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Abstract: The ability to measure detailed aspects of the substructure of high-energy jets
traversing the quark-gluon plasma (QGP) has provided a new window into its internal
dynamics. However, drawing robust conclusions from traditional jet substructure observables
has been difficult. In this manuscript we expand on a new approach to jet substructure in
heavy-ion collisions based on the study of correlation functions of energy flow operators
(energy correlators). We compute the two-point energy correlator of an in-medium massless
quark jet and perform a detailed numerical analysis of the produced spectra. Our calculation
incorporates vacuum radiation resummed at next-to-leading log accuracy together with the
leading order contribution in medium-induced splittings evaluated through the BDMPS-Z
multiple scattering and GLV single scattering formalisms for a static brick of QGP. Our
analysis demonstrates how particular features of the modifications of in-medium splittings
are imprinted in the correlator spectra, particularly showing how energy correlators may be
used to extract the onset of colour coherence. We further present a comprehensive discussion
on the accuracy and limitations of our study emphasizing how it can be systematically
improved. This work sets the foundations for a rich program studying energy correlators in
heavy-ion collisions.
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1 Introduction

The successful results of the heavy-ion runs at the Relativistic Heavy Ion Collider (RHIC)
and at the Large Hadron Collider (LHC) [1–3] have opened up a rich program in advancing
the understanding of the strongly interacting matter created under extreme conditions. For
recent reviews see [4–8]. This strongly interacting matter, referred to as the quark-gluon
plasma (QGP), provides a unique opportunity to study free quarks and gluons, as well
as the phase structure of Quantum Chromodynamics (QCD), and may have applications
ranging from understanding neutron stars, to the dynamics of the early universe [6].

One of the most recent exciting advances in collider physics, both theoretically and
experimentally, has been the development of the field of jet substructure, which uses
the detailed internal structure of highly energetic jets to determine the properties of the
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underlying microscopic collisions. While jet substructure had its origins in searches for
physics beyond the Standard Model in p-p collisions (see [9–13] for reviews), it also provides
an excellent tool to study the QGP created in heavy-ion collisions. Indeed, in heavy-ion
collisions, high-energy quarks and gluons are produced in the initial hard scattering and
propagate through the evolving strongly interacting system. An imprint of the system’s
evolution is then left in the internal structure of the reconstructed jets. For these reasons,
jet substructure has attracted significant interest from the heavy-ion community, rapidly
becoming one of the most promising approaches to studying the QGP [4, 7, 14–27].

Jet substructure studies in heavy-ion collisions aim at disentangle the properties of the
QGP by looking at the modifications of the jets’ inner structure in A-A with respect to p-p
collisions (vacuum). This places high demands on the theoretical understanding of QCD
both in vacuum and in medium. Due to the extraordinary complexity of the system created
in these collisions, several phenomena emerge, such as colour coherence [28–31] and medium
response [32, 33], which complicate the extraction of robust conclusions about the inner
dynamics of the QGP from traditional jet substructure observables. Ideally, one would like
to formulate a program of jet substructure measurements in heavy-ion collisions based on a
set of observables which simultaneously have simple theoretical properties and are sensitive
in clean ways to specific features of the QGP. Unfortunately, this has been proven to be far
from straightforward for standard jet shape observables.

In this paper we formulate the study of jet substructure in heavy-ion collisions in terms
of a simple class of inclusive observables known as energy correlators, which are correlation
functions of energy flow operators 〈E(~n1) · · · E(~nk)〉 [34–38], where E(~n1) measures the
asymptotic energy flux in the direction ~n1 [38–41]. In vacuum, the observables present a
clear separation between the non-perturbative and perturbative regimes, with the latter being
known to very high precision (typically NNLL [42]). Within their perturbative regime, they
exhibit a smooth power law behaviour [38, 43], with sharp transitions arising at the presence
of any additional scale in the problem [44, 45]. Additionally, due to their inclusivity, their
theoretical description keeps some simplicity compared to more exclusive observables, even
when applied to very complicated environments with potentially large backgrounds. Indeed,
it is for this reason that close relatives to energy correlators, temperature correlators, are
used to study the cosmic-microwave background (CMB) [46], the big bang, and inflationary
cosmology [47]. In all, this makes energy correlators an ideal candidate for jet substructure
in heavy-ion collisions, opening the door for robustly identifying the dynamics associated
with specific scales of the QGP, whilst precisely controlling other independent factors such
as quark/gluon fractions.

In order to illustrate how the features of a given jet quenching formalism are imprinted
into the energy correlators spectra, we study in this manuscript the two-point correlator
(EEC) of a massless quark-initiated jet, which we compute perturbatively as a spray of
partons. The calculation allows us to access colour coherence properties of the interaction
between the jet and the medium. We compute the EEC spectra within different jet
quenching formalisms for a static brick of QGP. First of all, we make use of a semi-
hard implementation [48, 49] of the multiple scattering BDMPS-Z formalism [50–53] for
medium-induced radiation using two different parton-medium interaction models: a gaussian
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(also referred to as the Harmonic Oscillator) and a Yukawa (Gyulassy-Wang) model.
Independently, we obtain the two-point correlator within the complete single scattering
GLV framework [54–57] using a Yukawa parton-medium interaction model. We find that
while the specific details of the medium-induced formalism employed are imprinted into
the detailed behaviour of the two-point correlator, the ability of this observable to identify
the onset of colour coherence is independent of the jet quenching formalism employed.
This illustrates how the energy correlators can isolate the dynamics of the QGP at a
particular scale. A brief presentation of our results for the Harmonic Oscillator approach
was previously given in [27], here we significantly extend the discussion by considering all
the jet quenching frameworks mentioned above.

The analysis presented in this work is meant to be an initial theoretical exploration of
energy correlators in a heavy-ion environment, aiming at showing how the features of the
underlying formalism for jet-medium interactions are reflected into an EEC-type observable.
For this purpose, we adopted a simple model for the QGP, which needs to be upgraded to
a much more realistic implementation before any meaningful comparisons to experimental
data could be considered. Given the current limitations and scope of the study, we refrain
from delving into the specifics of potential measurements and how the results might differ
for different event selections. These aspects can be more thoroughly addressed in future
publications. Nevertheless, it is useful to keep in mind that the processes of greatest interest
to this observable are the associated production of γ+jet or Z+jet, as previously noted
in [27], since the hard scale necessary to measure the EEC can be taken as either the
energy or pT of the tagged γ/Z. We note, however, that we will not apply in this study
any jet algorithm, rather the jet is the collimated spray of hadrons antipodal to the axis
of the tagged γ/Z (referred in the literature as hemisphere-jets [58, 59]). Therefore any
considerations about jet radii and pT cuts are postponed for future works.

An outline of this paper is as follows. In section 2 we provide a general overview of the
use of energy correlators in jet substructure, highlighting their advantages for elucidating the
inner dynamics of the QGP. In section 3 we present in detail the calculation of the two-point
energy correlator of an in-medium massless quark jet, emphasising the approximations
used, and describing the different theoretical approaches taken for the treatment of the
medium-induced radiation. In section 4 we present and discuss the numerical evaluation of
this two-point correlator, showing that a consistent picture of colour coherence emerges
from the different jet quenching formalisms considered. Section 5 is dedicated to a technical
discussion on the limitations of our current theoretical framework, particularly highlighting
the parametric size of subleading corrections not accounted for. Finally, we summarise and
conclude in section 6. We further provide two appendices: in appendix A we give a detailed
review of the EEC distribution in vacuum, and in appendix B we expand on the numerical
results presented in section 4.

2 Energy correlators as a probe of the quark-gluon plasma

The standard approach to studying jet substructure in collider experiments is through
the use of jet shapes, which are observables that are sensitive in some manner to the
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Primordial fluctuations
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One of the simplest observables from the theoretical perspective is the Energy-Energy

Correlator (EEC), defined as [2, 3]
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Here Ei and Ej are the energies of final-state partons i and j in the center-of-mass frame,

and their angular separation is �ij . d� is the product of the squared matrix element and the

phase-space measure. The EEC can also be defined in terms of correlation function of ANEC

operators [4–7]

E(~n) =
1Z

0

dt lim
r!1

r2niT0i(t, r~n) , (1.2)

where it is given by

d�

dz
=

hOE(~n1)E(~n2)O†i
hOO†i , (1.3)

for some source operator O. This provides a connection between event shape observables and

correlation functions of ANEC operators allowing the study of event shapes to profit from

recent developments in the study of ANEC operators, and conversely, the EEC provide a

concrete situation for studying the behavior of ANEC operators.

There has recently been significant progress in the understanding of the EEC from a

number of di↵erent directions. For generic angles, the EEC has been computed at next-to-

leading order (NLO) in QCD [8, 9] for both an e+e� source, and Higgs decaying to gluons,

and up to NNLO in N = 4 SYM [7, 10]. It has also been computed numerically in QCD at

NNLO [11, 12].

There has also been progress in understanding the singularities of the EEC, which occur as

z ! 0 (the collinear limit) and z ! 1 (the back-to-back limit). In the back-to-back limit, the

EEC exhibits Sudakov double logarithms, whose all orders logarithmic structure is described

by a factorization formula [13, 14]. In the z ! 0 limit, which will be studied in this paper,

the EEC exhibits single collinear logarithms, originally studied at leading logarithmic order

in [15–19]. Formulas describing the behavior of the EEC in the collinear limit were recently

derived in [20] for a generic field theory, and in [21–24] for the particular case of a CFT. This

limit is of theoretical interest for studying the OPE structure of non-local operators, and of

phenomenological interest as a jet substructure observable.

The two-point correlator is particularly simple since it depends on a single variable, z.

Indeed, in a conformal field theory (CFT), its behavior in the collinear limit is fixed to be a

power law

⌃(z) =
1

2
C(↵s) z

�N=4
J (↵s) , (1.4)
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Figure 1. Just as the CMB radiation from the Big Bang propagates to null infinity, where
correlations in the temperature are measured [46], so does the radiation produced in the “Little
Bang” in relativistic heavy-ion collisions. In this case, the radiation is measured by energy flux
operators E(~n) at null infinity. Time scales in the microscopic collision are imprinted in angular
scales of the energy distribution on the celestial sphere.

shape of radiation in a jet. Examples of jet shape observables include thrust, jet mass,
angularities, etc. Jet shapes received significant attention in early work on jet substructure
in p-p collisions, and thus studying their modifications in the presence of a QGP became a
natural approach to studying jets in heavy-ion collisions. However, addressing how a given
shape is modified by the jet interactions with the medium is extremely difficult, since a
jet’s shape contains competing dynamics at many different scales, each of which may be
modified in a different way. We would instead like to have jet substructure observables that
are sensitive to the QGP’s dynamics at a given scale, which requires a completely novel
approach to jet substructure.

Instead of considering the shapes or splitting histories of a jet, we can think of the
pattern of energy flux deposited on the detectors, which can be viewed as the celestial
sphere. This is illustrated in figure 1 in the form of a Penrose diagram. Averaged over
many events, this produces a density field of energy flux, much like the CMB, or like a
two-dimensional condensed matter system. Statistical properties of the energy flux can be
measured using a light-ray operator, E(~n1), which measures the asymptotic energy flux in
the direction ~n1 [38–41], and is defined as

E(~n1) = lim
r→∞

∫
dt r2ni1 T0i(t, r~n1) , (2.1)

where Tµν is the stress-energy tensor of the field theory. In the Penrose diagram in figure 1
these operators are shown as lines, illustrating the integral over time. Multi-point correlation
functions of the energy flow operators, 〈E(~n1)E(~n2) · · · E(~nk)〉 [34–38], then describe the
structure of the energy flux. Due to recent advances in field theory, these correlation
functions can now be computed over a large hierarchy of angles, and have been measured
in Open Data inside high-energy jets in p-p collisions [60].
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(a) (b)

Figure 2. (a) Angular scales in the two-point energy correlator map the time evolution of the
jet. (b) The dynamics associated with the interactions with the QGP are clearly imprinted at a
particular angular scale. Panel (b) first presented in [27].

