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1 Introduction

String theory compactifications provide a remarkable connection between the geometry
of extra dimensions and the physics of Effective Field Theories (EFTs) [1–5]. An early
lesson that one obtains upon exploring this link is that the more an EFT quantity is
protected against quantum corrections, the simpler is its description in geometric terms.
Typical examples arise in the context of supergravity and supersymmetric gauge theories,
where protection mechanisms involve both gauge invariance and renormalisation effects
constrained by supersymmetry.

In several instances, discrete EFT data protected by gauge invariance are described
in terms of the topology of the compact manifold Xn, while quantities protected by
supersymmetry enjoy a simple description in terms of differential and/or algebraic geometry.
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A clear example of the second is BPS states or extended objects of the EFT, which can
be obtained from, e.g., D-branes in type II compactifications at weak coupling. In that
case, the BPSness condition requires that the D-brane extra dimensions wrap a p-cycle of
Xn that is calibrated, in the sense of [6]. This condition not only has a neat differential
geometric description for compactification manifolds Xn with special holonomy, but it
can be generalised whenever Xn has a G-structure metric and a flux background that
leads to a supersymmetric EFT [7–9]. The central charge of the BPS object at tree-level
is then determined by the integral over the p-cycle of the suitable p-form calibration,
or generalisations that allow us to calibrate D-brane bound states. This picture also
applies to space-time filling D-branes that are part of the background in type II orientifold
compactifications, as well as to Euclidean D-branes that play the role of BPS instantons.

An example of discrete EFT data with a topological higher-dimensional origin is the
presence of discrete gauge symmetries. In the Abelian case, a ZN gauge symmetry of a
d-dimensional EFT can be described by a Lagrangian coupling of the form [10]

N Bd−2 ∧ F2, (1.1)

where Bd−2 is a (d − 2)-form of the EFT dual to an axion C0, and F2 = dA1 is the field
strength of the U(1) boson gauged by C0 à la Stückelberg. Finally, N ∈ Z is the quantity
that is described in terms of the topology of Xn. For instance, in type II orientifold
compactifications, couplings of this form are specified by the homology classes of the p-
cycles wrapped by space-time filling D-branes, which in turn determine the discrete gauge
symmetries acting on the open string sector of the theory [11]. This case is particularly
interesting because the discrete symmetry acts on the massless chiral spectrum of the
EFT. However, it has the feature that the axion and gauge boson masses induced by (1.1)
are usually of the order of the string scale. This implies that the Stückelberg terms that
complete (1.1) are not part of the EFT Lagrangian.

A different setup where the coupling (1.1) is realised is by threading the compact
manifold Xn with quantised background fluxes [12]. In this case, the coupling N is
determined by the flux quanta, or equivalently by an integral cohomology class in Xn.
Here the interplay with the EFT cutoff is reversed with respect to the previous one. The
Stückelberg-induced masses for axions and gauge bosons can lie below the EFT cutoff, but
now the resulting discrete gauge symmetry acts on strings and particles that typically do
not correspond to light states of the EFT.

In this work, we are interested in yet another realisation of discrete gauge symmetries,
namely those that arise from torsion factors in the integral cohomology groups Hp(Xn,Z).
That such ZN factors correspond to ZN gauge symmetries can be seen in the AdS/CFT
context by following the reasoning in [13, 14], applied to type II orientifold compactifications
in [15], and with subsequent work in similar setups in [12, 16–20]. As stressed in [12],
the realisation of discrete gauge symmetries via torsion in cohomology is related to the
setting with background fluxes by dualities such as mirror symmetry. This implies that
the same EFT features should be realised, namely: i) Stückelberg couplings that are part
of the EFT Lagrangian and ii) charged objects that lie above the EFT cut-off. Indeed, as
discussed in [15] such charged objects are given by D-branes wrapping torsion cycles of Xn,
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which from the EFT perspective look like particles and (d − 3)-branes coupling to A1 and
Bd−2, respectively.

From this simple observation, an apparent puzzle follows. If in this case (1.1) and
its Stückelberg completion appears in the lower-dimensional EFT, is because torsion in
cohomology is detected by the standard procedure of p-form dimensional reduction. This is
rather counter-intuitive, in the sense that torsion cohomology groups are trivial in de Rham
cohomology, or in other words their elements can only be represented by exact p-forms.
Since the EFT data captured upon dimensional reduction typically involves integrals of
p-forms over p-cycles, it is a priori not clear how torsion cohomology factors can translate
into a Stückelberg Lagrangian term in the EFT. This naive picture agrees with the standard
lore that torsion in cohomology cannot be detected via smooth p-forms, and that one
should resort to more advanced geometric techniques, like the computation of spectral
sequences [21] or to differential cohomology [22].

This paper addresses this puzzle and proposes a prescription to capture torsion in
cohomology via the standard procedure of dimensional reduction. The basic idea is to
use smeared delta forms to construct the integral basis in which ten-dimensional fields are
expanded in order to perform the reduction. Here a delta p-form stands for the p-current
δp(Πn−p) with legs transverse to an (n − p)-cycle Πn−p ⊂ Xn, while its smeared version
δsm

p (Πn−p) corresponds to the projection into the light eigen-p-forms of the Laplacian. If one
projects δp(Πn−p) to the zero-mode sector of the spectrum one simply obtains a harmonic
p-form which is the de Rham Poincaré dual of Πn−p, and torsion cycles are projected out. If
however, one includes in the projection those non-vanishing eigenmodes that correspond to
massive p-form fields entering the EFT, then torsion cycles can have a non-trivial smeared
delta form, and translate into quantities of the EFT Lagrangian.

More precisely, we propose that one should consider smeared delta forms of calibrated
cycles in order to build the basis for the dimensional reduction. The physical intuition behind
this proposal is that D-branes wrapping calibrated cycles correspond to BPS objects with a
controlled backreaction, that one can use together with the picture developed in [23–25] to
see their smeared delta function as an EFT long-wavelength description of the corresponding
object. This can then be used to extract information from the EFT, as done in [26–28] in
the context of 4d N = 1 compactifications. In particular, D-branes wrapping calibrated
torsion cycles can be seen as BPS operators that gather information on the massive sector
of the EFT Lagrangian, like the kinetic terms of the fields that appear in (1.1). As a direct
consequence of our proposal, the linking number between two calibrated torsion cycles can
be computed using EFT data, or equivalently by defining a smeared version of the torsion
linking number, as summarised in Conjecture 1.

The notion of calibrated torsion cycle or BPS operator with a ZN charge may seem
puzzling. From a geometric viewpoint, calibrations in special holonomy manifolds are
closed p-forms, and therefore they can never calibrate a torsion p-cycle. This obstruction is
however absent in the more general set of manifolds with G-structure metrics, since there
the exterior derivative of a calibration does not need to vanish, and one can indeed construct
explicit examples with torsion p-cycles that are calibrated. From a physics viewpoint, due
to the no-force condition between mutually BPS objects, one should always be able to stack
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an arbitrary number of them on top of each other without any binding energy. This fits
naturally with a Z-valued charge, but not with a ZN -valued one. To address this issue we
construct examples of BPS objects with ZN charge, in the context of domain-wall solutions
of type II string compactified on half-flat manifolds [29]. We find that the process that
annihilates N BPS D-branes wrapped on a torsion cycle is indeed possible topologically,
but not energetically favoured. As a result, it is energetically stable to stack an arbitrary
number of such objects with ZN charge, as implied by the BPS condition.

Expressing a delta form as a sum of eigenforms of the Laplacian is in general involved,
as it requires knowledge of the massive p-form spectrum of a manifold. This difficulty is
however less severe for three-dimensional manifolds with isometries, a fact that we exploit
to perform an explicit computation of a torsion linking number and its smeared version in
twisted tori, in order to verify Conjecture 1. While it seems challenging to extend such a
computation to more general setups, one can provide physical evidence that our proposal
should also be valid in SU(3)-structure manifolds. Indeed, using smeared delta forms of
calibrated cycles as a basis for dimensional reduction fits perfectly with the framework
developed in [30–32] to describe 4d N = 2 gauged supergravities as EFTs of type II string
compactifications and, in fact, one may argue that it is necessary for the consistency of
the approach. Similar considerations can be drawn in the context of 4d N = 1 type II
orientifold vacua, where the BPS torsion objects are given by membranes ending on strings,
and by space-time filling branes ending on membranes.

In most of our examples it seems that an extension of Conjecture 1 is required. In such
a generalisation, the torsion linking number can be computed not only when elements of
TorHn−p(Xn,Z) contain calibrated representatives, but also when they can be expressed as
linear combinations of elements of Hn−p(Xn,Z), all of them with calibrated representatives.
This extension could in principle be applied to compute torsion factors in the cohomology
of Calabi-Yau manifolds, whenever they contain light eigenforms of the Laplacian other
than harmonic forms. One may even speculate that our approach could be useful to
compute torsion linking numbers even in cases where torsion cycles cannot be related to
calibrated submanifolds, by providing an estimate of the associated error in the linking
number computation. In any event, our findings support that one may compute certain
torsion topological invariants in terms of smeared or EFT data such as masses and kinetic
terms, extending the dictionary between geometry and physics to the more subtle and
unexplored sector that is torsion in cohomology.

The rest of the paper is organised as follows. In section 2 we describe what is our
proposal to compute the torsion linking numbers of a manifold via smeared delta forms, as
well as an extension of such proposal. In section 3 we motivate the proposal from a physics
viewpoint, by interpreting torsion calibrated cycles as BPS objects of the EFT with a
non-trivial backreaction. In section 4 we analyse our proposal in the context of domain-wall
solutions of 4d N = 2 EFTs obtained from compactifications of type IIA string theory on
half-flat manifolds. The simplest examples of such manifolds are based on twisted three-tori,
for which our conjecture can be verified explicitly using the techniques of section 5. Section 6
tests our proposal in the context of general SU(3)-structure compactifications of type IIA
string theory, finding agreement with previous analysis in the literature and giving a more
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precise prescription to perform the dimensional reduction in this context. Section 7 extends
our general strategy to 4d N = 1 type II orientifold vacua, and section 8 contains some
speculative remarks on how to perform a further extension to the case where no EFT BPS
objects are available to detect torsion. We finally draw our conclusions in section 9.

Several technical details have been relegated to the appendices. Appendix A analyses a
mirror dual setup to that of section 4 from a microscopic viewpoint, in order to classify
the relevant set of BPS D-branes in both backgrounds. Appendix B analyses the massive
p-form spectrum for the case of the twisted three-torus, as a necessary step to perform the
direct computation of the torsion linking number of section 5.

2 The proposal

Let us consider a compact manifold Xn of real dimension n, and a submanifold Πp ⊂ Xn

which is a p-cycle. We can define a bump-delta (n− p)-current or distributional form δ(Πp),
such that ∫

Xn

ωp ∧ δ(Πp) =
∫

Πp

ωp , (2.1)

for any smooth p-form ωp ∈ Ωp(Xn). If Xn is endowed with a smooth metric ds2
Xn measured

in string units ℓs = 2π
√

α′, one can solve the eigenvalue problem for (n − p)-forms

∆bi
n−p = λ2

i bi
n−p , (2.2)

where ∆ = d†d + dd† is the Laplace-de Rham operator, {bi
n−p}i is an orthonormal basis

of eigenforms with respect to the Hodge product, and {λ2
i }i the corresponding set of non-

negative, dimensionless eigenvalues. Then one can expand the bump-delta (n − p)-form on
such a basis

δ(Πp) =
∑

i

ci bi
n−p , ci =

∫
Πp

∗bi
n−p , (2.3)

and from here define a smeared version of the delta-form, by keeping only those terms in
the expansion that satisfy λi < λmax, for some choice of λmax. This defines a smooth bump
(n − p)-form localised within a tubular neighbourhood of radius ℓs/λmax around Πp. Such
a (n − p)-form can be identified with the Thom class of the normal bundle of Πp, which
is known to lie in the de Rham Poincaré dual to [Πp] ∈ Hp(Xn) [21]. Indeed, notice that
all elements bi

n−p of the expansion (2.3) must be exact (n − p)-forms except those with
vanishing eigenvalue, which must correspond to the harmonic representative of the Poincaré
dual to [Πp]. It follows that if [Πp] lies in a torsion class of Hp(Xp,Z) then δ(Πp) must be a
sum of exact (n − p)-forms.

