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1 Introduction

Corformal invariance of Polyakov’s string formulation is widely used since 1980’s (see [1]).
The simplest observable for a closed string without external sources is then the string
susceptibility index γstr (also known as the gravity anomalous dimension) which is defined
through the number of surfaces of large area A as〈

δ

(∫ √
g − A

)〉
∝ Aγstr−3 eCA. (1.1)

Here the constant C in the exponent is not universal, i.e. depends on the regularization
procedure applied to the string, but the pre-exponential is perfectly universal and describes
a gravitational dressing of the unit operator.

The celebrated calculation of γstr was performed by Knizhnik-Polyakov-
Zamolodchikov [2] (KPZ) by fixing the light-cone gauge and by David [3], Distler-Kawai [4]
(DDK) using the conformal gauge with the result

γstr = (1− h)
[

d − 25−
√
(25− d)(1− d)
12

]
+ 2 (1.2)
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for a surface of genus h embedded in d Euclidean dimensions. Equation (1.2) extends the
one-loop result [5–7] to all orders in 1/d (as d → −∞) and describes critical indices of
the vast amount of models in Statistical Mechanics where the central charge c = d < 1.
However, as is seen from eq. (1.2), γstr is not real for 1 < d < 25 as it should say for the
QCD string in d = 4. This was referred to as the d = 1 barrier for the string existence.

The derivation of eq. (1.2) is based on the Liouville action which emerges from the
Polyakov string after doing the path integral over all fields but the independent world-sheet
metric tensor gab. The integration over the target-space coordinates Xµ is commonly done
by the DeWitt-Seeley expansion of the heat kernel [8, 9]〈

ω
∣∣∣ eτ∆

∣∣∣ω〉 = 1
4πτ

+ 1
24π

R(ω) + τ

120π

[
∆R(ω) + 1

2R2(ω)
]
+O(τ2), (1.3)

where ∆ denotes the two-dimensional Laplacian and R is the scalar curvature for the metric
tensor gab. The conformal gauge is fixed by choosing

gab = ĝab eφ (1.4)

with ĝab being the background (also termed fiducial) metric tensor and φ being a dynamical
variable often termed the Liouville field. Also the ghosts have to be added when fixing the
gauge (1.4).

Equation (1.3) results after the path-integrating over Xµ in the piece of the emergent
action for φ which is proportional to d. Truncating the DeWitt-Seeley expansion at the
first four terms shown in eq. (1.3) and adding the contribution from the ghosts, we arrive
at the following emergent action for the Polyakov string:

SPol = 1
16πb2

0

∫ √
ĝ
[
ĝab∂aφ∂bφ + 2µ2

0 eφ + ε e−φ(∆̂φ)2
]

, b2
0 = 6

26− d
. (1.5)

Here the first two terms forming the Liouville action are familiar from the original work by
Polyakov [10]. The remaining third term is familiar from the studied [11–13] of R2 gravity in
two dimensions. The constant ε ∝ τ/

√
ĝ originates from two contributions. The first comes

from the path integration over Xµ and is proportional to d. It is easily calculable from the
last two terms shown in the DeWitt-Seeley expansion (1.3). The second comes from the
path integral over the ghosts. I shall give more details on this issue in the next section.

An analogue of the emergent action (1.5) can be derived also for the Nambu-Goto
string. Doing again the path integral over all fields but gab, we arrive in the conformal
gauge (1.4) at the emergent action of the type (1.5) but with the additional term

S = 1
16πb2

0

∫ √
ĝ
{

ĝab∂aφ∂bφ + 2µ2
0 eφ + ε e−φ

[
(∆̂φ)2 − Gĝab ∂aφ∂bφ∆̂φ

]}
. (1.6)

It is the most general diffeomorphism-invariant action with four derivatives. All other terms
with four derivatives can be reduced to these two (modulo boundary terms in the case of an
open string). The term with G does not appear for the Polyakov string. Its occurrence is
specific [14] to the Nambu-Goto string. How to compute the value of G for the Nambu-Goto
string will be outlined in section 2 and appendix A. I shall not concentrate however at that
particular value of G and rather consider the action (1.6) as such.
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Strictly speaking eq. (1.6), as derived by the path integration over all the fields but gab,
holds only for flat backgrounds when R̂ — the scalar curvature for the metric tensor ĝab —
vanishes. As is well-known, under the decomposition (1.4) one has

√
gR =

√
ĝ
(
R̂ − ∆̂φ

)
(1.7)

with ∆̂ being the Laplacian for the metric tensor ĝab, which results in the appearance of the
addition ∝φR̂ to the Liouville action and similar terms for the four-derivative action (1.6),
causing a non-minimal interaction of φ with background gravity. These additional terms
are crucial for the Weyl invariance of the four-derivative action (1.6) as well as for the
derivation of the “improved” energy-momentum tensor in flat space. I shall return to this
issue in subsection 3.1. The action (1.6) is thus conformal invariant in flat space in spite of
the presence of the dimensionful parameters µ2

0 and ε, so the methods of conformal field
theory can be applied.

The parameter τ of the DeWitt-Seeley expansion (1.3) is actually Schwinger’s proper-
time regularization of ultraviolet divergences in the path integral. Thus ε being proportional
to the target-space cutoff τ is negligibly small. For this reason the four-derivative terms
in the action (1.6) are classically suppressed for smooth metrics as εR. However, the
role of the parameter ε in the quantum case is twofold. Firstly, the quartic derivative
regularizes divergences with ε playing the role of an ultraviolet worldsheet cutoff. Secondly,
ε is simultaneously a coupling constant of the self-interaction of φ so uncertainties like
ε × ε−1 appear in the perturbation theory. In other words, typical metrics essential in the
path integral over gab are not smooth and have R ∼ ε−1. These uncertainties look like
anomalies in quantum field theory and may affect the large-distance behavior of strings as
argued in [14].

In particular, the string susceptibility index computed for the four-derivative action (1.6)
with the one-loop accuracy equals [15, 16]

γstr = (h − 1)
( 1

b2
0
− 7

6 − G +O(b2
0)
)
+ 2, b2

0 = 6
26− d

(1.8)

for closed surfaces of genus h, showing for G ̸= 0 a deviation from the one-loop result [5–7]
for the Polyakov string for which G = 0.

Equation (1.8) was derived from the action (1.6) in three different ways. Firstly, the
technique [2–4] of conformal field theory developed for the Liouville action was applied to
compute the central charge of φ at one loop and, secondly, the results where confirmed [15]
by a direct computation of the one-loop diagrams of quantum field theory, which describe the
renormalization of the propagator and the energy-momentum tensor. The third method has
been recently proposed [16] as a pragmatic mixture of the two, accounting for the quantum
equation of motion. It has also reproduced eq. (1.8) via emerging singular products.