The key observation is that time scales in the evolution of the jet are imprinted into
angular scales in the asymptotic energy flux. Therefore, by studying the structure of the
correlators at a given angular region, one can access the dynamics at a specific time scale
in the evolution of the jet.1 For a variety of applications of the energy correlators for
identifying scales in QCD systems, see [27, 44, 45, 60, 66–68]. This is of course not an
unfamiliar idea, since due to precisely the same reason correlation functions in the CMB
are used to access particular stages in the time evolution of the universe. Modifications to
the energy flux within a jet, associated with different scales in the QGP, will therefore be
imprinted at different angular regions in the correlators, as schematically illustrated for the
two-point correlator of an in-medium jet in figure 2.

Energy correlators present several other characteristics which may make them excellent
candidates for a jet substructure program in heavy-ion physics. First, since the modifications
of jet substructure observables due to the presence of the QGP are analysed with respect to
a vacuum baseline, it is highly desirable for this baseline to be featureless and independent
of non-perturbative effects. In vacuum, normalised energy correlators exhibit a clear angular
separation between the non-perturbative and perturbative regimes [60], presenting in the
latter a featureless power-law behaviour indicative of massless QCD being asymptotically
conformal [38, 43]. This power law is known perturbatively for both quark and gluon jets
at NLO+NNLL accuracy, see [42, 69] and appendix A and obeys rigorously understood
factorisation theorems [70]. Thus, in heavy-ions the presence of additional scales due to
the QGP formation is expected to result in clear changes in this power-law behaviour that
cannot be attributed to other modifications, such as quark/gluon fractions.

1For other recent approaches to accessing different timescales of the system’s evolution with jet quenching
observables see e.g. [61–65].

– 5 –



J
H
E
P
0
9
(
2
0
2
3
)
0
8
8

Second, energy correlators isolate single logarithmic collinear physics, which is expected
to be robust to the underlying soft backgrounds. Furthermore, they can be weighted
by additional powers n of the energy, En(~n1), to further suppress soft radiation while
remaining theoretically tractable. For the same reason, they can be computed efficiently
on tracks [70–74]. They achieve this insensitivity to soft radiation without the need for
grooming algorithms, due to the fact that they are energy weighted, and inclusive over
extra radiation, so they are not Sudakov observables. This is particularly interesting in
the heavy-ion context, where grooming techniques have not been tailored to the presence
of a large underlying event, which can lead to a substantial number of splittings to be
misidentified [75].

It is also worth comparing the energy correlator with other observables based on
declustering algorithms [76, 77], such as the groomed energy fraction zg and groomed angle
θg. The groomed energy fraction zg gives access to the collinear dynamics of the jet while
being insensitive to soft radiation. However, the energy fraction is not associated with
a particular time scale in the jet, making it not ideal for studying the dynamics of the
QGP, which is more naturally mapped into an angular variable. Contrary to zg, which
is extraordinarily insensitive to non-perturbative and higher order contributions [76], θg
may be associated with particular time scales, but it is highly sensitive to non-perturbative
and higher order contributions, and is not well described by parton showers and analytic
calculations in p-p collisions [78]. Additionally, there have also been attempts to be further
differential by studying in-medium modifications to the primary Lund plane of the jet
radiation [15, 79]. This approach can be roughly understood as differential in both θg and
zg, and thus, whilst potentially accessing novel physics, it also comes with the downside
that the drawbacks of both observables are simultaneously present. In contrast to θg and
the Lund plane, the power-law behaviour displayed by energy correlators in vacuum is
insensitive to non-perturbative effects and higher order corrections for angles larger than
∼ ΛQCD/Q, where Q is a hard scale usually taken as the initial jet energy or pT [80, 81],
thus providing a robust angular variable [27], which is otherwise very hard to find.

3 Calculating the two-point correlator of an in-medium jet

Having described our general approach to probing the dynamics of the QGP using energy
correlators, in this section we focus on the specific case of the simplest two-point energy
correlator of an in-medium jet. We describe in detail how this observable can be computed
incorporating interactions with the medium within several jet quenching formalisms.

3.1 The collinear limit of the energy correlators

The n-th weighted normalised two-point correlator can be written in terms of the inclusive
cross-section σij to produce two hadrons (i, j) as

〈En(~n1)En(~n2)〉
Q2n = 1

σ

∑
ij

∫ dσij
d~nid~nj

Eni E
n
j

Q2n δ(2)(~ni − ~n1) δ(2)(~nj − ~n2) , (3.1)
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where Ei is the lab-frame energy of a final state hadron i, and Q is an appropriate hard scale.
σ(Q) is the integrated cross-section for the studied process. In an isotropic environment, 3
of the degrees of freedom in {~n1, ~n2} correspond SO(3) symmetries. Hence, we will study
the distribution

dΣ(n)

dθ =
∫

d~n1,2
〈En(~n1)En(~n2)〉

Q2n δ(~n2 · ~n1 − cos θ) . (3.2)

Here we have introduced the short-hand notation dx1,2 = dx1dx2.
Let us a consider a situation where a highly energetic massless quark-initiated jet

propagates through the QGP. Here the relevant hard scale, Q, is the jet energy. In an
experimental realisation of an EEC measurement, that scale can only be determined by
inference from the detected final state particles. Typically this is done by using a jet
algorithm, however doing so transforms the measurement from an inclusive observable to
an exclusive one. Therefore, the processes of greatest interest to this observable will be the
associated production of γ+jet or Z+jet, in which case Q would be either the energy or
pT of the tagged γ/Z.2 We are interested in the relatively wide angle region of medium
modification. As the average momentum exchange between the two correlator points goes
as ∼ θQ, the wide angle region where θQ� ΛQCD is largely determined by perturbative
physics. We therefore write the observable as a sum over inclusive partonic cross-sections:

dΣ(n)

dθ = 1
σ

∫
dEq,g

dσ̂qg
dθdEqdEg

EngE
n
q

Q2n + 1
σ

∫
dEg1,g2

dσ̂g1g2

dθdEg1dEg2

Eng1E
n
g2

Q2n

+ 1
σ

∫
dEq1,q2

dσ̂q1q2

dθdEq1dEq2

Enq1E
n
q2

Q2n + (perm. q ↔ q̄) +O
(ΛQCD
θ Q

)
, (3.3)

where σ̂ij is the inclusive cross-section to produce final state partons i, j.3 σ̂ij still contains
initial state non-perturbative physics, such as (n)PDFs. This factorisation of final state
perturbative and non-perturbative physics is of Collins-Soper-Sterman [82, 83] form and has
been proven for energy correlator observables with hadronic initial states [70]. In principle
one can convolute the given partonic result with fragmentation functions or track functions
as appropriate for a collider measurement.

We define a partition between the vacuum and medium physics in the partonic cross-
sections as

dσ̂ij
dθdEidEj

=
(
1 + F

(ij)
med(Ei, Ej , θ)

) dσ̂vac
ij

dθdEidEj
, (3.4)

where F (ij)
med is defined to be the medium modification to a given i, j vacuum partonic

cross-section. Using this definition, we can resum the vacuum inclusive-jet contributions to

2If a jet algorithm must be used, the goal will be to let the radius be as large as possible (ideally twice
the angular scale studied) so that edge effects from the cone boundary are small [60], thus letting the energy
weighting in the correlator tame the backgrounds rather than the cone size. The hard scale should always
be defined by the vector boson to remove the effects of a bias on the jet energy scale.

3Note that the given result is for single flavour QCD. Additional sums over quark flavours should be
included for multi-flavour QCD.
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the observable (labelled J (n)
EEC in the literature [84]) into a closed form expression using the

celestial operator product expansion (OPE):

1
σ

∑
ij∈{g,q,q̄}

∫
dEi,j

dσ̂vac
ij

dθdEidEj
Eni E

n
j

Q2n

∣∣∣∣
n=1
≡ J (1)

EEC = C
1

θ1−γ(3) +O(θ0) , (3.5)

where γ(3) is the twist-2 spin-3 QCD anomalous dimension at fixed coupling.4 The
expression becomes more complicated with n > 1, however crucially one still gets the θ−1

scaling behaviour at leading order in αs. We provide in appendix A a review of the celestial
OPE and the relevant results. C is a constant (up to the running coupling) that will not be
relevant for our analysis. For completeness:

C = αs
2π

9CF
2 +O(α2

s ) .

Now we must turn our attention to the terms dependent on F (ij)
med. Since we are here

focusing on the propagation of a quark jet through the medium, we expect dσ̂qg to provide
the leading contribution to the medium enhancement. Specifically, relative to dσ̂qg, the
other cross-sections will be suppressed by at least a factor of αs(θQ). We are therefore
motivated to introduce a momentum fraction z = Eg/Q and a scale µs such that∫

dEq,g F (qg)
med

dσ̂vac
qg

dθdEqdEg
Enq E

n
g

Q2n =
∫

dz dµs F
(qg)
med

dσ̂vac
qg

dθdzdµs
zn(1− z − µs/Q)n. (3.6)

Written in this form, µs can be interpreted as the energy scale of the radiation over which
F

(qg)
med is inclusive for a given (z, θ). By momentum conservation, one necessarily has that

F
(g1g2)
med

dσ̂vac
g1g2

dθdEg1dEg2

Eng1E
n
g2

Q2n ≤ F (g1g2)
med

dσ̂vac
g1g2

dθdEg1dEg2
zn(µs/Q)n, (3.7)

F
(q1q2)
med

dσ̂vac
q1q2

dθdEq1dEq2

Enq1E
n
q2

Q2n ≤ F (q1q2)
med

dσ̂vac
q1q2

dθdEq1dEq2
(1− z)n(µs/Q)n. (3.8)

Following conventional arguments of strong ordering, the dσ̂gg and dσ̂qq type cross-sections
are largest when µs/Q� z and ln θ−1 � 1. Hence, we can identify each term which depends
on F (ij)

med for (i, j) 6= (q, g) as sub-leading, maximally scaling as O(αs(θQ) ln θ µns /Qn) relative
to dσ̂qg. And so, we write the medium contribution to the observable as

∑
ij∈{g,q,q̄}

∫
dEi,j F (ij)

med
dσ̂vac

ij

dθdEidEj
Eni E

n
j

Q2n

=
∫

dz F (qg)
med

dσ̂vac
qg

dθdz z
n(1− z)n

(
1 +O

(
µ̄s
Q

)
+O

(
αs(θQ) ln θ µ̄

n
s

Qn

))
. (3.9)

Here the first quoted error comes from neglecting complete momentum conservation in the
energy weighting of the q → qg term, note that dσ̂ij still keeps complete energy conservation.

4The running coupling slightly breaks the simple exponentiation of the anomalous dimension [85], see [80]
and appendix A.
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µ̄s is the cross-section weighted average inclusivity scale (µ̄s = 1
σ̂

∫ dσ̂
dµsdzµsdµs). Typically, in

the high energy limit, d(Fmedσ̂
vac
ij )/dω ∼ (ω)−3/2ω

1/2
c Θ(Q > ω & µ) where ω is the energy

of a quanta of radiation over which our computation is inclusive, ωc is the characteristic scale
for soft in-medium radiation,5 and µ is the screening mass of the medium [86]. Therefore,
we are led to assume that µ̄s/Q ∼

√
µ/Q. We treat the O(µ̄s/Q) corrections as small in

this paper. At this point we stress that, due to the inclusivity of the observable, neglecting
the additional energy radiated by the jet through interactions with the medium (µ̄s) is not
equivalent to neglecting the energy loss in typical jet substructure observables employed
in heavy-ions, such as zg or θg which are exclusive. We will further discuss this point and
outline how to systematically improve the approximations made here in section 5.6 From
here on we will drop the second error term as it will always be parametrically smaller than
the first in the perturbative region of the observable (where αs ln θ−1 < 1). We will also
drop the (qg) superscript on F (qg)

med .
Upon combining the vacuum resummation in eq. (3.5) with eq. (3.9), we reach the

master equation for our analysis,

dΣ(n)

dθ = 1
σ

∫
dz
(
g(n)(θ, αs) + Fmed(z, θ)

) dσ̂vac
qg

dθdz z
n(1− z)n

(
1 +O

(
µ̄s
Q

))
+O

(ΛQCD
θ Q

)
,

(3.10)

in which we can use Fmed(z, θ) obtained within different jet quenching formalisms. Here
g(n) contains the vacuum resummation, i.e. g(1) = θγ(3) +O(θ) at fixed coupling given dσ̂vac

qg

at O(αs):
1
σ

dσ̂vac
qg

dθdz = αs(θQ)
π

CF
1 + (1− z)2

z θ
+O(α2

s , θ
0) . (3.11)

See appendix A.3 for complete expressions for g(n) including the running coupling. Note
that by construction the two-point correlator in p-p collisions, dΣ(n)

vac/dθ, is achieved by
setting Fmed = 0 in (3.10).