In string theory compactifications there is a natural choice of metric for Xn that comes
from solving the 10d supergravity equations of motion, as well as a natural choice of λmax
that one identifies with the compactification scale mKK. One can define ℓsmKK to be
the typical spacing between positive eigenvalues λi, oftentimes estimated by the average
radius Vol(Xn)1/n. Physically, we understand mKK as the energy scale below which we
recover a D-dimensional EFT description, with D = 10− n, that describes all eigenmodes
with λi ≪ ℓsmKK as D-dimensional fields. The standard practice in the string literature
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is to assume that only harmonic modes satisfy the requirement λi ≪ ℓsmKK, such that
the procedure of dimensional reduction simply projects the spectrum of p-forms to the
harmonic sector.1 However, it has been shown that in certain compactification regimes,
and in particular in six-dimensional manifolds with SU(3)-structure [9, 33–39], one has
a non-vanishing p-form eigenvalues well below the compactification scale. This will be
the case of interest in this work, and henceforth our definition of smeared delta-form will
correspond to the following:

δsm(Πp) =
∑

λi≪ℓsmKK

ci bi
n−p . (2.4)

Note that if [Πp] ∈ TorHp(Xp,Z) then (2.4) may contain no terms at all and, if it does,
it will be a sum of exact (n− p)-forms. This reflects the difficulties in obtaining information
from the torsion (co)homology classes from the viewpoint of the lower dimensional EFT, as
integrals of (2.4) over any (n−p)-cycle of Xn simply vanish. There is however a well-defined
topological invariant for torsion homology classes, which is the torsion linking number.
Given the torsion classes [Πp] ∈ TorHp(Xn,Z) and [Πn−p−1] ∈ TorHn−p−1(Xn,Z), one can
define their linking number in terms of the bump delta-forms of two of their representatives
as [15]

L(Πn−p−1,Πp) =
∫

Xn

d−1δ(Πn−p−1) ∧ δ(Πp) mod 1 . (2.5)

Following [40], we can rewrite this quantity as follows. Notice that {λ−1
i d ∗ bi

n−p}i is an
orthonormal basis of exact (p + 1)-forms, so one can perform the expansion

δ(Πn−p−1) =
∑

i

ei

λi
d ∗ bi

n−p , ei =
(−1)n(n−p)

λi

∫
Πn−p−1

d†bi
n−p , (2.6)

from where one obtains

L(Πn−p−1,Πp) =
∑

i

ciei

λi
mod 1 . (2.7)

One can now define a smeared linking number. From [∆, d] = [∆, ∗] = 0 it follows that
d ∗ bi

n−p has the same eigenvalue as bi
n−p, and so the smeared version of (2.6) corresponds to

the same truncation as in (2.3). Thus, it is natural to define the smeared analogue of (2.7)
as

Lsm(Πn−p−1,Πp) =
∑

λi≪ℓsmKK

ciei

λi
mod 1 . (2.8)

On the one hand, this quantity is not a topological invariant of Xn. Unlike for (2.7),
there is no reason for it to remain invariant under a continuous deformation of either of the
representatives Πp or Πn−p−1. On the other hand, as we argue in section 3, whenever (2.8) is
non-vanishing the massive sector of the D-dimensional EFT knows about the value of (2.7),
so there must be some way in which one can find about this topological invariant in terms
of smeared data.

1Alternatively, one may set the EFT cut-off ΛEFT below any non-vanishing mode.
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In the following we propose a solution to this puzzle, namely that one needs to focus on
certain minimal-volume representatives within the torsion homology class. More precisely,
we consider manifolds Xn that contain calibration p-forms, and torsion p-cycles that are
calibrated by them. Calibration p-forms are standard objects in manifolds endowed with
metrics of special holonomy [6]. In that case they are closed p-forms, and therefore torsion
p-cycles cannot be calibrated. However, using string theory one may generalise the notion of
calibration to any Riemannian manifold Xn that leads to a D-dimensional supersymmetric
EFT with BPS objects [7–9]. With this more general definition, which will be the one
used in this paper, calibrations may be non-closed p-forms that calibrate torsion p-cycles,
as for instance happens in manifolds with G-structure metrics. An illustrative case for
our discussion in the following sections will be the case of six-dimensional manifolds with
SU(3)-structure, whose metric is specified by the pair of calibrations (J,Ω), which can
respectively calibrate two- and three-cycles that are torsion or even trivial in homology. In
terms of this language, our proposal can be expressed as follows:

Conjecture 1 A non-trivial smeared linking number between two calibrated torsion cycles
equals their actual linking number.

From a physics viewpoint, D-branes wrapping calibrated cycles correspond to BPS
objects of different dimensions in the lower-dimensional supersymmetric EFT. In this
sense, Conjecture 1 can be understood as the equality between (2.7) and (2.8) for the case
of D-branes that wrap torsion cycles and that at the same time are mutually BPS, that
is, they preserve some common supercharges in the lower-dimensional EFT. Notice that
equating (2.7) to (2.8) implies a cancellation in the contribution of very massive modes to
the torsion linking number. Physically this suggests that a protection mechanism against
threshold corrections must be in place, which is indeed a characteristic feature of certain
supersymmetric settings.

To make the proposal more precise, a number of comments are in order. First, some
of the compactification manifolds that we will consider correspond to supersymmetric D-
dimensional EFTs without vacua in the interior of their field space. Instead, they describe
supersymmetric solutions that probe a family of metrics of Xn. For this reason, we require
that the torsion representatives that are BPS/calibrated must be so in a region of the EFT
field space, as opposed to in a single point. In particular, they must remain calibrated
upon local deformations of the metric that either are moduli or involve energies below
the compactification scale. Notice that, in general, calibrated p-cycles in fixed homology
classes can cross walls of marginal or threshold stability when one deforms the metric of the
compactification manifold, so this condition is a significant restriction in the definition of
calibrated submanifolds, that we will dub strict calibration condition. In the string theory
literature, examples of BPS objects with this property are the EFT strings and membranes
defined in [26–28], so in this sense some the objects of study in this work can be thought of
as their torsion analogues.

Second, notice that Conjecture 1 implies that the smeared linking number should not
vary upon infinitesimal deformations of the embedding of the torsion representatives that
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respect the calibration condition, which we will dub as BPS deformations. In the following
sections we argue that this is indeed the case, by relating the coefficients ci, ei with the
volume of the respective p-cycles. Now, since we are interested in metrics with non-closed
calibration p-forms, one may in principle encounter BPS deformations that vary the p-cycle
volume. We have not found instances of this possibility for our more restrictive definition
of calibrated cycle. However, in case that it occurred to apply Conjecture 1 one should
consider the calibrated representative of Πp that locally minimises its volume for a fixed
metric in Xn.

Finally, using the bilinearity of the linking number one may extend the conjecture to
torsion p-cycles that are not calibrated by themselves, but that are linear combinations of
calibrated cycles. For instance, let us consider a manifold Xn with a G-structure metric
and a pair of p-cycles Πp and Π′

p calibrated by the same calibration, both in the strict sense,
that correspond to the same class on Hp(Xn,R), but such that [Πtor

p ] = [Π′
p] − [Πp] is a

non-trivial element of TorHp(Xn,Z). Then one may smear out both delta-forms separately,
and define a smeared description of the torsion two-cycle as

δsm(Π′
p)− δsm(Πp) . (2.9)

By construction, this is an exact smooth (n − p)-form, from where one can extract the
coefficients ci as in (2.4). A different realisation of Πtor

p in terms of BPS cycles, like for
instance a representative Πtor

p that is BPS by itself, may give rise to different coefficients
ci. However, the extension of the conjecture would imply that all these choices give rise to
the same smeared linking number with a given BPS torsion (n − p − 1)-cycle. Notice that
with this extension one may not only compute torsion linking numbers via smeared data in
G-structure manifolds with non-closed calibrations, but also in manifolds with metrics of
special holonomy.

To sum up, our proposal means that for manifolds endowed with certain metrics, one
can compute some torsion invariants in terms of smeared/massive EFT data. One only
needs i) the eigenforms of the Laplacian that correspond to their lowest eigenvalues and ii)
the projection of torsion, strict-calibrated cycles into them.

3 Localised sources and dimensional reduction

The aim of this section is to motivate the content of Conjecture 1 from a physics viewpoint,
by considering the effect of localised sources in compactifications of string theory. If these
sources wrap torsion cycles in the compact dimensions and couple to the massive fields
present in the lower-dimensional EFT, then by consistency of the low-energy description
there should be terms in the EFT Lagrangian that know about their torsion linking number.
The reason is that, in this case, the EFT contains localised objects charged under a discrete
gauge symmetry (the torsion cohomology group) with a non-trivial backreaction at EFT
wavelengths. The corresponding EFT Lagrangian has the form proposed in [15] (see
also [12, 16–20]) to describe torsion in (co)homology from the viewpoint of dimensional
reduction. However, this does not guarantee that one can compute the torsion linking
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number from smeared data. For this, one in addition needs that such localised sources
appear as BPS objects of the EFT.

3.1 Localised sources in ten and four dimensions

For concreteness, let us consider a static D4-brane in 10d, with worldvolume Σ5 = R×Σ4 ⊂
R1,9. Its backreaction sources a RR field strength F4 = dC3, such that dF4 = δ5(Σ5)
corresponds to the bump delta 5-form with support on Σ5. On a 4-sphere S4 surrounding
this source, the pullback of F4 is of the form 2πΦS4 , where ΦS4 is such that

∫
S4 ΦS4 = 1.

Analogously to the Wu-Yang description of a 4d monopole, we need to describe the potential
C3|S4 as a connection, more precisely as the connection of a 2-gerbe on S4, see e.g. [41].

Let us recall how a probe D2-brane feels this background. In particular, let us consider
the case where its worldvolume Σ3 sweeps a 3-sphere S3 at the equator of S4. In analogy
with the Wu-Yang monopole, the non-trivial pull-back of F4 on S4 has the effect that C3|S3

is non-trivial in the cohomology of S3. However, one can still globally write it as dλ2, where
λ2 is not a globally well-defined smooth two-form, but nevertheless e

i
∫

Π2
λ2 is well-defined

for any two-cycle Π2 inside S3. This property amounts to saying that the wavefunction of
the probe D2-brane is well-defined in the backreacted background of its magnetic dual.