We see from eq. (1.8) that the string susceptibility for the four-derivative action (1.5)
coincides at one loop with the one for the Liouville action. A natural question is as to
whether this holds to all loops? Another natural question is what about a more general
action of the form

Sgen[φ] = − 1
16πb2

0

∫ √
ĝφ∆̂F (−ε e−φ∆̂)φ, F (0) = 1 (1.9)

– 3 –
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which differs from the action (1.5) by the terms of order ε2 and higher. The action (1.9) has
been discussed recently in [14, 17]. It arises by covariantizing a free higher-derivative action
which is quadratic in φ and therefore modifies the propagator. The function F depends on
the applied regularization and has been computed [18] to all orders in ε. The action (1.9)
is a part of the most general higher-derivative action generated by yet higher-order terms
of the DeWitt-Seeley expansion of the heat kernel after the path-integration over Xµ and
the ghosts in the Polyakov string formulation. The difference between (1.9) and the most
general action shows up already at the order ε2, where the term ε2R∆R is captured by (1.9)
but the term ε2R3 is not.

This Paper is addressed to the question of the universality, i.e. an independence of the
central charge and γstr on the precise form of the higher-derivative emergent action. In
analyzing this I found it most useful to apply the method based on the singular products
which has been recently developed in [16]. After a brief reviewing of the subject in section 2, I
concentrate on the universality for higher-derivative actions. It is demonstrated in sections 3
and 4 by showing that the contribution to the central charge of φ from the four-derivative
R2 and six-derivative R∆R or R3 terms vanishes, so only the usual one coming from the
quadratic part remains. How the universality works for the action (1.9) is illustrated by an
example in section 5. I also apply the method of singular products to confirm eq. (1.8) by
computing in subsection 3.3 the central charge of φ at one loop via the variation of the
energy-momentum tensor under an infinitesimal conformal transformation. Appendix A
is devoted to the computation of G in eq. (1.6) as emerging from the Nambu-Goto string.
Numerous formulas for the singular products are derived in appendix B.

2 Preliminaries and the setup

Let us begin with reminding the relation between the Polyakov and Nambu-Goto string
formulations. The action of the Polyakov string

S = K0
2

∫ √
ggab∂aX · ∂bX, (2.1)

where K0 = 1/2πα′
0 stands for the bare string tension, is quadratic in Xµ that makes it easy

to integrate it out in the path integral. The world-sheet metric tensor gab is an independent
field in the path integral. The Nambu-Goto action of the bosonic string is the area of the
string worldsheet. It is highly nonlinear in Xµ but can be made quadratic introducing the
(imaginary) Lagrange multiplier λab and an independent metric tensor gab as

SNG = K0

∫ √
det (∂aX · ∂bX) = K0

∫ [√
g + 1

2λab(∂aX · ∂bX − gab)
]

. (2.2)

In both cases it is convenient to diagonalize gab, choosing the conformal gauge (1.4). This
procedure adds ghosts which are the same for both string formulations.

In the classical limit when α′
0 → 0 or K0 → ∞ we have

g
(cl)
ab = ∂aX · ∂bX, (2.3)

– 4 –
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i.e. it coincides with the induced metrics. Analogously λab = √
ggab for the classical ground

state. The substitution of (2.3) into the action (2.1) then reproduces the Nambu-Goto
action (2.2). It was also demonstrated [19] that both string formulations give the same
results at one loop providing the zeta-function regularization is used. The general argument
in favor of the equivalence of the two string formulations is based [1] on the fact that λab is
localized at the distances of the order of the ultraviolet (UV) cutoff and does not propagate
to macroscopic distances. I shall return soon to this argument.

A separate remark is required about the stability of the classical ground state (2.3). As
shown in [20], it is stable only for d ≤ 2. For d > 2 the mean-field ground state is stable
instead for which gab = ρ̄g

(cl)
ab and λab = λ̄

√
ggab with certain d-dependent values of ρ̄ > 1

and λ̄ < 1 well-defined for d > 2. The continuum limit is reached in the scaling regime
when the UV cutoff is going away. Then ρ̄ → ∞ forcing the stringy continuum limit to
be Lilliputian [21]. I shall not touch upon that issue in this Paper which deals with the
one-loop approximation justified by d → −∞ when the ground state is classical.

As is already mentioned, the main reason to introduce the Lagrange multiplier for the
Nambu-Goto string was to path integrate over Xµ (as well as over the ghosts) to obtain
the emergent action for the fields φ and λab. The arising determinants diverge and have to
be regularized. What regularization to use for this purpose is a matter of personal taste. I
prefer to use the covariant Pauli-Villars regularization which was first introduced for the
ghosts [22]. To regularize Xµ we then introduce the massive regulators Y µ which obey
wrong statistics and add to (2.2) the regulator action

Sreg = K0
2

∫ (
λab∂aY · ∂bY + M2√ĝ eφ Y 2

)
. (2.4)

Now every loop of the regulator field Y µ brings the minus sign to compensate divergences
coming from Xµ.

Actually, we have to have [23] two such regulators of mass squared M2 with wrong
statistics which can be viewed as anticommuting Grassmann variables Y µ and Ȳ µ and one
regulator Zµ of mass squared 2M2 with normal statistics to regularize all the divergences
including the ones in tadpole diagrams. But for the purposes of computing the finite parts
(like anomalies) only one regulator will be enough because the contributions of the two
others are canceled being independent of the masses.

For the covariant Pauli-Villars regularization we can apply the standard methods of
quantum field theory. It is seen from eqs. (2.2) and (2.4) how the vertices of the interaction of
the fields φ and λab with Xµ and the regulators arise.1 Feynman’s diagrammatic technique
can be used for the calulation of the emergent action. Also Noether’s theorems apply to
the system of Xµ plus the regulators. In particular, the total energy-momentum tensor can
be derived, which is conserved and traceless thanks to the classical equations of motion.
The covariant Pauli-Villars regulators thus preserve conformal symmetry in spite of they
are massive. For this reason the emergent action will be conformal invariant which is
crucial for what follows. The coeffients of the Taylor series of the function F in eq. (1.9)

1For the Polyakov string we substitute λab =
√

ĝĝab so only the interaction between φ and the regula-
tors remains.
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b)a) c)

Figure 1. Diagrams contributing to the emergent action to quadratic order in φ or λab represented
by the wavy lines. The solid line represents the loop of either Xµ or the regulators.

and other terms in the emergent action depend on the regularization applied. For the
proper-time and Pauli-Villars regularizations they are related by simple formulas as shown
in [18] (appendix A).

