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1 Introduction

The search for new resonances at the LHC has so far come up empty-handed. Consequently,
interest has been shifting in the past few years to the study of effective field theories (EFTs)
and, after the discovery of the Higgs boson at the LHC [1, 2], the most widely used EFT
approach is the SMEFT (“standard model EFT”) [3–14].

EFTs parametrise new physics (NP) as a series of non-renormalisable operators:

L = Ld=4 +
∑
k

ck
Λd−4Ok, (1.1)

where Λ is the energy scale of NP and the sum includes terms from d = 5, · · · up to the
dimension required by the precision of the experiment under consideration. Low energy
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probes and the highly precise LEP experiments provide very stringent constraints on a
number of SMEFT operators [15–17], which push the scale of new physics into the multi-TeV
region (or even hundreds of TeV in case of lepton-flavour violating observables [18]), if ck is
of order one.

Of course, putting ck = 1 is an unrealistic assumption for nearly every ultra-violet
completion that one can construct for the different Ok’s (with the notable exception of
new, strongly coupled sectors, see e.g. the discussion in ref. [19]). In particular, the new
physics generating the non-renormalisable operators (NROs) in (1.1) may be such that all
NP operators appear only at 1-loop level. In that case, the “natural” assumption for ck
changes to ck = 1/(16π2). In this class of models all constraints on Λ are relaxed and direct
searches at the LHC may be competitive — or even superior — to indirect constraints.

In general, there are two different classes of new physics models, in which some or
all of the NROs appear at the 1-loop level at leading order. These are: (i) accidentals
and (ii) symmetry protected UV models. We have discussed (i) for the special case of
four-fermion (4F) operators in [20]. Class (ii) symmetry protected models, on the other
hand, can easily be motivated from the fact that the standard model has no candidate to
explain the observed dark matter content of the universe.

Weakly interacting massive particles (WIMPs) have been discussed as the prime
candidates for the cold dark matter (DM) in the universe for many years, for a recent
review on the status of WIMPs see, for example, [21]. In order to explain the observed DM
abundance today, WIMPs must be stable particles, or at least have life-times exceeding (by
far) the age of the universe [22]. Stable WIMPs, however, require a protecting symmetry.
The simplest possible case is a Z2 under which the WIMP (and, possibly, other BSM
particles in a given model) are odd, while the SM field content is even. Such a setup implies
that all (odd) BSM fields can couple only in pairs to SM fields. It is trivial to see that
all contributions of these BSM states to SMEFT operators are then one-loop suppressed.
Thus, such DM models will be only weakly constrained by indirect searches for NROs and
one should expect that direct searches at the high-energy frontier, together with direct DM
detection experiments [23, 24], will have the best expectations to discover them. This simple
observation forms the basic motivation to study such 1-loop models in our current work.

In this paper we discuss a systematic construction of (WIMP) dark matter model
variants based on a diagrammatic method [20, 25, 26] for four-fermion (4F) operators.
The rest of this paper is organised as follows. In section 2 we discuss the basics of the
diagrammatic method and the list of phenomenologically allowed WIMP DM candidates
that we consider. Section 3 presents our results: in subsection 3.1 we count the number of
models we find for four-fermion operators and their model overlap with other four-fermion
and fermion-Higgs operators. Next, in subsection 3.2 we mention common patterns in the
models we find and list all new particles that are featured by the models for specific DM
candidates in subsection 3.3. Then, in subsection 3.4, we examine the matching for a variety
of example models.1 In section 4 we analyse the phenomenology of these models. We close
with a short discussion.

1Note that the model files and matching results for the model examples discussed in this paper can be
found in the files in the supplementary material attached to this paper.
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1-loop topologies: 4 fields

⇒

(I)

+

(II)

+

(III)

+

(IV)

+

(V)

+

(VI)

+

(VII)

+

(VIII)

+

(IX)

Figure 1. There are in total nine 1-loop topologies for operators with four external fields, disregarding
tadpole diagrams. For discussion see text.

2 One-loop dark matter models for SMEFT 4F operators

In this section we will outline our method to construct UV completions for 4-fermion
SMEFT operators with dark matter candidates. The discussion follows in parts [20], where
the same methods were used to construct 1-loop models with “exit particles”.2 We will
therefore be rather brief. The main difference to our previous work is that, in order to
ensure the DM stability, we will assume that some of the BSM fields will be odd under a Z2
symmetry.3 This difference leads to some distinct patterns, different from those for models
with “exit particles”, as will be discussed in subsection 3.2.

2.1 Diagrammatic approach

The procedure involves essentially three steps. First, for any given SMEFT operator one can
find all topologies that can generate the operator at a chosen loop level. Here, topologies
are just field lines connected by certain types of vertices, without specifying the Lorentz
nature of the fields (scalars, fermions or vectors). Since we are interested in renormalisable
UV completions, only 3- and 4-point vertices are allowed in this step. We do not consider
topologies that lead only to tadpole diagrams. This part of the calculation can be easily
automated, since topologies can be expressed in the form of adjacency matrices. All 1-loop
topologies for operators with four external legs are shown in figure 1.

Specifying the outside particles to be fermions (4F operators), only topologies I, II and
III are left as interesting for DM model constructions. Topologies V to IX contain at least
one 4-point vertex connected to the external fermionic legs. These are non-renormalisable

2“Exit particles”, as defined in [20] are simply fields that can couple linearly to SM fields.
3The symmetry does not necessarily have to be a Z2. Any symmetry that forbids the DM candidate to

couple linearly to SM fields will be sufficient. Z2 is just the simplest example.
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1-loop diagrams: 4-fermion operators and DM models

Class I (from T-I):

boxes

(D-I-1)

+

(D-I-2)

+

(D-I-3)

Class II (from T-II):

triangles

(D-II-1)

+

(D-II-2)

+

(D-II-3)

+

(D-II-4)

+

(D-II-5)

+
...

Class III (from T-III)1:

propagators

(D-III-1)

+

(D-III-2)

+

(D-III-3)

+

(D-III-4)

+
...

1 In Class III tadpole diagrams contribute too, e.g.

Figure 2. 1-loop diagrams for 4-fermion operators. There are three different classes of models: (i)
Boxes (top), all BSM particles are odd; (ii) triangles (middle), in addition to the BSM fields that
are odd, there is an even BSM field that acts as a portal. And, finally (iii) propagator corrections
(bottom). The latter can yield interesting models only for some special cases, see the discussion in
the text.

vertices and, therefore, we discard them immediately. Topology IV is also not interesting,
since it leads only to self-energy diagrams of an external fermion line.

The remaining three topologies can yield diagrams which lead to phenomenologically
interesting DM models. Figure 2 shows a partial list. Class-I models come from box
diagrams. While there are, in principle, three possible diagrams, in the rest of this paper
we will concentrate on only diagrams with scalars and fermions for simplicity, i.e. diagram
D-I-1. Models with BSM vectors are, of course, also possible, but the construction of fully
consistent DM models with vectors is much more intricate than for models with only new
scalars, see the discussion in [20] and in particular [27, 28].
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3 example models for Oll

Class I:

2 fields
F111

F111

S12− 1
2

S12− 1
2

l̄

l

l

l̄

Class II:

3 fields

l̄

l

S12− 1
2

V110
F111

F111

l̄

l

Class III:

1 field

l̄

l

l̄

l

W µ W µ

S12− 1
2

S12− 1
2

Figure 3. The three simplest example models for class-I, class-II and class-III diagrams for one
example 4-fermion operator, Oll.

DM models from box diagrams need at least two BSM fields. A very simple example
model for Oll is shown in figure 3. All particles inside the box need to be Z2 odd in order
to guarantee that the lightest loop particle is stable. In this example the neutral component
of S1,2,1/2 can be the DM candidate. The model is a simple extension of the well-known
“inert doublet” model [29].

Class-II models can be constructed from triangle diagrams. In figure 2 we show an
incomplete list for this class of diagrams. Again, triangles need at least two additional BSM
fields which are Z2 odd. Different from box diagrams, however, triangles need one additional
BSM field that couples linearly to SM fields,4 an example model is shown again in figure 3.
One can understand class-II models as special realizations of “portal” DM models, where
the Z2-even BSM particle connects the SM with the dark sector. While these constructions
can yield valid DM models, one can not expect to obtain any meaningful constraints on
such models from the study of 4F operators. This can be easily understood: the additional
Z2-even BSM field will generate the 4F operator under consideration at tree-level. Thus,
the DM loop is only a minor (and for all practical purposes negligible) correction. We
therefore will not discuss models in class-II further in this paper. Note, however, that the
particle content of the loop with the coupling to F1 and F2 on the left of the diagram, will
give a DM model contributing to the box diagram for a 4F operator containing (F1F2)2

and thus the Z2 odd particle contents of triangle models appear in our list of box models.

4If the additional field connecting at tree-level to the fermions is itself a SM field, the DM loop is only a
vertex correction for some tree-level SM coupling.
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Finally, in class-III we find models that give diagrams corresponding to propagator
corrections. Here, we have to distinguish three sub-classes. The first subclass (subclass
III-a) are diagrams in which a DM candidate, non-singlet under the SM group, can couple
to a SM gauge field. An example model is shown in figure 3. One can write down redundant
d = 6 operators of the type R2X ∝ (DµX

µν)2, where Xµν generically stands for a field
strength tensor. Upon using the equation of motion (EOM) for the field strength tensor,
these types of operators are expressed in terms of 4F operators with fermion pairs coupling
to Xµν . Thus, any BSM particle contributing to R2X will contribute to 4F operators in the
Warsaw basis. Subclass III-a are valid DM models, but not particularly interesting for us
for the following reason. These constructions are models in which the SM particle content is
simply extended by the DM candidate under consideration. Thus, giving the list of “valid”
DM candidates is equivalent of giving the list of DM models with exactly one BSM field
and we have nothing new to add to this class from the point of view of model-building.
Note that in this class of single field models the matching coefficients of the different 4F
operators will be strictly related and always generation diagonal. For example, a model
with only one copy of F1,3,0 would give that matching conditions Oll = O3

qq = (1/2)O3
lq,

while all other 4F operators get zero contribution. However, all Wilson coefficients would
be suppressed by g4

2 and proportional to rather small coefficients.
The second subclass, III-b, occurs only in some particular 4F operators. In this subclass

the internal particle coupling at tree-level to a fermion pair is the SM Higgs field. Propagator
corrections of the type D-III-2 and D-III-4 can occur in DM models with a DM candidate
and one additional fermion (D-III-2) or scalar (D-III-4). Such two field extensions of the
SM will give contributions to some 4F operators, but will be suppressed by SM Yukawa
couplings. They are therefore not interesting phenomenologically (except for operators
containing a pair of top quarks, which we do not discuss in this paper) and we will not
consider this class in further detail.