We now consider the particular 10d background R1,3 ×X6, with X6 a compact manifold
with a given metric. If the D4-brane wraps a 4-cycle Π4 ⊂ X6, then it will look like a point-
like source in the 4d EFT, very much like a monopole. Its backreaction may be described
by a 2-gerbe in the microscopic 10d picture, but its effective description at wavelengths
larger than 1/mKK should correspond to a bundle similar to that of the Wu-Yang monopole.
This is indeed the case whenever [Π4] is a non-trivial class in H4(X6,R). A probe D2-brane
wrapping a two-cycle Π2 ⊂ X6 with non-trivial transverse intersection Π2 ·Π4 = Q looks,
from the 4d viewpoint, like a (test) particle circling around the monopole-like source. The
pull-back of F4 on S2 ×Π2 with the two-sphere surrounding the source reads:

2π (ΦS2 + dχ1) ∧ δ2(Π4)|Π2 = 2πQ (ΦS2 + dχ1) ∧ (ΦΠ2 + dχ̃1) , (3.1)

where the Φ’s are volume forms normalised to unity, χ1 and χ̃1 are globally well-defined
one-forms on S2 and Π4, respectively, and δ2(Π4) is the bump delta two-form of Π4 in
X6. The result gives an integral of 2πQ, that corresponds to the product of electric and
magnetic charges. We can now restrict our attention to γ ×Π2, where γ is at the equator
of S2. The difference of connections C3 on two patches overlapping over this submanifold
can be written as

C3 = dλ2, with λ2 = λ Q (ΦΠ2 + dχ̃1) , (3.2)

and λ a function λ : γ → S1 with a single winding. When we describe this system at
energies well below the compactification scale, we simplify the internal profile for λ2. In the
effective description, one replaces δ2(Π4) by a harmonic two-form ωΠ4

2 in the Poincaré dual
class to [Π4], which is the lowest lying mode (the harmonic piece) of the Kaluza-Klein (KK)
decomposition of δ2(Π4). Therefore, we write λ2 = λQωΠ4

2 , as a more detailed profile would
involve gauge transformations for massive U(1)’s that are beyond our 4d EFT description.

– 9 –



J
H
E
P
0
9
(
2
0
2
3
)
0
6
1

If we now assume that [Π4] ∈ TorH4(X6,Z), then ωΠ4
2 vanishes, and the presence of

a D4-brane wrapped on Π4 remains undetected by any D2-brane wrapping a two-cycle
Π2 ⊂ X6. Instead, as discussed in [15], one needs to consider a D4-brane wrapping a three-
cycle [Π3] ∈ TorH3(X6,Z), which is perceived by the low-energy EFT as a 4d string. Let
us for simplicity place this 4d string in R1,1 ⊂ R1,3, and take z = re2πiθ to be the complex
coordinate transverse to its worldsheet. This time one can provide a global description of
the RR potential sourced by the D4-brane

C3 = 2πd (θρ2) , (3.3)

where ρ2 is a two-form on X6 such that dρ2 = δ3(Π3) is the bump delta three-form of Π3. This
background is detected by a D2-brane with worldvolume γ ×Π2, where [Π2] ∈ TorH2(X6,Z)
is a torsion class with linking number L ∈ Q with respect to [Π3], and γ is a 4d worldline
surrounding once the string location {z = 0}. If we pull back (3.3) into the D2-brane
worldvolume we obtain

C3|γ×Π2 = 2πL (dϕ + df(ϕ)) ∧ (ΦΠ2 + dχ̃1) , (3.4)

where ϕ ∈ R/Z parametrises γ and f(ϕ) is a periodic function in it, and we have used
that

∫
Π2

ρ2 = L. Therefore, we obtain that C3 = dλ2, with λ2 of the form (3.2), except
for the replacement Q → L. The fact that L is not an integer number implies that the
D2-brane picks a non-trivial phase e2πiL when circling around γ, which is a trait of 4d
Aharanov-Bohm (AB) strings and signals the presence of a discrete gauge symmetry [10].

Let us describe the discrete gauge symmetry in terms of the gauge transformations
involved in the backreacted D4-brane background. At the microscopic 10d level, these are
of the form

d (λρ2) = dλ ∧ ρ2 + λ δ3(Π3), (3.5)

with λ well-defined on loops on R1,3 but not on R1,3 itself. It now remains to see what is
the long-wavelength 4d EFT description of this transformation. As already discussed δ3(Π3)
has no harmonic component, and the same can be assumed for ρ2.2 The question is then if
δ3(Π3) has a non-trivial projection into the massive field content of the 4d EFT spectrum,
or in other words if it has a non-trivial 4d smearing. If it does, the D4-brane backreaction
should be seen by the 4d EFT, in the sense that it sources some of it fields, that pick a
non-trivial profile involving wavelengths above 1/mKK. So in the following we will assume
that δ3(Π3) has a non-trivial 4d smearing, which is also necessary for Conjecture 1 to
provide a non-trivial statement.

For simplicity let us assume that X6 is such that TorH3(X6,Z) = ZN . By the Universal
Coefficient Theorem [21] and Poincaré duality this implies that TorH2(X6,Z) = ZN , and also
that LN ∈ Z. Let us in addition assume that there is a single exact eigen-three-form b3 of the
Laplacian with unit norm and a non-vanishing eigenvalue below the compactification scale.

2A priori nothing forbids ρ2 to have a harmonic piece, which would even be required if we impose that∫
Π2

ρ2 ∈ Z for any two-cycle Π2 [42]. Following [43], this piece would imply a non-trivial kinetic mixing
between massive and massless U(1)’s of the compactification, which could then be removed by an appropriate
change of basis. To simplify the discussion, here we assume the absence of such a harmonic piece.
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That is, we have a unique solution of the form dd†b3 = λ2
stb3, with mst = ℓ−1

s λst ≪ mKK.
Then to obtain our 4d EFT via dimensional reduction we must consider the following set of
p-forms

b3, ∗b3, λ−1
st d ∗ b3, λ−1

st d†b3, (3.6)

all of them with unit norm and the same eigenvalue, because they are associated with the
same mass scale. The standard dimensional reduction procedure consists of expanding the
10d p-form potentials in a basis of harmonic forms plus the above, non-harmonic set. For
instance, reducing the type IIA three-form C3 to 4d with respect to the above non-harmonic
sector gives

C3 = 2πℓ3
s (A1 ∧ ω2 + C0 β3) , (3.7)

where A1 and C0 describe a 1-form and a 0-form in 4d, respectively, and we have defined

β3 = f b3, ω2 = 1
gλst

d†b3, with f, g ∈ R, (3.8)

so dω2 = Neffβ3 with Neff = λst
fg . The reduction to 4d of the 10d kinetic term

∫
F 2

4 gives

(2πf̂)2 (dC0 − NeffA1)2 + 4π2

g2 (dA1)2, f̂ := feϕ4MP = feϕ

(4πVolX6)1/2 MP, (3.9)

namely a Stückelberg-like Lagrangian, where eϕ4 is the 4d and eϕ the 10d dilaton, VolX6

is the volume of X6 in string units, and MP the 4d Planck mass. This is precisely the
dimensional reduction scheme proposed in [15] to describe discrete gauge symmetries from
torsion in cohomology, if one imposes the constraint Neff = N and treats C0 as an axion-like
particle of unit periodicity C0 ∼ C0 + 1. In this case, the discrete gauge symmetry is
generated by the shift

2πC0 → 2πC0 + λ, 2πA1 → 2πA1 +
dλ

N
, (3.10)

with λ ∈ 2πZ. A particle with charge NL under A1 will pick up a phase e2πiL upon (3.10),
for instance when circling a string of unit charge. This is how the 4d EFT reflects the
linking number between torsion cycles on X6, and in particular that TorH3(X6,Z) ≃
TorH2(X6,Z) = ZN . So while at this point we have not determined the parameters f and
g, consistency of the 4d EFT requires that they are constrained by fg = λst

N . Therefore we
have the relation

1
N

= fg

λst
= f̂g

mst
. (3.11)

Note that the expression in the middle resembles a smeared linking number, as defined
in (2.7), while the r.h.s. corresponds to how the EFT massive sector encodes this quantity.

The 4d effective Lagrangian (3.9) should be sufficient to give a long-wavelength descrip-
tion (more precisely in the range (m−1

KK, m−1
st )) of the backreaction of D4-branes wrapping

torsion three-cycles of X6. Recalling our 10d analysis, one may try to provide such a 4d
description by directly smearing the 10d solution, that is by projecting the background (3.3)
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into the massive sector (3.6). However, if one does so the gauge transformation (3.5)
translates into

2πC0 → 2πC0 +
c

f
λ, 2πA1 → 2πA1 +

c

f

dλ

N
, (3.12)

where δsm
3 (Π3) = cb3, and we have imposed that Neff = N . So only when c = f we recover

the expected gauge transformation (3.10). While this may seem surprising, it does not
necessarily indicate any inconsistency of the 4d EFT. Instead, one may interpret it as
the fact that smearing a 10d background is a classical procedure that may be subject to
corrections, like quantum corrections associated to the fields above the compactification
scale that one has truncated. So in principle, it could be that these or other corrections
modify the backreacted 4d background in such a way that the quotient c/f disappears
from (3.12), and one recovers the gauge transformation (3.10) consistent with (3.9). If this
was the case, (3.11) should be interpreted as a smeared linking number after corrections
have been taken into account.

This proposal to solve the apparent inconsistency in (3.12) has the downside that it
does not give a clear geometric prescription to compute the parameters f and g which,
together with λst, are the 4d EFT data that allow us to compute N . However, it gives us
the guideline that one should try to consider D4-branes whose smeared backreaction does
not suffer important corrections upon dimensional reduction. From a physics viewpoint, the
best candidates to display this feature are D4-branes that preserve some supersymmetry of
the background, namely BPS objects of the EFT, as the results of [44] also suggest. In the
next subsection we will argue why this is the right answer.

Finally, it is instructive to perform the dimensional reduction of the RR potential C5,
dual to C3 in 10d. An expansion in the relevant non-harmonic p-forms (3.6) gives

C5 = 2πℓ5
s (V1 ∧ ω̃4 + B2 ∧ α3) , (3.13)

where V1 and B2 are a 4d 1-form and 2-form in 4d, and we have defined

ω̃4 = g

λst
d ∗ b3, α3 = f−1 ∗ b3, (3.14)

such that
∫

X6
ω2 ∧ ω̃4 =

∫
X6

α3 ∧β3 = 1, as in [29–32]. This is required for the fields (V1, B2)
to be quantised 4d duals to (A1, C0). It also implies that dα3 = Neff ω̃4 = Nω̃4, so upon
dimensional reduction one obtains

(2πg)2 (dV1 + NB2)2 + 4π2

f̂2
(dB2)2. (3.15)

This 4d effective Lagrangian should describe the backreaction of D2-branes wrapping torsion
two-cycles Π2 of X6, in the long-wavelength approximation. In these dual variables the
discrete gauge symmetry reads

2πV1 → 2πV1 − λ1, 2πB2 → 2πB2 +
dλ1
N

. (3.16)

A D2-brane wrapping a torsion two-cycle Π2 such that δsm
4 (Π2) = e

λst
d ∗ b3 will not generate

this shift via its backreaction, unless e = g. Again, one could interpret this mismatch as
the result of non-trivial quantum corrections, and argue that the equality should hold for
D2-branes wrapping calibrated two-cycles, as we proceed to argue.
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3.2 The supersymmetric case

One may summarise the reasoning of the previous subsection as follows. A D4-brane
wrapping a torsion three-cycle Π3 of X6 becomes, upon compactification to 4d, an Aharanov-
Bohm 4d string that realises TorH3(X6,Z) = ZN as a discrete gauge symmetry. This object
will be perceived by the 4d EFT if it couples to some massive p-form modes below the
compactification scale mKK. In that case the backreaction has size mst = λst/ℓs ≪ mKK,
where λst is the eigenvalue of such massive eigenmodes, and there must be a term in
the 4d EFT that describes such a backreacted solution at long wavelengths. This 4d
Lagrangian term is (3.9), with Neff = λst/fg = N encoding the topological information of
the torsion homology group. Knowledge of the massive spectrum and of the parameters
f, g ∈ R thus allows us to compute torsion cohomology groups, and to represent them via
smooth p-forms (3.8) and (3.14) that are, from the 4d viewpoint, analogous to the harmonic
representatives of de Rham cohomology groups. The parameters f and g are not determined
from the 4d smearing of the backreaction of a D4-brane wrapping an arbitrary torsion
three-cycle, since in general there can be significant corrections to the smeared background.
Notice that these parameters are intrinsic of the 4d EFT, and so they only depend on the
topology and metric of X6.