2.1 The emergent action

The fields Xµ enter the action (2.2) quadratically (the same for the ghost fields in the ghost
action) so they can be integrated out. In [14] the action, governing fluctuations of φ and
λab, that emerges from the Nambu-Goto string was analyzed by the use of the covariant
Pauli-Villars regularization. I briefly reiew in this subsection the result and repeat the
derivation by using the proper-time regularization in appendix A.

The diagrams which contribute after the path integration over Xµ and its regulators
to the emergent action to quadratic order in φ or λab are depicted in figure 1. The wavy
lines represent either φ or λab while the solid line represents the loop of either Xµ or its
regulators. Covariantizing, we arrive at the following emergent action of the Nambu-Goto
string:

SX [φ, λab]

= d

2

∫ [
−
√

ĝ eφΛ2
√
detλab

+ 1
48π

(√
ĝφ∆̂φ + λabĝab∆̂φ + 2λab∇a∂bφ

)
+

√
ĝ e−φ

160πM2 (∆̂φ)2
]

+O(M−4), Λ2 = M2

2π
log 2 (2.5)

with ∇a being the covariant derivative for gab given by eq. (1.4). Expanding 1/
√
detλab in

the fluctuating part δλab = λab −
√

ĝĝab [cf. eq. (A.10)], we see from the action (2.5) that
δλ’s have the mass squared ∝τ−1 and are therefore localized at the distances ∼

√
τ .

The contribution from the ghosts associated with fixing the conformal gauge is just the
same as for the Polyakov string

Sgh[φ] =
∫ √

ĝ eφ
[
Λ2 − 13

48π
φ∆φ − 11

160πM2 (∆φ)2
]
+O(M−4). (2.6)

The fist two terms on the right-hand side are well-known and the third one has been recently
computed [18].

– 6 –
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Path-integrating over λab by the saddle-point method as described in appendix A, using
the identity (A.14) and dropping the terms O(M−4), we reproduce the four-derivative
action (1.6).

2.2 “Improved” energy-momentum tensor

The Tzz component of the energy-momentum tensor associated with the action (1.6)
reads [15]

−4b2
0Tzz = (∂φ)2 − 2ε∂φ∂∆φ − 2∂2(φ − ε∆φ)− Gε(∂φ)2∆φ + 4Gε∂φ∂( e−φ∂φ∂̄φ)

− 4Gε∂2( e−φ∂φ∂̄φ) + Gε∂(∂φ∆φ) + Gε
1
∂̄

∂2(∂̄φ∆φ), (2.7)

where ∆ = 4 e−φ∂∂̄ when using the conformal coordinates z and z̄ for a flat metric tensor
ĝab. We have used here the notation ∂ ≡ ∂/∂z and ∂̄ ≡ ∂/∂z̄. Notice the nonlocality of the
last term in (2.7) which is inherited from a nonlocality of the covariant generalization of
the action (1.6). It is the presence of this nonlocal term which plays a crucial role in the
computation of the addition 6G to the central charge at one loop.

It is important that the energy-momentum tensor (2.7) is “improved” á la Callan-
Coleman-Jackiw [24, 25]. It is conserved and traceless owing to the classical equation of
motion despite ε is dimensionful. This is a consequence of diffeomorphism invariance of the
action (1.6) which thus possesses conformal symmetry at least at the classical level.

The action (1.6) generates the vertex

⟨φ(k)φ(p)φ(q)⟩truncated = ε

8πb2
0

(
k2p2 + k2q2 + p2q2

)
δ(2)(k + p + q) (2.8)

which depend on momenta, so some diagrams diverge inspite of the k4 in the propagator.
This produces generically quadratic divergences in (tadpole) diagrams of perturbation theory.

To regularize the divergences we implement the covariant Pauli-Villars regulariza-
tion [22], adding to (1.6) the following action for the regulator field Y :

S(Y ) = 1
16πb2

0

∫ √
ĝ
{

ĝab∂aY ∂bY + M2 eφY 2 + ε e−φ[(∆̂Y )2 − Gεĝab∂aY ∂bY ∆̂φ
]}

. (2.9)

It has a very large mass M and obeys wrong statistics to produce the minus sign for every
loop, regularizing devergences coming from the loops of φ. I use in eq. (2.9) the same letter
Y as for the regulator Y µ in eq. (2.4) but this should not cause any problems.

Once again, the introduction of one regulator is not enough to regularize all the
divergences. Some logarithmic divergences still remain. The correct procedure is to introduce
two regulators of mass squared M2 with wrong statistics, which can be represented via
anticommuting Grassmann variables, and one regulator of mass squared 2M2 with normal
statistics. Then all diagrams including quadratically divergent tadpoles will be regularized.
However, for the purposes of computing final parts one regulator Y would be enough because
the contributions of the two others are canceled being independent on the masses.

– 7 –
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The contribution of the regulators to the Tzz component of the energy-momentum
tensor for the action (2.9) reads

−4b2
0T (Y )

zz = ∂Y ∂Y −2ε∂Y ∂∆Y −Gε∂Y ∂Y ∆φ+4Gε∂φ∂( e−φ∂Y ∂̄Y )−4Gε∂2( e−φ∂Y ∂̄Y ).
(2.10)

The total one is the sum of (2.7) and (2.10). The total energy-momentum tensor is conserved
and traceless thanks to the classical equations of motion for φ and Y . Thus the Pauli-Villars
regulators are classically conformal fields in spite of they are massive. For this reason
the effective action which emerges after the path-integrating over the regulators will be
conformal invariant. To the quartic order in the derivatives it will be again of the type in
eq. (1.6) but with renormalized parameters.

In the infrared limit the effective action, governing smooth fluctuations of φ, becomes
the Liouville action and the effective energy-momentum tensor is quadratic

T (eff)
zz = 1

2b2

(
q∂2φ − 1

2(∂φ)2
)

. (2.11)

Here b2 is the renormalization of φ, i.e. the change b2
0 → b2 in the action (1.6) and q enters

the renormalization of Tzz. The arguments are similar to David-Distler-Kawai (DDK) [3, 4].
In the usual case of the Liouville action where ε = 0 in (1.6) they obey the DDK equation

6q2

b2 + 1 = 6
b2

0
, (2.12)

where the left-hand side is the central charge of φ. For the Polyakov string eq. (2.12)
represents the vanishing of the total central charge.