The remaining subclass, III-c, contains diagrams in which one (or both) of the particles
coupling to the outside fermions is a BSM field. In this case, similar comments apply as to
the triangle diagrams: these contributions to the 4F operators will always be generated
in models with a “portal” field and some DM candidate, but since the portal field must
also couple to the SM fermions at tree-level, the DM loop is a negligible correction to the
4F operator.

Thus, one can conclude that DM models that are phenomenologically interesting for 4F
operators are the ones found in box diagrams and we will concentrate on discussing these
in the rest of the paper. The third and last step in the diagrammatic method then consists
in finding all valid particle insertions for this type of diagram for all possible 4F operators.
This is discussed next.

2.2 Dark matter content

Every vertex of a box diagram connects one SM particle with two undetermined BSM fields,
meaning that the interaction is not fixed unambiguously. This leads, in principle, to an
infinite “tower” of models that one could construct. However, in the current paper we are
interested only in models in which at least one particle in the loop can be a good WIMP
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dark matter candidate. This implies that, once the list of possible DM candidates is known,
the construction of all possible models becomes a manageable combinatorical problem: one
needs to find all non-isomorphic permutations of the external fields in a given operator and
insert the chosen DM candidate in all possible positions. Then, the other particles in the
diagram are fixed and their quantum numbers can be calculated. Finally, one eliminates all
duplicate models. This procedure is then repeated over all operators and the full list of DM
candidates one wishes to consider.

Before discussing the models we still have to find the list of possible DM WIMP
candidates. Here, we consider as “good”, i.e. phenomenologically consistent, WIMP DM
candidates only colour-singlet, electrically neutral particles.5 The DM candidate should
also allow to fit correctly the observed DM relic density or, at least, there should be regions
in the parameter space of the model where its relic abundance is not larger than ΩDM

as measured by Planck [31]. And, finally, it should also obey various bounds from direct
detection (DD) experiments and other searches. The best DD limits are currently from
experiments using Xe [23, 24].

What type of multiplets can be phenomenologically consistent DM WIMP candidates?
As far as we know, this question was originally addressed in [32]. References [33, 34] have
recently provided a detailed update. Further studies can be found, for example, in [35]
and [36]. The following discussion draws heavily from the results of [33, 34].

The annihilation cross section for the WIMP in the early universe increases with the
size of the SU(2) representation. References [33, 34] showed that for SU(2) multiplets larger
than a 13-plet the annihilation cross section will violate the (s-wave) unitarity bound, thus
limiting the maximal size of SU(2) representation allowed for DM candidates. This upper
limit is actually weaker than the criterion used originally in [32]. The authors of [32] showed
that for any SU(2) representation larger than quintuplet (fermions) or 7-plet (scalars),
the running of α2 will hit a Landau pole below the GUT (“grand unified theory”) scale.
The list of possible DM candidates given in [32] therefore contains only multiplets up to a
scalar 7-plet.

We can roughly divide all the remaining multiplets into just two cases: models with
DM candidates that are members of an SU(2) multiplet with Y = 0, and all others. The
case Y = 0 has been studied in detail in [33], Y 6= 0 has been treated in [34].

The Y = 0 case is the simpler one. Here, the list consists of both scalars and fermions
that are odd SU(2) multiplets, i.e. representations (1, n, 0), with n = 1, 3, 5, · · · . For this
case, the neutral component of the multiplet has no tree-level coupling to the Z0 boson,
thus the DD cross section is very suppressed and all multiplets allowed by s-wave unitarity
bounds survive current upper DD limits [33].6 In section 3 we will discuss both models
with fermion and scalar candidates. The extension of these results to the construction of
models with larger multiplets is straightforward.

5Thus, we will not discuss more exotic possibilities such as SIMPS (“strongly interacting massive particles”)
or milli-charged dark matter and other dark sector models. For a review of these and other exotics, see
for example [30].

6However, the future DARWIN experiment [37] has the potential to rule out all non-trivial Y = 0
multiplets as the main component of the DM, as long as we are not considering unnatural cancellations.
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The Y 6= 0 case is more complicated, since DM candidates from multiplets with Y 6= 0
are already excluded by DD limits [32, 34], unless they fall within the “inelastic dark
matter” class. Inelastic dark matter are DM candidates with a sufficiently large mass
splitting between the CP-even and CP-odd components of a neutral state. Since the Z0

boson is CP-odd, it will always couple “off-diagonally” between the CP-even and CP-odd
components. If the mass splitting between these states is larger than the kinetic energy of
the DM particle, contributions from Z0 to the DD cross sections are kinematically forbidden
and, thus, Y 6= 0 DM candidates can survive the stringent DD bounds in this part of the
parameter space.

From the model-building perspective, there is one important difference between scalars
and fermions in this respect. For scalars with Y = 1/2, one can write down the following
quartic coupling:

V ∝ λ5
[
S†1,2n,1/2(T a)Sc1,2n,1/2

] [
(Hc)†(σa/2)H

]
+ h.c. . (2.1)

After electro-weak symmetry breaking the mass squared of the CP-even and CP-odd parts
of the neutral component of the multiplet S1,2n,1/2 receives contributions proportional
to ±λ5v

2, where v is the SM Higgs vacuum expectation value. Thus, the required mass
splitting for inelastic dark matter can be generated from renormalisable terms of the model
Lagrangian (for a sufficiently large value of λ5).

For fermions and for larger values of Y , however, this mass splitting can be generated
only via non-renormalisable operators and, moreover, for Y > 1/2 consistency requirements
between the mass of the DM and the energy scale of the NROs rule out all multiplets,
except F1,3(5),1 and S1,3(5),1, as inelastic DM [34]. Since it is our aim to deconstruct the
4F operators into renormalizable models we do not consider models containing Y 6= 0 in
detail, except for S1,2n,1/2. Note, however, that our methods could be easily applied to
these other multiplets as well, if one were interested only in reconstructing the particle
content of the models.

3 Model candidates and matching to 4F operators

In this section we will count the number of UV completions for 4F operators at 1-loop
level and describe their matter content. Furthermore, we will investigate and discuss some
patterns among the SMEFT operators that these models generate and present the explicit
matching for particular examples.

3.1 Counting UV models

In the following we will focus on flavour-diagonal 4F operators with no baryon number
violation. While the model diagrams allow for open flavour indices, we restrict ourselves to
the flavour-diagonal case because experimental constraints for flavour-violating operators
are much stronger than their flavour-conserving counter part. This leaves us, in the Warsaw
basis, with 25 4F operators at dimension 6, as listed in table 1.
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Class Name Structure

LL Oll
(
l̄LγµlL

) (
l̄Lγ

µlL
)

Ole
(
l̄LγµlL

)
(ēRγµeR)

Oee (ēRγµeR) (ēRγµeR)
LQ O(1)

lq

(
l̄LγµlL

)
(q̄LγµqL)

O(3)
lq

(
l̄LγµσalL

)
(q̄LγµσaqL)

Olu
(
l̄LγµlL

)
(ūRγµuR)

Old
(
l̄LγµlL

) (
d̄Rγ

µdR
)

O(1)
lequ

(
l̄LeR

)
iσ2 (q̄LuR)T

O(3)
lequ

(
l̄LσµνeR

)
iσ2 (q̄LσµνuR)T

Oledq
(
l̄LeR

) (
d̄RqL

)
Oqe (q̄LγµqL) (ēRγµeR)
Oeu (ēRγµeR) (ūRγµuR)
Oed (ēRγµeR)

(
d̄Rγ

µdR
)

Class Name Structure

QQ O(1)
qq (q̄LγµqL) (q̄LγµqL)
O(3)
qq (q̄LγµσaqL) (q̄LγµσaqL)
O(1)
quqd (q̄LuR) (q̄LdR)T

O(8)
quqd (q̄LTAuR) (q̄LTAdR)T

O(1)
qu (q̄LγµqL) (ūRγµuR)
O(8)
qu (q̄LγµTAqL) (ūRγµTAuR)
O(1)
qd (q̄LγµqL)

(
d̄Rγ

µdR
)

O(8)
qd (q̄LγµTAqL)

(
d̄Rγ

µTAdR
)

Ouu (ūRγµuR) (ūRγµuR)
O(1)
ud (ūRγµuR)

(
d̄Rγ

µdR
)

O(8)
ud (ūRγµTAuR)

(
d̄Rγ

µTAdR
)

Odd
(
d̄RγµdR

) (
d̄Rγ

µdR
)

Table 1. List of baryon (and lepton) number conserving 4F operators in the Warsaw basis at d =6.
Note that we have suppressed generation indices here.

Class Name Structure

ψ2φ2D O(1)
Hl

(
H†i

↔
DµH

)(
l̄Lγ

µlL
)

O(3)
Hl

(
H†i

↔
D
a

µH

)(
l̄Lγ

µσalL
)

OHe
(
H†i

↔
DµH

)
(ēRγµeR)

O(1)
Hq

(
H†i

↔
DµH

)
(q̄LγµqL)

O(3)
Hq

(
H†i

↔
D
a

µH

)
(q̄LγµσaqL)

OHu
(
H†i

↔
DµH

)
(ūRγµuR)

OHd
(
H†i

↔
DµH

)(
d̄Rγ

µdR
)

OHud
(
H†i

↔
DµH

)
(ūRγµdR)

ψ2φ3 OeH
(
H†H

)2 (
l̄LHeR

)
OuH

(
H†H

)2
(q̄LHuR)

OdH
(
H†H

)2
(q̄LHdR)

Table 2. Fermion-Higgs operators at dimension-6 in the Warsaw basis.

– 9 –



J
H
E
P
0
9
(
2
0
2
3
)
0
8
1

Furthermore, for simplicity, we will just distinguish operators by their external fields, for
example we simply write Olq for both O(1)

lq and O(3)
lq . Hence, we are left with 18 B-conserving

4F operators which can be classified into 3 categories:

1. 3 lepton-specific operators (dubbed LL): Oll, Ole and Oee

2. 7 quark-specific operators (QQ): Oqq, Oquqd, Oqu, Oqd, Ouu, Oud, Odd

3. 8 mixed lepton-quark operators (LQ): Olq, Olu, Old, Olequ, Oleqd, Oqe, Oeu, Oed

We use the ModelGenerator, a Mathematica code that implements the described
diagrammatic approach, to find all UV models that open up any of these 18 operator
structures at one-loop and meet the criteria discussed in the previous section. In particular
this means that we search only for box diagrams with Z2-odd BSM scalars and fermions, as
motivated in section 2.1, and containing at least one of the DM candidates introduced in
section 2.2.