There is however a particular class of 4d strings for which quantum corrections should be
under control, namely BPS fundamental strings of the EFT. We are particularly interested
in D4-branes that correspond to the 4d EFT strings of [26–28], except that they source 4d
axions with a mass mst induced by a Stückelberg coupling. As stressed in [26], near the
string core and at wavelengths below m−1

st one should be able to describe the 4d backreaction
of these objects with a solution similar to that of standard EFT strings, implying that their
tension is determined by the kinetic terms of the 4d EFT Lagrangian, and in particular by
parameters like f .

Geometrically, the BPS condition means that the torsion three-cycle Π3 is calibrated
by a complex three-form Ω. This is not possible when X6 is a Calabi-Yau, but it occurs in
SU(3)-structure manifolds with a metric specified by (J,Ω) and a non-vanishing intrinsic
torsion,3 which we will assume in the following. Notice that the calibration condition selects
a specific representative within the torsion class [Π3] ∈ TorH3(X6,Z), that directly depends
on the metric of X6. Therefore, it is reasonable to assume that f , which also depends on
the metric of X6, can be computed from δ3(Π3) with Π3 calibrated. More precisely, we will
argue that f can be computed from the smeared delta-form δsm

3 (Π3).
To see this, let us assume that upon compactification of type IIA string theory on X6

we recover a 4d EFT with N = 2 supersymmetry. One interesting framework to do so is
when X6 is an SU(3)-structure manifold with calibrations (J,Ω), as analysed in [31, 32].
Following their approach, we may expand J and Ω in the set of harmonic two- and three-
forms, respectively, plus the non-harmonic set (3.6). Let us first consider Ω and assume

3The two meanings of the word torsion should not be confused. By intrinsic torsion we mean the five
torsion classes which enter in the description of manifolds with SU(3)-structure metrics, and which show up
in the derivatives of the globally well-defined forms Ω and J [9, 33–39]. In any other instance, the word
torsion refers to torsion classes in (co)homology groups of X6, and to their representatives.
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an expansion of the form Ω = Ωharm + ia α3 + b β3, where Ωharm is a sum of harmonic
three-forms and a, b are real functions of the 4d fields. If we impose the condition ∗Ω = −iΩ
we find that the more precise form

Ω = Ωharm +Vol1/2
X6

(
ifα3 + f−1β3

)
, (3.17)

where we have taken into account that
∫

X6
iΩ̄∧Ω = 8VolX6 , and that α3, β3 are orthogonal

to any harmonic form. Notice that here f is not a fixed number, but depends on the choice
of SU(3)-metric or, from the 4d viewpoint, on the vevs of the 4d scalar fields.

Next, we use that for a 4d BPS string its tension is proportional to the kinetic term
of the axion to which it couples magnetically. In the case at hand, the orthogonality of
the massive modes implies that the string charge-to-mass ratio equals one, and so for a
string inducing a single winding of C0 around its core the tension is determined by the
axion decay constant in (3.9) as

√
πf̂MP. This quantity should correspond to the 4d string

tension obtained from a D4-brane wrapped on a three-cycle Π3 calibrated by Ω, see [27,
section 6.4]. We thus find

f̂

MP
= eϕ

√
4πVolX6

∣∣∣∣∫
Π3

Ω
∣∣∣∣ =⇒ f = Vol−1/2

X6

∣∣∣∣∫
X6

Ω ∧ δ3(Π3)
∣∣∣∣ . (3.18)

Notice that in the second equation we can replace δ3(Π3) → δsm
3 (Π3). Using that Π3 is a

torsion three-cycle and therefore δ3(Π3) is an exact three-form we finally obtain

δsm
3 (Π3) = β3. (3.19)

That is, f can be found from smearing the bump delta-form of a calibrated torsion three-
cycle.

Similarly, one may consider a D2-brane wrapping a BPS representative of [Π2] ∈
TorH2(X6,Z), or in other words Π2 is calibrated by J . A BPS particle of unit charge with
respect to A1 will have a mass gMP, so putting both statements together results in the
equality

g = Vol−1/2
X6

∣∣∣∣∫
X6

J ∧ δ4(Π2)
∣∣∣∣ . (3.20)

Again, expanding eiJ in harmonic and non-harmonic forms and using the Hodge duality
relations translates into the equality

δsm
4 (Π2) = ω̃4. (3.21)

Equivalently, g results from smearing the bump delta-form of a calibrated torsion two-cycle.
Notice that in this construction the torsion cycles Π3 and Π2 that lead to f and g have

a minimal 4d charge and tension. Therefore we expect them to generate TorH3(X6,Z) and
TorH2(X6,Z), respectively, and to have a linking number 1/N mod 1. When plugging the
values of f and g into the smeared linking number one indeed finds that Lsm(Π2,Π3) = 1/N ,
in agreement with Conjecture 1. If instead Π2 corresponds to a particle of charge LN , then
repeating the same reasoning its smeared delta-form will have to be multiplied by LN , and
we will recover a smeared linking number of L, again supporting the conjecture.
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An interesting point is that, when dealing with mutually BPS objects, one should be
able to add up their tensions to compute the energy of the total system. Geometrically,
this amounts to say that even if the topological charge of a calibrated torsion p-cycle or
a sum of them lives in ZN , its central charge lives in a lattice. This does not imply any
contradiction with the ZN discrete system of the 4d EFT, provided that the process that
reduces the number of BPS objects by N has a non-vanishing energy which compensates
for the loss of N p-cycles. To illustrate this, let us consider the torsion three-cycle class [Π3]
generating TorH3(X6,Z) in a SU(3)-structure manifold. A set of N D4-branes wrapping
calibrated representatives Π3,i of this class looks like N BPS strings in 4d. These can end
on a 4d monopole, made up of a D4-brane wrapping a four-chain Σ4 whose boundary is
given by ∂Σ4 =

∑
i Π3,i [15]. On the one hand, using Stokes’ theorem one can relate the

sum of string tensions with the integral of dΩ over Σ4. On the other hand, the mass of the
4d monopole is proportional to the volume of Σ4 which, if the monopole is BPS, is given by
the integral of ±1

2J ∧ J over Σ4. Therefore we find that the marginal stability of N BPS
AB strings implies

ℓ

∣∣∣∣∫
X6

dΩ ∧ δ2(Σ4)
∣∣∣∣+ ∣∣∣∣12

∫
X6

J ∧ J ∧ δ2(Σ4)
∣∣∣∣ = const. (3.22)

where ℓ is the length of the AB string in ℓs units. Notice that this relation can only make
sense if the monopole mass depends on ℓ, which should then be a feature of backgrounds with
BPS AB strings and particles. We postpone a more precise explanation of this statement
to the next section, where both quantities in (3.22) will be evaluated in a simple setup
based on half-flat manifolds. For the time being, it is worth pointing out that the above
reasoning leads to an interpretation of the non-closed two-form ω2 in (3.8). Indeed, notice
that in (3.22) we can replace δ2(Σ4) → δsm

2 (Σ4) and that because the action of smearing
commutes with the exterior derivative, dδsm

2 (Σ4) = Nδsm
3 (Π3) = Nβ3. It is thus natural

to guess that δsm
2 (Σ4) = ω2 when Σ4 is a calibrated four-chain, something that can be

verified by noting that a 4d BPS monopole of unit charge has mass g−1MP, and running
a reasoning analogous to the previous ones. Similarly, one can deduce that δsm

3 (Σ3) = α3,
where Σ3 is a calibrated three-chain ending on N calibrated torsion two-cycles. Therefore,
one concludes that the set of harmonic plus non-harmonic forms in which one expands J , Ω
and the RR potentials to obtain the 4d fields can be interpreted as smeared delta-forms
of a basis of calibrated chains and cycles. Notice that this fits well with the notion that
the set of forms {ω2, α3, β3, ω̃4} reflect quantisation features of the 4d EFT, like axions
of unit periodicity and U(1) gauge symmetries. This quantisation also implies that these
p-forms generate a lattice just like quantised harmonic p-forms do, which seems to be in
contradiction with the fact that these D-brane charges are torsion. However, as mentioned
above when dealing with mutually BPS objects the mass/tensions are additive, which
explains the lattice structure. Finally, while here we have considered a very simple case, it
is reasonable to expect that this description of the reduction basis of p-forms extends to the
general framework of SU(3)-structure manifold dimensional reduction analysed in [31, 32],
as we will further discuss in section 6.
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It is also instructive to consider what happens when we slightly depart from a BPS
embedding. In particular, let us take a D4-brane wrapping a calibrated torsion three-cycle
Π3 and perform a small deformation of its embedding, such that the torsion linking number
with a calibrated torsion two-cycle Π2 does not change

L(Π2,Π3) =
∑

i

ciei

λi
. (3.23)

Notice that this quantity is not defined mod 1. Geometrically, this means that upon the
deformation Π3 does not cross Π2. A simple deformation of this sort that changes the
smeared linking number takes the form

cKK → cKK − ϵ, cst → cst +
λst

λKK
ϵ, (3.24)

where cKK represents the coefficient of a mode above the compactification scale and cst one
below. We thus find that the naive gauge transformation (3.12) changes with a suppression
factor of mst/mKK with respect to the BPS case. This is indeed the kind of suppression that
one would expect from integrating out massive operators at the Kaluza-Klein scale, which
supports the interpretation that the expected discrete gauge transformation (3.10) could be
restored for the non-BPS case, once that quantum corrections are taken into account. It
would however be important to perform a more direct test of this proposal.

3.3 Generalisations

In our discussion so far we have focused in a type IIA setup, in which D4- and D2-branes
look respectively like strings and particles in the 4d EFT. However, it is clear that the
same reasoning can be applied to any other kind of string compactifications, as long as the
4d picture is similar. For instance, in type IIB compactified in a SU(3)-structure manifold,
Aharanov-Bohm strings and particles would be realised by D3-branes wrapping torsion two-
and three-cycles. There are other extended objects that can give rise to 4d AB strings and
particles [15], but in many instances they do not wrap calibrated cycles, and so the BPS
property, which is an important ingredient of our logic, is missing.