An analogous computation of the central charge of φ for the higher-derivative action (1.6)
at one loop results in [15, 16]

c(φ) = 6q2

b2 + 1 + 6G

(
1− 2

∫
dk2 ε

1 + εk2

)
+O(b2

0). (2.13)

The logarithmic divergence on the right-hand side cancels with the one in the string
susceptibility, so it is finite and given by eq. (1.8). Both additional finite and divergent
parts come from the nonlocal (last) term in (2.7).

The emergence of the logarithmic divergence is due to subtleties in the realization of
conformal symmetry generated by the energy-momentum tensor (2.7) which is classically
not a primary conformal field. Under the infinitesimal conformal transformation

δξφ = ξ′ + ξ∂φ (2.14)

it changes as

δξT (φ)
zz = 1

2b2
0
ξ′′′ + 2ξ′Tzz + ξ∂Tzz +

1
b2

0
Gε e−φ

{
ξ′′′′∂̄φ + ξ′′′

(
∂∂̄φ − 3∂φ∂̄φ

)
+ ξ′′

[
2∂̄φ(∂φ)2 − ∂φ∂∂̄φ − ∂̄φ∂2φ

]
− eφ 1

∂̄

[
ξ′′∂( e−φ∂̄φ∂∂̄φ)

]}
, (2.15)

– 8 –
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while the usual definition of the central charge c relies on the transformation law

δξTzz = c

12ξ′′′ + 2ξ′Tzz + ξ∂Tzz (2.16)

prescribed for the conserved tensorial field (a descendant of the unit operator).
The difference between the right-hand sides of eqs. (2.15) and (2.16) is due to the

presence in the action (1.6) at G ̸= 0 of the additional term involving the structure
gab∂aφ∂bφ which is scalar but not primary and transforms under (2.14) as

δξ

(
e−φ∂φ∂̄φ

)
= ξ∂

(
e−φ∂φ∂̄φ

)
+ ξ′′ e−φ∂̄φ. (2.17)

Additional terms do not appear for G = 0 because the scalar curvature R = −4 e−φ∂∂̄φ

is a primary scalar. Those also do not appear for T
(Y )
zz given by eq. (2.10) which obeys

eq. (2.16) with c = 0.
Averaging (2.15) over φ, we get at one loop the following ξ′′′ term:

⟨δξTzz(0)⟩ = ξ′′′(0)
( 1
2b2

0
− G

∫
dk2 ε

1 + εk2

)
, (2.18)

reproducing the logarithmic divergence in eq. (2.13). The logarithmic divergence would
appear neither in the central charge nor in the string susceptibility within the operator
formalism where the operators are normal-ordered.2 The conformal transformation for
such a case of the most general action S[φ] which is not quadratic in the fields and whose
energy-momentum tensor does not obey eq. (2.16) can be generated by

δ̂ξ ≡
∫

D1

(
ξ′

δ

δφ
+ ξ∂φ

δ

δφ

)
w.s.=

∫
C1

dz

2πiξ(z)Tzz(z), (2.19)

where the domain D1 includes the singularities of ξ(z) leaving outside possible singularities
of the function X(ωi) on which δ̂ξ acts and C1 bounds D1. The second equality in (2.19) is
understood in the weak sense, i.e. under path integrals. In proving the equivalence of the
two forms we have integrated the total derivative

∂̄Tzz = −π∂
δS

δφ
+ π∂φ

δS

δφ
(2.20)

and used the (quantum) equation of motion

δS

δφ
w.s.= δ

δφ
. (2.21)

2In the Euclidean path-integral formalism the normal product is defined by subtracting all lower correlators
from an operator. For example

: φ(ω)3 := φ(ω)3 − 3φ(ω)2 ⟨φ(ω)⟩ − 3φ(ω)
〈
φ(ω)2〉− 〈φ(ω)3〉

and we have
δ

δφ(z) : φ(ω)3 := 3δ(2)(z − ω) : φ(ω)2 : , : φ(ω)2 := φ(ω)2 − 2φ(ω) ⟨φ(ω)⟩ −
〈
φ(ω)2〉 .

– 9 –



J
H
E
P
0
9
(
2
0
2
3
)
0
8
6

Actually, the form of δ̂ξ in the middle of eq. (2.19) is primary. Its advantage over the
standard one on the right is that it takes into account a tremendous cancellation of the
diagrams in the quantum case, while there are subtleties associated with singular products.

In the quantum case we have also an additional effect of the regulator〈
δ̂ξX(ωi)

〉
=
〈∫

D1
d2z

(
ξ′(z) δ

δφ(z) + ξ(z)∂φ(z) δ

δφ(z) + ξ(z)∂Y (z) δ

δY (z)

)
X(ωi)

〉
.

(2.22)
Averaging over the regulators as already discussed, we arrive at the effective action and the
effective energy-momentum tensor (2.11), describing the infrared limit. Equation (2.22) is
then substituted by〈

δ̂ξX(ωi)
〉
=
〈∫

D1
d2z

(
qξ′(z) δ

δφ(z) + ξ(z)∂φ(z) δ

δφ(z)

)
X(ωi)

〉
. (2.23)

It was shown in ref. [16] how to reproduce

δ̂ξ eφ(ω) w.s.= (q − b2)ξ′(ω) eφ(ω) + ξ(ω)∂φ(ω) eφ(ω) (2.24)

for the quadratic action by (2.23) via the singular products listed in appendix B.

3 Central charge via the singular products

3.1 General action and energy-momentum tensor

For the 2N -th order in derivatives term in the action (1.9)

S(φ,2N) = 1
16πb2

0

∫ √
gφ(−∆)N φ (3.1)

the “improved” energy-momentum tensor reads3

T (φ,2N)
zz = 1

4b2
0
(−1)N

[
N−1∑
k=0

(∂∆kφ)(∂∆N−k−1φ)− 2∂2∆N−1φ

]
. (3.2)

For N = 1, 2, 3 we write explicitly

T (φ,2)
zz = − 1

4b2
0

[
(∂φ)2 − 2∂2φ

]
, (3.3a)

T (φ,4)
zz = 1

2b2
0

[
(∂φ)(∂∆φ)− ∂2∆φ

]
, (3.3b)

T (φ,6)
zz = − 1

4b2
0

[
2(∂φ)(∂∆2φ) + (∂∆φ)2 − 2∂2∆2φ

]
. (3.3c)

They obey the conservation law
∂̄T (φ,2N)

zz = 0 (3.4)
3These energy-momentum tensors are “improved” [24, 25] and therefore traceless. They differ for this

reason from the ones in ref. [26]. Our “improvement” procedure also differs from the one [27] in the free case.
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thanks to the classical equations of motion

−∆φ = 0, (3.5a)

∆2φ − 1
2(∆φ)2 = 0, (3.5b)

−∆3φ + (∆φ)∆2φ = 0 (3.5c)

demonstrating tracelessness of T
(φ,2N)
ab .