The procedure to list possible models following this diagrammatic approach is general
and would lead to an infinite number of models if no restrictions on the possible particle
content were imposed. But since in both discussed cases the list of either exits or DM
candidates is finite, we are left with a finite number of models. As this number can still be
large it will prove useful to limit the number of models and define sub-classes of models
according to their particle content.

For models containing exit particles, these sub-classes could be identified by choosing
certain limits for the representations under SU(3)C , SU(2)L and U(1)Y , e.g. by focusing
only on SU(2) doublets instead of going all the way up to SU(2) quadruplets. Here, 1-loop
models containing DM candidates can be straight-forwardly classified according to the type
of DM candidate, distinguishing between those already described in section 2.2.

• DM candidates with hypercharge Y = 0, i.e. (S/F )1,n,0 with n = 1, 3, 5, . . .. We will
look only at models for the singlet and triplet cases here. Nevertheless, the number of
models for higher multiplets coincides with the number of models for the triplet case
by construction and the new particle content can be reconstructed easily from the
triplet case, as it will be explained in subsection 3.3.

• For Y = 1
2 only the scalar DM candidates could exist on their own even in the absence

of NRO terms for mass splitting. We will consider the inert doublet DM model
featuring S1,2,1/2 as an example here.

• Finally, DM candidates with Y = 1 will not be taken into account here.

Table 3 summarises the choices and nomenclature for DM candidates we will
be considering.

3.1.1 Overlap between models for different 4F operators

Before studying concrete models it is worth to have a look at the model overlap between
different 4F operators. Depending on the structure of the operator, a box model contains
between two and four different BSM particles, one of them being a DM candidate. If a
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Name DM candidates
Y = 0 singlets S1,1,0, F1,1,0
Y = 0 triplets S1,3,0, F1,3,0
inert doublet S1,2,1/2

Table 3. DM candidates considered in the counting of UV models for 4F operators at 1-loop.

subset of these particles provides a model for any other 4F operator we say that this model
creates an overlap between the two operators. To quantify this co-generation of different
operators we count the model overlap for every 4F operator with every other of the 17 4F
operator structures in a so-called overlap matrix.

Firstly, starting with Y = 0 DM candidates, figure 4 shows the overlap matrix for
singlets and figure 5 for triplets and higher representations, respectively. To emphasise the
large hierarchy between the entries in the matrix, we underlie the table with a heat-map,
with darker colours representing larger numbers.

The table is to be read in the following way: the diagonal entries list the total number of
models for each operator. Every row belongs to one operator OX . Then, every entry in this
row lists how many of the models for operator OX contain a sub-model that contributes to
the operator OY , which labels the column. Note that we do not require that the box diagram
which generates operator OY in the overlap matrix to contain a DM candidate. However,
by construction, all particles in the loop must be odd under the stabilising symmetry.

As a last comment, it should be mentioned that the above overlap matrices only require
the particular DM multiplet, singlet or triplet, to be present. Thus, the list of models will
also contain examples of models with more than one viable DM candidate. If we want to
ensure that the models contain only one DM Y = 0 candidate, we can exclude all other
multiplets by hand. This does not change much the number of models, though, and the
reason is fairly simple: to have e.g. SU(2) singlets and triplets present at the same time in
one loop requires four external SU(2) doublets. This is only the case for the three operators
Oll, Olq and Oqq. For the singlet case, the diagonal entries for these operators will be
reduced by two, as we exclude the two models that contain S110 and S130, or F110 and F130,
see figure 6 (left). For triplets, the diagonal entries are reduced by four, since we now have
to exclude the models with S110 and S130, F110 and F130, S130 and S150, F130 and F150,
see figure 6 (right). Again, higher multiplets lead to the exactly same numbers as for the
triplet case.

Finally, figure 7 shows the model overlap featuring S1,2,1/2 as a DM candidate. Note
that considering instead a DM candidate S1,n,1/2 with n = 4, 6, . . . would not change
much the numbers. Only the number of models for operators with four external SU(2)
doublets is slightly larger for n 6= 2, since these models can contain particles with an SU(2)
representation of n− 2 that did not appear for S1,2,1/2.

3.1.2 Overlap with Fermion-Higgs operators

Some of the models that generate 4F operators at 1-loop will unavoidably open up operators
with external fermions and Higgs bosons of the type ψ2φ2D and ψ2φ3, see table 2. In
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Figure 4. Operator overlap matrix for models with a singlet dark matter candidates. The entries
on the diagonal count the number of models for the given operator. The entry in row i and column
j corresponds to the number of models for operator Oi that also generate operator Oj .

the following we will refer to both of these classes of operators together as fermion-Higgs
operators (FH).

In contrast to the case with exit particles in the loop, the contributions to FH operators
from models with DM candidates will only appear at 1-loop, but not at tree-level. This
follows from the fact that the new particles running in the loop for 4F operators are odd
under the stabilising Z2 symmetry and can thus not couple at tree-level to a pair of Z2-even
SM particles. Figure 8 shows the possible topologies and diagrams for the two classes
of FH operators. Note that here we have given only the topologies that lead to proper
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Figure 5. As figure 4 but for triplets and higher multiplets as DM candidates.

model-diagrams for FH operators: the diagrams for the operators containing one derivative,
ψ2φ2D, can at 1-loop level only be generated by box diagrams, similar to the boxes for
4-fermion operators. On the other hand, the model diagrams for the operators with 2
external fermions and three Higgses, ψ2φ3, can be generated either via pentagram diagrams
or boxes with a scalar four-point vertex. As discussed in section 2.1, we consider only
diagrams with internal scalars and fermions, but no vectors.

Figure 9 shows the overlap between 4F and FH operators for DM Y = 0 singlets,
figure 10 for DM Y = 0 triplets and figure 11 for the inert doublet model featuring S1,2,1/2.
Which operator will actually be opened by each model depends on the nature of the new
fermions though: models with Dirac BSM fermions will open up different operators than
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Figure 6. Number of models for the three operators Oll, Olq and Oqq, in the first row considering
all models that contain DM Y = 0 singlets (left) or triplets (right). The second row counts the
models that do not contain any other DM multiplet. For details see text.

models with Majorana BSM fermions, see the discussion in section 3.4. The overlap matrices
do not specify the nature a priori and contain entries for all operators that could be opened
for either Dirac or Majorana fermions.

Matching the 1-loop models to the relevant SMEFT operators, the Wilson coefficients
for the FH operators will in general be of the same order as the Wilson coefficients for the
4F operators since now both 4F and FH operators are produced at 1-loop. However, as
we will discuss in section 3.4, for particular points in the parameter space of masses and
couplings of the new particles, the FH operators can provide the dominant contribution.
Hence it is important to keep in mind which models for four-fermion operators can open up
models for fermion-Higgs operators and thus may be constrained by the latter.

3.2 Patterns in 4F operators

The overlap matrices figure 4, 5 and 7 feature only particular DM candidates, but still
contain a large amount of models per operator. Nevertheless, having a closer look at the
tables a few general patterns can be recognised. As long as we consider both the scalar and
fermionic DM candidate for a given Y = 0 multiplet, all models are completely symmetric
under the exchange of BSM fermions and scalars. As one can see in table 3, every scalar
DM candidate has a fermionic partner with the same quantum numbers and vice versa.
Starting the diagrammatic approach from either a scalar or fermionic DM candidate as seed
will lead to models with the same quantum numbers for each particle, swapping fermions
and scalars. Accordingly, all the numbers appearing in the model and overlap counts are
necessarily even and it would actually suffice to generate one half of them (e.g. starting
only from scalar DM seeds) and complete the other half by exchanging scalars for fermions.
This symmetry can be spotted in the tables 4 and 5 for the particle content too.

However, this symmetry will of course be broken if we consider only a particular scalar
or fermionic DM candidate, as we did for the inert doublet model with S1,2,1/2. The
following asymmetry in scalars and fermions in the models can be observed in figure 7, as
now odd entries appear and directly in table 6.

Note that this symmetry could not be found in the first place when considering
models with exits because exit partners with different spin-statistics are not always an
exit themselves.
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Figure 7. Operator overlap for S1,2,1/2.

Also it is worth noticing that the overlap matrices figure 4, 5 and 7 are not symmetric
under the exchange of rows and columns, i.e. the number of models for operator OX that
open up OY and the number of models for operator OY that open up OX are different.
This can be simply seen from the different structure of the operators. An example is
illustrated in figure 12: taking a model for an operator with different external legs (in this
case p1, p2, p3, p4), cutting out one corner and stitching it together in a box with copies of
itself (conjugated when necessary), will lead to a model for every operator Opi for any of
p1, p2, p3 and p4. So all models for Op1p2p3p4 overlap with all Opi , but not vice versa.

To give a concrete example, focus on the leptonic sector for Y = 0 singlets, i.e. the first
three rows and columns in figure 4. All of the 14 models for Ole will generate models for Oll
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Figure 8. Topologies and diagrams for the operators ψ2φ2D and ψ2φ3.

and Oee by the procedure just described. On the other hand, none of the 8 models for Oll,
nor the 4 models for Oee, open up any model for Ole. Note that this last result also differs
from the findings for models with exits: in the latter case, some models for Oll could open
Ole by allowing SM particles in the box, in this case the Higgs doublet. This is not possible
for any DM model since we require a Z2 symmetry that stabilises the DM candidate, thus
all particles in the box must be odd under this symmetry and no SM particle can contribute
in the boxes.

Third, it is striking that the matrices are in general sparse and contain many zeros.
This means that many models contribute only to a subset of operators. Hence, a good model
discrimination can be achieved if some Wilson coefficients are experimentally established to
be non-zero. Given this sparseness and to connect to phenomenology, it is convenient to
group the models in three sub-classes:

• Lepton-specific scenarios: exclusively producing lepton-specific (LL) 4F operators.

• Quark-specific scenarios: exclusively producing quark-specific (QQ) 4F operators.