Before moving on, a word on model dependent errors. In this paper, to simplify the
computation of Fmed, we will be using two further assumptions. Firstly, that Fmed is
dominated by the initial hardest q → qg splitting, ignoring the resummation of multiple
medium-induced emissions. This will introduce a multiplicative error to the integrand of
eq. (3.10) of the form O

(
αs ln θ−1

onset

)
where θonset is the smallest angle at which |Fmed| is

parametrically & 1. Secondly, when computing Fmed within jet quenching formalisms which
account for multiple in-medium scatterings, we will make use of a semi-hard approximation
for the parton-medium scatterings in which all partons propagate eikonally undergoing
medium-induced colour rotations. This is valid provided 1− µs/Q > z > µs/Q, and so we
introduce a further multiplicative error in the integrand of eq. (3.10) of the form O (µ̄s/zQ).
For approaches which only include a single medium scattering, instead of resumming
multiple eikonal interactions, an O (n0L) error arises with n0 being the linear density of
scattering centers and L the medium length.

5In the harmonic oscillator approximation of the soft spectrum one finds that ωc = q̂L2/2 where q̂ is the
transport coefficient and L is the medium length.

6See also [87] for the first estimates of the impact of energy loss effects on the in-medium EEC.
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3.2 Multiple scattering framework for in-medium interactions

The usual approach to calculate medium-induced radiation accounting for multiple scat-
terings is through the BDMPS-Z perturbative QCD formalism [50–53]. In this setup, one
considers the high-energy limit in which the momentum transfer between the probe and the
medium is only transverse,7 and thus multiple interactions can be resummed in terms of an
in-medium propagator taking the following form8

GR(x1, t1;x0, t0; p+) =
∫ r(t1)=x1

r(t0)=x0
Dr exp

[
i
p+

2

∫ t1

t0
ds ṙ2(s)

]
WR(t1, t0; [r]) , (3.12)

where WR is a Wilson line in the representation R given by

WR(t1, t0; [r]) = P exp
[
ig

∫ t1

t0
dt T aRA−,a(t, r(t))

]
, (3.13)

with T aR a colour matrix in the representation R and A−,a a classical background describing
the medium.

These propagators are used to calculate cross sections for fixed configurations of the
background field, then one must take a weighted average over all possible such configurations
to produce an observable. A gaussian average is assumed, where the only non-trivial
correlation is the two-point function, which explicitly depends on the medium parameters,〈

A−,a(t, r)A†−,b(t′, r′)
〉

= δab δ(t− t′)n(t) γ(r − r′) , (3.14)

with n the linear density of scattering centers and γ(r) the Fourier transform of the collision
rate. When taking averages of combinations of in-medium propagators one must expand to
all orders, consider all possible field pairings, and resum the final result. For the inclusive
cross section to produce two partons the resummation is far from straightforward, as has
been shown in [93–95] where partial results have been achieved. Given that we need to
keep track of both the splitting energy fraction z and the splitting angle θ, we cannot make
use of previous approaches used for energy loss where only the soft limit was considered
(z → 0) [56, 86, 96], or for branching rates where the angular dependence is lost [52, 53, 97–
99]. Instead, we use a semi-hard approximation [48, 49] which is expected to give accurate
results as long as the daughter partons are not too soft. In that setup, all partons are
sufficiently energetic to propagate eikonally, thus following straight-line trajectories in
coordinate space, which considerably simplifies the calculation of the medium averages.
The in-medium propagator in (3.12) then takes the form

G(x1, t1;x0, t0; p+) ≈ G0(x1, t1;x0, t0; p+)WR (t1, t0; [xcl(t)]) , (3.15)

where xcl = t1−t
t1−t0x0 + t−t0

t1−t0x1 is the classical trajectory and

G0(x1, t1;x0, t0; p+) = p+

2πi(t1 − t0)e
ip+(x1−x0)2

2(t1−t0) , (3.16)

7For recent generalisations accounting for full momentum transfer between the medium and the probe
see [88–92].

8In this section we use light-cone coordinates (p+, p−, p), where p± ≡ (p0±p3)/
√

2 and p is the transverse
momentum. Analogously, in coordinate space we use (x+, x−, x), where x± ≡ (x0 ± x3)/

√
2 and x is the

transverse position.
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is the vacuum version of the propagator. Following [48], the high-energy limit of the
transverse Fourier transform is taken as

G(p, t1;p0, t0;E) ≈ (2π)2δ2(p− p0) e−i
p2

1
2E (t1−t0)WR(t1, t0, [nt]) , (3.17)

with n = p/E.
The approximations taken to arrive at the simplified expression for the propagator

in (3.17) might limit the range of applicability of this approach. Nevertheless, the fact that
the energy correlators give more weight to splittings where none of the daughter partons
is too soft plays to our advantage since that is precisely the region where the semi-hard
approximation works best (see section 5 for a more detailed discussion). The simplicity of
the propagator in (3.17) allows us to obtain analytical results for the two-particle inclusive
cross section for simplified models of the medium averages, thus allowing us to identify the
relevant scales entering the calculation and explore their relation with those appearing as
changes in the shape of the energy correlators.

Let us consider a 1 → 2 splitting with the initial parton having energy E and the
daughter partons having energies zE, (1−z)E and transverse momentum p1,p2 respectively.
Using the in-medium propagators one can easily construct the corresponding amplitude for
this process, square it and then take the average over medium configurations [48, 49]. At
leading colour, the cross section can be expressed in terms of averages of only two (dipole)
or four (quadrupole) Wilson lines in the fundamental representation, accounting for the
multiple scatterings of all partons along their fixed trajectories, both on the amplitude and
the conjugate amplitude. We take these trajectories as

r0(s) = 0 ,
r1(s) = n1(s− t) ,
r1̄(s) = n1(s− t̄) ,
r2(s) = n2(s− t) ,
r2̄(s) = n2(s− t̄) , (3.18)

with n1 = p1/((1− z)E), n2 = p2/(zE), and t and t̄ the splitting times in the amplitude
and conjugate amplitude respectively.

The dipoles appearing in this calculation can be written as

SIJ(tb, ta)≡
1
Nc
〈tr[WF (tb, ta; [rI ])W †F (tb, ta; [rJ ])]〉= exp

[
−1

2

∫ tb

ta
dsn(s)σIJ(s)

]
,

(3.19)
with I, J ∈ {0, 1, 2, 1̄, 2̄}, σIJ(s) = σ(rI(s) − rJ(s)), and σ is the so-called dipole cross
section given by

σ(r) = g2 [γ(0)− γ(r)] . (3.20)

We note that in order to simplify the notation in (3.19), we have dropped the explicit
dependence on t or/and t̄ that comes through σIJ.
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On the other hand, only one quadrupole appears, which reads

Q(tb, ta) = S11̄(tb, ta)S22̄(tb, ta) +
∫ tb

ta
ds S11̄(tb, s)S22̄(tb, s)T (s)S12(s, ta)S1̄2̄(s, ta) ,

(3.21)
with the transition matrix T being

T (s) = −n(s)
2
(
σ12(s) + σ1̄2̄(s)− σ12̄(s)− σ1̄2(s)

)
. (3.22)

As shown in [49], Fmed in the semi-hard approximation takes the form

Fmed(z, θ) = 2
∫ L

0

dt
tf

[∫ L

t

dt̄
tf

cos
(
t̄− t
tf

)
C(4)(L, t̄, t)C(3)(t̄, t)− sin

(
L− t
tf

)
C(3)(L, t)

]
,

(3.23)
where the formation time tf is given by

tf = 2
z(1− z)Eθ2 , (3.24)

and C(n)(ta, tb) are n-particle correlators which can be written in terms of the dipoles and
quadrupole above, but whose explicit form varies depending on the identity of the partons
in the splitting.

For the rest of this manuscript we will focus on the q → qg splitting. In this case and
for leading colour, the three- and four-point functions read (see [48, 49])

C(3)(t̄, t) = S02(t̄, t)S12(t̄, t) , (3.25)

C(4)(L, t̄, t) = Q(L, t̄)S22̄(L, t̄) , (3.26)

where we have re-established the t dependence in C(4) coming from the trajectories r1, r2.
In order to continue with the evaluation of Fmed, which we will perform at fixed coupling,

we must specify the details of the parton-medium interaction encoded in σ(r). We will
restrict ourselves to the case of a static QGP of length L with constant linear density of
scatterings n(s) = n0Θ(L− s), the so-called “brick” case. This simplification allows us to
recognise the relevant scales entering the calculation which will play an important role when
analysing the changing shape of the energy correlators after numerical evaluation. Extensions
of this formalism to more realistic medium profiles will be explored in future publications.

In this static medium case, it is easy to see that C(4)(L, t̄, t) actually depends only on
the differences L− t̄ and t̄− t, while C(3)(t̄, t) depends only on t̄− t. This will be explicitly
showed in the following subsections, where we will specify the functional form of σ and derive
the corresponding n-point functions. Defining the following re-scaled n-point functions

C(3)(t̄, t) = C̃(3)
(
t̄− t
L

)
, C(4)(L, t̄, t) = C̃(4)

(
L− t̄
L

,
t̄− t
L

)
, (3.27)

the expression for Fmed in (3.23) can then be written as

Fmed(z,θ) = 2L
tf

∫ 1

0
dτL

[
−sin

(
L

tf
τL

)
C̃(3)(τL)+L

tf

∫ 1−τL

0
dτ cos

(
L

tf
τ

)
C̃(4)(τL, τ) C̃(3)(τ)

]
,

(3.28)
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which can be directly plugged into our master equation (3.10) to obtain the two-point
energy correlator of an in-medium massless quark jet.

The expression above reflects the fact that emissions with a formation time larger than
the length of the medium are not affected by it, and thus Fmed is suppressed by an overall
(L/tf)2 factor for tf � L. The separation between kinematical regions with formation times
either larger or smaller than the length of the medium defines an angular scale

θL = 1√
EL

, (3.29)

which parametrically indicates the minimum angle for emissions to be sensitive to medium
modifications.

3.2.1 Harmonic oscillator approximation

We first consider the Harmonic Oscillator (HO) approximation, which uses a simplified form
of the dipole cross section σ and allows us to compute analytically the n-point functions
entering the expression for Fmed [48, 49]. This approach has been shown to be a reasonable
approximation to more realistic interaction models in the regions of phase space where the
multiple scatterings with the medium play an important role [86, 100].

In this setup, the dipole cross section in coordinate space is quadratic and reads

n0σHO(r) = 1
2 q̂ r

2 , (3.30)

where q̂ is the so-called jet quenching parameter that characterises the average transverse
momentum squared transferred from the medium per unit path length.

Plugging this expression into (3.19) one can show that the three- and four-point
correlators at leading colour within the HO approach are given by (see [49])

C̃
(3)
HO(τ) = exp

[
− 1

12

(
θ

θc

)2
τ3(1 + (1− z)2)

]
, (3.31)

and

C̃
(4)
HO(τL, τ) = e−

1
4

(
θ
θc

)2
τLτ

2(z2+2(1−z)2)

×
(

1− 1
2

(
θ

θc

)2
z(1− z) τ2

∫ τL

0
dτs e−

1
12

(
θ
θc

)2
τ2
s (2τs+3τ)e−

1
2

(
θ
θc

)2
z(1−z) τsτ2

)
,

(3.32)

with
θc = 1√

q̂L3 . (3.33)

We can plug these expressions directly into (3.28) and perform the integrations numerically
to get Fmed, as done in [49].

As noted in the analysis presented in [48], one can easily see that for θ � θc both C̃(3)

and C̃(4) are very close to 1 and thus there is a complete cancellation between the two terms
in (3.28). This suppression of Fmed yields to the interpretation of θc as the critical angle
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determining whether the medium can resolve the two daughter partons or if it sees them as
a single colour charge. Of course, this distinction is only relevant when tf is short enough
to actually have a formed pair inside the medium. Therefore, if θL � θc all emissions
occurring inside the medium are automatically resolved, and θc becomes irrelevant. We
will refer to this case as the decoherent (DC) limit. In the opposite case, θL � θc, there is
an intermediate region in which emissions can occur inside the medium while not being
resolved by it, thus yielding a smaller Fmed than those emissions which are fully resolved.
This case will be referred as the partially coherent (PC) limit. This clear distinction between
the possible orderings of the angular scales is a direct consequence of colour coherence
effects in the splitting process and will be used in section 4 when analysing the behaviour
of the energy correlators for different sets of values of the medium and jet parameters.