Nevertheless, one may extend our reasoning in yet another direction, since there are
other BPS objects in a 4d EFT that encode torsion in cohomology. Indeed, a key property
of AB strings with ZN charge is that N of them can end on a monopole, while N AB
particles can end on a 4d instanton [10]. As a general rule, ZN charges are detected in the
4d theory by p-branes ending on (p − 1)-branes with p = 0, 1, 2, 3, and in certain instances
these ZN charges reflect torsion cohomology groups of the compactification manifold [12].
In our previous discussion we have focused on the cases p = 0 and p = 1, which are typically
represented in 4d EFT language by the Lagrangians (3.9) and (3.15), respectively, and are
dual to each other. The case p = 2 corresponds to 4d membranes ending on strings, and it
is related to the following EFT Lagrangian piece [45]

(dB2 − NC3)2 , (3.25)

where C3 is a three-form that couples to the membrane and B2 is a two-form coupling
to the string. In our previous type IIA setup, these objects would arise from D4-branes
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wrapping torsion two-cycles and the three-chain connecting them, respectively, and signal
the presence of a non-trivial superpotential. The case p = 3 describes 4d space-time filling
branes ending on membranes, and the corresponding Lagrangian piece reads [46]

(dD3 − NA4)2 , (3.26)

where A4 coupling to the space-time filling branes and D3 to the membranes. In our type
IIA setup these 4d objects arise from D6-branes wrapped on torsion three-cycles and on a
four-chain linking them, respectively.4

The general philosophy of the previous subsection also applies to these Stückelberg-like
couplings. That is, the 4d p-forms that appear in (3.25) and (3.26) should arise from
expanding the 10d RR potentials on smeared delta-forms of calibrated torsion cycles of
X6. The resulting coefficients that multiply both expressions are the analogues of f and g

in (3.9) and (3.15), and so together with the relevant Laplace eigenvalue they determine
N . Notice that the analogy is not straightforward, because (3.25) and (3.26) are not
dual Lagrangians, which reflects the fact that D4-branes and D6-branes do not couple to
dual 10d RR potentials. However one may consider a gauge instanton on the space-time
filling D6-branes, which amounts to a D2-brane wrapping the same torsion three-cycle and
coupling to a massive 4d axion C ′

0 that arises from reducing C3 on a coexact three-form
like α3 in (3.14). This EFT object is sensitive to the backreaction of D4-branes wrapping
torsion two-cycles and the three-chain connecting them, and an analogy with the gauge
transformations involving AB strings and particles can be drawn. The precise statement is
that there exists a gauged (−1)-form symmetry that describes the discrete gauge symmetries
of the EFT superpotential [50, 51].

For the purposes of computing torsion in cohomology, to consider these new terms
in the Lagrangian may seem redundant, since in the type IIA constructions that we have
discussed they are related to the same kind of torsion groups, namely TorH3(X6,Z) ≃
TorH2(X6,Z) and their linking number. However, an important difference is that the
terms (3.25) and (3.26) appear in 4d N = 1 string theory vacua, like in type II orientifold
compactifications, while (3.9) and (3.15) typically appear in 4d N = 2 compactifications
without vacua, like the example considered in [29]. In this case the N = 2 supersymmetry
of the Lagrangian is realised off-shell, while solutions to the equations of motion at most
preserve a fraction of this supersymmetry, like the domain-wall solution preserving four
supercharges to be discussed in the next section. In practice this implies that the 10d
background is not of the form R1,3 × X6, but instead a fibration of X6 over a real line or a
plane in R1,3. Following the general philosophy of [29, 31] we are entitled to carry out the
usual procedure of dimensional reduction to 4d — and therefore our discussion above — as
long as the variation of this fibration is very small compared to the compactification scale.
The only additional thing that we need to take into account is that for Conjecture 1 to

4In most of the literature, these Lagrangians are shown to arise from compactifications with NS H-fluxes.
In this case, N represents an H-flux quantum and the feature of p-branes ending of (p − 1)-branes has a
microscopic description in terms of dH cohomology and its dual homology [47]. By looking at concrete
constructions, it is easy to convince oneself that such a setup is connected by mirror symmetry to the one
that we are considering [48, 49].
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apply the objects like 4d strings and particles must be BPS with respect to the 4d solution,
which is a stronger condition than being BPS in a would-be N = 2 vacuum. In practice,
this means that they must be calibrated also from the point of view of the fibration, as we
will illustrate in the next section.

The fact that AB strings and particles cannot be BPS in N = 1 orientifold compactifi-
cations seems to clash with the proposal in [15], in the sense that the basis of non-harmonic
p-forms in which one expands the 10d RR potentials to obtain a Stückelberg Lagrangian (3.9)
cannot come from smearing the delta-forms of calibrated cycles. Nevertheless, one can
still make sense of such a basis of non-harmonic forms if one considers the extension of
Conjecture 1 formulated around (2.9). For instance, one could try to describe the torsion
two- and three-cycles of a Calabi-Yau threefold as the difference of two calibrated cycles
with equal volume, or some other combination of calibrated cycles. As long as there are
some eigenmodes below the compactification scale that couple differently to these calibrated
cycles, there will be non-harmonic p-forms that one builds from smearing their bump
delta-forms. Finally, one should make sure that such harmonic forms have the appropriate
parity under the orientifold action to lead to a Stückelberg term.

4 A simple example

The simplest example of SU(3)-structure manifolds with torsion in cohomology are nilmani-
folds or twisted tori, which in the context of type II string compactifications were initially
considered in [29, 37, 52]. Particularly interesting for our discussion is the setup of [29], in
which the simplest kind of twisted torus is realised as a 4d domain-wall solution. In the
following we will see how the objects defined in the previous sections, in particular torsion
calibrated cycles and their smeared delta sources, are described in this case.

4.1 The 10d background

Let us recall the main idea behind the construction in [29]. One first considers a toroidal
compactification of type IIB string theory to 4d with a backreacted NS5-brane wrapping a
special Lagrangian three-cycle of T6 and extended along R1,2 ⊂ R1,3 in the non-compact
dimensions. The long-wavelength approximation of this backreaction provides a domain-wall
solution in 4d, which upon three T-dualities in T6 becomes a type IIA background with
constant dilaton and a twisted six-torus T̃6 fibered over a non-compact direction. A simple
generalisation of this setup results in the following type IIA 10d string frame background:

ds2 = ds2
R1,2 + ℓ2

sV (dξ)2 + ℓ2
sds2

T̃6 , (4.1)

ds2
T̃6 = (2π)2

[
R2

1
V1

(η1)2 + R2
2

V2
(η2)2 + R2

3
V3

(η3)2 + V R2
4

V1
(η4)2 + V R2

5
V2

(η5)2 + V R2
6

V3
(η6)2

]
,

(4.2)

– 18 –



J
H
E
P
0
9
(
2
0
2
3
)
0
6
1

where ξ is the 4d coordinate transverse to the domain-wall, Ri are radii measured in string
units, and ηi are the left-invariant one-forms of the twisted six-torus, defined as

η1 = dx1 + M1x6dx5 , η4 = dx4 ,

η2 = dx2 + M2x4dx6 , η5 = dx5 ,

η3 = dx3 + M3x5dx4 , η6 = dx6 ,

(4.3)

with Mi ∈ N. Finally,

V = V1V2V3, Vi = 1− ζiξ, ζi =
Mi

2π

RiRi+3
R4R5R6

. (4.4)

To recover the case of [29] one needs to take Mi = M ∈ N and Mj = Mk = 0, with
i ̸= j ̸= k ̸= i. The solution applies to the range (0, ξend), with ξend = min{ζ−1

i }i, while for
ξ < 0 one should glue a direct product R1,3 × T6, with torus radii Ri.5

We refer to [49] for more details on the geometry and topology of this class of twisted
six-tori. As in there, one can impose a Z2×Z2 orbifold projection that reduces the structure
of the internal manifold to a genuine SU(3) structure, and which we will assume in the
following. In the conventions dvolX6 = −1

6J3 = i
8 Ω̄ ∧ Ω, the SU(3)-structure calibrations

(J,Ω) are given by

J = 4π2
(
t1 η1 ∧ η4 + t2 η2 ∧ η5 + t3 η3 ∧ η6

)
, (4.5)

Ω = i(2π)3V −1/2R1R2R3
(
η1 + iτ1η4

)
∧
(
η2 + iτ2η5

) (
η3 + iτ3η6

)
, (4.6)

with
ti = V 1/2

Vi
RiRi+3, τ i = V 1/2 Ri+3

Ri
. (4.7)

The calibrated objects of this SU(3)-structure manifold are those p-chains whose volume
is computed by integrating Ω or eiJ . Recall, however, that we are interested in a particular
kind of calibrated cycles. First, they need to be calibrated in a strict sense, meaning that
upon varying the values of the Ri they are still calibrated. Second, they need to be mutually
BPS with the domain-wall source, in order to be actual BPS objects of the background (4.1).
This second criterion is more easily analysed in the type IIB mirror background, as done
in appendix A. In our context, one finds the following BPS objects that are relevant to
our discussion:

- A D4-brane wrapped on Πtor
3 = {x4 = x5 = x6 = 0} in T̃6 and extended along ξ.

- A D4-brane wrapped on Σi
4 = {xi = xi+3 = 0} in T̃6.

- An Euclidean D2-brane on Πi
2 = Σj

4 ∩ Σk
4, with i ̸= j ̸= k ̸= i in T̃6 and extended

along ξ.

- An Euclidean D2-brane wrapped on Σ3 = {x1 = x2 = x3 = 0} in T̃6.

Notice that, when extending a D-brane along ξ, it does not make sense to do it beyond
ξend, where the metric degenerates and we enter a strong coupling region.

5Our background differs slightly from the one in [29], in the sense that therein the choice Vi = ζiξ along
the range ξ ≥ 0 is taken, for a domain wall at ξ = 0. Both choices are compatible with the domain-wall
analysis of [53–55], but we find that our choice also reproduces the scalar flow features of 1

2 BPS domain
walls in N = 1 EFTs (see e.g. [26, section 4.3.2]) and is compatible with the presence of BPS AB strings as
particles, as discussed below.
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The submanifolds (Πtor
3 ,Σi

4,Πi
2,Σ3) and others can be described via group theory

techniques, by first writing the twisted six-torus as a coset T̃6 = G/Γ, with G a Lie group
of a 2-step nilpotent algebra and Γ a co-compact lattice, and then exponentiating different
set of generators of G, see [49, appendix A]. Using this framework and the results of [56, 57],
one can see that

TorH3(T̃6,Z)Z2×Z2 = TorH2(T̃6,Z)Z2×Z2 = ZM , (4.8)

where M = g.c.d.(M1, M2, M3), and the subindex represents those cycles invariant under
the Z2×Z2 orbifold projection.6 The three-cycle Πtor

3 is the generator of TorH3(T̃6,Z)Z2×Z2 ,
while TorH2(T̃6,Z)Z2×Z2 is generated by Πtor

2 =
∑

i(Mi/M)Πi
2. Additionally, Σ3 is a three-

chain with a boundary homotopic to MΠtor
2 and, if Mi ̸= 0, Σi

4 is a four-chain with a
boundary homotopic to MiΠtor

3 . All these p-chains are calibrated by either Ω or eiJ , with
a calibration phase that will depend on their orientation. The D-branes listed above are
1
2BPS in the background (4.1), which means that they preserve two supercharges out of
the four supercharges preserved by the solution. The two supercharges that they preserve
will depend on their orientation. For instance, a D4-brane wrapping Σi

4 looks like a 1
2BPS

monopole in 4d, and preserves two supercharges of the domain-wall solution. Reversing the
orientation and wrapping the D4-brane on −Σi

4 corresponds to a 4d 1
2BPS monopole with

opposite charge and preserving the other two supercharges of the background, an object
that we will refer to as anti-BPS monopole. Here we will not keep track of which objects
preserve which supercharges, because a much more straightforward picture will arise when
we interpret this system in terms of Hitchin flow equations.