For the regulator Y we have analogously

S(Y,2N) = 1
16πb2

0

∫ √
gY (−∆)N Y (3.6)

and

T (Y,2N)
zz = 1

4b2
0
(−1)N

N−1∑
k=0

[
(∂∆kY )(∂∆N−k−1Y )

]
. (3.7)

The sum T
(2N)
zz + T

(Y,2N)
zz is traceless thanks to the classical equation of motion for φ.

This is a general property because in the conformal gauge (1.4) we have

T a
a ≡ ĝab δS[g]

δĝab
= −δS[g]

δφ
. (3.8)

The left-hand side of eq. (3.8) represents the trace of the “improved” energy-momentum
tensor while the right-hand side represents the classical equation of motion for φ. Thus the
tracelessness of the “improved” energy-momentum tensor in the two-dimensional theory
invariant under diffeomorphisms is guaranteed by the classical equation of motion for φ.

3.2 Quadratic action

Under the infinitesimal conformal transformation generated by (2.19) we have〈
δ̂ξT (φ,2)

zz (ω)
〉
= 1

2b2

∫
d2z

〈
q2ξ′′′(z) + ξ′(z)∂2φ(z)φ(ω) + ξ(z)∂3φ(z)φ(ω)

〉
δ(2)(z − ω)

= ξ′′′(ω)
2

(
q2

b2 + H2,1 − H3,1

)
= ξ′′′(ω)

2

(
q2

b2 + 1
3 − 1

6

)

= ξ′′′(ω)
(

q2

2b2 + 1
12

)
, (3.9)

where we have used eq. (B.1). Here 1/12 corresponds to the usual quantum addition 1 to
the central charge. The right-hand side of eq. (3.9) reproduces the left-hand side of the
DDK formula (2.12).

Analogously for the massive conformal fields we obtain〈
δ̂ξT (Y,2)

zz (ω)
〉
= 1

2b2

∫
d2z

〈
ξ′(z)∂2Y (z)Y (ω) + ξ(z)∂3Y (z)Y (ω)

〉
δ

(2)
M (z − ω)

= ξ′′′(ω)
2 (J2,1 − J3,1) =

ξ′′′(ω)
2

(2
3 − 1

2

)
= ξ′′′(ω)

12 (3.10)
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where we have used eq. (B.10). The plus sign is for normal statistics. For the regulators with
the wrong statistics the sign changes for minus. This explicitly shows how the regulators
compensate the quantum part of the central charge of φ so the total one equals the classical
value and illustrates the statement that we can account for the effect of the regulators by
q ̸= 1 which emerges after path integration over the regulators.

Notice that the propagators in eqs. (3.9) and (3.10) are exact accounting for the
interaction between φ and the regulators. This is why renormalized b2 cancels.

3.3 Quartic action

Let us now add to the quadratic action the εR2 term which changes the propagator as

Gε(k) =
1

k2 + εk4 , δ(2)
ε (k) = 1

1 + εk2 (3.11)

and introduces a nontrivial self-interaction of φ. The computation of δT
(φ,4)
zz is a bit lengthy

but easily doable with Mathematica. Equation (3.9) remains unchanged while with the
one-loop accuracy we find

ε
〈
δ̂ξT (φ,4)

zz (ω)
〉
= 1

b2
0

∫
d2z

〈
2εξ′′′(z)[∂∂̄φ(z)− ∂∂̄φ(ω)]φ(ω)

+
[
2εξ′′(z)∂2∂̄φ(z)− 6εξ′(z)∂3∂̄φ(z)− 4εξ(z)∂4∂̄φ(z)

]
φ(ω)

〉
δ(2)

ε (z − ω)

= ξ′′′(ω)
4 (−2J0,1 + 2J1,1 + 6J2,1 − 4J3,1) =

ξ′′′(ω)
4

(
−2 · 2 + 2 · 1 + 623 − 412

)
= 0 ,

(3.12)

where we have used eq. (B.6) and dropped the logarithmic divergence as prescribed by
the normal ordering. Thus the central charge of φ coincides at one loop with that for the
quadratic action.

For the regulators we obtain similarly

〈
δ̂ξT (Y,2)

zz (ω)
〉
= 1

b2
0

∫
d2z

〈
1
2ξ′(z)∂2Y (z)Y (ω) + 1

2ξ(z)∂3Y (z)Y (ω)
〉

δ
(2)
ε,M (z−ω) = 0 (3.13)

in view of eq. (B.14) and

ε
〈
δ̂ξT (Y,4)

zz (ω)
〉

= 1
b2

0

∫
d2z

〈[
− 2εξ′′(z)∂2∂̄Y (z)− 6εξ′(z)∂3∂̄Y (z)− 4εξ(z)∂4∂̄Y (z)

]
Y (ω)

〉
δ

(2)
ε,M (z − ω)

= 1
4 (−2P1,1 + 6P2,1 − 4P3,1) ξ′′′(ω) = 1

4

(
−2 · 1 + 656 − 423

)
ξ′′′(ω) = 1

12ξ′′′(ω) (3.14)

at one loop in view of eq. (B.15). We see now the same compensation of the quantum part
in the central charge of φ by the regulators as for the quadratic action although in a slightly
different way.
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We can also perform the computation for the part of Tzz in eq. (2.7) which involves G.
For the polynomial in derivatives terms we obtain for the regularization (3.11)〈

δ̂ξ
1
b2

0
Gε
[
(∂φ)2∂∂̄φ − ∂φ∂( e−φ∂φ∂̄φ) + ∂2( e−φ∂φ∂̄φ)− ∂(∂φ e−φ∂∂̄φ)

]〉
= 1

b2
0
Gε

∫
d2z

〈
ξ′′′(z)

[
− ∂∂̄φ(z)φ(ω)− 3∂φ(ω)∂̄φ(ω)

]
− 2ξ′′(z)∂2∂̄φ(z)φ(ω)

〉
δ(2)

ε (z − ω)

= −3
2Gξ′′′(ω)

∫
dk2 ε

1 + εk2 . (3.15)

For the nonlocal term in (2.7) we analogously find〈
δ̂ξ

(
− 1

b2
0
Gε

1
∂̄

∂2(∂̄φ e−φ∂∂̄φ)
)〉

= − 1
b2

0
Gε

∫
d2z ξ′′′(z)

〈
∂∂̄φ(z)φ(ω) + ∂∂̄φ(ω)φ(ω)

〉
× δ(2)

ε (z − ω) = 1
2Gξ′′′(ω) + 1

2Gξ′′′(ω)
∫

dk2 ε

1 + εk2 .