3.2.2 Yukawa collision rate

Even though the HO approximation is very useful, as it allows us to clearly identify the
relevant angular scales, it has well known shortcomings, mainly the absence of the large
transverse momentum tails. In the weakly coupled picture of the QGP being considered here,
the medium has point-like constituents with Coulomb-like interactions at short distances
which manifest as a power-like distribution for large transverse momentum transfers instead
of the exponential fall of the HO approximation.

In order to incorporate the effect of such tails in our analysis, we now consider a
more realistic model for parton-medium interactions. We use a Yukawa collision rate as
implemented in the Gyulassy-Wang model [101] through

VY(q) = 8πµ2

(q2 + µ2)2 , (3.34)

where µ2 is the screening mass. This collision rate is directly related to the average
of two fields γ in (3.14) through a Fourier transform, V (q) = g2 ∫ d2r e−ir·q γ(r). The
corresponding dipole cross-section in coordinate space can then be easily obtained, yielding

σY(r) = 2 [1− µ|r|K1(µ|r|)] , (3.35)

where K1 is the modified Bessel function of the second kind. This can then be employed to
calculate the dipoles SIJ in (3.19) and the quadrupole Q in (3.21) to be used in the n-point
functions. These take the following form:

C̃
(3)
Y (τ) = exp

{
−n0L

(
2τ−

∫ τ

0
dτsµθLτs

[
(1−z)K1 (µ(1−z)θ τsL)+K1 (µθτsL)

])}
,

(3.36)
and

C̃
(4)
Y (τL, τ) = exp{−n0LτL [3−2µ (1−z) θ τ LK1 (µ (1−z) θ τ L)−µz θτ LK1 (µzθτ L)]}

×
(

1+
∫ τL

0
dτsLT (τs, τ) exp

{
−n0µθτs τ L

2

×[(1−z)K1(µ(1−z)θ τL)+zK1(µz θτ L)]
}

×exp
{
n0Lµθ

∫ τs

0
dτ ′s

[
(τ ′s+τ)LK1(µθ (τ ′s+τ)L)+τ ′sLK1(µθτ ′sL)

]})
,

(3.37)

– 14 –



J
H
E
P
0
9
(
2
0
2
3
)
0
8
8

where the transition matrix T (τs, τ) reads

T (τs, τ) =− n0Lµθ
[
− (τs + τ)K1 (µ θ (τs + τ)L)− τsK1 (µ θ τs L)

+ [(1− z) (τs + τ) + z τs]K1 (µ θ [(1− z) (τs + τ) + z τs]L)

+ [(1− z) τs + z (τs + τ)]K1(µ θ [(1− z) τs + z (τs + τ)]L)
]
.

(3.38)

All integrations in the formulas above must be performed numerically, which means
that we cannot extract directly from the formulas the relevant angular scales as in the HO
case. Nevertheless, the discussion about the two competing angular scales, θL and θc, is
still valid and we anticipate seeing the distinction between the two regimes, DC and PC,
described in the previous subsection.

The dynamics in this model is expected to be dominated by the behaviour of the dipole
cross-section at small distances,

σY(r) r→0≈ µ2r2 ln 1
|r|

. (3.39)

Neglecting the logarithmic dependence and comparing to (3.30) we see that parametrically
the jet quenching parameter q̂ appearing in the HO approximation is related to the
parameters entering the Yukawa interaction model by q̂ ∼ n0µ

2. This correspondence will
be used to define the angular scale θc for the Yukawa collision rate since its definition
in (3.33) is given in terms of q̂.

3.3 Single scattering framework for in-medium interactions (GLV)

Alternatively, for dilute media, one can consider the evaluation of the two-particle cross-
section in an opacity expansion, where a series is defined in terms of the number of scatterings
between the probe and the medium. This approach has been widely used in the soft case
(z → 0), where analytical results to first order in opacity are available [54, 56] and some
numerical analyses for higher orders have been explored [55, 102]. Going beyond the soft
limit, the splitting functions for arbitrary values of z at first order in opacity were calculated
in [57] and a method to recursively obtain higher orders was derived in [95, 103], where
it is clearly seen that the complexity of the formulas grows very fast when the number of
scatterings is increased.

The downside of this approach is that it gives incorrect results in regions of phase space
where one expects multiple scatterings to be important. It does not fully incorporate the
Landau-Pomeranchuk-Migdal (LPM) effect where several scatterings act in a coherent way
during a single emission, thus yielding to unitarity issues which can manifest as either too
large or negative cross sections. On the other hand, in this approach there is no need to
use the semi-hard approximation employed in the multiple scattering case of section 3.2,
and thus one can keep the transverse momentum broadening of the daughter partons.

In this single scattering framework, we can calculate Fmed for the q → qg splitting
using the formulas in [57] adapted to our notation. As in the multiple scattering case, we
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use a uniform medium with constant linear density n(s) = n0Θ(L− s), yielding

Fmed(z,θ) = 2πn0
z(1−z)E

∫
k
δ (|k|−z(1−z)Eθ)

∫ L

0
dt
∫
q
VY(q)

×k2
[
k+zq

(k+zq)2 ·
(2CF
Nc

k+zq
(k+zq)2−

k−(1−z)q
(k−(1−z)q)2 + 1

N2
c

k

k2

)
[1−cos(Ω1t)]

+ k−(1−z)q
(k−(1−z)q)2 ·

(2(k−(1−z)q)
(k−(1−z)q)2 −

k+zq
(k+zq)2−

k

k2

)
[1−cos(Ω2t)]

+ (k+zq)·(k−(1−z)q)
(k+zq)2(k−(1−z)q)2 [1−cos(Ω3t)]

+ k

k2 ·
(
k−q

(k−q)2−
k

k2

)
[1−cos(Ω4t)]−

k·(k−q)
k2(k−q)2 [1−cos(Ω5t)]

]
,

(3.40)

where we have used the shorthand
∫
q =

∫
d2q/(2π)2 and VY is the Yukawa collision rate

given in (3.34). We have defined k as the relative transverse momentum of the daughter
partons and

Ω1 = (k + zq)2

2z(1− z)E , Ω2 = (k − (1− z)q)2

2z(1− z)E , Ω3 = (k − (1− z)q)2 − (k + zq)2

2z(1− z)E ,

Ω4 = k2

2z(1− z)E , Ω5 = k2 − (k − q)2

2z(1− z)E . (3.41)

The formula above for Fmed shows clear differences with the results for the multiple
scattering case. In particular, we can see that the angular scales we extracted from the
previous analyses do not appear as clear cut here. The lack of medium enhancement for
splittings with long formation times in the multiple scattering approaches was related to
the arguments of the sine and cosine in (3.28) being the same, whereas here the arguments
of all the cosines are different. Similarly, the distinction between coherent and incoherent
emissions was a consequence of the exponential suppression factors in the n-point correlators,
which are absent here as well. The physical principles behind these features of the medium
enhancement are still valid, and thus we still expect to see differences between the different
regimes where the splitting occurs outside of the medium or where the medium cannot
resolve the individual daughter partons. Nevertheless, the boundaries between those regions
are expected to be loosely defined and the transition regions to be larger.

4 Numerical results

To further proceed in the computation of the two-point energy correlator given in eq. (3.10),
one must numerically evaluate Fmed in the single and multiple in-medium scatterings
approaches described in the previous section. Then, Fmed is combined with the analytic
NLL expressions for g(n) given in appendix A.3 and the remaining z integral in (3.10) is
performed via Monte Carlo integration.

Figure 3 shows a sample of the results for the n = 1 energy correlator, dΣ(1)/dθ, for
each jet quenching formalism and for reasonable values of the medium parameters. All
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Figure 3. Top: the n = 1 EEC in (3.10) of a E = 100GeV quark jet evaluated through the multiple
scattering HO (green), multiple scattering Yukawa (blue), and single scattering GLV (red) approaches
compared to the vacuum NLL result (black dashed). Both plots show the same curves, either with
(left) or without (right) log scaling on the y-axis. Bottom: same as the top panel for different sets of
medium parameters chosen so the amplitude and onset of the medium enhancement qualitatively
match among the different models. All curves are normalised by Σ(1)

vac ≡
∫ 0
−5 dΣ(1)

vac/dθ d(ln θ).

the curves are almost identical to the vacuum result for small angles. This follows our
expectations as the small angle structure is dominated by splittings with a formation time
much larger than the length of the medium and so do not have a significant medium
modification. This argument is model independent, which agrees with what is seen in
figure 3, where the point at which the in-medium EEC deviates from the vacuum baseline
does not depend on the particular model used for the interactions with the medium. At
larger angles, the in-medium EEC presents an excess with respect to the vacuum curve due
to medium-induced radiation. The particular features of this enhancement depend on the
formalism used to obtain Fmed, with larger differences between models at larger angles (see
the top panels of figure 3). This too follows intuition, since wider angle structures in the
EEC are formed from events with a large overall transverse momentum transfer from the
medium, which is the region where the different medium-induced radiation approaches differ
the most. In contrast, smaller angle structures in the medium enhancement are dominated
by the more universal harder collinear physics in the limit where the in-medium scatterings
are very soft relative to the jet partons, causing only small amounts of broadening. It is,

– 17 –



J
H
E
P
0
9
(
2
0
2
3
)
0
8
8

Figure 4. The n = 1 EEC in (3.10) of a 100GeV quark jet evaluated within the multiple scattering
HO approach for several values of the medium parameters compared to the vacuum NLL result, as
indicated in the legend. All curves are normalised by the integrated vacuum result Σ(1)

vac.

however, worth noticing that slightly varying the medium parameters allows us to bring the
results yielded by the different jet quenching approaches into close qualitative agreement
across a much broader angular range, as shown in the bottom panel of figure 3, and thus
one must be careful of not drawing conclusions before exploring the full dependence of the
shape of the EEC on all the parameters. For completeness, we show the results on the EEC
with an energy weight n = 2 in figure 9 of appendix B, which are in qualitatively agreement
with the n = 1 results presented here.

To illustrate the dependence of the shape of the EEC on the medium parameters, we
show in figure 4 the n = 1 EEC spectrum computed within the multiple scattering HO
approach for different sets of medium parameters.9 One can observe that for the simplified
brick of length L used in this manuscript the angle at which the in-medium EEC starts
to deviate from the vacuum result (the onset angle) is mostly dependent on L, whilst
the area of the medium enhancement (amplitude) depends on both q̂ and L. We would
like to quantitatively determine how features of the EEC spectra scale with the medium
and jet parameters, with the ultimate goal of studying the correlator spectra’s sensitivity
to the dynamics of colour coherence. To this end, we generalise the fitting procedure
used for the EEC computed within the HO approach in [27], so it allows us to study the
signatures of coherence within all the medium-induced radiation approaches considered in
this manuscript.10 This improved fitting method, which we outline in the following section,
increases both the robustness and model independence of our analysis.

9See appendix B for additional figures showing the two-point correlator within all the jet quenching
models considered in this paper and different sets of parameters.

10We do not study in this manuscript the onset angle, previously explored in [27], as it is not necessary to
determine the emergence of colour coherence and its extraction is challenging in the GLV approach due to
the more gradual vacuum to medium enhancement transition.
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Figure 5. The dP (1)/dθ in eq. (4.1) distribution normalised by its area P (1) evaluated through the
multiple scattering Yukawa approach (see section 3.2.2) for a quark jet of energy E = 100GeV in a
medium of L = 5 fm, µ = 1GeV and n0 = 2 fm−1. Each curve corresponds to a given value of the
parameter c in (4.1), as indicated in the legend.