• Generic or hybrid scenarios: which contribute to the three types (LL, QQ and
hybrid) of 4F operators.

While lepton-specific scenarios are well-constrained from low-energy precision measurements,
quark-specific scenarios will provide a better setting for direct searches at the LHC.
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Figure 9. Operator overlap with fermion-Higgs operators for singlets.

With these definitions and the overlap matrices at hand, we can readily classify the
models that we found. To start with, no model for lepton-specific operators (Oll,Ole and
Oee) generates any model for quark-specific or mixed quark-lepton operators. This holds
for all DM candidates considered here (Y = 0 singlets and triplets and S1,2,1/2), as can be
seen from the zero entries in the first three lines and the columns 4–18 in figures 4, 5 and 7.
Again, in contrast to exit models, the reason for this is the absence of SM particles in the
boxes due to the Z2 symmetry. Accordingly, all models for lepton-specific operators lead
directly to lepton-specific scenarios.

The same statement does not hold for quark-specific models. Since the quark operators
involve up to 3 different external particles (q, u and d), the total number of models is larger
and a few will contribute to lepton-specific and hybrid operators. However, the number
of these models is still small in comparison with the total number of models. Therefore,
many quark-specific models can be identified by selecting the models for QQ operators
that do not produce any LQ or LL overlap. Nevertheless, there is one caveat to have in
mind: if an operator that produces only 4F operators that fall in the class QQ opens up any
lepton-Higgs operator, i.e. O(1)

Hl , O
(3)
Hl , OHe or OeH in table 2, the low-energy constraints

from the latter will dominate over the actual constraints from QQ 4F operators. So to fully
classify a model as quark-specific requires to also exclude any contribution to lepton-Higgs
operators, which are provided in figure 9, 10 and 11.
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Figure 10. Operator overlap with fermion-Higgs operators for triplets.

In summary, the overlap matrices for 4F operators in DM models are much sparser
than what is found for “exit” models. This implies that there is a high model discrimination
power in 4F operators, if any of these could be measured in some future experiment.

3.3 New particles in 1-loop models for 4F operators

Having counted possible UV models and classified them according to the operators they
contribute to, it is time to look at what new particles are actually contained in these type
of models.

Table 4 lists all the particles that appear in models for the B-conserving 4F operators
that contain a DM Y = 0 singlet S110 or F110. Table 5 does the same for DM Y = 0 triplets
S130 or F130. Note that the particle content for models with higher DM multiplets can be
easily obtained by replacing the SU(2) representations of all the particles. For example,
the complete set of loop particles for models with DM Y = 0 quintuplets is obtained
from table 5 replacing singlets by triplets, doublets by quadruplets, triplets by quintuplets,
quadruplets by sextets and quintuplets by septuplets under SU(2). Table 6 lists the particles
that can appear in boxes for models that contain the inert doublet S1,2,1/2. Note that some
representations appear only as scalars because their fermionic partner would require to
include F1,2,1/2 as a valid DM candidate, leading to a scalar-fermion asymmetry in the
possible particle content.
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Figure 11. Operator overlap with fermion-Higgs operators for S1,2,1/2.
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(a) Generic 4F operator with up to four different
external legs.
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Figure 12. Schematic example how to obtain models for more symmetric 4F operators from models
for less symmetric ones. A model that generates an operator of the form Op1p2p3p4 will automatically
produce also the operators Op1p1 , Op2p2 , Op3p3 and Op4p4 . See text for details.
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Table 4. The quantum numbers for both new scalars and fermions that appear in the boxes
for models for 4F operators which contain a DM Y = 0 singlet S110 or F110. Each cell lists
the possible values of the hypercharge Y that are found for the given combination of SU(2) and
SU(3) representations.
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Table 5. The quantum numbers (possible values of Y for given SU(2) and SU(3) representation) for
both new scalars and fermions that appear in the boxes for models for 4F operators which contain a
DM Y = 0 triplet S130 or F130.

As a closing comment to this section, we note that for all BSM models introducing new
scalars and/or fermions, the running of SM parameters at high energies will be changed,
potentially leading to the appearance of new Landau poles below the Planck scale. Excluding
the existence of such Landau poles could be considered a model building criterion. However,
since we are mostly interested in models that give phenomenology at LHC energies, we did
not study RGE running of SM parameters for our model lists.

3.4 Matching of specific models

In this section we will discuss the matching of some specific DM models. For the 1-loop
matching we use MatchmakerEFT [38]. For all model variants discussed below, we have
written FeynRules [39] files, implementing the models in the unbroken phases (since we are
matching to the SMEFT). These model files can be found in the supplementary material.

We separate the following discussion into two groups: (i) Models that generate leptonic
operators and (ii) Models that generate operators with quarks.

3.4.1 Leptophilic models

Perhaps the simplest DM model that can generate Oll is a SM extension with two fields:
F1,1,0 and S1,2,1/2. This model (with three copies of F1,1,0) is known in the literature as the
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Table 6. The quantum numbers (possible values of Y for given SU(2) and SU(3) representation) for
both new scalars and fermions that appear in the boxes for models for 4F operators which contain
the DM candidate S1,2,1/2. The representations in bold are found for both scalars and fermions, the
italic representations only for scalars.

“scotogenic” model [40]. This DM model has the additional motivation that it can explain
not only DM, but also neutrino masses and their mixing angles. The most important terms
in the Lagrangian of this model are:

LSc ∝ YνN̄RLη + 1
2λ5(Hη†)2 + h.c. + · · · , (3.1)

where NR ≡ F1,1,0 and η ≡ S1,2,1/2, in the original notation, and considering NR as a
Majorana field. The model generates the Weinberg operator at 1-loop level.7 In the limit of
Λ = mN = mη its coefficient (in one-generation notation) is simply given by cW = − λ5

16π2
Y 2
ν

4Λ .
We will call this model Sc-I in the following, short for “scotogenic type-I”. One can easily

find variants of this model, for example one can replace NR ≡ F1,1,0 by Σ ≡ F1,3,0, which
we will call Sc-III. One could also extend Sc-I by adding a second scalar, S1,1,1; we will call
this variant Sc-I+. In the scotogenic model the fermion(s) is(are) assumed to be Majorana
particles. For reasons to be discussed below, we also introduce Sc-I and Sc-III assuming the
fermions to be Dirac particles, Sc-I-D and Sc-III-D, respectively. We have implemented all
these models in MatchmakerEFT [38] with one generation of heavy fermions.8

Figure 13 shows the results for the coefficient cll as a function of f = mS/mN = mS/mΣ
for four different model variants in the limit of SM couplings going to zero, i.e. g1,2 → 0.
We plot cll(16π2Λ2) as a function of f , so the function shown is independent of the overall
scaling of the d = 6 operator, (1/Λ2).

An interesting feature occurs in the two Majorana models. For Sc-I, at f = 1 the
coefficient cll vanishes. We have traced this back to an exact cancellation among different
diagrams, that is due to the Majorana nature of the fermion (note that for Sc-III the same
cancellation occurs, but at a value of f roughly f ' 0.13). We note that the same Majorana
cancellation has been found in a different context in [42]. For a Majorana fermion, there

7The model assumes a Z2 under which both NR and η are odd, as well as that η remains “inert” after
electro-weak symmetry breaking, i.e. 〈η0〉 = 0.

8Performing a neutrino oscillation fit would require at least two copies of fermions. Such a fit could be
done easily, see for example [41]. Since in this paper we are interested in d = 6 operators, we do not repeat
this discussion.
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model X Sc-I Sc-I-D Sc-III Sc-III-D

c̃Xll 0 − 1
24 −1

6 − 5
24

Table 7. c̃ll for different models for f → 1 and neglecting all SM couplings. For details see text.
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Figure 13. Matching of the coefficient of Oll for different variants of the “scotogenic” model,
assuming the Yukawa couplings equal to one and neglecting SM couplings. We multiply by a factor
(16π2Λ2), with Λ = mN or mΣ for the type-I and type-III models, respectively.

are always two types of diagrams, one with a lepton number conserving and one with a
lepton number violating fermion propagator. This two diagrams come with opposite signs,
and lead to the observed cancellation, for some specific value of the scalar mass(es) in the
diagram. To demonstrate that this cancellation is indeed caused by the Majorana nature
of the fermion, we also show the result for the models Sc-I-D and Sc-III-D. For the Dirac
models the coefficient cll never vanishes, as figure 13 demonstrates.

In the limit where all SM couplings are neglected and for f = 1, one can write the
coefficient cll as

(cll)Xα,β,γ,δ = c̃Xll
16π2Λ2YαYγY

∗
β Y
∗
δ , (3.2)

where Y stands symbolically for the BSM Yukawa coupling (either type-I or type-III) and
the coefficient c̃Xll is given in table 7 for the different model variants.

Figure 14 compares the matching results for the Majorana variants for vanishing SM
couplings and for the full results, as found by MatchmakerEFT. For the Sc-I model, the
contributions from the Yukawa couplings (proportional to Y 4) dominates nearly everywhere,
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Figure 14. Matching of the coefficient of Oll for different variants of the “scotogenic” model. Full
lines neglect SM couplings, dashed line is the full result from MatchmakerEFT. In all cases we assume
Yukawa couplings to be equal to one. Λ = mN = mΣ.

except for a region at very small values of f , where a second cancellation among diagrams
appear at very small values of f . Note also that taking into account non-zero gauge
couplings shift the cancellation slightly away from f = 1. Non-zero gauge couplings are
more important in the case of Sc-III. This is easily understood: F1,1,0 in type-I has no gauge
couplings, while F1,3,0 in type-III contributes to the matching via (DµW

µν)2 with a sizeable
coefficient. Also for Sc-III a second cancellation region appears at small f . Noteworthy
is also that for gi → 0, the coefficient cll goes to zero in the limit of large f . This is
not the case for Sc-III when g2 is switched on, again due to the F1,3,0 coupling to the
electro-weak current.

In the limit of vanishing SM couplings, the four model variants discussed so far contribute
only to Oll. Contributions to other 4F operators are always of the form (gSM

i )2(ySM
l )2,

(gSM
i )2Y 2 or (gSM

i )4. Numerically these contributions are usually much smaller than those
of cll ∝ Y 4,9 and we will not discuss them in detail here.