A D4-brane wrapping a chain Σi
4 with a boundary is not consistent by itself, as it develops

a worldvolume anomaly, but one can make it consistent by attaching D4-branes wrapped on
∂Σi

4. In the present setup, if the D4-brane wrapping Σi
4 is located at ξ0 ∈ (0, ξend), one can

cure its worldvolume anomaly by wrapping Mi D4-branes on Πtor
3 , and connecting them to

∂Σi
4. These Mi D4-branes will look like 4d strings that extend along the coordinate ξ, and

either end on an anti-monopole in a different location, or stretch up until the origin ξ = 0.
From the 4d perspective, in the first case we have a monopole-anti-monopole pair connected
by Mi AB strings, as expected for a 4d EFT with a Lagrangian of the form (3.15) and a
monopole of charge Mi/M . In the second case, we have a 4d avatar of a Hanany-Witten
brane creating effect [58], mirror dual to a D3-brane crossing the NS5-brane (the domain
wall), with Mi D1-branes stretching along both after the crossing. As stressed in [12],
this effects also signal the presence of a discrete gauge symmetry, encoded either in the
Lagrangian (3.15) or its dual. Similarly, the worldvolume anomaly of an Euclidean D2-brane
in Σ3 can be cured by M D2-branes wrapped on Πtor

2 and connected to ∂Σ3. From the
4d viewpoint this is perceived like M AB Euclidean particles ending on an instanton [10].

6The generators of the Z2 × Z2 orbifold group act on the left-invariant one forms as
θ1 : (η1, η2, η3, η4, η5, η6) 7→ (η1,−η2,−η3, η4,−η5,−η6) and θ2 : (η1, η2, η3, η4, η5, η6) 7→
(−η1,−η2,−η3,−η4,−η5, η6) [49]. It is not obvious if the torsion cohomology of the orbifold quotient
T̃6/Z2 × Z2 corresponds to (4.8) or if it has further elements. However, in case that some additional torsion
cycles existed, one can show that they are not calibrated and they do not couple to any light eigenmode.
Therefore one can ignore them for the purposes of this work.
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Notice that in this case a configuration made of 1
2BPS objects involves M Euclidean AB

particles extended along the coordinate ξ, that stretch either between the domain-wall
source and the instanton or between an instanton-anti-instanton pair.

In terms of these 4d objects one can compute the quantities f and g that feature the
discussion of section 3, by using (3.18) and (3.20). Since in our example there are many
axions and gauge bosons, in order to isolate a pair of them in the Lagrangian, as in (3.9),
we must consider the particular case Mi ̸= 0, while Mj = Mk = 0 for i ̸= j ̸= k ̸= i. One
then finds

f =
(
τ1τ2τ3

)−1/2
, g = 1

2π

√
ti

tjtk
. (4.9)

Additionally, via the direct computation of section 5 (see eq. (5.20)) or the results of
appendix B, one obtains that the smallest non-vanishing eigenvalue of T̃6 is

λst = ζiV
−3/2

i , (4.10)

and so it follows that the first equality in (3.11) is satisfied with N = Mi, even if all
quantities depend on the coordinate ξ.

One can also see that the unit-norm exact three-form eigenmode corresponding to (4.10)
is

b3 = f−1η4 ∧ η5 ∧ η6 = f−1δsm
3 (Πtor

3 ), (4.11)

where in the second equality we have again used the results of section 5, cf. eq. (5.23). We
thus find perfect agreement with the discussion of section 3, in which the definition of f

via a smeared delta bump-form coincides with the value in (3.18). A similar check can be
made for g, and the combined result is such that Conjecture 1 is verified. In the following
we will discuss how to extend this result to general Mi ∈ N, using the 4d EFT description.

4.2 EFT description

To obtain the 4d effective description of this system one may follow the approach in [29], or
its extension to more general setups discussed in [31, 32]. One first defines the following
basis of three-forms

α0 = η1 ∧ η2 ∧ η3, β0 = η4 ∧ η5 ∧ η6, (4.12a)
α1 = η4 ∧ η2 ∧ η3, β1 = −η1 ∧ η5 ∧ η6, (4.12b)
α2 = η1 ∧ η5 ∧ η3, β2 = −η4 ∧ η2 ∧ η6, (4.12c)
α3 = η1 ∧ η2 ∧ η6, β3 = −η4 ∧ η5 ∧ η3, (4.12d)

and a basis of two- and four-forms

ω1 = η1 ∧ η4, ω2 = η2 ∧ η5, ω3 = η3 ∧ η6, (4.13a)
ω̃1 = −ω2 ∧ ω3, ω̃2 = −ω3 ∧ ω1, ω̃3 = −ω1 ∧ ω2. (4.13b)

This set of forms are those that are invariant under the Z2 × Z2 projection that takes us to
a genuine SU(3)-structure. Notice that they satisfy

∫
T̃6 αi ∧ βj =

∫
T̃6 ωi ∧ ω̃j = δj

i , with a
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specific normalisation which is crucial for the discussion that follows, since we are going to
expand both the calibrations (J,Ω) and the 10d RR fields in these forms, and the latter are
going to define the 4d axion periodicities the global U(1) gauge transformations. While
for harmonic p-forms one has a clear prescription to define an integral basis, the same is
not true for exact and co-exact elements of this set, which can be identified thanks to the
relations

dωi = −Miβ
0, dα0 = −Miω̃

i. (4.14)

In the present setup such a normalisation can be fixed by means of mirror symmetry, just
as in [29]. However, in the general setting of [31, 32] it is simply assumed as an input. In
section 6 we will argue that one can fix it by defining the set {αA, βB, ωa, ω̃b} as smeared
delta-forms.

Following [31, 32] we expand the NS-NS sector in the above basis

Jc = B+ iJ = 4π2(bj + itj)ωj , (4.15)

Ω= i(2π)3

√
t1t2t3

τ1τ2τ3

(
α0+ziαi−z2z3β1−z1z3β2−z1z2β3+z1z2z3β0

)
, zj = aj + iτ j .

Similarly, one expands the RR potential C3 as

C3 = 2πℓ3
s

[
Ai

1 ∧ ωi + θIαI + θ̃KβK
]

, (4.16)

where (θI , θ̃I) with I = (0, i) represent axions of unit periodicity. The dimensional reduction
of this term gives

(2π)2
[
gii(dAi

1)2 + f̂00
(
dθ̃0 − MiA

i
1

)2
+ f̂ ii(dθ̃i)2 + f̂II(dθI)2

]
, (4.17)

plus a mass term for θ0. Here we have defined

gii = (2π)2 tjtk

ti
, f̂00 = e2ϕ4(τ1τ2τ3)−1M2

P, f̂ ii = e2ϕ4 τ i

τ jτk
M2

P, (4.18)

with i ̸= j ̸= k ̸= i, and f̂II = (f̂ II)−1e4ϕ4M4
P, where eϕ4 = eϕ/

√
4π t1t2t3 is the 4d dilaton.

Notice that all these couplings depend on the domain-wall transverse coordinate ξ, while
the axion vevs remain constant along it. The NS-NS sector of the compactification varies
along ξ via the non-trivial profile of the saxions ti, τ i along this coordinate, as captured
by (4.7), and in agreement with the results of [55, 59].

The lightest massive p-form mode has the following squared mass

m2
st = V −1

[∑
i

ζ2
i

V 2
i

]
e2ϕ4M2

P, (4.19)

and so it is a priori not obvious how to compute the smeared linking number using (3.11).
To do so, one must take into account that for generic Mi’s the torsion two-cycle Πtor

2 =∑
i(Mi/M)Πi

2 is not a smooth calibrated cycle, but instead a linear combination of them.
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In this case, it is the extension of the conjecture made around (2.9) that should be applied.
One obtains

δsm
4 (Πtor

2 ) =
∑

i

Mi

M
ω̃i, (4.20)

whose projection into the four-form eigenmode with the smallest non-vanishing eigenvalue
gives

g = 1
2π

√√√√∑
i

M2
i

M2
ti

tjtk
. (4.21)

Defining f =
√

f̂00 one reproduces (3.11) with N = M = g.c.d.(M1, M2, M3), as expected.
From a purely 4d EFT viewpoint, one can interpret (4.21) as the gauge coupling of the
linear combination of U(1)’s that develops a Stückelberg mass.

4.3 Hitchin flow equations

As already pointed out in [29], the background (4.1) can be understood geometrically as a
fibration of a half-flat manifold X6 over a real coordinate, that gives a seven-dimensional
G2-manifold Y7. The general description of this kind of fibrations has been given in [34, 60],
and are known as Hitchin flow equations. In the standard description, the real coordinate z

has a flat metric, and one constructs the G2-structure forms

φ = dz ∧ J − ReΩ, (4.22)

∗φ = −dz ∧ ImΩ− 1
2J ∧ J, (4.23)

where J and Ω are the z-dependent SU(3)-structure calibrations of X6. Demanding that
Y7 has G2 holonomy amounts to impose that φ is harmonic in Y7. If we describe the 7d
derivative as

d7 = ∂zdz ∧+ d, (4.24)

with d the exterior derivative along the 6d fibre, this requirement reads

dImΩ = 1
2∂z (J ∧ J) , (4.25)

dJ = −∂zReΩ. (4.26)

In our background the coordinate ξ has a non-trivial metric, more precisely dz = −V 1/2dξ,
where the sign choice accounts for the difference in our background compared to [29] (see
footnote 5). The Hitchin flow equations then take the following form:

V 1/2dImΩ = −1
2∂ξ (J ∧ J) , (4.27)

V 1/2dJ = ∂ξReΩ. (4.28)

Applied to the background (4.1) these equations reduce to

∂ξVi = −ζi, (4.29)

which is clearly satisfied by (4.4).
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The Hitchin flow equations have a nice interpretation when it comes to D-branes on
torsion cycles, that can be illustrated explicitly in the solution (4.1). Let us consider M

D4-branes wrapped on Πtor
3 and extended along an interval (0, ξ0) ⊂ (0, ξend). At ξ0 one

places a D4-brane wrapping a four-chain Σ4, such that its boundary coincides with the M

torsion three-cycles. From the 4d viewpoint, this represents a 4d monopole in which M AB
strings end, with their other end at the domain-wall source. Since both sets of D4-branes
yielding the monopole and the AB strings are calibrated by ∗φ, they must be mutually
BPS, and satisfy the marginal stability condition (3.22). Additionally, the total energy of
the system must be given by its central charge, which is the integral of ∗φ over the full
D4-brane worldvolume in the G2 manifold Y7, and it is easy to argue that this central
charge must be independent of the monopole position ξ0.

Indeed, notice that shifting the value of ξ0 corresponds to add M AB strings extended
along the interval (ξ0, ξ′0) ⊂ (0, ξend), with a D4-branes wrapping Σ4 at each end, with
opposite orientations. From the 4d viewpoint, this realises a monopole-anti-monopole pair
in which AB strings end. Since this object can annihilate by itself, one expects that its
central charge vanishes. Microscopically, the whole object corresponds to a trivial four-cycle
in the G2 manifold Y7, and so since ∗φ is closed its integral must vanish on it. So indeed
the monopole-anti-monopole pair carries no central charge and changing the value of ξ0 in
the above BPS configuration should not change the energy of the system. In particular this
energy should match that of a monopole placed at ξ = ξend which is equivalent to having M

AB strings, and to a monopole at ξ = 0, which does not have any AB strings attached to it.
This is indeed what the Hitchin flow equations are telling us, and in particular (4.25).