4.1 Analysis procedure

We first introduce the basic distribution for our analysis, which allows us to determine the
positions of the peak θpeak of the medium enhancements observed in figure 3 as well as to
access the gradient of the enhancement to the left of the peak. This distribution is given by

dP (n)

dθ = θc

dΣ(n)

dθ

(
dΣ(n)

vac
dθ

)−1

− 1

 , (4.1)

where the constant c is used as a tool to explore different angular regions in the correlator
spectra, since using c < 0 allows us to shift the peak position to smaller angles by an amount
inversely proportional to the gradient of the enhancement near the peak. In the following
we will set c = −2,−1.5,−1, 0, in order to achieve shifts of different sizes. We note that for
c = −1 the peak position in dP (n)/dθ is equal to the peak position in dΣ(n)/dθ up to very
small logarithmic corrections, and thus by fixing c = −1 we recover the analysis method
employed in [27]. We illustrate our current procedure in figure 5, where we present the
dP (1)/dθ distribution evaluated through the multiple scattering approach with a Yukawa
parton-medium interaction model described in section 3.2.2 for several values of c. We
clearly observe that the smaller the value of c, the smaller the angle at which the peak
appears. Indeed, for this particular set of parameters, we can see that for the largest value
of c (c = 0) the peak is not visible, since the distribution peaks at θ > 1.

In order to determine how θpeak scales in terms of the medium parameters and jet
energy, in a given jet quenching approach, we proceed as follows. For a comprehensive span
of the jet and medium parameters, we compute the dP (n)/dθ distributions with n = 1, 2 and
c = −2,−1.5,−1, 0 and obtain the peak position θpeak by fitting the peaked region of these
distributions using a quintic polynomial. The positions of the peaks are then fitted to the
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parameters using both a no-coherence and a coherence power-law ansatz. The no-coherence
approach consists of performing the power-law fit over the complete set of parameters for
which the EEC curves were generated, and thus it assumes that the dependence of the
peak position on the parameters is the same for all the sets of parameters considered. In
contrast, the coherence ansatz assumes that the position of the peak scales differently with
the medium parameters in the DC and PC limits defined at the end of section 3.2.1. We
separate the regions through the critical energy Ec at which θc = θL, with the DC limit
corresponding to E � Ec and the PC limit to E � Ec. We perform the fits in the DC
region using only the subsets for which E < 0.8Ec (as a representation of E � Ec). For
the fits in the PC regime, we employ only the E > 1.2Ec parameter subsets.

Whilst we find the wide angle tails of the dP (n)/dθ distributions to strongly depend on
the energy weight n, we do not observe any significant dependence on n in the peak position
within the accuracy of our numerical convergence. In the present numerical analysis we
use the n = 2 distributions, since they yield the best extraction of θpeak due to the slightly
sharper shape of their peaks. We have checked that consistent fits are found from the
n = 1 distributions.

All the power-law fits were performed using the Wolfram Mathematica FindFit and
NonlinearModelFit functions using the “Principle Axis” method. We did not enforce the
fits to be dimensionally correct, so we can use the mass dimension of the resulting power-law
as a cross-check for the validity of the fit. The obtained scaling laws for each of the jet
quenching formalisms, shown in section 4.2, are the core result of our numerical analysis.
Finally, we present in section 4.3 a jet energy sweep which enables to clearly observe these
scalings in a graphical form.

4.2 Distributions and scaling properties for different jet quenching formalisms

4.2.1 Approaches with multiple in-medium scatterings

Harmonic Oscillator Approximation. In order to analyse the presence of colour
coherence in the multiple scattering HO approach described in section 3.2.1, we followed the
above mentioned procedure generating the dP (n)/dθ distributions for 332 sets of parameters
within the ranges: E ∈ [20, 500]GeV, L ∈ [1, 10] fm, and q̂ ∈ [1, 3]GeV2fm−1. The results
of power-law fits to the peak angle are presented in table 1, where the number in square
brackets in each row represents the mass dimension of the fit. The fits performed assuming
the coherence ansatz, with critical energy given by Ec = q̂L2, are found to provide a good
description of the peak position for all values of c. This is in striking contrast with the fits
performed assuming the no-coherence ansatz, which fail for c = −1, as clearly indicated by
the quoted mass dimension. This is an unequivocal indication of the ability of the EEC to
be sensitive to the presence of colour coherence dynamics within the HO approach. It is
worth noticing that, although for c = −2,−1.5, 0 the peak position can be approximately
described by the no-coherence fits, the coherent scaling laws are still substantially preferred.
While the scaling with respect to each parameter is individually sensitive to the dynamics of
colour coherence, we can observe that the greatest sensitivity is manifested by the medium
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Multiple scatterings: HO
Scaling of θpeak c = −2 c = −1.5

no-coherence ∼ E−0.65L−0.10q̂0.22 [0.11] ∼ E−0.70L0.00q̂0.27 [0.12]
E � Ec ∼ E−0.79L0.06q̂0.30 [0.04] ∼ E−0.85L0.18q̂0.35 [0.02]
E � Ec ∼ E−0.55L−0.37q̂0.07 [0.03] ∼ E−0.58L−0.32q̂0.10 [0.03]

Scaling of θpeak c = −1 c = 0
no-coherence ∼ E−0.45L0.86q̂−0.06 [−1.48] ∼ E−0.77L−0.16q̂0.36 [0.14]
E � Ec ∼ E−0.89L0.25q̂0.40 [0.05] ∼ E−0.91L0.34q̂0.44 [0.07]
E � Ec ∼ E−0.59L−0.32q̂0.09 [0.00] ∼ E−0.62L−0.26q̂0.12 [0.02]

Table 1. Scaling of the peak position of the dP (2)/dθ distribution in (4.1) for c = −2,−1.5,−1, 0
computed within the multiple scattering HO approach (see section 3.2.1). The no-coherence rows
show the power-law obtained when all sets of parameters are fitted, while the other two rows
correspond to the coherent anstaz separating the E � Ec and E � Ec sets, with Ec = q̂L2. In
square brackets we show the mass dimension of each fit, as its proximity to zero provides a measure
of the fit quality. For each fit in which the peak angle power-law presents a deviation of the mass
dimension from zero smaller than 1, the errors on the power of the parameters are smaller or equal
to ±0.01.

length. This agrees with our expectations from the dependence of θc with the medium
parameters shown in eq. (3.33).

Having extracted these scaling laws, we can now appreciate that the different behaviour
of the gradient to the left of the peak in the DC (blue and red) curves w.r.t. the PC (green
and purple) ones in figure 4, points out to the emergence of colour coherence dynamics.
This transition to coherence can be further observed in figure 10 of appendix B.

Yukawa collision rate. We now present in table 2 the corresponding results obtained
using the multiple scattering formalism with a Yukawa parton-medium interaction model
described in section 3.2.2 for 266 sets of parameters within the ranges: E ∈ [50, 1000]GeV,
L ∈ [2, 10] fm, µ ∈ [0.7, 1.4]GeV, and n0 ∈ [1, 4] fm−1. The slightly reduced sample size
relative to the HO approach is due to the increased computational time needed to evaluate
Fmed using a Yukawa parton-interaction model. As for the HO approach, we performed
both the coherence and no-coherence power-law fits, with the critical energy defined as
Ec = n0µ

2L2 due to the q̂ ∼ n0µ
2 matching already discussed at the end of section 3.2.2.

We can see that for c = −2,−1.5,−1 the coherent power-law fits are strongly favoured
over the no-coherence fits, for which either the fit does not converge or the resulting mass
dimensions substantially deviate from 0, indicating the bad quality of the fit. Peaks could
not be identified for c = 0, as it was already seen for n = 1 in figure 5, and so no power-law
fits were performed. The greatest sensitivity to the dynamics of coherence is found for the
c = −1.5 spectra. It is interesting to note that when matching parameters with the HO
curves the c = −1.5 Yukawa peak angle overlaps with the c = −1 HO peak angle, for which
the most sensitivity to coherence was observed in table 1. This seems to indicate that the
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Multiple scatterings: Yukawa
Scaling of θpeak c = −2 c = −1.5

no-coherence ∼ E−0.50L4.4µ0.45n 0.36
0 [−4.1] failed to converge

E � Ec ∼ E−0.88L0.34µ0.77n 0.47
0 [0.03] ∼ E−0.92L0.44µ0.87n 0.50

0 [0.00]
E � Ec ∼ E−0.64L−0.2µ0.27n 0.15

0 [−0.01] ∼ E−0.69L−0.10µ0.38n 0.21
0 [0.00]

Scaling of θpeak c = −1 c = 0
no-coherence ∼ E−0.30L3.7µ0.27n 0.31

0 [−3.39] peaks absent
E � Ec ∼ E−0.97L0.47µ0.93n 0.52

0 [0.01] peaks absent
E � Ec ∼ E−0.73L−0.01µ0.46n 0.24

0 [−0.01] peaks absent

Table 2. Scaling of the peak position of the dP (2)/dθ distribution in (4.1) with c = −2,−1.5,−1, 0
computed through the multiple scattering approach with a Yukawa interaction model (see sec-
tion 3.2.2). The critical energy is given by Ec = n0µ

2L2. In square brackets we show the mass
dimension of each fit. For c = 0, dP (n)/dθ with n = 1, 2 does not peak for θ ≤ 1, see figure 5. For
each fit in which the peak angle power law has a deviation of the mass dimension from zero smaller
than 1, the errors on the power of the parameters are smaller or equal to ±0.01.

Single scattering (GLV)
Scaling of θpeak c = −2 c = −1.5

no-coherence failed to converge ∼ E−0.54L−0.50µ0.07n 0.05
0 [0.10]

E � Ec failed to converge ∼ E−0.56L−0.50µ0.07n 0.08
0 [0.10]

E � Ec failed to converge ∼ E−0.51L−0.52µ0.06n 0.01
0 [0.06]

Scaling of θpeak c = −1 c = 0
no-coherence ∼ E−0.57L−0.37µ0.20n 0.03

0 [0.00] ∼ E−0.55L−0.40µ0.17n −0.01
0 [0.01]

E � Ec ∼ E−0.62L−0.37µ0.24n 0.00
0 [0.01] ∼ E−0.60L−0.34µ0.25n −0.01

0 [0.02]
E � Ec ∼ E−0.49L−0.53µ0.03n 0.00

0 [0.00] ∼ E−0.48L−0.55µ0.014n 0.01
0 [0.06]

Table 3. Scaling of the peak position of the dP (2)/dθ distribution in (4.1) for c = −2,−1.5,−1, 0
evaluated through the single scattering (GLV) approach (see section 3.3). The critical energy is
Ec = µ2n0L

2. In square brackets we show the mass dimension of each fit. When c = −2, dP (2)/dθ
does not present a single crisp peak. The errors on the power of the parameters are smaller or equal
to ±0.02.

angular location of the region of the EEC spectrum sensitive to colour coherence is nearly
model independent. Also, as for the HO approach, the scaling parameter with the greatest
sensitivity to the dynamics of coherence is the medium length.

4.2.2 The single scattering approach (GLV)

The results of the power-law fits to the peak position of the dP (2)/dθ distribution computed
within the single scattering (GLV) framework described in section 3.3 are shown in table 3.
We have made use of 146 sets of parameters within the following ranges: E ∈ [50, 1000]GeV,
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L ∈ [2, 10] fm, µ ∈ [0.7, 1.4]GeV, and n0 ∈ [1, 4] fm−1. The reduced sample size relative to the
multiple scattering approaches is due to two main factors: the increase in the computational
time needed to obtain Fmed with respect to the multiple scattering approaches, and the
reduction of the available parameter space due to the unitarity issues inherent to the GLV
formalism highlighted in section 3.3 (all sets containing points yielding Fmed < −1 were
discarded). Even though the angular scale θc does not appear naturally in the formula for
Fmed in (3.40), we still expect the coherence transition to occur at the same place as for the
Yukawa collision rate model in the multiple scattering approach: Ec = n0µ

2L2. We observe
that the peak position appears slightly sensitive to coherence for c = −1.5,−1, 0, but can
also be reasonably well described by the no-coherence ansatz. To further differentiate the
quality of the coherence and no-coherence fits, we performed a reduced-χ2 analysis for the
fits. The standard variance on each peak position was estimated from the convergence of
our numerical analysis. The reduced-χ2 test does favoured the coherence fit by a factor of 5.

