)− 1
8πG

∫
∂M

d2x
√

h

(
K − 1

ℓ

)
(4.2)

is the AdS3 renormalised action [55, 57, 59], and

IDW = −
∫
Σ

d2y
√

γ

( 1
8πG

[K]|+− + σ

)
, (4.3)

are the Gibbons-Hawking terms of the internal boundary (see figure 6) and wall tension
that gives the correct equation of motion for the domain wall (2.6). Here Λ = −ℓ−2 is
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Σ− Σ+

M

yA

yh

∂M
∂M

Figure 6. Class II solution with no accelerating horizon. The upper diagonal denotes the conformal
boundary ∂M, and the lateral lines are the two internal boundaries Σ− and Σ+ that are identified
in order to obtain a compact horizon. The resulting spacetime corresponds to the accelerated BTZ
solution with a domain wall extending from the black hole horizon to the deep interior.

the cosmological constant, M corresponds to the bulk geometry restricted to some short
IR regulator δ while ∂M is its boundary which is endowed with a metric hij evaluated at
z = δ. For the domain wall contribution we use

1
8πG

∫
Σ

d2x
√

γ [K]
∣∣+
− = −2

∫
Σ

d2y
√

γ σ , (4.4)

where the right-hand side is proportional to the action of the domain wall [63], with σ the
tension computed in (2.8). Thus, the contribution from the renormalised AdS3 action is

Iren = βM − S − βAm sinh(πm)
4παG

( 1
zh

− 1
δ

)
, (4.5)

where zh := r−1
h +A cosh(mπ). On the other hand, the domain wall gives

IDW = βAm sinh(πm)
4παG

( 1
zh

− 1
δ

)
, (4.6)

such that the total Euclidean action (4.1) yields the standard quantum statistical relation

IE = Iren + IDW = βM − S , (4.7)

where M is the black hole energy found in (3.15), β and S are the inverse of the temper-
ature and the entropy found in (2.12), respectively. Note that if one considers only the
Balasubramanian-Kraus counterterm on top of the Einstein-Hilbert and GHY terms, the
resulting Euclidean action is divergent and the horizon contribution does not recover the
black hole entropy. The domain wall extends from the interior (black hole horizon) to the
conformal boundary contributing with a divergent term exactly as the one coming from
the AdS3 renormalised action but with an opposite sign, making the on-shell action well-
defined and reproducing on-shell the quantum statistical relation between the gravitational
Euclidean action and the Gibbs thermodynamic free energy.
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It is clear that this computation differs from the four-dimensional case [20, 25, 26],
where there is no explicit mention of the contribution of the cosmic string. In fact, this has
been explained in the context of instantons in braneworld scenarios [60]. The dynamics of
the cosmic string, or vortex, is introduced in the action as a codimension-2 energy density.
On-shell, the extrinsic curvature contains an extra delta-2 function supported on the cosmic
string, and therefore, the Gibbons-Hawking term cancels out the vortex. As a result, the
renormalised Euclidean action in AdS4 is enough to account for the thermodynamics of the
accelerating black hole.

5 Entanglement entropy

In recent years, holographic entanglement entropy [64, 65] has been shown to be a funda-
mental ingredient in the understanding of the AdS/CFT correspondence. For example, it
has served as a probe for quantum many-body systems, understanding black hole entropy,
and the emergence of spacetime, see for instance [66] and reference therein. It is a powerful
tool that provides valuable information on the dual field theory as it measures the degree of
correlation between two subsystems. At the same time, it allows one to understand quan-
tum information holographically using the nature of the bulk spacetime. The celebrated
Ryu-Takayanagi (RT) formula states that the holographic entanglement entropy can be
obtained by minimising the area of a co-dimension two spatial4 hypersurface Γ (referred
as the RT surface) whose boundary is anchored at the AdS conformal boundary, namely

SE = AΓ
4G

. (5.1)

The RT surface divides the boundary into two subsystems A and Ac and (5.1) indicates the
number of states on A whose measures are consistent with the ones of Ac. In general, the
Euler-Lagrange problem is not easy to solve, and the profile of the RT surface is usually not
obtained analytically as the existence of conservation laws is not guaranteed. Nonetheless,
in three-dimensional gravity, as the theory lacks degrees of freedom; all solutions are locally
AdS for which it is possible to reduce the complexity of the procedure by finding a good
coordinate system.