The model variant Sc-I+, featuring a second scalar S1,1,1, adds a second Yukawa
coupling YNE F̄ c1,1,0 eR S1,1,1 to the model Sc-I. We have constructed this variant because
it gives a much richer set of non-zero coefficients for 4F and FH operators, as figure 15
shows. The coefficient cll in this model coincides with cll of Sc-I, but in addition the model
produces non-zero coefficients for cle and cee. Note that both cll and cle show the Majorana
cancellation at f = 1, but cee does not. Neither do the coefficients for the operators
including Higgses.

9Here and in the following we use Y symbolically to denote any BSM Yukawa coupling.
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XY ll le ee Hl(1) Hl(3) He eH

c̃XY 0 0 - 1
24 − 1

96 − 1
96

1
48

1
4

Table 8. Limits for f → 1 of the matching results for different Wilson coefficients
c̃XY = (16π2Λ2)× cXY in the model Sc-I+. We consider BSM Yukawas equal to one.
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Figure 15. Matching of different coefficients cXY in the model Sc-I+. The results have been
calculated in the limit of vanishing SM couplings and for BSM Yukawas equal to one. Λ = mN .

For completeness we mention the values for the matching for f = 1 for the different
operators in table 8. These values are valid in the limit where possible BSM quartic
couplings are put to zero. We note that we have also checked that if all Y = 1, contributions
from SM gauge and Yukawa couplings lead only to minor corrections to the matching
coefficients show in figure 15, for f >∼ 0.1.

3.4.2 Coloured models

We now turn to the matching for some example models including coloured fields. While
there are many possible variants, one can examine the main aspects of these types of models,
as far as d = 6 EFT operators are concerned, just by discussing the following three models.
One of the simplest models that can be constructed with coloured fields takes the scotogenic
model and replaces the scalar S1,2,1/2 by S3,2,1/6. This simple variant, with F1,1,0, called
CM1 in the following, will generate a box diagram for the operator O(1)

qq (instead of Oll as
in the scotogenic model). Similarly, as discussed for the leptophilic models above, we can
replace F1,1,0 by F1,3,0 to arrive at a model we will call CM3. Finally, one can add F1,2,1/2
to CM1 to construct a model which we will call CM2.
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Figure 16. Matching of c(1)
qq in the two coloured models CM1 (left) and CM3 (right) as function of

f = mS/mF . The plots compare the matching with and without SM gauge couplings. The BSM
Yukawas are assumed to be equal to one. Here, M and D stands for the Majorana and Dirac versions
of CM1 and CM3. Λ = mF .

We note in passing that the models CM1 and CM3 produce diagrams which are
essentially the same as the one-loop diagrams one encounters in the MSSM. This is, of
course, by construction, since S3,2,1/6 is equivalent to the scalar quark doublet of SUSY,
Q̃L, while F1,1,0 and F1,3,0 correspond to the bino and wino of supersymmetry. However, in
the following we will consider the couplings connecting these BSM fields to the SM (and to
each other) as free “Yukawa” couplings. In a supersymmetric world these couplings would
be fixed by gauge couplings instead. Also, note that different from the leptophilic models,
the coloured models discussed here do not have any connection with neutrino masses.10

Let us discuss the matching for CM1 and CM3 first. In the limit of vanishing SM
couplings, CM1 generates only O(1)

qq , by construction, while CM3 generates both O(1)
qq and

O(3)
qq . In figure 16 we show the matching results as a function of f = mS/mF for CM1 (left)

and CM3 (right). The plots compare the numerical results for the matching for vanishing
SM couplings to the full result, as calculated with MatchmakerEFT.

A few comments are in order. First of all, for model CM1 one finds again the “Majorana
cancellation” at f = 1. For model CM3 the same effect leads to a cancellation at f ' 2.
We also show the matching results assuming that F1,n,0 are Dirac fields, to demonstrate
that this cancellation is present only for Majorana fermions. For CM1 one can see that
for f >∼ 0.2 neglecting the SM couplings in the matching has only a very minor effect, but
for scalar masses much smaller than the fermion mass, corrections to the matching from
SM gauge couplings lead to sizeable changes in the result. For CM3 the results are similar
for the Dirac case, but for a Majorana F1,3,0, neglecting SM gauge couplings, changes
the matching coefficient by a considerable factor for f � 1. Just for completeness, we
summarise the matching results for the different models in table 9.

Model CM1 (CM3) produces only one (two) operators proportional to Y 4. However,
because both models contain a BSM coloured scalar, many other 4-quark operators are

10Extensions which have both lepton and quark d = 6 operators (and generate neutrino masses) can, of
course, be straightforwardly constructed.
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model CM1 CM1-D CM3 CM3-D
c̃

(1)
qq 0 − 1

24
1
9 −1

8
c̃

(3)
qq 0 0 −1

6 − 1
12

Table 9. Coefficients c̃(1)
qq = (16π2Λ2) × c(1)

qq and c̃
(3)
qq = (16π2Λ2) × c(3)

qq for f → 1 for different
coloured models with BSM Yukawas equal to one and vanishing SM couplings. See text for details.

c̃(1)
qq c̃(3)

qq c̃uu c̃dd c̃(1)
ud c̃(8)

ud
1

288g
2
3|Y |2 − 1

720g
4
3

1
96g

2
3|Y |2 − 1

240g
4
3 − 1

180g
4
3 − 1

180g
4
3 0 − 1

30g
4
3

c̃(1)
qu c̃(8)

qu c̃(1)
qd c̃(8)

qd c̃(1)
quqd c̃(8)

quqd

0 1
24g

2
3|Y |2 − 1

30g
4
3 0 1

24g
2
3|Y |2 − 1

30g
4
3 0 0

Table 10. Matching of c̃XY = (16π2Λ2)× cXY in the coloured model CM1 for Majorana fermions,
keeping g3 non-zero, but neglecting the smaller contributions from g1 and g2. |Y |2 is the BSM
Yukawa coupling and generation indices are suppressed for simplicity.
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Figure 17. Matching of cXY in the coloured model CM2 as function of f = mS/mF . The plots
show the result in the limit of SM gauge couplings approaching zero. Λ = mF .

generated with terms proportional to g4
3 and also g2

3|Y |2. Since g3 is still large at LHC
energies, these contributions are not negligible. As an example, we list the matching of all
quark operators for model CM1 (Majorana), neglecting g1 and g2, in the limit mS = mF ,
in table 10. Note that the octet operators O(8)

ud , O
(8)
qu and O(8)

qd have the largest coefficients,
while a number of other coefficients are still zero in this approximation. Also it is important
to point out once more that contributions proportional to g4

3 are, of course, generation
diagonal. We also calculated the matching assuming Dirac fermions instead and found
that only c̃(1)

qq differs by an additional term − 1
24 |Y |

4 and all the other eleven coefficients do
not change.

Model CM2 has two more Yukawa couplings, connecting up and down quarks to S3,2,1/6
and F1,2,1/2. Thus, all 4-quark operators are generated with terms proportional to Y 4 in
this model. The numerical values of the matching coefficients are shown in figure 17, again
in the limit where SM couplings are neglected.

Imposing mF1,2,1/2 = mF1,1,0 = mF allows us to perform the same analysis of cXY as a
function of f = mS/mF . As before, for f <∼ 0.1 these results are only approximate. Both
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c̃XY qq(1) qq(3) uu dd ud(1) ud(8)

M 0 0 − 1
12 − 1

12
1
18 −2

3

D − 1
24 0 − 1

12 − 1
12

1
18 −2

3

c̃XY qu(1) qu(8) qd(1) qd(8) quqd(1) quqd(8)

M − 1
36 −1

6 − 1
36 −1

6 − 1
36

1
3

D − 1
36 −1

6 − 1
36 −1

6 0 0

Table 11. Limits for f → 1 of some Wilson coefficients c̃XY = (16π2Λ2)× cXY in the model CM2
for both the Majorana (M) and Dirac (D) case, assuming all SM couplings zero and BSM couplings
of one.

c̃XY Hq(1) Hq(3) Hu Hd Hud uH dH

Majorana 0 0 −1
6

1
6 −1

3
1
6(λ3 − 2) −1

6(λ3 − 2)
Dirac −1

6 0 −1
6

1
6 0 0 −1

6(λ3 − 1)

Table 12. Wilson coefficients c̃XY = (16π2Λ2)×cXY for fermion-Higgs operators for mS = mFi
= Λ

in the model CM2 with all BSM Yukawas set to one and all SM couplings to zero.

O(1)
qq and O(1)

ud show a cancellation at some specific value of f . We give for completeness in
table 11 the matching at f = 1 in the limit where all BSM Yukawa couplings are equal to
one and all SM couplings neglected. Clearly, the pattern is very different from model CM1
and the coefficients c(1)

qq , c(1)
quqd, c

(8)
quqd differ assuming Majorana or Dirac fermions.

In contrast to CM1/CM3, the model CM2 also generates sizeable contributions to FH
operators of the form φ3ψ2 and φ2ψ2D. For these operators, CM1 and CM3 do receive
contributions from diagrams with gauge couplings g1,2, but none with g3 and thus these
operators are very much suppressed relative to the 4F operators in these scenarios. For
CM2, on the other hand, the matching of FH operators contains terms proportional to
Y 4 and Y 2λ3, where λ3 is the coefficient of the interaction |S3,2,1/6|2|H|2, see appendix A.
There is also an interesting pattern in these coefficients, depending on whether the fermion
F1,1,0 is assumed to be Majorana or Dirac, summarised in table 12. Again, for simplicity,
these matching coefficients have been written in the limit where ∀Y = 1, and all heavy
masses are equal, mS = mFi = Λ. For better readability we multiply by an overall factor
of (16π2Λ2).

In summary, we have discussed in this subsection the matching of various example
models for 4F and FH operators. Very different patterns can emerge in the different models,
allowing in principle a model discrimination if any of these operators were to be observed
in the future.

4 Phenomenology

In the previous sections we have discussed the landscape of UV models with a DM candidate
and loop-suppresed 4F operators. We also identified two classes of models with distinctive
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model particles BSM Yukawa couplings
Sc-I F1,1,0, S1,2,1/2 Yν

Sc-III F1,3,0, S1,2,1/2 YΣ
Sc-I+ F1,1,0, S1,2,1/2, S1,1,1 Yν , YNE
CM1 F1,1,0, S3,2,1/6 YQ1
CM3 F1,3,0, S3,2,1/6 YQ3
CM2 F1,1,0, S3,2,1/6, F1,2,1/2 YQ1, YuF , YdF

Table 13. Summary of the particle content and the BSM Yukawa couplings for the classes of
scotogenic and coloured models discussed here. The definition of each Yukawa is given in appendix A.