When c = −2, dP (2)/dθ does not present a consistent single crisp peak due to the more
complex small angle tail of the in-medium enhancement in the EEC distribution. This tail
is visible in figure 3 where the transition at small angles from agreeing with the vacuum
result to having a significant medium enhancement is very slow for the GLV curve. As
already mentioned at the end of subsection 3.3, this behaviour is a direct consequence of
the phases in (3.41) all being different, as opposed to the multiple scattering cases where
all the phases appearing in (3.28) are the same. Similarly, the exponential factors in the
n-point functions in the multiple scattering case responsible for the coherence transition
turn into polynomial for the single scattering case, thus leading to a less pronounced change
of regime. Additionally, one can also notice that the peak position is not sensitive to n0.
This agrees with our expectations since in the single scattering approach n0 only appears
as a normalisation parameter in Fmed (see (3.40)).

4.3 Visualising coherence

The key results of our numerical coherence analysis are the power-law scalings presented in
the previous section and summarised in tables 1, 2, and 3. However, since visualising these
scaling laws might be hard, we present in this subsection projections onto particular slices
of the parameter space. We choose to isolate the energy dependence of the position of the
peak and thus, for each of the jet quenching formalisms, we fix the medium parameters
and present the position of the peak angle of the dP (2)/dθ distribution scaled by a variable
power of the jet energy Ea as function of the jet energy. Changing the power of the jet
energy a in the rescaling of the axis allows us to amplify the differences between the two
regions, above and below the critical energy, and make the transition visible.

In figure 6 we show the product θpeakE
a for several values of a and with θpeak being the

position of the peak angle of the dP (2)/dθ distribution for c = −1 evaluated through the
multiple scattering HO approach. The blue (red) lines are the power laws of the peak angle
in the E � Ec DC region (E � Ec PC region), where Ec = q̂L2, previously presented in
table 1, projected for the fixed values of L and q̂ indicated in the figure. In the top left
panel, where we simply show θpeak as a function of the jet energy, one can already see that
the blue line presents a steeper slope than the red one, indicating that θDC

peak and θPC
peak scale
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8Figure 6. Peak angle θpeak of the dP (2)/dθ with c = −1 computed within the multiple scattering

HO approach with q̂ = 1.5 GeV2/fm and L = 5 fm multiplied by a variable power of the jet energy
Ea, where the value of a is indicated in each subplot. The blue (red) solid lines correspond to the
coherent fits described at the beginning of section 4.1 for sets in the E � Ec = q̂L2 decoherent
(E � Ec partially coherent) region. The black dashed lines correspond to the no-coherence fits.

differently with the energy, which is a signature coherence transition in medium-induced
radiation. This becomes more evident when increasing the value of the power of the energy,
a, since the slope of θpeakE

a for the sets below the critical energy Ec clearly changes its
sign at a different value of a than that of the sets above Ec, and thus the no-coherence fit
(black dashed) is unable to reproduce the energy dependence of θpeak. The dependence on
the critical energy, which coincides with the condition θL = θc, undoubtedly indicates the
emergence of a new relevant angular scale. We note that in [27] a plot of θonset/θpeak was
presented to illustrate the coherence transition. As it was found that θonset ∼ E−0.5 both
for the decoherent and partially coherent regions, this figure is equivalent to the top right
hand panel in figure 6 when reflected over the x-axis.
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Yukawa approach with n0 = 2.5 fm−1, µ = 1GeV, and L = 5 fm multiplied by a variable power of the
jet energy Ea, where the value of a is indicated in each subplot. The blue (red) solid lines correspond
to the coherent fits described at the beginning of section 4.1 for sets in the E � Ec = n0µ

2L2

decoherent (E � Ec partially coherent) region. The black dashed lines correspond to the no-
coherence fits.

The equivalent results for the multiple scattering formalism with a Yukawa parton-
medium interaction model are presented in figure 7. In this case, θpeak is the position of
the dP (2)/dθ distribution with c = −1.5, since for this jet quenching approach this was
the value of c that yielded the largest sensitivity to the colour coherence dynamics (see
section 4.2.1). By varying the value of a, we clearly observe that θpeak depends on the jet
energy in a different way for the data sets below and above the critical energy Ec = n0µ

2L2.
It is worth keeping in mind that, as in the previous figure, the fits shown in red (blue) were
performed including all data sets provided E � Ec (E � Ec), not only the ones shown
in the figure, and thus do not always seem to be the best fit to the points on each plot.
We can also clearly observe that the no-coherence fits (black dashed lines) do not properly
describe the energy dependence of θpeak.
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8Figure 8. Peak angle θpeak of the dP (2)/dθ with c = −1 computed within the single scattering

(GLV) approach with n0 = 2.5 fm−1, µ = 1GeV, and L = 5 fm multiplied by a variable power of the
jet energy Ea, where the value of a is indicated in each subplot. The blue (red) solid lines correspond
to the coherent fits described at the beginning of section 4.1 for sets in the E � Ec = n0µ

2L2

decoherent (E � Ec partially coherent) region. The black dashed lines correspond to the no-
coherence fits.

Finally, we present in figure 8 the equivalent results computed within the single scattering
(GLV) approach. We see that the dependence on coherence in this framework is relatively
weak when compared to the previous multiple scattering approaches. Indeed, although the
top right and center left panels seem to present a clear transition to coherent dynamics, it is
still possible within the current precision of our numerical results to reasonably describe all
the data sets across all energies with the non-coherent fit (black dashed lines) summarised
in table 3. It is also notable that the apparent coherent transition is smoother and takes
place over a wider range of energies than those in figures 6 and 7, as expected. Varying the
value of Ec to account for this effect did not improve the quality of the fits for the DC and
PC scaling laws presented in section 4.2.2.
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5 Discussion

This paper is focused on semi-analytic computations of the EEC distribution measured on
a massless quark-initiated jet which propagates through a static QCD medium of finite
size L. For the extension to the massive case, see [104]. Our results can be understood as
LO+NLL accurate in vacuum physics, and LO in αs for in-medium splittings, within the
jet quenching formalisms considered. From section 3.2 onward, the interactions with the
medium are always considered in the high-energy approximation, where the momentum
transfer in each scattering is purely transverse and thus no energy (longitudinal momentum)
is exchanged. Corrections to this approach maximally entering at order O(µ̄2

s/Q
2).11 This

separation between longitudinal and transverse dynamics allows us to have a different power
counting for splittings, which we consider to LO only, and interactions with the medium,
which are further enhanced by the medium density and are resummed to all orders in the
multilpe scattering case. Due to the novelty of the EEC observable and the subtlety of the
power counting in its in-medium calculation, we further discuss now both the implications
of working at fixed coupling and the parametric size of the subleading corrections.

The transverse nature of the scatterings with the medium implies that there are no
corrections to the energy weighting entering at LO in the medium-induced splittings. We
quoted in (3.9) an error O(µ̄s/Q) due to complete momentum conservation but, unless
collisional energy loss is included, such terms would only appear when additional split-
tings are considered and thus are higher-order in the medium splittings, making them of
order O(αsµ̄s/Q).

By restricting our calculation to LO in the medium splittings we induce an error
maximally of the orderO(αs(θQ) ln θ µ̄s/Q) from the expansion of F (ij)

meddσ̂(ij), as explained in
the derivation of eq. (3.10). This can, in principle, be systematically improved by computing
F

(ij)
meddσ̂(ij) at NLO, which would entail computing F (q1q2)

med dσ̂(q1q2) and F (g1g2)
med dσ̂(g1g2) at LO,

where an additional splitting is needed to create the extra quark or gluon. Additionally, one
must also compute F (qg)

med dσ̂(qg) at NLO involving diagrams where the initial pair can emit
an extra gluon (real contributions) but also diagrams with loops (virtual contributions).
Overall, these NLO contributions are usually attributed to causing energy loss in typical
heavy-ion jet substructure observables (such as jet shapes or groomed observables), when
computed in the soft limit, because the additional wide-angle medium-induced soft parton
can be ‘lost’ outside the jet cone. Such observables are exclusive and, in vacuum, the
lost gluon is associated with an additional Sudakov double (or sometimes single) soft
logarithm potentially providing a leading effect, which could be made worse in presence
of the medium. However, this is not the case for energy correlator observables, since the
EEC is inclusive and so the parton is not lost, modifying instead the structure of the
correlations at an angle determined by its kinematics. Since the energy weighting in the
EEC removes any essential soft divergences and thus logarithms, in order to find these
additional correlations the diagrams must be computed beyond the soft limit (z → 0) for
the jet partons. Taken on its own, the soft limit of the diagrams is further suppressed,

11The relevant scale here is the typical momentum transferred per scattering given by the Debye mass,
which is of the same order or less than µ̄s.
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maximally scaling as O(αs(θQ) ln θ µ̄s/Q
√

ΛQCD/Q). In contrast to typical heavy-ion jet
substructure observables, the collinear limit of these NLO diagrams (at finite z) could be
used to find the leading contribution of the NLO correction to small angle correlations, such
as those studied in this paper.

Nevertheless, it is well known that a complete calculation of these NLO contributions is
out of reach within the formalisms used in this manuscript. Calculations involving multiple
medium splittings are available only under the assumption that emissions occur indepen-
dently without interference [105–107], which has been argued to be a good approximation
only in the case of very soft gluon emissions and thus would not constitute a leading
correction in the calculation of the EEC, as explained above. Recent developments in the
calculations of multiple splittings with finite energy fraction have shown the increasing
difficulty to perform a full calculation even for less differential observables where the angular
dependence is not kept [108, 109].

The calculation of Fmed at LO in the medium splittings can still be improved in several
ways either by relaxing some of the approximations entering the jet quenching models or
calculating correction terms. In the multiple scattering formalism explained in section 3.2
the calculation of Fmed was performed in a semi-hard approximation at leading colour
which can be systematically improved by: implementing finite Nc results, which are known
within the HO approximation [49] and could be easily extended to include the Yukawa
case too with a slight increase in the computational cost, or computing corrections to
the straight-line approximation in the in-medium propagators in eq. (3.17) which would
allow us to improve the handling of the transverse momentum broadening of the daughter
particles. This correction goes as O(µ̄s/zQ) and so has the potential to be large for
z < µ̄s/Q. Consequently, this correction will likely be one of the most important to include
in the future.

Regarding the single scattering framework, a recursive method to systematically increase
the number of in-medium scatterings in the calculation of Fmed is known [95, 103]. We note
that the resulting expressions are cumbersome, and will thus pose computational challenges
in the numerical evaluation of the EEC beyond the single scattering limit implemented in
this manuscript. In any case, we expect that gradually increasing the number of scatterings
will result into a higher sensitivity to colour coherence.

The same calculation performed here can also be carried out for in-medium gluon
initiated jets, albeit with some extra technical difficulties. In this case, two different channels
enter at the leading order, g → qq̄ and g → gg. For the multiple scattering case, Fmed
has been calculated in the semi-hard approach within the HO approximation in [49], with
the g → gg channel result being slightly more difficult and requiring some additional
computational time. For the single scattering case Fmed can be straightforwardly derived
from the formulas for splittings in the first opacity expansion in [57]. In all cases we expect
the result to present the same features as for the quark-initiated jets since formation times
and colour coherence arguments still apply.

Although the static brick model of the QGP employed in this manuscript is too simple
to be compared with realistic scenarios, our analysis is of vital importance to understand
how particular features of the calculation of the modification of in-medium splittings are
imprinted in the EEC. In order to understand how this observable would behave in an

– 28 –



J
H
E
P
0
9
(
2
0
2
3
)
0
8
8

actual experimental environment going beyond this simplified static scenario is of the utmost
importance. This can be done in two steps: first, the calculation of Fmed can be performed
for an evolving medium, with the local parameters varying according to a simple expansion
model or extracted from a hydrodynamic simulation, second, evaluations of Fmed performed
under different dynamic profiles can be combined in the evaluation of the correlator to
mimic the different trajectories along the changing underlying event contributing to a
possible measurement.

Finally, we note that it would be also extremely interesting to perform a comprehensive
analysis on the in-medium EEC within a full parton shower Monte Carlo implementation,
which will allow us also to study the resilience of the correlator to medium response. This
will be done in a separate publication.

6 Conclusions

In this paper we have presented a thorough analysis of how correlators of energy flow
operators can be applied to jet substructure studies in heavy-ion collisions. Expanding
on the original proposal in [27], we have performed a detailed derivation of the two-point
correlator (EEC) of a heavy-ion jet including medium-induced radiation effects on top of
the vacuum structure, which is here known to high (NLL) accuracy. We have considered
different jet quenching frameworks, both with and without multiple scattering resummation
to test the model dependence of our results.