On the one hand, ∂zJ ∧ J represents the variation of the mass of BPS monopoles when we
move along z. On the other hand, ImΩ integrated along the torsion three-cycle measures
the tension of a BPS 4d AB string, and by Stokes’ theorem, this is equivalent to integrating
dImΩ/M over the four-chain Σ4 linking M of them. So what (4.25) is saying is that it is the
monopoles in which M AB strings can end the ones whose mass varies along the coordinate
transverse to the domain wall. Moreover, there is a mass scale associated to the 4d string,
which is its tension integrated along the interval (0, ξ0). For BPS objects, this energy
increases with ξ at the same rate as the monopole mass decreases, and that is why the total
central charge and therefore the energy of the system stays constant. In our example (4.1)
one can see that the factors of V cancel for a 4d AB string, so the energy of Mi BPS AB
strings is given by ℓ−1

s Vol(Πtor
3 )Miξ0 ∝ ξ0. Additionally, the mass of the monopole in which

such strings can end is given by ℓ−1
s Vol(Σi

4) ∝ Vi|ξ0 . Therefore, it decreases linearly with ξ0,
precisely compensating the change in the energy of the AB strings.7

This example illustrates how (3.22) can be satisfied, and the expectation of subsec-
tion 3.2, that one should be able to add up central charges of BPS objects in Z, even

7One can engineer the BPS configuration of M AB strings ending on a monopole by a Hanany-Witten
brane-creation effect, as one can check using the mirror type IIB picture, see appendix A. The interpretation
is then that a Hanany-Witten effect does not change the energy of a BPS object. The mass of a monopole
located at ξ0 ∈ (−∞, 0) and at ξ0 ∈ (0, ξend) is the same, if in the second case we include the energy of
the extended AB strings. That is, if at both sides we compute the energy or central charge of the gauge
invariant operator.
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when their topological charge is ZN . In the case at hand, M D4-branes wrapping Πtor
3

can disappear by ending on a monopole, but a monopole nucleation process costs energy,
which is minimised for the case of BPS monopoles. The discussion above implies that this
energy is at least that of M BPS strings extended along the interval (ξ0, ξend). Therefore
nucleating a monopole at ξ0 is topologically possible, but not energetically favoured. In
this sense, adding up an arbitrary number of AB strings is well-defined in the BPS context,
as well as considering a cone of 4d AB string charges.

5 Direct computation

While the general arguments of section 3 motivate Conjecture 1 for torsion cycles in SU(3)-
structure manifolds, it is instructive to work out in detail how the conjecture is realised in
explicit examples, by a direct comparison of the torsion linking number and its smeared
version. In this section we perform such a comparison for the SU(3)-structure manifold
of section 4, more precisely for the twisted six-torus with a single metric flux. As we will
see, the direct computation of the torsion linking number displays a series of cancellations
between terms that is reminiscent of those that occur in the computation of topological
indices, and that leaves the smeared torsion linking number (2.8) as the only non-vanishing
contribution. The reader not interested in these technical details may safely skip to the
next section.

The setup. Let us consider the twisted six-torus background in (4.2), rewritten as

ds2
T̃6 = (2π)2∑

i

(
ti

τ i
(ηi)2 + tiτ i(ηi+3)2

)
, (5.1)

and with the definitions (4.7) and (4.3). In particular we consider Mi ̸= 0 and Mj = Mk = 0
with i ̸= j ̸= k ̸= i. In this case, the metric background factorises as T̃6 = T̃3 × T3,
and all the torsion cycles correspond to a direct product of a torsion one-cycle in T̃3 ≃
⟨xi, xj+3, xk+3⟩ and a non-trivial cycle in T3 ≃ ⟨xj , xk, xi+3⟩. As a result, all torsion linking
numbers of T̃6 stem from the torsion linking numbers between one-cycles in T̃3. Moreover,
the calibration condition in T̃6/Z2×Z2 will translate into a subset of such torsion one-cycles.
Therefore our strategy will be to verify Conjecture 1 for such a subset, then extend the result
into calibrated two and three-cycles of T̃6, and finally check that the Z2 × Z2 projection
does not modify the statement. A necessary first step is to describe the set of massive
p-form modes in T̃3, which one can accomplish using a general method for three-manifolds
with isometries.

Massive spectra of three-manifolds. To describe the massive p-form spectrum of a
twisted three-torus, one may use the method of [61], which applies to compact Riemannian
three-dimensional manifolds X3 with a continuous isometry. Such a manifold admits a
unit-norm Killing vector χ, and we assume that its dual one-form satisfies

⋆dχ = λχ χ , ∆3χ = λ2
χ χ , χ2 = 1 , λχ,∈ R , (5.2)
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and that its integral curves are closed. Here ⋆ and ∆3 stand for the Hodge star operator
and the Laplacian on X3, respectively. Then, let {ϕα} be an orthonormal basis of complex
scalar eigenforms of the Laplacian such that8

∆3ϕα = σ2
αϕα , Lχϕα = iµαϕα , σα ∈ R , µα ∈ R . (5.3)

Solving the second condition of (5.3) we can obtain the explicit dependence of the {ϕα} on
the isometry coordinate θ associated to χ

ϕα = eiµαθKα , θ ∼ θ + 2πr , (5.4)

with dθ = χ and Kα functions which do not depend on θ. Given that θ parameterises a
closed integral curve of radius r in a compact manifold, we obtain the quantisation condition
µαr ∈ Z .

In this setup, it is possible to give a simple description of non-harmonic eigen-one-forms
of the Laplacian, in terms of the Killing vector χ and the scalar eigenforms ϕα. We define

Rα = dϕα , Sα = ⋆d(ϕαχ) , Tα = ⋆dSα . (5.5)

It is easy to see that the set Rα forms a complete basis of exact eigen-one-forms. The set of
co-exact one-forms Sα and Tα is closed under the action of the operator ⋆d

⋆dSα = Tα , ⋆dTα = σ2
αSα + λχTα , (5.6)

from where one can find the following eigenforms of ⋆d

U±
α =

1
2 ± λχ

2
√

λ2
χ + 4σ2

α

Tα ± σ2
α√

λ2
χ + 4σ2

α

Sα . (5.7)

Therefore, since the action of the Laplacian ∆3 on co-closed forms amounts to ⋆ d ⋆ d, we
obtain that the U± are eigenforms of the Laplace operator with eigenvalues

(λ±
α )2 = σ2

α +
λ2

χ

2 ± λχ

2

√
λ2

χ + 4σ2
α . (5.8)

Let us dub the constant eigenmode of the Laplacian as ϕ0 = 1/
√

V3, with V3 the volume of
X3. Then the eigenmode U−

0 identically vanishes, while U0 ≡ U+
0 has eigenvalue λ2

χ with
respect to ∆3 and takes form U0 = λ2

χ χϕ0. Moreover, the set of co-exact one-forms U±
α are

normalised to unity by multiplying them by the following factor

c±α =

(λ4
χ+3λ2

χσ2
α+σ4

α)−(λ2
χ+σ2

α)µ2
α

2 ±λχ

(λ4
χ+5λ2

χσ2
α+5σ4

α)−(λ2
χ+3σ2

α)µ2
α

2
√

λ2
χ+4σ2

α

−1/2

.

(5.9)
In the following we will assume that the U±

α have been normalised to unit norm. In
particular, we have that c0 ≡ c+

0 = λ−2
χ , and so U0 = χϕ0.

The set {U±
α } is part of the co-exact one-form eigenspectrum of X3, but the above

method does not guarantee that it is a complete set. In the particular case of T̃3 one can
check that the whole co-exact spectrum is of this form, as verified in appendix B by using
the results of [62].

8Notice that such a basis always exists because [∆3,Lχ] = 0.
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Computing the linking number. Using that {U0, U±
α } is a complete basis of co-exact

eigen-one-forms of X3,9 we can expand the bump delta two-form for a torsion one-cycle
π1 ⊂ X3 as

δ(2)(π1) = K0 ⋆ U0 +
∑

α

(
K+

α ⋆ U+
α + K−

α ⋆ U−
α

)
, (5.10)

where
K0 =

∫
π1

U0, K±
α =

∫
π1

U±
α . (5.11)

In terms of these expressions, the linking number (2.7) between two torsion one-cycles reads

L(π, π̃) = 1
λχ

K0K̃0 +
∑

α

[ 1
λ+

α
K+

α K̃+
α + 1

λ−
α

K−
α K̃−

α

]
, (5.12)

where the coefficients K̃ arise from integration over a different torsion one-cycle π̃1.
We now impose the calibration condition. One can check that calibrated torsion two-

and three-cycles in T̃3×T3/Z2×Z2 correspond to torsion one-cycles on T̃3 that are integral
curves of χ. For such one-cycles we have that

∫
π1

α =
∫ 2πr

0 ιχα dθ, for any one-form α.
Therefore

K0 =
∫ 2πr

0
ιχU0 dθ = 2πrϕ0 , K±

α =
∫ 2πr

0
ιχU±

α dθ . (5.13)

From these expressions, one may compute each of the terms in the torsion linking
number. Indeed, one first notices that

ιχSα = λχϕα , ιχTα = (λ2
χ + σ2

α − µ2
α)ϕα , (5.14)

which imply

ιχU±
α = ±

{
λ±

α

[
λ2

χ + σ2
α − µ2

α

]
+ σ2

αλχ

}
c±α√

λ2
χ + 4σ2

α

ϕα . (5.15)

As a result, the massive eigenmodes with µα ̸= 0 have a vanishing coefficient, since

K±
α ∝

∫ 2πr

0
ϕα dθ = 0 , (5.16)

where we have used (5.4). It remains to check the contribution of the modes with µα = 0
to (5.12). Recall that those modes with α ̸= 0 come in pairs, and one can check that they
satisfy the following relation:

1
λ+

α
K+

α K̃+
α + 1

λ−
α

K−
α K̃−

α = ϵα

λ2
χ + 4σ2

α

∫ 2πr

0
ϕα dθ

∫ 2πr

0
ϕα dθ , (5.17)

where we have defined

ϵα ≡ (c+
α )2

λ+
α

[
λ+

α (λ2
χ + σ2

α) + σ2
αλχ

]2
+ (c−α )2

λ−
α

[
λ−

α (λ2
χ + σ2

α) + σ2
αλχ

]2
= 0 . (5.18)

That is, those massive eigenmodes with µα = 0 have non-trivial coefficients K±
α , but for

those contributing to the bracket in (5.12) there is a non-trivial cancellation by pairs, such
9There may be more than one eigenform for a given eigenvalue, but this will not change our final result.
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that the sum cancels term by term. The surviving term in (5.12) is the smeared linking
number

Lsm(π1, π̃1) ≡
1

λχ
K0K̃0 = 4π2r2

V3λχ
. (5.19)

In a twisted three-torus with metric ds2
T̃3 = (2π)2

[
(Riη

i)2 + (Rj+3ηj+3)2 + (Rk+3ηk+3)2
]

and twist dηi = −Nηj+3 ∧ ηk+3 one obtains

U0 = 2πRi√
V3

ηi, λχ = NRi

2πRj+3Rk+3
, r2 = R2

i , V3 = 8π3RiRj+3Rk+3 . (5.20)

Therefore applying (5.19) one recovers the result Lsm(π1, π̃1) = 1/N , as expected.