SMEFT mapping, leptophilic and colored models. In this section we discuss the typical
phenomenology one should expect from these scenarios as a way to illustrate the interplay
between low-energy, Dark Matter and LHC phenomenology. In the last subsection, we also
discuss more exotic possibilities emerging from the matching to UV theories.

In all cases, we have considered a Dark Matter candidate with hypercharge Y = 0,
a phenomenological requirement due to direct detection constraints, which point to DM
candidates that do not couple to the Z-boson at tree-level. Instead, the heavy DM particle
would couple to quarks via loop-suppressed interactions.

In the leptophilic examples, we will discuss the interconnections among low-energy
lepton 4F constraints, DM direct detection and relic abundance, neutrino masses, rare
decays and direct collider searches.

In the colored case, we will show how constraints from the CMB determination of the
relic abundance and LHC squark-pair searches and contact interaction searches in dijets play
complementary roles when exploring the parameter space. We also discuss how these new
states could strengthen the electroweak phase transition to lead to strong first-order phase
transition, a particularly interesting situation to explain the matter-antimatter asymmetry
and production of gravitational waves in the Early Universe.

4.1 Leptophilic models: dark matter, low-energy constraints, neutrino physics
and lepton colliders

In section 3.4.1 we described the simplest models with DM candidates generating O``, the
so-called scotogenic model and variations. In the scotogenic scenarios, one finds two possible
DM candidates, a right-handed neutrino NR = F1,1,0 or the lightest neutral component of a
new scalar doublet η = S1,2,1/2.

The phenomenology of these DM candidates has been thoroughly studied in the
literature, both for the fermionic DM candidate [43–49] and the scalar option [46, 50–56].
In these works, the emphasis was placed in the neutrino mass generation and the need to
accommodate the mass splittings and angles in a neutrino fit. The neutrino fit generically
leads to CLFV (“charged lepton flavour violation”) four-fermion interactions cijkl`` , able
to mediate rare processes like µ → eγ or µ → 3e. For example, the branching ratio
BR(µ → eγ) ∼ αem|Yµ|2|Ye|2

256πG2
Fm

4
F

for mF ' mS [47, 57, 58], and is constrained to be less than

6× 10−14 [59]. This would lead to a limit of the order of
√
|Ye||Yµ| . 3× 10−2(mF /TeV).
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Moreover, the contribution to the neutrino mass from the Weinberg operator would be
of the order of

mν '
λ5 Y

2 v2

64π2 Λ (4.1)

see section 3.4.1 for details. Assuming this mass contribution is of the order of the eV scale,
or below, then leads to a value

√
λ5|Y | . 4× 10−4(Λ/TeV)1/2 with mν = 1 eV.

In summary, the neutrino fit and rare decays constraints would lead to a scenario where
the leptophilic couplings are very suppressed and the phenomenological interplay in LHC
probes would be rather difficult. Note, however, that for λ5 → 0, neutrino masses would
disappear, but the d = 6 4F operators remain unchanged.

In this work, though, we do not focus on describing a UV scenario with new heavy states
coupled to three generations, where dark matter, the neutrino fit, CFLV and anomalous
dipole moments could be considered at once. This is already an active area of research,
see e.g. refs. [47, 54, 60–63]. Here, we are interested in identifying simple models which
could generate four-fermion operators and contain DM candidates, and possibly exhibit an
interesting collider signature.

4.1.1 The fermionic DM scenario

In the following, we will discuss the complementarity among experimental probes that the
SMEFT and the UV matching is able to bring. We will simply illustrate this complementarity
in a simple, yet not too trivial, leptophilic scenario. As an example, let us explore a simplified
F1,1,0 DM scenario.

Assuming the fermion is heavy, the annihilation cross section to leptons would be given
by [64]

〈σv〉 = m2
F

32π(m2
F +m2

S)2 |Y |
4 (Dirac, s-wave) (4.2)

and
〈σv〉 = m2

F (m4
F +m4

S)
8πxF (m2

F +m2
S)4 |Y |

4 (Majorana, p-wave) (4.3)

where xF = mF /T . The relic abundance is approximately given by Ωh2 ' 8.7×10−11 GeV−2
√
g∗
∫∞
xF

dx
x2 〈σv〉

,

where xF ' 25− 30 in the TeV range, and one needs to impose Ωh2 ' 0.1 from the CMB
constraints.

In the limit that mS & mF and neglecting co-annihilations [65], the relic abundance
would be satisfied for Dirac fermion masses in the range

mF . 1.1 |Y |2 TeV (Dirac), (4.4)

whereas for the Majorana case the value of the mass would be lower,

mF . 0.2 |Y |2 TeV (Majorana). (4.5)

For smaller values of mF , this DM candidate would only constitute a fraction of the total
relic abundance.
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Figure 18. Diagram representing a possible interaction mechanism between Dark Matter (F ) and
nuclei, mediated through dipole moment terms generated at one loop.

These fermion DM models could also lead to interesting Direct Detection (DD) phe-
nomena, see e.g. refs. [66, 67]. In ref. [64], bounds from DD for Majorana and Dirac F1,1,0
were discussed. For a Dirac fermion, they found that the leading contribution to nucleon
scattering was mediated by loop-induced Electron Dipole Moment, see figure 18. Moreover,
in the EFT limit, mF &TeV, the spin-independent cross section for scattering off nuclei is
almost constant with the mass and Xenon-based experiments lead to an overall limit on
the Yukawa,

Y . 10−2 (Dirac). (4.6)

This is a strong limit on the Yukawa, which would exclude the Dirac DM option as a good
candidate for matching to an EFT.

The DD limit is weakened for a Majorana DM candidate, whose cross-section decreases
with the mass and it does not have dipole moments, (F̄ σµνF )Fµν or (F̄ σµνiγ5F )Fµν .
Moreover, the DD cross-section gets even weaker as one switches on the scalar-Higgs portal
coupling λHS . Indeed, in the Majorana case, the Yukawa Y could be order one or higher,
allowing a good EFT description while satisfying the relic abundance constraint in eq. (4.5).
Note that limits coming from the invisible widths of the Z boson and Higgs would be weaker
than DD limits in the heavy mass range, as discussed in [64].

Co-annihilations with other states could increase the annihilation cross section. For
example, mF could be very close to mS or the fermionic DM could be pseudo-Dirac [68].
The increase in 〈σv〉 would weaken the relic abundance bounds in eqs. (4.4) and (4.5) by a
factor O(1), allowing heavier DM candidates. Those semi-degeneracies could also impact
the DD phenomenology, leading to e.g. inelastic DM [69], or pointing towards displaced
vertices signatures at the LHC [68].

As discussed above, scenarios where DM could mediate 4F operators contributing
to CLFV would lead to very stringent limits, and one could ask whether DD could be
competitive with CLFV. In ref. [64] the authors showed that for heavy scalars and fermions,
the best sensitivity to Majorana DM would come from CLFV, if the DM mediates those.
For the Dirac DM case, which we have seen already is excluded as a good EFT match, DD
and CLFV are competitive sources of information.

All this discussion, where we have taken into account flavour and neutrino fit constraints,
CMB relic abundance and direct detection Xenon experiments, points to an interesting DM
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and 4F interplay if the DM candidate is Majorana and does not mediate CLFV. Let us
then discuss what is the status of this option.

As discussed in section 3.4, the 4F operator c`` is the only operator generated by the
leptophilic model Sc-I and is given by c`` = f(mS/mF )|Y |4/(16π2Λ2). In figure 14 we
showed that f(mS/mF )|Y |4 . 10−2 for mF < mS (purple-solid line in this figure), quickly
decreasing as the ratio mS/mF increases.

Using the χ2(c) results given in ref. [16] and particularising to the case where all the
EFT coefficients are zero, except c``, we find a bound at 2-σ for c̄`` = c``v

2 = [−1.0, 6.1]
×10−3. This bound on the 4F operator leads to a parameter range |Y |4v2

16π2m2 ' 10−1 for
mS & mF , which then turns into an approximate relation |Y |2/m . 16TeV−1. Combining
both the 4F limit and the DM relic abundance limit in eq. (4.5), we obtain an approximate
range where the fermionic DM could accommodate both the DM abundance of the Universe
and the current low-energy limits on 4F operators

0.1|Y |2 . mF (TeV) . 0.2|Y |2 , (4.7)

although one should keep in mind that in this range calculation we have made approximations
which work in different directions: 1.) We neglected co-annihilations with S1,2,1/2, which
would weaken the upper bound and allow a higher mass range, and 2.) we assumed that mF

is lower than mS , but not very far from it. Otherwise, the lower limit would be strengthened,
leaving a smaller parameter space.

In summary, a fermionic DM leptophilic scenario is a viable option, assuming the new
states couple preferentially to one lepton generation and the DM is Majorana. This scenario
could explain DM and evade 4F constraints from low-energy precision measurements as long
as mF ' 0.2|Y |2 TeV. Once these constraints are taken into account, the allowed parameter
space in mass versus Yukawa is a band, as shown in figure 19. In this figure we plot the
excluded region by low-energy constraints in orange color, and in green the region of mass
and coupling which would lead to overclosing of the Universe, also excluded.

As a side remark, we mention that in deriving the above constraints, we always assume
that the scalar in the scotogenic does not acquire a vacuum expectation value, i.e. that
the underlying stablizing symmetry is not broken spontaneously. This requires the choice
m2
S > 0. One may wonder, whether points with positive m2

S are driven to negative m2
S

under RGE running, thus ruling out sizeable parts of parameter space of such models as
phenomenologically acceptable explanation for the dark matter problem [70]. However, it
was shown in [71] that points with m2

S > 0 at eletro-weak scale energies never break the Z2
at earlier times, essentially due to finite temperature effects.

Finally, in figure 19, we plot the prospects for direct detection of the model at colliders,
discussed in ref. [72]. At colliders, the best handle would come from pair production of
the S1,2,1/2 through its electroweak couplings, and the subsequent decay into F1,1,0 and a
lepton. Whereas the prospect is that the HL-LHC would probe the mass range around
500GeVs (red-dashed line), future colliders could dip into the 1.5–2TeV range for mS,F

(blue-dashed). The collider probes would then cover quite a lot of the parameter space in
eq. (4.7) for perturbative Yukawas, Y .