The advantages of using energy correlators in addition to other jet substructure
observables are already well documented in the context of p-p collisions. It is thus natural to
extend these studies to the case of heavy-ion collisions, even more so when considering some
of their useful properties from the perspective of a heavy-ion environment. In particular,
the fact that for energy correlators in the vacuum the presence of any new scales is reflected
in different angular regions seems tailor made for addressing multi-scale systems, such
as heavy-ion collisions. In the context of jet quenching theory, colour coherence effects
have been argued during the last decade to play an important role in our understanding
of jet-medium interactions due to the emergence of a resolution scale which determines
if the inner jet structure affects the quenching. This discussion has often been framed in
terms of the angular separation between jet constituents where the resolution scale turns
into a critical angle below which the medium is not sensitive to jet substructure. It is
then natural to formulate the emergence of colour coherence in jet quenching in terms of
energy correlators.

Our analysis shows that the EEC can be used to identify the dynamics of colour coher-
ence, with a consistent picture emerging from all the jet quenching formalisms considered.
We found that the angular region of the EEC most sensitive to coherence is broadly model
independent, appearing at the moderately small angle region of the medium enhancement
for all the approaches. We also showed that the signatures of coherence dynamics are
weaker in the single scattering GLV framework than in the multiple scattering approaches.
This outcome agrees with our expectations, since the appearance of coherence phenomena
is due to the loss of colour correlations induced by colour exchanges between the jet and
the medium, and thus its effects are enhanced in a multiple scattering setting.
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It is remarkable how the EEC provides an observable for heavy-ion collisions which is
expected to be largely insensitive to soft degrees of freedom (and can easily be extended
to higher powers of the energy weighting to make it even less sensitive), directly reflects
the physical phenomena and important scales of the microscopic dynamics, and whose
vacuum baseline is well understood and calculable to a high degree of accuracy. As we
eagerly anticipate experimental measurements at both RHIC and LHC in the near future,
we envisage an exciting opportunity for direct comparisons with theoretical calculations.
However, we recognise the importance of implementing first a more realistic model for the
medium and jet-medium interactions, which should encompass crucial aspects such as the
event geometry, hydrodynamical evolution, and medium response, as outlined at the end
of section 5.

Our work is meant to open the door for a rich program of theoretical and experimental
studies of jet substructure in heavy-ion collisions in terms of energy correlators. We would
like to encourage our colleagues to consider building upon this new approach. To this
end, we have provided a detailed discussion on how to compute the EEC of an in-medium
massless jet, describing the accuracy and limitations of our calculation and the different
directions in which it can be systematically improved.
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A Vacuum resummation and anomalous dimensions

The following discussion draws on results originally presented in [38, 80, 85, 110]. The
primary goal of this appendix is to present the expressions needed to evaluate the vacuum
contribution in eq. (3.10). These are written in a condensed form in appendix A.3. Con-
currently, we aim to present the vacuum resummation via the celestial OPE in a manner
accessible to a reader with no prior knowledge of conformal field theories. This style of
presentation is largely missing from the literature and we hope will help bridge the gap
between the heavy-ion and the energy correlator communities.
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A.1 Recap of the OPE

We first review the celestial OPE with specific focus on its application to the energy flow
operator E(~n1) used in this paper. Several of the results we present here hold more generally
than the context in which we shall derive them. We will assume that we can compute the
E(~n1) on a QCD process. Firstly, let us stress that E(~n1) is a light-ray operator, which is
obtained by integrating a “usual” local QFT operator (in this case the energy-momentum
tensor) along a light-cone:

E(~n1) = lim
r→∞

∫ ∞
0

dt r2ni1 T0i(t, r~n1) = 1
4 lim
x+→∞

∫ ∞
−∞

dx− x 2
+ Tµν(x+n1 + x−n̄1)n̄µ1 n̄ν1 .

(A.1)
Here nµ1 = (1, ~n1) and n̄µ1 = (1,−~n1). x− = x ·n1/2, and x+ = x · n̄1/2 are coordinates along
the n light-cone. Consequently, E(~n1) does not share the same transformation properties
under the Lorentz group as a local QFT operator.

In the small angle limit (~n1 ·~n2 → 1) the composite operator E(~n1)E(~n2) diverges, since
dσij/d~nid~nj diverges when ~ni · ~nj → 1. Thus, we expect to find a Laurent series expansion
for the small angle limit, schematically given by

E(~n1)E(~n2) =
∑
i

αs
π
Ci (1− ~n1 · ~n2)κiOi(~n2) + (1− ~n1 · ~n2)0, (A.2)

where Oi(~n2) is a QCD light-ray operator with the same mass dimension as E(~n1)E(~n2).
The coefficients Ci are independent of ~n1 ·~n2 and are real process-dependent constants when
spin averaged. Necessarily, for terms where Ci ∼ 1, we must have that κi = −1 +O(αs) in
order to recreate the universal LO dθ2/θ2 collinear divergences of the QCD quark/gluon
splitting functions. It is required that the sum is over light-ray operators, so that the left
hand side and right hand side have the same causal structure, and therefore transformations,
under the Lorentz group.

A general light-ray operator (with integer spin J) can be defined from a local QFT
operator, Oµ1,...,µJ

i , by

O[J ]
i (~n) = lim

r→∞
r∆i−J

∫ ∞
0

dt nµ1 . . . nµJ O
µ1,...,µJ
i (t, r~n) ,

= 1
4 lim
x+→∞

∫ ∞
−∞

dx− x∆i−J
+ nµ1 . . . nµJ O

µ1,...,µJ
i (x+n+ x−n̄) , (A.3)

where ∆i is the mass dimension of Oµ1,...,µJ
i . From this definition, simple power counting

gives that an operator O[J ] has a mass dimension J − 1. It is therefore the spin-3 QCD
light-ray operators which will appear in eq. (A.2). We will provide the relevant QCD
operators, Oµ1,µ2,µ3 , in the following subsection.

We have pinned down that ∑
i

Oi(~n2)→
∑
i

O[3]
i (~n2) ,

in our small angle expansion. In order to compute E(~n1)E(~n2) we must also fix Ci and κi.
Ci must be found by performing a fixed order matching, however, we can find more insight
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into the form of κi by considering a general boost in the direction ~n2. We define the boost
so that

Λn2 = λ2n2 , Λn̄2 = λ−1
2 n̄2 , Λn1 = λ1n

′
1 . (A.4)

Upon applying this boost to eq. (A.2), assuming a scaleless theory so the operators Oµ1,...,µJ
i

and Tµν are invariant under reparameterisations, one finds that

Λ : E(~n1)E(~n2) 7→ E(Λ~n1)E(Λ~n2) = λ−3
1 λ−3

2 E(~n1)E(~n′2) , (A.5)

and that

Λ : (1− ~n1 · ~n2)κiOi(~n2) 7→ (Λn1 · Λn2)κiOi(Λ~n2) = λκi1 λ
κi−∆i+1
2 (n′1 · n2)κiOi(~n2) .

(A.6)

In the small angle limit of our expansion λ1 → λ2 and so for consistency 2κi = −7 + ∆i.
The twist of a local operator is given by τi = ∆i − J and so we can rewrite our small angle
expansion as a sum over operators of a given twist

E(~n1)E(~n2) =
∑
i

αs
π
Ci (1− ~n1 · ~n2)

τi−4
2 O[3]

i (~n2) + (1− ~n1 · ~n2)0 . (A.7)

As massless QCD is scaleless prior to renormalisation, this result will hold with bare
operators or when one sets QCD β = 0. Indeed, we can readily see that the leading twist
contribution, κi = (2− 4)/2 = −1, recreates the expected LO QCD divergences and that
higher twist contributions will be sub-leading, as also expected.

The ansatz in eq. (A.7) is what is referred to as the light-ray OPE for the energy flow
operators. The derivation can be performed more generally by analysing the conformal
symmetries of the operators. Upon doing so, one finds that for scaleless (conformal) theories
the renormalisation of light-ray operators has the effect of modifying their twist by a
scaleless anomalous dimension: τi = 2 + γi(J, αs) where γi is the anomalous dimension for
the renomalisation of the operator Oµ1,...,µJ

i [38]. This result therefore also holds at fixed
QCD coupling. With a running coupling, the renormalisation of O[3]

i (~n2) will introduce
a logarithmic dependence on the scale µ ∼ n1 · n2Q. These terms can be resummed at a
given logarithmic accuracy using renormalisation group flow equations and have the effect
of complicating the O(αs) terms in κi if one expands around a fixed point in the running
coupling. We will not review the derivation of the conformal result, instead in the following
section we will review the more relevant QCD resummation at NLL accuracy.

A.2 Spin-3 twist-2 operators and anomalous dimensions

In QCD, the twist-2 operators for quarks and gluons are given by:

Oµ1...µJ
q = 1

2J ψ̄γ
µ1(iDµ2) . . . (iDµJ )ψ , (A.8)

Oµ1...µJ
g = − 1

2J F
iµ1
c (iDµ2) . . . (iDµJ−1)F iµJc , (A.9)

Oµ1...µJ
g̃,λ = − 1

2J F
iµ1
c (iDµ2) . . . (iDµJ−1)F jµJc ελ,iελ,j . (A.10)
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In [85] it was shown by explicit tree-level Feynman computation that

E (~n1)E (~n2) =

− αs

8π2
1

2(n1 ·n2)

{
[(γqq (2)−γqq (3))+(γgq (2)−γgq (3))]O[3]

q (~n2)

+[(γgg (2)−γgg (3))+2nf (γqg (2)−γqg (3))]O[3]
g (~n2)

+ 1
2 [(γgg̃ (2)−γgg̃ (3))+2nf (γqg̃ (2)−γqg̃ (3))]

(
e2iφSO[3]

g̃,−(~n2)+e−2iφSO[3]
g̃,+(~n2)

)}
+O((n1 ·n2)0)+O(α2

s ) , (A.11)

from which we can read off Ci. Here

γqq(J) =CF

(
4
(
ψ(0)(J+1)+γE

)
− 2
J(J+1)−3

)
, γqg(J) =−TF

2(J2+J+2)
J(J+1)(J+2) ,

γgq(J) =−CF
2(J2+J+2)

(J−1)J(J+1) ,

γgg(J) = 4CA
(
ψ(0)(J+1)+γE−

1
(J−1)J −

1
(J+1)(J+2)

)
−β0 ,

γqg̃(J) =−TF
8

(J+1)(J+2) , γgg̃(J) =CA

( 8
(J+1)(J+2) +3

)
−β0 ,

(A.12)

where ψ(0)(z) = Γ′(z)/Γ(z) is the digamma function, and β0 = 11CA/3− 4nfTF /3 is the
one-loop QCD beta function. Note that for readability we have omitted the commonly used
(0) superscript on each γab. These anomalous dimensions are computed from the Mellin
moments of the regularised collinear splitting functions (i.e. using the plus prescription):

αs
4πγab(J) = −2

∫ 1

0
dz zJ−1Pa←b(z) . (A.13)

As previously discussed, at fixed coupling, τi is determined by the twist and anomalous
dimension of the relevant QCD operators. For the twist-2 operators listed12

τq′(J) = 2 + αs
8π (γgg(J) + γqq(J)−A) +O

(
α2
s

)
,

τg′(J) = 2 + +αs
8π (γgg(J) + γqq(J) +A) +O

(
α2
s

)
,

τg̃,λ(J) = 2 + αs
4π (γgg̃(J) + 2nfγqg̃(J)) +O

(
α2
s

)
,

where A =
√

(γgg(J)− γqq(J))2 + 8nfγgq(J)γqg(J) . (A.14)

In this paper we focus on a quark jet propagating through a medium. In eq. (3.10) the
twist-2 spin-3 quark anomalous dimension, γ(3), appears: this is given by γ(3) = τq(3)− 2.