(3.16)

In contrast to the average of the nonlocal (last) term in the classical formula (2.15) now a
nonvanishing finite contribution arises.

The sum of (3.9), (3.12), (3.15) and (3.16) precisely reproduces the central charge (2.13)
at one loop.

For a future use I present also the exact formula for the conformal variation of the
normal-ordered T

(φ,4)
zz〈

δ̂ξT (φ,4)
zz (ω)

〉
= 2 1

b2

∫
d2z

〈
e−φ(ω){−ξ′′′(z)∂∂̄φ(z)+ξ′′(z)∂φ(z)∂∂̄φ(ω)

+ξ′(z)
[
2∂3∂̄φ(z)−∂2φ(z)∂∂̄φ(ω)−∂∂̄φ(z)(∂φ(ω))2−∂φ(z)∂φ(ω)∂∂̄φ(ω)

]
+ξ(z)

[
∂4∂̄φ(z)−∂3φ(z)∂∂̄φ(ω)−∂2∂̄φ(z)(∂φ(ω))2+∂φ(z)∂2φ(ω)∂∂̄φ(ω)

]}〉
δ(2)

ε (z−ω).
(3.17)

Equation (3.12) is its expansion to quadratic order in φ. Equation (3.17) can be possibly
useful to show, manipulating with the derivatives, that its right hand side in fact vanishing
like (3.12). That would prove the universality to all loops.

3.4 Six-derivative action

Under the infinitesimal conformal transformation we have for the six-derivative action at
one loop the following variation of (3.3c):〈

δ̂ξT (φ,6)
zz (ω)

〉
= 1

b2
0

∫
d2z

〈[
−8ξ(4)(z)∂∂̄2φ(z)−8ξ′′′(z)∂2∂̄2φ(z)+16ξ′′(z)∂3∂̄2φ(z)

+48ξ′(z)∂4∂̄2φ(z)+24ξ(z)∂5∂̄2φ(z)
]
φ(ω)

〉
δ(2)

ε (z−ω). (3.18)

If we consider the six-derivative action

S[φ] = S(φ,2) + 2εS(φ,4) + ε2S(φ,6) (3.19)
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the propagator will be of the form (B.4) with m = 2. Substituting in (3.9), (3.12), (3.18)
we find 〈

δ̂ξT (φ,2)
zz (ω)

〉
= ξ′′′(ω)

2

(
q2

b2 + H2,2 − H3,2

)
= ξ′′′(ω)

2

(
q2

b2 + 3
10 − 2

15

)

= ξ′′′(ω)
(

q2

2b2 + 1
12

)
, (3.20)

2ε
〈
δ̂ξT (φ,4)

zz (ω)
〉
= 2ξ′′′(ω)

4 (−2J0,2 + 2J1,2 + 6J2,2 − 4J3,2)

= 2ξ′′′(ω)
4

(
−223 + 213 + 615 − 4 2

15

)
= 0, (3.21)

ε2
〈
δ̂ξT (φ,6)

zz (ω)
〉
= ξ′′′(ω)

(
−1
2Q0,2 − Q1,2 + 3Q2,2 −

3
2Q3,2

)
= ξ′′′(ω)

(
−1
2 · 13 − 1

3 + 3 3
10 − 3

2 · 4
15

)
= 0. (3.22)

We have thus obtained the same result as for the quadratic and quartic actions.
One more argument in favor of the universality, i.e. independence of the central charge

of φ on the form of the action, are the identities

H2,m − H3,m = 1
6 , (3.23a)

−2J0,m + 2J1,m + 6J2,m − 4J3,m = 0, (3.23b)

−Q0,m − Q1,m + 3Q2,m − 3
2Q3,m = 0 (3.23c)

satisfied for the propagator (B.4) associated with the regularization by yet higher derivatives.
The formula analogous to (3.18) can be derived also for the regulators〈

δ̂ξT (Y,6)
zz (ω)

〉
= 1

b2
0

∫
d2z

〈[
8ξ′′′(z)

(
∂2∂̄2Y (z)−∂2∂̄2Y (ω)

)
+32ξ′′(z)∂3∂̄2Y (z)

+48ξ′(z)∂4∂̄2Y (z)+24ξ(z)∂5∂̄2Y (z)
]
Y (ω)

〉
δ

(2)
ε,M (z−ω). (3.24)

The massive analogue of eq. (B.9) involves the terms ∝ M/
√

ε which make analisis more
complicated.

4 Universality of the six-derivative action

4.1 R∆R

The most general six-derivative action of the form (1.9) reads

S[φ] = S(φ,2) + (ε + a2)S(φ,4) + εa2S(φ,6) (4.1)

involving the term R∆R. The action (3.19) corresponds to a2 = ε. The six-derivative
action (4.1) is associated to the regularization

Gε,a(k) =
1

k2(1 + εk2)(1 + a2k2)m−1 , δ(2)
ε,a(k) =

1
(1 + εk2)(1 + a2k2)m−1 (4.2)

with m = 2.
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For an arbitrary ratio a2/ε we write

1
b2

0

∫
d2zf(z) ⟨∂nφ(z)φ(ω)⟩ δ(2)

ε,a(z − ω) = (−1)nHn.m

(
a2

ε

)
∂nf(ω), (4.3a)

1
b2

0

∫
d2zf(z)

〈
−4ε∂n+1∂̄φ(z)φ(ω)

〉
δ(2)

ε,a(z − ω) = (−1)nJn,m

(
a2

ε

)
∂nf(ω), (4.3b)

1
b2

0

∫
d2zf(z)

〈
16εa2∂n+2∂̄2φ(z)φ(ω)

〉
δ(2)

ε,a(z − ω) = (−1)nQn,m

(
a2

ε

)
∂nf(ω), (4.3c)

where the functions on the right-hand side are like

J1,2

(
a2

ε

)
=

ε
(
a4 − ε2 − 2a2ε log

(
a2

ε

))
(a2 − ε)3 . (4.4)

They obey the identities

H2,m

(
a2

ε

)
− H3,m

(
a2

ε

)
= 1

6 , (4.5a)

−2J0,m

(
a2

ε

)
+ 2J1,m

(
a2

ε

)
+ 6J2,m

(
a2

ε

)
− 4J3,m

(
a2

ε

)
= 0, (4.5b)

−Q0,m

(
a2

ε

)
− Q1,m

(
a2

ε

)
+ 3Q2,m

(
a2

ε

)
− 3

2Q3,m

(
a2

ε

)
= 0, (4.5c)

generalizing (3.23) to a2 ̸= ε and illustrating the universality at one loop.