√
4π (grey line). Note, though, that these limits

could be weakened if the splitting between the fermion and scalar is so small that the
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Figure 19. Summary of mass vs coupling constraints in the leptophilic UV model with particle
content F1,1,0 and S1,2,1/2. The excluded region from low-energy 4F constraints on the operator
O`` is shown in orange, whereas in green we show the region excluded by the condition that the
DM F1,1,0 candidate does not overclose the Universe. The red and blue dashed lines correspond to
prospects of 95% CL exclusions for HL-LHC and future lepton colliders, respectively, from ref. [72].
We also show with a gray-dashed line the non-perturbative frontier Y =

√
4π. Larger values of Y

can not lead to realistic models.

signature to look for is two displaced vertices with missing energy and a lepton [73, 74], or
if the femionic DM is pseudo-Dirac [68] instead of pure Majorana or Dirac, which would
lead again to displaced vertices [75].

4.2 Coloured models: beyond-SUSY dark matter, contact interactions, squark
searches and gravitational waves

In section 3.4.2, we proposed quark-specific simple extensions of the SM producing quark-
specific 4F operators, i.e only 4F operators with quark-quark and not lepton-quark or
lepton-lepton. These were

• CM1: F1,1,0 and S3,2,1/6,

• CM2: CM1 + F1,2,1/2, and

• CM3: F1,3,0 and S3,2,1/6

If we think about these models in terms of Supersymmetry (SUSY), F1,1(3),0 would corre-
spond to the quantum numbers of the Bino B̃ and Wino W̃ , whereas the coloured scalar
doublet S3,2,1/6 would share the quantum numbers with the squark doublet Q̃L.

– 32 –



J
H
E
P
0
9
(
2
0
2
3
)
0
8
1

S
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F qL, u, d

F qL, u, d

Figure 20. t-channel annihilation diagram of the DM candidate F1,1,0 into quarks.

Although these particles have the same quantum numbers as the well-known SUSY
particles, their interactions are not as restricted as in SUSY, and viable dark matter
scenarios with the Bino-like and Wino-like particles could be found.

For example, in SUSY a pure Bino scenario is disfavoured due to the smallness of its
annihilation cross-section, proportional to g4

1 and p-wave suppressed, which typically leads
to overclosure of the Universe unless the SUSY particles are very light, in contradiction
with the absence of direct observation [76]. But, while the Bino is necessarily coupled to
SM fermions and sfermions via the SM coupling g1, our DM candidate F1,1,0 can annihilate
efficiently to SM particles via a t-channel exchange of S3,2,1/6, see figure 20. In this case
the cross-section is modulated by a coupling YF :

〈σv〉F1,1,0 '
3Y 4

F

2πm2
S

r(1 + r)2

x(1 + r)4 (4.8)

where λ here represent the coupling between S, F and SM fermions, r = mF /mS

and x = mF /T .
Similarly, the SUSY pure Wino scenario is also disfavoured as the Wino would annihilate

too efficiently into the SM via its larger g2 coupling and the enhancement due to the
coannihilations among the weak triplet components. This efficient annihilation of DM in
the early Universe would mean that the required Wino mass to satisfy the relic abundance
condition is large. On the other hand, in the case of F1,3,0, the coannihilation enhancement
would still be present, but the overall cross-section would be modulated by a new coupling
with S and a SM fermion. A small coupling, smaller than g2, would open up the parameter
space for the Wino-like F1,3,0 into smaller masses:

〈σv〉F1,3,0 '
3Y 4

F

16πm2
F

. (4.9)

Those models would also induce four-quark interactions at low energies, and the specific
matching is explained in section 3.4.2. For these operators, the best probes come from hadron
colliders. Searches for contact interactions involving four-quarks have been performed at
LEP, TeVatron and now at the LHC, see e.g. [77, 78].

In these experimental analyses, the typical theoretical framework to interpret the data
is in terms of the following Lagrangian:

Lexp = 2π
Λ2

(
ηLL(q̄LγµqL)(q̄LγµqL) + ηRR(q̄RγµqR)(q̄RγµqR) + 2ηRL(q̄RγµqR)(q̄LγµqL)

)
.

(4.10)
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Note that, compared with the SMEFT framework: 1.) this Lagrangian is not SU(2)
invariant, and 2.) there is 2π pre-factor. The term ηLL is related to the operator O(1)

qq , ηRR
to the operators O(1)

uu,dd,ud and ηLR to O(1)
qu,qd.

With this Lagrangian, the most up-to-date experimental limits on quark contact
interactions are obtained using dijet differential distributions from the 13TeV data. The
analysis by ATLAS [77] is restricted to switching on only LL terms and leads to the following
95% CL limits

ΛLL > 13− 22 TeV, for ηLL = ∓1 (ATLAS 13TeV 37 fb−1) , (4.11)

whereas CMS has performed a similar analysis [78], with comparable sensitivity.
This experimental limit can be expressed in terms of the SMEFT operators by comparing

terms 2π/Λ2
exp with the matching results for the coefficient cqq in section 3.4.2,

2π
Λ2
LL

= cqq = c̃qq(f)
16π2Λ2 |YF |

4 (4.12)

where f = mS/mF . For mS & mF one finds g(f & 1)|YF |4 ≈ 10−2 as shown in figure 16.
This would lead to an approximate Run2 limit

Λ & (0.04− 0.07) |YF |2 TeV (4.13)

Note that in ref. [79], the authors reinterpreted 7TeV data in the context of 4F SMEFT.
Their individual bounds were in the range Λeff= 0.8–3.5TeV for the different four-quark
operators. Also, in a more recent paper [80] a recasting of 13TeV dijet limits was done,
using the EFT approach and focused their interpretation on the flavour anomalies. All
these dijet limits are in the TeV range, but in our loop-induced models, they translate
into a very weak limit on the EFT scale which jeopardizes the EFT validity. For example,
if we take the Run2 limit in eq. (4.13) and assume large values for YF =

√
4π, we would

end up with a mass limit of the order of 500–900GeV. But the LHC experimental dijet
selection cuts are strict, typically mjj > 800GeV, so even in the extreme case of large
Yukawa couplings we would find that the limit on the EFT scale Λ < mmin

jj =
√
ŝmin, which

is in clear contradiction with an adequate EFT expansion.
On the other hand, hadron colliders are sensitive to direct production of the coloured

particles, through processes

p p→ S3,2,1/6 S
∗
3,2,1/6 → F1,1,0 F1,1,0 + 2 q →MET + 2 j , (4.14)

see figure 21. Note that this decay could go through a final state of displaced jets if
∆mFS = mS −mF � mS , rendering S long-lived.

For prompt S decays, this search is exactly the same as the traditional 1st-2nd generation
squark pair production leading to MET+jets. ATLAS has performed a search in this final
state using the full Run2 data [81]. We can simply translate the limits for the benchmark
“1 non-degenerate q̃” into our scenario,

mS > 1 TeV, for mF < 400 GeV , (4.15)
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Figure 21. Pair-production of the scalar S3,2,1/6 leading to jets and missing energy from the
DM F1,1,0.
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Figure 22. Summary of mass vs coupling constraints in the CM1 UV model with particle content
F1,1,0 and S3,2,1/6. The excluded region from the Run2 dijet analysis from the ATLAS [77] and
CMS [78] contact interaction interpretation is shown in orange, whereas in green we show the region
excluded by the condition that the DM F1,1,0 candidate does not overclose the Universe. The red
dashed lines corresponds to the range of current 95% CL exclusions from a search for pairs of
squarks [81]. We also show with a grey-dashed line the non-perturbative frontier Y =

√
4π.
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a limit that quickly weakens as mF gets closer to mS :

mS > 0.5 TeV, for mF . mS , (4.16)

where we still have enough kinematic space to produce a prompt decay.
Let us now show the impact of these constraints (DM relic abundance, effective four-

quark operators and direct searches) in the parameter space of mass versus coupling with
the SM fermions. As an example, we focus on the CM1 model with singlet Bino-like DM.
The annihilation cross-section given in eq. (4.8), leads to an allowed parameter space

mS . 1.7|YF |2 TeV (CM1). (4.17)

In figure 22 we show the allowed region in green. We also show the current limit from dijet
searches for contact interactions, using eq. (4.13) and choosing a nominal value of 5TeV in
the range.

The direct search limits on pair production of S particles in the final state MET+ jets
discussed in eqs. (4.15) and (4.16) are shown as dashed red lines, and we also note the value
YF =

√
4π with a dashed-grey line.

With this figure we see that the current Run2 data, including dijet searches and
squark pair production, has probed a substantial portion of the region allowed by the relic
abundance and perturbativity. If the squark searches reached the 2TeV range, this scenario
would be completely covered.

4.2.1 Baryogensis and Gravitational waves

The new scalar S, which enables the strong production at the LHC, could also enhance the
Electroweak Phase Transition via its coupling to the Higgs λ3, see Lagrangian (A.4).

Although the colored S should not acquire a vev [82], at one-loop this coupling modifies
the Higgs potential. This modification could open the window for a strong 1st order
phase transition, one of the requirements for successful baryogenesis, which should be
complemented by new CP violating sources, and also offers the opportunity for production
of Gravitational Waves.

Indeed, one-loop diagrams with pairs of S modify the steepness of the Higgs potential
via its cH term,

cH
Λ2 [φ†φ]3 . (4.18)

After electroweak symmetry breaking, this dimension-six term will induce a temperature
correction that could increase the barrier between the true and false vacua. This barrier
could change the typical SM cross-over potential into a potential that at the electroweak
scale leads to a strong 1st order phase transition.

Neglecting SM couplings, we find that the contribution of S to the SMEFT coefficient
is the same for CM1, CM2 and CM3,

cH
Λ2 = −λ3

(
λ3

4πmS

)2
. (4.19)
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The condition that the Higgs potential should be bounded by below leads to λ3 < 0, to
ensure that the h6 term does not de-stabilize the potential at large field values. Moreover,
there are upper and lower bounds on this term by imposing that the phase transition
completes successfully and that it is strong-enough first-order, respectively [83]

0.105 < cH
v2

Λ2 < 0.211 . (4.20)

This range can be written as

mS(TeV ) ∈ [0.04, 0.06]λ3/2
3 . (4.21)

Taking into account the current bounds, mS & 0.5–1TeV, the coupling λ3 would have to be
larger than 1 to accommodate a strong 1st order phase transition. Even the limiting case of
very large quartic coupling, λ3 ' 4π, would lead to a range mS ∈ [1.8, 2.7]TeV, within the
reach of future LHC searches for squarks. Therefore, we find that the LHC direct searches
will be able to explore the scalar parameter space relevant to baryogenesis and gravitational
wave production in these colored scenarios.