12The unpolarised QCD operators mix with each other (see the forthcoming discussion), so the provided
anomalous dimensions are for the diagonalised operators

O[J]
q′ = O[J]

q −
2γgq(J)

γgg(J) + γqq(J) +A
O[J]
g , and O[J]

g′ = O[J]
g −

γgg(J) + γqq(J)−A
2γgq(J) O[J]

q .
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When one includes the running coupling, the O (αs) corrections to τi(3) can be computed
from the renormalisation of O[3]

i , and solving the renormalisation group equations within a
given logarithmic accuracy. This can be done as follows. As per the usual renormalisation
group flow, schematically a renormalised operator/parameter O(µ) defined at a given scale,
µ, obeys a group flow equation:

µ2 dO
dµ2 = −γOO , (A.15)

where γO is the anomalous dimension of O. γO is readily computed in dimensional regu-
larisation at one-loop as the coefficient to the ε−1 pole in the counter term δO for which
O − δOO is UV finite. When operators O1 and O2 share the same quantum numbers, such
that divergences in Green functions of O1 are cancelled by δO1,O1O1 + δO1,O2O2 (and vice
versa for O2), then evolution equation must be extended as a matrix equation:

µ2 d ~O
dµ2 = −γ̂ ~O ~O , (A.16)

where ~O = (O1, O2)T and γ̂ij~O = δOi,Oj ε|ε→0 .
For convenience, we define a vector of twist-2 QCD operators as

Oµ1...µJ = (Oµ1...µJ
q ,Oµ1...µJ

g ,Oµ1...µJ
g̃,λ )T .

By computing at one-loop the Green functions Gµ1...µJ
λ,λ′ (k, ε) = 〈k, λ| Oµ1...µJ |k, λ′〉, where

k is the momentum of a quark or gluon external line and λ its spin/polarisation, the O(αs)
anomalous dimensions can be found. One finds the operators obey the renormalisation
group equation

µ2 dOµ1...µJ

dµ2 = −αs(µ)
4π γ̂(J) Oµ1...µJ , γ̂(J) =

γqq(J), 2nfγqg(J), 0
γqg(J), γgg(J), 0

0, 0, γgg̃(J)

 ,

(A.17)

where we have again factorised the αs/(4π) for convenience. As the integrals to form
light-ray operators commute with the scale derivative, this also gives the renormalisation of
the twist-2 light-ray operators:

µ2 dO[J ](~n2;µ)
dµ2 = −αs(µ)

4π γ̂(J) O[J ](~n2;µ) . (A.18)

At one loop accuracy in the anomalous dimension and β function, i.e. single-logarithmic
accuracy in αs(Q) ln(Q/µ), this flow equation is solved by

O[J ](~n2;µ) =
(
αs(Q)
αs(µ)

) γ̂(J)
β0

O[J ](~n2;Q) . (A.19)

We are interested in the 2-point correlator measured on a sample of unpolarised jets
initiated by quarks at the hard scale Q. The jet content remains unpolarised but otherwise
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unconstrained at the scale µ. Hence, the resummed OPE must sum over the contributions
of O[3]

q (~n2;µ) and O[3]
g (~n2;µ). Thus, at single-logarithmic accuracy, the OPE is given by

〈E(~n1)E(~n2)〉=−αs(µ)
8π2

1
2(n1 ·n2)

(γqq(2)−γqq(3)+γgq(2)−γgq(3))

(αs(Q)
αs(µ)

) γ̂(3)
β0


qq

+(2nf (γqg(2)−γqg(3))+γgg(2)−γgg(3))

(αs(Q)
αs(µ)

) γ̂(3)
β0


gq

〈O[3]
q (~n2)

〉

+O
(
αs(Q)2 ln(Q/µ)

(n1 ·n2)

)
+O((n1 ·n2)0) . (A.20)

A natural scale choice for µ is the average momentum exchange between the two points in
correlator which is ∼ θQ. At the risk of being overly verbose, we can now write τi for QCD
at next-to-leading (single) log accuracy in the small angle:

(n1 ·n2)
τi−2

2 O[3]
i (~n2;µ) 7→

∑
j

(n1 ·n2)−
γ̂(J) ln(αs(n1·n2Q

2)/αs(Q2))
β0 lnn1·n2


ij

O[3]
j (~n2;Q) . (A.21)

A.3 Summary of g(n) at fixed and running coupling

We summarise here the results of the discussions in this appendix as expressions for g(1),
provided the two-point correlator is measured on a quark jet and dσ̂vac is given at O(αs).

At fixed coupling we have that:

g(1) = (A.22)

(γgg(3)+γqq(3)+A) θ
αs
8π (γgg(3)+γqq(3)−A)+O(α2

s )+2γgq(3) θ
αs
8π (γgg(3)+γqq(3)+A)+O(α2

s )
2γgq(3)+γgg(3)+γqq(3)+A +O(θ) ,

where A and γab where defined in the previous section and are given again below.13 With a
running coupling, at one-loop and at single logarithmic accuracy,

g(1) =


( αs(Q)

αs(θQ)

) γ̂(3)
β0


qq

+ 2nf (γqg(2)− γqg(3)) + γgg(2)− γgg(3)
γqq(2)− γqq(3) + γgq(2)− γgq(3)

( αs(Q)
αs(θQ)

) γ̂(3)
β0


gq


+O

(
αs(Q)n ln(θ)n−1∣∣

n≥1

)
+O(θ) , (A.23)

13The statement in section 3 that g(1) = θγ(3) should really be read as a matrix relation due to operator
mixing. When expanded, this leads to the slightly more complicated result given above. If one imagines
that the QCD quark operator did not mix with gluonic operators (i.e. taking the γgq, γqg → 0 limit), then
the given result simplifies to g(1) = θ

αs
4π γqq(3).
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where( αs(Q)
αs(θQ)

) γ̂(3)
β0


qq

= 1
2A

(
αs(Q)
αs(θQ)

) 1
2 (B+−A)

(
A

((
αs(Q)
αs(θQ)

)A
+1
)
−B−

((
αs(Q)
αs(θQ)

)A
−1
))

,

( αs(Q)
αs(θQ)

) γ̂(3)
β0


gq

= 1
A

(
αs(Q)
αs(θQ)

) 1
2 (B+−A)

γgq(3)
((

αs(Q)
αs(θQ)

)A
−1
)
,

A=
√

(γgg(3)−γqq(3))2+8nfγgq(3)γqg(3) ,

B±= γgg(3)±γqq(3) . (A.24)

For convenience we here present again:

γqq(J) =CF

(
4
(
ψ(0)(J+1)+γE

)
− 2
J(J+1)−3

)
, γqg(J) =−TF

2(J2+J+2)
J(J+1)(J+2) ,

γgg(J) = 4CA
(
ψ(0)(J+1)+γE−

1
(J−1)J −

1
(J+1)(J+2)

)
−β0 ,

γgq(J) =−CF
2(J2+J+2)

(J−1)J(J+1) .

(A.25)

where ψ(0)(z) = Γ′(z)/Γ(z) is the digamma function, and β0 = 11CA/3− 4nfTF /3 .
At leading-order g(2) = 1. Expressions for g(2)beyond fixed order require the incor-

poration of either track functions or fragmentation functions and will be provided in a
subsequent publication.

B Additional figures

In this appendix we present additional figures showing the two-point correlator spectra
for the different jet quenching formalisms considered in this manuscript, different sets of
parameters, and energy weights.

We first present in figure 9 results on the two-point n = 2 energy correlator, dΣ(2)/dθ,
for a quark-initiated jet with initial energy E = 100GeV computed within the three jet
quenching formalisms considered in this manuscript. These results for the n = 2 energy
weight qualitatively agree with the corresponding n = 1 ones shown in figure 3. We note
that in this figure instead of using the NLL vacuum result as done for the n = 1 case, we
employ the LO one, which is a good first approximation away from the θ → 0 divergence.
As we discuss in appendix A, including the NLL vacuum for the n = 2 spectrum requires
the inclusion of non-perturbative functions (track or fragmentation functions), which is
beyond the scope of this paper.

Figure 10 shows results on the two-point n = 1 energy correlator, dΣ(1)/dθ, computed
within the multiple scattering approach and the harmonic approximation for quark jets
with different initial energies and the same values of the medium parameters (q̂ and L). As
we already discussed in 4, the onset angle of the medium enhancement for a given jet energy
E and medium length L is clearly independent of the value of q̂. In subfigure (a), we can
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Figure 9. Top: the n = 2 EEC in (3.10) of an E = 100GeV quark jet evaluated through the
multiple scattering HO (green), multiple scattering Yukawa (blue), and single scattering GLV (red)
approaches compared to the vacuum LO result (black dashed). Both plots show the same curves,
either with (left) or without (right) log scaling on the y-axis. Bottom: same as the top panel for
different sets of medium parameters chosen so the amplitude and onset of the medium enhancement
qualitatively match among the different models. All curves are normalised by the integrated vacuum
result Σ(2)

vac.

observe that both the vacuum and in-medium correlators artificially turn over at very small
angles, due to the presence of the QCD Landau pole. Indeed, the coupling diverges when
θ = ΛQCD/E, becoming imaginary for θ < ΛQCD/E, and we have removed the resulting
imaginary bins from the distribution. The Landau pole signals that for θ ∼ ΛQCD/E non-
perturbative physics should become a dominant effect, as already observed in experimental
data [60]. The Landau pole is not visible in the other subplots of figure 10, since the larger
values of the jet energy result in a much smaller value of ΛQCD/E.

We can also observe in this figure that while the tail of the medium-enhancement to
the left of the peak angle agrees for all the q̂ values presented in panel (a), it presents a
strong sensitivity to q̂ in panel (c). This change in the scaling with q̂ is indicative of the
emergence of colour coherence when moving from the DC region shown in subfigure (a) to
the PC regime shown in subfigure (c).

We present in figure 11 the n = 1 EEC of quark initiated jets with different initial
energies computed within the multiple scattering approach with a Yukawa parton-medium
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(a) (b)

(c)

Figure 10. The n = 1 EEC of an E = 50GeV (top left), E = 100 GeV (top right), and E = 500
GeV (bottom) quark jet computed within the multiple scattering HO approach (see section 3.2.1)
for a medium of length L = 5 fm and several values of q̂: 1 GeV2/fm (orange), 2 GeV2/fm (blue),
and 3 GeV2/fm (red) compared to the vacuum NLL result (black dashed). All curves are normalised
by the integrated vacuum result Σ(1)

vac.

interaction model described in section 3.2.2 for several values of the medium parameters.
As for the HO calculation shown in figure 10, we can see in panel (a) of this figure how the
transition to hadronisation arises at an angular scale ∼ ΛQCD/E. We observe again that
the onset angle above which the in-medium EEC curves deviate from the vacuum result is
only dependent of the energy of the jet E and the length of the medium L. This outcome is
in agreement with our expectations, since only splittings with tf = 2/(z(1− z)Eθ) smaller
than the length of the medium are presumed to have a significant medium modification.

Finally, we show in figure 12 the n = 1 EEC of quark initiated jets with different initial
energies computed within the single scattering (GLV) approach described in section 3.3
for several values of the medium parameters. We again observe the transition to the
non-perturbative region of the EEC at an angular scale ∼ ΛQCD/E.
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(a) (b)

(c)

Figure 11. Subfigure (a): the n = 1 EEC of an E = 50GeV quark jet computed within the multiple
scattering Yukawa approach (see section 3.2.2) for a medium of L = 3 fm, n0 = 1 fm−1 and several
values of µ: 0.7GeV (black), 1GeV (orange), and 1.4GeV (purple) compared to the NLL vacuum
result. Subfigure (b): the n = 1 EEC of an E = 100GeV quark jet computed within the multiple
scattering Yukawa approach for a medium of L = 5 fm, n0 = 2 fm−1 and several values of µ: 0.7GeV
(black), 1GeV (orange), and 1.4GeV (purple) compared to the NLL result. Subfigure (c): the same
as subfigure (b) for an E = 500GeV jet. All curves are normalised by the integrated vacuum result
Σ(1)

vac.
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(a) (b)

(c)

Figure 12. Subfigure (a): the n = 1 EEC of an E = 50GeV quark jet computed within the single
scattering (GLV) approach (see section 3.3) for a medium of L = 3 fm, n0 = 1 fm−1 and several
values of µ: 0.7GeV (black), 1GeV (orange), and 1.4GeV (purple) compared to the NLL vacuum
result. Subfigure (b): the n = 1 EEC of an E = 100GeV quark jet computed within the single
scattering (GLV) approach for a medium of L = 5 fm, n0 = 2 fm−1 and several values of µ: 0.7GeV
(black), 1GeV (orange), and 1.4GeV (purple) compared to the NLL vacuum result. Subfigure (c):
the same as the subfigure (b) for an E = 500GeV quark jet. All curves are normalised by the
integrated vacuum result Σ(1)

vac.
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