4.2 R3

The consideration of the contribution to the central charge of φ from the R3 term in the
emergent action, which is not of the type shown in eq. (1.9), is pretty much similar. The
difference between the R3 term and the R∆R term considered in the previous subsection
is that its expansion in φ starts from φ3 rather than φ2. Then only the piece of the
contribution of R3 to the “improved” energy momentum tensor of the form

T̃ (φ)
zz = 12

b2
0

∂2(∂∂̄φ)2 +O(φ3) (4.6)

which is linked to the shift (1.7) may give a nonvanishing result at one loop. The piece like
φ3 which yields φ2 after acting by the variational derivative δ/δφ from the term with ξ′

in (2.19) vanishes after the averaging because the variation of a normal product is again a
normal product (see the footnote2).

The variation of (4.6) under the infinitesimal conformal transformation (2.19) is easily
calculable

ε2
〈
δ̂ξT̃ (φ)

zz (ω)
〉
= 12

b2
0

∫
d2z

〈[
2ε2ξ′′′(z)∂2∂̄2φ(z) + 2ε2ξ′′(z)∂3∂̄2φ(z)

]
φ(ω)

〉
δ(2)

ε,a(z − ω)

= 3
2ξ′′′(ω)

[
Q0,m

(a2

ε

)
+ Q1,m

(a2

ε

)]
= 0. (4.7)

It vanishes thus supporting the universality.
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b)a)

Figure 2. One-loop renormalization of eφ whose position is depicted by the dot. The wavy lines
represent φ.

From the above analysis of the contribution of the term R3 to the central charge of φ

at one loop it becomes clear that most of yet higher-derivative terms in the effective action
do not contribute for the trivial reason — too many φ’s. In addition to the action (1.9)
only the terms εn+2R∆kR∆n−kR with n ≥ 1, 0 ≤ k ≤ n are to be analyzed like the R3

term above.

5 Discussion

The above computations confirm the result (2.13) for the one-loop central charge of φ for
the action (1.6). They are also useful for studying the universality of the higher-derivative
actions. We have explicitly shown at one loop the universality of the central charge for the
quartic and six-derivative actions.

How the universality works for the action (1.9) is easily seen in the one-loop computation
of the renormalization of eφ given by the diagrams in figure 2. The diagram in figure 2a

is obviously universal with logarithmic accuracy. The diagram in figure 2b involves the
propagator k2F (εk2) and the triple vertex which comes from the variation of (1.9) with
respect to φ resulting in εk4F ′(εk2). Its contribution [14]

Figure 2b = eφ

2 × 8πb2
0φ

∫ d2k

(2π)2
εk4F ′(εk2)
[k2F (εk2)]2 = 1

F (0) eφb2
0φ = eφb2

0φ (5.1)

does not depend on the choice of the function F .
In fact my motivation to analyze the singular products was to go beyond the one-loop

approximation for the central charge of φ. This may be doable by the described method of
singular products if to prove the vanishing of

〈
δ̂ξT

(φ,2N)
zz

〉
to all loops like it was done for

N = 2, 3 at one loop. Then we may expect the exact central charge to be

c(φ) = 6q2

b2 + 1 + 6Gq. (5.2)

I hope to return to this issue elsewhere.
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A Derivation of emergent action for the Nambu-Goto string

The path integration over Xµ for the Nambu-Goto action (2.2) can be performed using the
DeWitt-Seeley expansion of the operator (√g)−1∂aλab∂b. Splitting the operator into the
gravitational and “electromagnetic” parts, we have

O ≡ 1
√

g
∂aλab∂b = hab∂a∂b + Aa∂a, hab = e−φ

√
ĝ

λab, Ab = e−φ

√
ĝ

∂aλab. (A.1)

Using the results known from [8, 9] (see [28] for a review), we write the expansion

〈∣∣∣ eτO
∣∣∣〉 = 1

4πτ
+ 1

4π

(1
6R + E

)
+ τ

120π

(
∆R + 1

2R2
)
+O(τ2), (A.2)

where R and ∆ are the scalar curvature and the Laplacian for the metric tensor hab defined
in eq. (A.1). We have dropped here the term ∝ τA2 because A ∼ τ with τ being the
proper-time UV cutoff, as it will be momentarily seen.

To find the emergent action for the fluctuating fields φ and δλab = λab −
√

ĝĝab, we use

hab = ĝab + δhab, δhab = −ĝabφ + δλab

√
ĝ

(A.3)

or
δhzz̄ = 2δλzz̄ − 2φ, δhzz = 2δλzz, δhz̄z̄ = 2δλz̄z̄ (A.4)

in the complex coordinates z and z̄. To quadratc order in the fluctuations, we can use the
formulas in an inertial frame

R = −∂a∂bh
ab + habh

cd∂c∂dhab = −∂2δhzz − ∂̄2δhz̄z̄ + 2∂∂̄δhzz̄, (A.5)

E = −1
2

(
∂aAa − ∂a∂bh

ab + 1
2 ĝab∆̂hab

)
(A.6)

which yields
1
6R + E = −1

3
(
∂2δλzz + ∂̄2δλz̄z̄ + 4∂∂̄δλzz̄ + 2∂∂̄φ

)
. (A.7)

Using the fact that the variational derivative of the emergent action with respect to
φ is equal to (A.2) and covariantizing, we find the following contribution from Xµ to the
emergent action:

SX [φ, λab] = d

2

∫ [
− eφ

4πτ
√
detλab

+ 1
12π

(
φ∂∂̄φ + 4λzz̄∂∂̄φ + λzz∇∂φ + λz̄z̄∇̄∂̄φ

)
+ τ

15π
e−φ(∂∂̄φ)2

]
+O(τ2). (A.8)

Here ∇ = ∂ − ∂φ is the covariant derivative in the conformal gauge. Equations (2.5)
and (A.8) perfectly agree.4

4The last term here is 2/3 of the one for the Pauli-Villars regularization as is prescribed by Apppendix A
of [18].
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To describe fluctuations, we expand about λab =
√