Following [68], we first consider a slice bounded by a line of latitude ϕ0 and treat ϕ

as time in the minimisation problem. To obtain the RT surface for the accelerating BTZ,
we use the mapping (2.16) which allows us to find the extremal surface for the Rindler
observer. The minimal surface is then parametrised by

Re(Θ) = ℓ

(
1− cosh2Θ

cosh2Θ0

)− 1
2

, (5.2)

where Θ0 satisfies that the radial coordinates go to infinity at the endpoints. This is
mapped to the boundary condition r(ϕ0) = −(A cosh(mϕ0))−1, such that the surface is

4See [67] for the covariant generalisation.

– 15 –



J
H
E
P
0
9
(
2
0
2
3
)
1
2
2

anchored to the conformal boundary. Now we can map the surface to the coordinates used
in (2.10); for the sake of notation we define B := cosh(mϕ0) and ϕ0 := m−1Θ0, resulting in

re(ϕ) =
mℓ

(
αAmℓ cosh(mϕ) + B

√
B2 − α2 sinh2(mϕ)− 1

)
α
(
α2 cosh2(mϕ)− B2

) , (5.3)

whose expansion for small acceleration is

re(ϕ) =
mℓ√

1− cosh2(mϕ)
cosh2(mϕ0)

− m2Aℓ cosh(mϕ)
cosh2(mϕ0)− cosh2(mϕ)

+O(A2) . (5.4)

Substituting the parametrisation into the area functional, one obtains the value of the
minimal area that is proportional to the holographic entanglement entropy. Despite the
simplicity of the last expression, obtaining the area is quite involved. It is divergent at
ϕ = ϕ0, and therefore a short distance cutoff ϵ must be introduced. Then, following [64],
we consider the integration from ϵ to ϕ0 − ϵ and expanding again for small acceleration,
we get that the entanglement entropy (5.1) becomes

SE = c

3 log
[

β

πϵ
sinh

(
πL

β

)]
− 2Aℓ2

(2πℓ

βϵ
sinh

(
πL

β

)) 1
2
tanh

(
πL

2β

)

− A2ℓ4π

βϵ
sinh

(
πL

β

)
− . . . , (5.5)

where we have rewritten L := 4ℓϕ0 to relate it with the length of the entangling region.
Note that, as the temperature is independent of the acceleration, when mapping to Rindler
spacetime the leading order corresponds to the usual result for the BTZ black hole [64],
However, the next to leading order gives subleading divergences which decrease the amount
of entanglement with the acceleration growth. In fact, from the perspective of the black
hole solution, as the acceleration — or in other words, the conical deficit — increases,
the size of the boundary region that is accessible decreases, as can be seen from figure 1.
Therefore, we can interpret the subleading behaviour of the entanglement as an indication
of some information loss due to acceleration.

6 Discussion

In this work, we have described the boundary spacetime associated with accelerating black
holes in 2+1 dimensions. Our starting point has been a concise and pedagogical review
of the construction of the three-dimensional accelerating geometries presented in [38–40].
We have analysed the origin of the acceleration in three dimensions and the proper iden-
tifications of the geometry that allows for black hole interpretation. Particular emphasis
has been given to the case in which the spacetime represents an accelerating BTZ black
hole pushed by a strut. This case is particularly appealing, as it allows for an accelerating
horizon, however we focussed for the purpose of holography on the case where there is just
a single, black hole, horizon.

Since the conformal boundary is defined by a surface that is parameterised as r = r(ϕ),
determining the boundary metric becomes a non-trivial task. To address this, we intro-
duced an alternative coordinate system that incorporates a new “holographic coordinate”,
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z, that is normal to the boundary [20, 34]. In this framework, the metric can be expressed
in terms of a radial ADM foliation, revealing crossed terms that are typically suppressed
when writing the C-metric in the FG fashion [25, 26]. In fact, as noticed in [34], beyond
the z coordinate can be identified with the FG coordinate only up to the leading order.
Nonetheless, the first order of the expansion fully determines the variational principle and
therefore, the structure of the boundary stress tensor. We obtained the black hole mass by
mapping it to the energy of the dual CFT and verified that it recovers the BTZ mass in the
zero acceleration limit. Additionally, we formulated the holographic stress tensor using the
fluid/gravity correspondence, wherein the dual CFT is interpreted as a perfect fluid with
non-constant pressure on a curved background. This is in contrast to the four-dimensional
case, which incorporates shears and corrections arising from the non-conformal flatness of
the boundary metric.