4.3 New particles with very exotic quantum numbers

So far in this section we have discussed the phenomenology of a subset of paradigmatic UV
completions arising from our diagrammatic analysis. We have identified a few benchmark
scenarios where we could explicitly show the interplay between direct and indirect probes.

All the benchmarks we have studied (leptophilic and coloured) contains new particles
with typical quantum numbers in theories of Beyond the Standard Model, e.g. the fermionic
DM particle F110 has the same SM quantum numbers as the Bino.

Yet the models we found are far richer than the benchmarks we have studied as can be
seen in figure 4, where we show the number of models with singlet DM and the structure of
SMEFT operators they generate.11

In particular, we find quite exotic new particles such as scalar or fermion color octets
and weak doublet/triplet, (S/F )82Y and (S/F )83Y , with different values of hypercharge Y .

For example, UV completions leading to Oqq operators contain:

Exotic 1 : F830 =
(
F+

8 , F
0
8 , F

−
8

)
, S3 2 1/6 =

(
S

+2/3
3 , S

−2/3
3

)
, F110 , (4.22)

and in the list one also finds the same model, except with all the spins flipped, namely

Exotic 2 : S830 =
(
S+

8 , S
0
8, S

−
8

)
, F3 2 1/6 =

(
F

+2/3
3 , F

−2/3
3

)
, S110 . (4.23)

The color octects would be copiously pair produced through their strong coupling, in the
same way gluinos or sgluons would do, see e.g. ref. [84]. Yet our UV exotic 1 and 2 models
predict that, instead of one neutrally charged gluino/sgluon, one should expect a triplet of
charged and neutral components, F±,08 or S±,08 . Exotic 1 and 2 would lead to a new type

11We have added a file to the paper, in the supplementary material, with a list of models with their matter
content and the mapping to which operators they contribute to.
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of phenomenology, with enlarged production cross section respect to the gluino or sgluon
benchmarks, and opportunities to use the weak charge of the new states to tag on final
states like leptonic W or Z decays.

The study of the phenomenology of such exotic objects is beyond the scope of this
paper, but one can identify sets of interesting channels such as high-multiplicity events

p p→ F±8 F∓8 → n` leptons + nj jets + MET, (4.24)

where nj > 4 and n` would depend on whether there is enough kinematic range for a
sizeable branching ratio to a W or Z decay, e.g. through F+

8 →W+ F 0
8 . These busy events,

similar to long decay chains in Supersymmetry or to Black Holes [85], should be quite
accessible at the LHC, as they exhibit a large production cross section, substantial missing
energy, and many high-pT jets and leptons which can be used to reconstruct resonances.

5 Conclusions

In this work we focused on the identification of UV models that contribute to d = 6 SMEFT
4F operators and contain a viable cold Dark Matter (DM) candidate. In particular, we
have been interested in models that allow for an interplay between constraints from 4F
operators and the DM relic abundance.

We classified the UV models for 4F operators with DM candidates using a diagrammatic
approach. The method is similar to the approach presented in [20], a study where all the
new states were assumed to decay to SM particles (exit particles). Here we extended this
work to allow for a Dark Matter candidate, and classify the new sets of scenarios.

Since the stable DM candidates considered here have to be odd under a stabilising
symmetry, the new states couple only in pairs to SM particles and hence all contributions
to 4F operators are by construction loop-induced and a direct LHC search may be feasible.

Also, in this paper we focused on box-diagram topologies for 4F operators. Topologies
leading to portals or propagator corrections have not been considered here as they are more
difficult to constrain by limits on 4F operators or provide only single-field extensions to
the SM.

Although the classification method is general, some assumptions for the box diagrams
were made:

• We considered only models with BSM scalars and fermions, but no vectors.

• We limited ourselves to dimension-6 operators. Higher-dimensional operators might
be interesting in particular scenarios in which dimension-6 operators do not contribute
to the process of interest.

• By construction, all models contain a DM candidate. In combination with the analysis
for models with exits in [20], it covers all scenarios which do not feature electrically
charged stable particles in the loop.
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• We neglect SM Yukawa couplings in the matching from the UV models to the SMEFT
operators. Assuming natural BSM Yukawa couplings, the SM gauge couplings are
also negligible in most cases.

Phenomenologically consistent DM candidates must be colour singlets and electrically
neutral. Further requiring that they are compatible with the observed DM relic abundance
and constraints from direct detection leaves us with a finite number of candidates. In this
work we focused on deriving the phenomenology of scalars and fermions with hypercharge
Y = 0, i.e. (S/F )1,n,0 with SU(2) multiplets n = 1, 3, 5, . . ., and on the inert doublet S1,2,1/2.

Next, we classified the 4F operators as lepton-specific, quark-specific and mixed opera-
tors. For the mentioned choices of DM candidates we studied the overlap between models
for different 4F operators and found that many models contribute only to either lepton- or
quark-specific operators. This finding differs from the results for models with exit particles
as the stabilising symmetry for DM candidate prohibits SM particles appearing in the loop
diagrams. Hence many models can be classified as lepton-specific or quark-specific models.

Lepton-specific models receive strong constraints from low-energy limits while quark-
specific models are of particular interest at hadron colliders like the LHC. Moreover,
generally speaking, the sparseness of the model overlap between different operators would
allow for a good model discrimination if some non-zero Wilson coefficients were experimen-
tally established.

We then presented explicit examples for the matching for both classes: generalized
versions of scotogenic models in the leptophilic case, and coloured models for the quark-
specific case. We then studied the dependence of the Wilson coefficients on the mass ratio
of the BSM scalars to fermions, on the Majorana or Dirac nature of the fermions and on
the SM gauge couplings.

In the lepton-specific scenario, we found a very interesting interconnection among
low-energy lepton 4F constraints, the relic abundance constraint and the direct collider
searches, both at the LHC and future lepton colliders.

In the colored case, the constraints from the CMB determination of the relic abundance
and LHC squark-pair searches and contact interaction searches in dijets played complemen-
tary roles when exploring the parameter space. In this case, direct searches for the colored
states were more sensitive than LHC SMEFT interpretations of dijet final states. Morover,
we found that these SUSY-like direct searches in the HL-LHC should be able to cover all
the region of parameter space where new states could strengthen the electroweak phase
transition, with the potential to explain the matter-antimatter asymmetry and production
of gravitational waves in the Early Universe.

Finally, we discussed more exotic models which arise from our analysis. In particular, we
found scenarios with color-octect weak-triplet quantum numbers, which are not considered in
the existing searches but should lead to very interesting phenomenology: strong production,
missing energy and many hard leptons and jets.

Attached to this paper submission, the reader can find the model files and matching
results using MatchMakerEFT [38] for the leptophillic and colored models discussed here.
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A Lagrangians for example models

In section 3.4 we have discussed the complete matching for a few specific example models.
For completeness and for fixing the notation, in this appendix we provide the Lagrangian
terms for these models.

We start with the scotogenic model. This model adds two new particles to the SM
content, one scalar η = S1,2,1/2 and one (to three) singlet fermion(s) F = F1,1,0.12 For fitting
neutrino data, one needs at least two copies of fermions. Since we will not repeat neutrino
fits, we will write the Lagrangian for only one copy of F , extending to more generations is
straightforward. The new pieces of the Lagrangian, beyond the SM terms, can be written
as:

LSc = 1
2mFF cF + YνF̄Lη + LSc

pot, (A.1)

with

LSc
pot = m2

S |η|2 + λ2|η|4 + λ3|η|2|H|2 + λ4|η†H|2 + 1
2(λ5(η†H)2 + h.c.) (A.2)

For λ5 ≡ 0, this setup conserves lepton number and the connection with neutrino masses
is lost.

We have discussed also several variants of this basic idea. First of all, the model as
defined above should be better called “scotogenic type-I” model. One can simply replace
F1,1,0 by F1,3,0, to arrive at the scotogenic model type-III. The structure of the terms in
eq. (A.2) remain the same, but in the main text we call the Yukawa coupling YΣ, following
notation from neutrino physics, were F1,3,0 is usually denoted as Σ.

To arrive at the Dirac versions of these models, we have to actually introduce two
independent Weyl spinors, FR and FL. This implies that the mass term becomes vector
like (F cF → FLFR) and if one assigns FR and FL the same lepton number, no contribution
to the Weinberg operator will be generated anymore and neutrino masses are zero.

Finally, we introduced another variant, called Sc-I+ in the main text. This variant
takes the original model and adds a second scalar, S1 = S(1, 1, 1). The new Lagrangian

12This particle has the same quantum number as a right-handed neutrino. So in the literature one can
find notations for this field as νR or also N and NR.
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terms are

LSc+ = YNEFeS1 +m2
S1 |S1|2 + λ6|S1|4 + λ7|S1|2|η|2 + λ8|S1|2|H|2 (A.3)

+ (µSS+
1 Hη + h.c.).

Subsection 3.4.2 discusses several model variants with a coloured scalar SQ = S(3, 2, 1/6)
and a fermion, either F = F (1, 1, 0) or F = F (1, 3, 0). The model is reminiscent of
supersymmetry, since SQ, F (1, 1, 0) and F (1, 3, 0) have the same quantum numbers as the
scalar quark, the bino and the wino. The lagrangian can be written as

LCM = 1
2mFF cF + YQiQ̄FSQ +m2

Q|SQ|2 + λ2|SQ|4 + λ3|SQ|2|H|2 (A.4)

Similar to the case of the scotogenic model, discussed above, F can stand for either the
singlet (YQ1) or the triplet (YQ3) and one can create easily models with either Majorana or
Dirac fermions. Note that in supersymmetry the term proportional to YF is fixed to be a
gauge coupling (either g1 or g2) but we treat YF as a free parameter.

Finally, we introduced a variant, called CM2 in the main text, that adds a second
fermion F2 = F (1, 2, 1/2) to the model variant CM1 (SQ = S(3, 2, 1/6) + F = F (1, 1, 0)).
New terms in the Lagrangian are:

LCM2 = mF2F2F2 + YHH F̄F2H
† + YuFuRF2 + YdFF

c
2dRS

†
Q. (A.5)

Note that in defining all Lagrangians we have assumed the existence of a Z2 symmetry
under which the new particles are odd. Thus, only terms quadratic (or quartic for scalars)
in the new fields survive.
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