ĝĝab when

λzz̄ = 1 + δλzz̄, λzz = δλzz, λz̄z̄ = δλz̄z̄ (A.9)

to get
1√

detλab
= 1− δλzz̄ + (δλzz̄)2 + 1

2δλzzδλz̄z̄ +O(δλ)3. (A.10)

The integrals over δλzz and δλz̄z̄ have then saddle points at

δλzz = 2
3τ e−φ∇̄∂̄φ, δλz̄z̄ = 2

3τ e−φ∇∂φ (A.11)

which demonstrates that δλ ∼ τ , justifying the expansion in δλ and the saddle point.
It is slightly different with δλzz̄ because of the linear term in eq. (A.10). It simply

renormalizes the bare string tension in the classical part of the Nambu-Goto action (the
last term on the right-hand side of eq. (2.2)). We thus have at the saddle point

δλzz̄ = τ

(
2
3 e−φ∂∂̄φ − 1

2dα′
R

)
, (A.12)

where the second term in the brackets can be omitted for finite α′
R as τ → 0.

Inserting the saddle-point values (A.11), (A.12) into the action (A.8), we find

SX [φ] = d

2

∫ {
− eφ

4πτ
+ 1

12π
φ∂∂̄φ + τ e−φ

[ 8
45π

(∂∂̄φ)2 + 1
18π

∇∂φ∇̄∂̄φ

]}
+O(τ2).

(A.13)
The final step to obtain the quartic in derivatives part of the action (1.6) is to use the
identity

e−φ∇∂φ∇̄∂̄φ = e−φ
[
(∂∂̄φ)2 + ∂φ∂̄φ∂∂̄φ

]
+ ∂

(
e−φ∂φ∇̄∂̄φ

)
− ∂̄( e−φ∂φ∂∂̄φ), (A.14)

to get

SX [φ] = d

2

∫ {
− eφ

4πτ
+ 1

12π
φ∂∂̄φ + τ e−φ

[ 7
30π

(∂∂̄φ)2 + 1
18π

∂φ∂̄φ∂∂̄φ

]}
+O(τ2).

(A.15)
Summing (A.15) with the contribution from the ghosts (see the footnote4)

Sgh[φ] =
∫ [ eφ

4πτ
− 13

12π
φ∂∂̄φ − 11τ

15π
e−φ(∂∂̄φ)2

]
+O(τ2), (A.16)

we obtain eq. (1.6) previously derived [14] for the Pauli-Villars regularization.

B List of formulas for the singular products

The simplest singular product∫
d2z ξ(z) ⟨∂nφ(z)φ(0)⟩ δ(2)(z) = (−1)n 2

n(n + 1)ξ(n)(0) (B.1)

– 18 –



J
H
E
P
0
9
(
2
0
2
3
)
0
8
6

emerges in a free CFT, where the propagator is

⟨φ(z)φ(0)⟩ = 8πG0(z), G0(z) = − 1
2π

log
(√

zz̄µ
)

(B.2)

and µ represents an infrared cutoff. Equation (B.1) can be derived by the formulas

δ(2)(z) = ∂̄
1

πz
,

1
zn

∂̄
1
z
= (−1)n 1

(n + 1)!∂
n∂̄

1
z

. (B.3)

Equation (B.1) can be alternatively derived introducing the regularization by ε via
higher derivatives. In momentum space we define

Gε(k) =
1

k2(1 + εk2)m
, δ(2)

ε (k) = 1
(1 + εk2)m

. (B.4)

We then have
1
b2

0

∫
d2zf(z) ⟨∂nφ(z)φ(ω)⟩ δ(2)

ε (z − ω) = (−1)nHn.m∂nf(ω),

Hn.m = 22mΓ(m + 1/2)Γ(n + m)√
π nΓ(n + 2m) (B.5)

and
1
b2

0

∫
d2zf(z)

〈
−4ε∂n+1∂̄φ(z)φ(ω)

〉
δ(2)

ε (z − ω) = (−1)nJn.m∂nf(ω),

Jn,m = n

2m − 1Hn,m = 22m−1Γ(m − 1/2)Γ(n + m)√
πΓ(n + 2m) . (B.6)

For m = 1 this gives
Hn,1 = 2

n(n + 1) , Jn,1 = 2
(n + 1) , (B.7)

reproducing eq. (B.1).
For the six-derivative action we shall also need

1
b2

0

∫
d2zf(z)

〈
16ε2∂n+2∂̄2φ(z)φ(ω)

〉
δ(2)

ε (z − ω) = (−1)nQn.m∂nf(ω) (B.8)

with

Q0,m = Q1,m = 1
(m − 1)(2m − 1) , Q2,m = 3(m + 1)

2(m − 1)(4m2 − 1) ,

Q3,m = (m + 2)
(m − 1)(4m2 − 1) , Qn,2 = 2(n + 1)

(n2 + 5n + 6) . (B.9)

In the case of the massive conformal fields (regulators) we have∫
d2z ξ(z) ⟨∂nY (z)Y (0)⟩ δ

(2)
M (z) = (−1)nJn,1ξ(n)(0) (B.10)

for the free massive propagator

⟨Y (z)Y (0)⟩ = 8πGM (z) = 4K0
(
M

√
zz̄
)

, GM (k) = 1
k2 + M2 (B.11)
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and an ad hoc regularization of the delta function by the large-M limit of

δ
(2)
M (z) = M2

2π
K0

(
M

√
zz̄
)

, δ
(2)
M (k) = M2

k2 + M2 (B.12)

what is natural if Y is the Pauli-Villars regulator. The same Jn,1 as shown in eq. (B.7)
appears in eq. (B.10).

For the quartic derivative we define

⟨Y (−k)Y (k)⟩ = 8πb2
0Gε,M , Gε,M = (k2 + M2)m−1

(k2 + M2 + εk4)m
, δ

(2)
ε,M = (k2 + M2)m

(k2 + M2 + εk4)m

(B.13)
to reproduce (B.4) as M → 0. In the opposite limit M → ∞ we find

8π

∫
d2zf(z)∂nGε,M (z − ω)δ(2)

ε,M (z − ω) M→∞→ 0, (B.14)

8π

∫
d2zf(z)(−4ε∂n+1∂̄)Gε,M (z − ω)δ(2)

ε,M (z − ω) M→∞→ (−1)nPn,m∂nf(ω),

P0,m = P1,m = 1
(2m − 1) , P2,m = (2m + 3)

2(4m2 − 1) , P3,m = 2
(4m2 − 1) . (B.15)

Note added in the proof. Equation (5.2) has been derived recently in [29].

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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