Next, we computed the renormalised action by employing the standard counterterm
prescription in AdS/CFT, as developed in [14, 55, 59]. We found that the on-shell action
gives the quantum statistical relation which relates the partition function and the Gibbs
free energy as expected but with two additional terms. These terms, in principle, contain an
extra divergence that comes from the boundary terms of the gravitational action (Gibbons-
Hawking-York term and Balasubramanian-Krauss counterterm) and a finite contribution of
the black hole horizon. In fact, due to the construction of the accelerating BTZ black hole,
it is necessary to include contributions from the internal boundaries which are on the same
footing as the GHY term. These terms ensure a well-posed variational problem producing
the Israel junction conditions that govern the dynamics of the domain wall. Making use of
the Israel equations explicitly, it is possible to trade the extrinsic curvature for the energy
density of the wall and therefore, express the additional term as the Nambu-Goto action
of the domain wall. In a similar spirit to [69–71], the higher-codimension defect induces
extra contributions into the partition function modifying the thermodynamics of the system
under consideration. Geometrically, the domain wall extends from the deep interior to the
boundary of the spacetime generating a divergence at z = 0. Therefore, its contribution
to the total Euclidean action must be considered in order to obtain the correct quantum
statistical relation.

We closed our study by considering the mapping between the accelerated BTZ black
hole and the Rindler observer which allows us to obtain the Ryu-Takayanagui surface and
to compute the holographic entanglement entropy on the dual CFT. We found that the
well-known logarithmic divergence of the entanglement entropy in a thermal conformal
field theory holds in this context. However, we also discovered new subleading divergences
that are proportional to acceleration and possess a negative sign. In [40], it is shown
that the boundary region of the spacetime is altered by the tension of the domain wall.
From figure 1, it is clear that the access to the boundary depends on the value of the
acceleration. In fact, the behaviour of the entanglement is consistent with this interplay
between acceleration and boundary: as the acceleration increases, a bigger portion of the
AdS boundary is cut out and therefore, there is information that is lost in the dual field
theory as suggested by (5.5). As far as the authors’ knowledge, such subleading behaviour
has not been observed before in the literature. It is also important to note that the
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procedure is specific to three dimensions, as only massless four-dimensional accelerating
solutions can be mapped to the Rindler patch and the identification of the RT surfaces
becomes a highly non-trivial task. This realisation highlights that three dimensions offer a
unique yet comprehensive setting for exploring holographic two-dimensional CFTs in the
presence of acceleration.

In the future, an important aspect that requires further investigation is the establish-
ment of a consistent thermodynamic description of these black holes. This entails studying
the first law, Smarr relation, isoperimetric inequality [72] and the whole machinery of black
hole thermodynamics. In fact, given the complexity of the mass (3.15) and entropy (2.12),
verifying whether these black holes adhere to the first law is not straightforward. Upon
a simple variation of these quantities, it becomes apparent that there exists a possibility
that, unlike slow-accelerating black holes in AdS4, the system might not conform to a first
law and thus may not be in thermal equilibrium. Nonetheless, this is not yet clear, as
there are several issues that require consideration before making such a statement. Given
that we have obtained the quantum statistical relation, it seems very plausible to have a
full Euclidean thermodynamic prescription for accelerating black holes in 2+1 dimensions
as it has been done for the four-dimensional counterpart in [25]. Additionally, it would
be intriguing to investigate the role of acceleration in the dual theory using the extended
first law developed in [24, 31]. This modified first law incorporates new chemical poten-
tials that are conjugate to the cosmic string tension, potentially providing insights into
the physical properties associated with these additional chemical potentials. Furthermore,
recent work [73–75] has shown that the extended first law of black hole thermodynamics
introduces a new chemical potential responsible for the change in the central charge of the
dual CFT. It would be interesting to see how the domain wall tension plays a role in the
first law of thermodynamics of the boundary theory.

Another interesting direction that would shed light on the role of acceleration from the
dual CFT perspective is to explore the hydrodynamic behaviour of the holographic stress
tensor for four-dimensional accelerating black holes. While the stress tensor has been
expressed within the framework of fluid/gravity correspondence [25], it remains unclear
whether it possesses a valid hydrodynamic description that allows for the identification
of associated transport coefficients. It would be interesting to see whether acceleration
plays a significant role in determining the transport coefficients and if they can be utilised
to describe more realistic field theories. Additionally, an expansion regarding the fluid
velocity and acceleration of the dual fluid stress tensor is still an open question. The three-
dimensional case studied in this paper serves as a good starting point, as the solution is
relatively simple yet rich enough to generate a stress tensor that exhibits non-constant
pressure. This enriches the opportunities for studying more realistic systems through the
scope of fluid/gravity correspondence.

A FG expansion

In [26] it was shown that the metric can be cast in a FG gauge

ds2 = ℓ2

z2
dz2 + ℓ2

z2

(
g(0)ij + · · ·+ zd

(
g(d)ij + h(d)ij log(z)

)
+ . . .

)
dxidxj , (A.1)
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which in three-dimensions, the expansion terminates at order z4, and we do not consider the
logarithmic contribution explicitly. Applying the same coordinate transformation of [40]

y = − 1
Ar

= cos ξ +
∞∑

m=1
Fm(ξ)zm , x = cos ξ +

∞∑
m=1

Gm(ξ)zm , (A.2)

such that, the new coordinate ξ is now perpendicular to the (conformal) boundary of the
spacetime. The functions Fm(ξ) and Gm(ξ) are fixed by requiring the fall of conditions
of (A.1) such that there are no crossed terms gzi. The coefficients can be solved order by
order completely, up to F1(ξ) which cannot be fixed and appears as a conformal factor of the
boundary metric g(0), which is consistent with the fact that the conformal boundary of AdS
does not correspond to a fixed metric but to conformal equivalence classes. As explained
in section 4, in three dimensions, besides the Weyl anomaly, the holographic quantities are
not conformal invariant and a different coordinate system is needed in order to compute
on-shell. Considering the expansion for the accelerated BTZ black hole (although the
claims and calculation of this appendix hold for the other black hole solutions as well), one
gets [40]

ds2(0) = ω2
(
−dt̄2 + dξ2

)
, (A.3)

where t̄ = αℓt and ω = ω(ξ) is an arbitrary function which determine different conformal
representatives. The boundary curvature reads

R[g(0)] =
2Υ

ℓ2ω(ξ)

[
Υsin2 ξ

(
ω′′

ω
− ω′2

ω2

)
+ cos ξ

(
1− 3A2ℓ2 sin2 ξ

) ω′

ω

]
, (A.4)

where Υ = 1 − A2ℓ2 sin2 ξ. Other quantities such as the stress tensor and Weyl anomaly
have been computed with this method in [40]. But as aforementioned, only the Weyl
anomaly is conformal invariant and, indeed, gives the Brown-Henneaux central charge for
any representative. Other features are also independent of ω, such as that the holographic
stress tensor is covariantly constant with respect to g(0) and its transformation properties.
Nonetheless, the two-dimensional stress tensor is a quasi-primary operator and to compute
conserved quantities, such as the energy, depends on the Schwarzian derivative of it. In [40]
it has been chosen ω(ξ) = 1, which renders the boundary metric to be flat, as can be seen
from (A.4). Comparing with the boundary metric found in (3.3), taking ω(ξ) = G(ξ)
in (3.5) equals both backgrounds. Therefore, we shall not compare the energy found via
holographic methods.

Finally, the holographic stress tensor can be cast in the same fashion as in (3.12) with
velocity

ui = ω(ξ)δt
i , (A.5)

pressure

p = (1 + m2A2ℓ2)ω2 + (ξ2 − 1)Υ2ω′2

16πGℓα2ω4 , (A.6)
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and energy density

ρ = m

16παGΥω(ξ)2 sin ξ

[
2Υω(ξ)

(
ω′(ξ)

(
3m2A2ℓ2 sin2 ξ + 1

)
cos ξ −Υω′′(ξ) sin2 ξ

)
+ω(ξ)2

(
m2A2ℓ2 + 1

)
+ 3Υ2ω′(ξ)2 sin2 ξ

]
.

Finally, we can now compute the Euclidean action with the standard counterterms
coming from holographic renormalisation with no need to include the domain wall action
as the metric is explicitly in the FG gauge. For the accelerated BTZ pulled by a wall one
gets that for the action to become finite, one must consider the extra counterterm that
accounts for the extra logarithmic divergence that appears in odd dimensions [13, 55, 59]
of the form

Ilog = log δ

∫
dtdξ

√
g(0)tr g(2) , (A.7)

where δ is the IR regulator, and traces are taking respect to the boundary metric g(0).
However, in d = 2 boundary dimensions, this term fails to furnish any contribution to
the holographic stress tensor since this term is proportional to the boundary curvature in
the renormalised action, which is a topological invariant in two dimensions [55]. Then,
the Euclidean action becomes finite, but one is not able to identify the thermodynamic
quantities as integration is not possible for an arbitrary ω(ξ). The finite value of the action
is rather lengthy and we shall not present it here.

B Results for class IC

Generically, Class I describes the geometry of accelerating particle-like solutions. Never-
theless, a particular case dubbed Class IC, represents an accelerating black hole solution
with no continuous limit to the standard BTZ geometry. The novel solution was found
in [40] by considering Class I geometries in a rapid phase, A2ℓ2 ≥ 1, in which there is a
Killing horizon at yh =

√
1− A−2ℓ−2. Then, following the procedure of section 2 to include

a domain wall at some xmax, with tension

σ = A

4πG

√
1− x2

max . (B.1)

Then, using the coordinate transformation

t = Am2

α
τ , y = 1

Ar
, x = cos(mϕ) , (B.2)

renders (2.1) (for Class I) into

ds2 = 1
Ω2

(
−f(r)dτ2

α2 + dr2

f(r) + r2dϕ2
)

, (B.3)

where

f(r) = r2

ℓ2
− m2(A2r2 − 1) , Ω = Ar cos(mϕ)− 1 , (B.4)
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and the tension

σ = Am

4πG
sin(mπ) . (B.5)

As before, the conical deficit is regulated by the parameter m, which relates with the
upper bound of the x coordinate as

xmax = cos(mπ) . (B.6)

As explained in [40], xmax ∈ (yh, 1), with yh ≥ 0 in order to have a single compact horizon.
This implies that there is a maximum value for the mass parameter as

m <
arccos(yh)

π
, (B.7)

and a minimum value m > 0. Otherwise, the solution would present a non-compact
horizon. Moreover, as now the mass parameter m is bounded, there is also a constraint in
the possible values of the acceleration in order that geometry exists, given by

1
m

≤ Aℓ <
1

m sin(mπ) . (B.8)

This implies that Aℓ ≥ 2 in order to have a black hole, showing explicitly that the zero-
acceleration limit is not well-defined, and the solution is not continuously linked with the
BTZ black hole. The thermodynamic properties of the horizon, namely, horizon radius,
Hawking temperature and entropy are

rh = mℓ√
m2A2ℓ2 − 1

, (B.9)

T = 1
β

= |f ′(rh)|
4πα

=
√

m2A2ℓ2 − 1
2πℓα

,

S = ℓ

G
arctanh

[(√
m2A2ℓ2 − 1 + mAℓ

)
tanh

(
mπ

2

)]
,

α =
√

m2A2ℓ2 − 1 .

Finally, α is the constant used in the transformation (2.16) to identify the Rindler
proper time.

In order to compute the mass, we apply the same ideas as in section 4. Firstly, we
introduce

1
r
= z +A cos(mϕ) , (B.10)

such that the conformal boundary is now located at z = 0. This implies that the horizon
is no longer located on a constant surface. Nonetheless, the inequality (B.8) ensures that
the horizon does not intersect with the conformal boundary, as can be seen from figure 7.

Using (3.9) to compute the holographic stress tensor, one obtains

⟨T τ
τ ⟩ =

m2ℓ

32πG

(
2− m2A2ℓ2 + 3m2A2ℓ2 cos(2mϕ)

)
,

⟨T ϕ
ϕ⟩ =

m2ℓ

32πG

(
m2A2ℓ2 − 2 + m2A2ℓ2 cos(2mϕ)

)
, (B.11)
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Figure 7. Horizon radius with ℓ = 1 and m = 0.25. The grey and purple solid lines correspond to
A = 4.5, 5, respectively, and both values are admissible for the horizon. Red dots indicate points
where the horizons intersect with the conformal boundary. The dotted orange curve corresponds to
the critical value Aℓ = (m sinhmπ)−1 = 5.656 where the horizons touches the conformal boundary,
z = 0, exactly at the endpoints ϕ = ±π. The dashed green and dot-dashed blue corresponds to
A = 8, 10, respectively, where both cases break the inequality (B.8).

whose trace recovers exactly (3.11), with c = 3ℓ/2G the Brown-Henneaux central charge.
Furthermore, the boundary stress tensor is covariantly conserved with respect to the bound-
ary metric g(0), and can also be written as the one of a perfect fluid (3.12) with non-constant
pressure and density. Moreover, using (3.15), one gets

M = m2 [2πm2A2ℓ2 − 3mA2ℓ2 sin(2πm)− 4π
]

32πGα
, (B.12)

corresponding to the IC black hole mass.
Finally, the Euclidean action shares the same properties as the Class II black holes;

the Balasubramanian-Krauss action has an extra divergence and an extra horizon finite
contribution due to the acceleration that is removed by the inclusion of the domain wall
action (4.3). Then, its on-shell value

IE = βM − S , (B.13)

satisfies the standard quantum statistical relation with the Gibbs free energy.
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