Extension to T̃6/Z2 × Z2. Let us now see how the above computation extends to the
SU(3)-structure manifold T̃6/Z2 × Z2. We first consider the covering space T̃6 = T̃3 × T3

with metric (5.1), where T̃3 is parametrised by the coordinates {xi, xj+3, xk+3} and T3 by
{xi+3, xj , xk}, with i ̸= j ̸= k ̸= i. Given the factorisation of the metric, any eigenform of
the Laplacian will be a wedge product of one in T̃3 and one in T3. We are in particular
interested in those eigenforms in which the bump delta-forms δ(Πtor

3 ) and δ(Πtor
2 ) are

decomposed. It is easy to see that these fall in the subset[
⋆U±

α

]
∧
(
e2πini+3 xi+3

dxi+3
)

, ni+3 ∈ Z , (5.21)[
⋆U±

α

]
∧
(
e2π(njxj+nkxk)dxj ∧ dxk

)
, nj , nk ∈ Z , (5.22)

for δ(Πtor
3 ) and δ(Πtor

2 ), respectively, where as above ⋆ stands for the Hodge star operator
in T̃3. As a consequence, the expansion of the smeared deltas δsm(Πtor

3 ) and δsm(Πtor
2 ) are

given by ⋆U0 ∧ dxi+3 and ⋆U0 ∧ dxj ∧ dxk, accordingly. That is, using the metric (5.1) one
obtains

δsm(Πtor
3 ) = η4 ∧ η5 ∧ η6 δsm(Πtor

2 ) = −ηj ∧ ηk ∧ ηj+3 ∧ ηk+3. (5.23)

With regard to the complete expansion, it is easy to see that the wedge of one of these forms
and its antiderivative will give a non-vanishing contribution only if nj = nk = ni+3 = 0,
that is if we select harmonic forms in T3. As a result, the computation of the linking
number for calibrated cycles works precisely as outlined for T̃3, with the same vanishing
coefficients and the same cancellations, and we end up again with the smeared torsion
linking number (5.19).

Let us now implement the Z2 × Z2 orbifold projection, where each Z2 generator θ1 and
θ2 acts by flipping two coordinates on T̃3 and other two on T̃3, as follows from footnote 6.
Since this is a product of two involutions, each acting on one submanifold, we can split the
above exact eigenforms into even and odd under such involutions, and take (odd, odd) or
(even, even) products, such that the result is invariant under the orbifold generators. While
one could perform such an analysis explicitly, given our discussion above it is sufficient to
show the action of these orbifold generators on the two-forms ⋆U±

α only depends on the
value of σα and µα, since then the orbifold projection will commute with relations that lead
to the cancellations (5.18), and they will also happen for orbifold-invariant massive modes.
One can show the assumption by using that θ1 and θ2 act as isometries when restricted to
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T̃3, as then they commute with ∆, and Lχ. It then follows that they have a well-defined
action on the basis of scalar wavefunctions {ϕα}, and act on the above set of co-exact one
forms as

θα : Sα 7→ νσα,µα
α Sα , θα : Tα 7→ νσα,µα

α Tα =⇒ θα : U±
α 7→ νσα,µα

α U±
α . (5.24)

That is, the orbifold group action on the massive modes of interest only depends on the
value of σα and µα, as assumed. Finally, by construction, the orbifold projection leaves
invariant the eigenmodes of T̃3 × T3 that contribute to the smeared linking number.

6 More general N = 2 compactifications

The extension of the setup in [29] to more general type II string compactifications leading
to 4d N = 2 gauged supergravities has been performed in [30–32, 63]. In the following we
focus on the framework developed in [31, 32], which applies to SU(3)-structure manifolds.
Such a framework relies on the existence of a set of smooth p-forms on an SU(3)-structure
manifold X6:

{ωa} ∈ Ω2(X6) , {αA, βB} ∈ Ω3(X6) , {ω̃a} ∈ Ω4(X6) , (6.1)

with a = 1, . . . , nK , A, B = 1, . . . , nc.s., chosen such that∫
X6

ωa ∧ ω̃b = δb
a,

∫
X6

αA ∧ βB = δB
A , (6.2)

and satisfying the relations

d†ωa = 0, (6.3a)
dωa = ma

AαA + eaAβA, (6.3b)
dαA = eaAω̃a, (6.3c)
dβB = −ma

Bω̃a, (6.3d)
dω̃a = 0, (6.3e)

with ma
A, eaA ∈ Z such that ma

AebA = mb
AeaA. Consistency of the dimensional reduction

implies that the set is closed under the Hodge star operator:

ω̃a = gab ∗ ωb, ∗αA = HB
A αB + GABβB, ∗βA = F ABαB − HA

B βB, (6.4)

mimicking the relations between harmonic forms in Calabi-Yau manifolds.
Given this set of p-forms, one expands the SU(3)-structure calibrations in terms of

them:

Jc = B + iJ = 4π2(ba + ita)ωa, (6.5)
Ω = ZAαA −FBβB,

with FA = ∂AF the derivatives of the complex structure prepotential F . The 4d kinetic
terms of the corresponding fields are governed by the same expressions as in the Calabi-Yau
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case, in terms of Kähler potentials Kρ = − log
∫

X6
iΩ̄ ∧Ω and KJ = − log 4

3
∫

X6
−J ∧ J ∧ J

that correspond to Hitchin functionals [31]. Finally, one should also expand the 10d
RR potentials in this set of p-forms. In the case of type IIA compactifications such an
expansion reads

C3 = 2πℓ3
s

(
Aa

1 ∧ ωa + C̃A
0 αA + C0 BβB

)
, (6.6)

leading to a set of axions and gauge vectors in 4d. The dual degrees of freedom are obtained
from the expansion of C5.

In the framework of [31, 32] there is no geometric interpretation for the set
{ωa, αA, βB, ω̃b}, nor a clear prescription on how to build them from the light eigen-
modes of the Laplacian. Notice that a key property of these p-forms is that they define the
quantisation features of the 4d EFT, either in terms of axion periodicities or U(1) gauge
transformations. As such, their definition should be connected to the presence of 4d EFT
objects like strings, particles and instantons, which implement and detect global gauge
transformations. We have already seen this connection in our discussion of section 3, in
light of which one may propose to describe the set {ωa, αA, βB, ω̃b} as smeared delta forms.

Indeed, based on our previous discussion, it is natural to propose that the smooth
p-forms {ωa, αA, βB, ω̃b} correspond to smeared delta-forms δsm

p (Σ6−p) of a set of strictly
calibrated (6 − p)-chains Σ6−p ⊂ X6, which encode the presence of BPS objects in the
4d EFT. More precisely, the closed four-forms ω̃b correspond to the smeared bump delta-
forms δsm

4 (Π2), where [Π2] belongs to the free part of H2(X6,Z) if ω̃b is harmonic, and to
TorH2(X6,Z) if it is de Rham exact. Similarly, the subset of three-forms in {αA, βB} that
are closed correspond to the smeared delta-forms δsm

3 (Π3) of strictly calibrated three-cycles.
The remaining set of smooth p-forms can be constructed by taking the anti-derivatives of
the exact three- and four-forms and normalising them such that (6.2) is satisfied, which
implies that the integers ma

A, eaA encode the torsion linking numbers of X6. Finally, as in
our simple example above, one could also relate the non-closed two- and three-forms as the
smeared version of delta-forms for calibrated four- and three-chains in X6, whose boundary
describes the torsional nature of some calibrated cycles.

To make this picture more precise, let us consider the subcase ma
A = 0, which

also resembles the setup considered in [15]. Then, the rank re of the matrix eaA should
determine the number of harmonic two- and three forms of X6 as b2(X6) = nK − re
and b3(X6) = nc.s. − re. Clearly, the rank of eaA counts massive eigenforms below the
compactification scale, more precisely we should at least have re times a spectrum of the
form (3.6), as this is what we obtain from dimensionally reducing the RR sector of the
theory. Indeed, let us consider the type IIA expansion (6.6), and for simplicity assume that
in (6.4) HA

B = 0, so that GABF BC = −δC
A . Then we find

(2π)2F̂ AB (dC0 A − eaAAa
1)
(
dC0 B − ebBAb

1

)
+ (2π)2gab dAa

1 ∧ dAb
1 , (6.7)

with F̂ AB = F ABe2ϕ4M2
P, plus a mass term for re axions C̃A

0 .10 The masses that one reads
from such a mass term, the Lagrangian (6.7) and its dual reproduce the action of the

10These massive axions are more suitably described in terms of a 4d dual two-form B2 involved in a
gauging of the form (3.25), see e.g. [45].
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Laplace operator on the set {ωa, αA, βB, ω̃b} as expected [31, 32, 48]. For instance, the
action of the Laplacian on the closed forms βA and ω̃a reads

∆βA = F ABebBgbcecC βC , (6.8)
∆ω̃a = gabebBF BCecC ω̃c . (6.9)

The diagonalisation of these mass matrices gives us the set of massless and light p-form
eigenmodes. Such a spectrum is by assumption complete, or otherwise the expansions (6.5)
and (6.6) would be missing light modes of the EFT. Knowledge of these mass matrices and
of the kinetic terms CAB and gab leads to eaA, in a generalisation of the relation (3.11). As
proposed in [15], the matrix eaA is a sort of the inverse of the torsion linking numbers, and
it encodes the torsion cohomology that is sensitive to the light EFT modes. This topological
information is easier to extract if one performs a unimodular integral change of basis both
in {ωa, ω̃b} and in {αA, βB} that take eaA to its Smith normal form

eSmith =



k1
k2

. . .
kre . . . 0
0 . . . 0
... . . . ...
0 . . . 0


(6.10)

with ki, ki/ki+1 ∈ Z, ∀i. In this basis the computation of the smeared linking number gives∫
X6

d−1ω̃i ∧ βj = k−1
i δij , for i, j = 1, . . . , re, suggesting that the torsion cohomology groups

are
TorH3(X6,Z) ≃ TorH4(X6,Z) ≃ Zk1 × · · · × Zkm , (6.11)

where |ki| > 1 for i ≤ m and |ki| = 1 for m < i ≤ re. Those entries of (6.10) with
value ±1 should correspond to calibrated p-cycles that are trivial in homology, but that
nevertheless are detected by the 4d EFT because they couple to massive modes below the
compactification scale.

The proposal that the closed p-forms within {ωa, αA, βB, ω̃b} correspond to smeared
bump delta-forms of calibrated cycles can be further motivated by considering the set of
BPS objects in the 4d EFT. For instance, let us again consider type IIA with ma

A = 0
and look at the closed three-forms βA, which in the basis (6.10) may either be harmonic
or exact in de Rham cohomology. Each of these forms are related to an axion C0 A, and
from the BPS completeness hypothesis [64], or the EFT string completeness hypothesis [27]
applied to N = 2 gauged supergravities, one expects a BPS string under which such an
axion is magnetically charged. Then, the results of [31, 32] imply that Kρ = − log

∫
X6

iΩ̄∧Ω
describes the metric of the hypermultiplet moduli space, at least at the classical level.
Because the axion kinetic terms only depend on Kρ and this has the same expression as in
the ungauged case, the tension of a BPS string should have the same general expression as
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in a Calabi-Yau. That is, we have that

T A

M2
P
= eϕ

VolX6

∣∣∣∣∫
X6

Ω ∧ βA

∣∣∣∣ . (6.12)

Now, in this context BPS means that the D4-brane internal worldvolume ΠA
3 is calibrated

by Ω, and dimensionally reducing its DBI action one obtains

T A

M2
P
= eϕ

VolX6

∣∣∣∣∣
∫

ΠA
3

Ω
∣∣∣∣∣ = eϕ

VolX6

∣∣∣∣∫
X6

Ω ∧ δ(ΠA
3 )
∣∣∣∣ , (6.13)

which implies that βA must be the smeared version of δ(ΠA
3 ). Note that this is a standard

result when βA is not exact in de Rham cohomology, since then [βA] and [ΠA
3 ] are related

by standard Poincaré duality. Similarly, in 4d N = 2 EFTs, the mass of charged BPS
particles in Planck units is specified by their central charge. A key result of [31, 32]
is that the kinetic terms of vector multiplet sector is encoded in the Kähler potential
KJ = − log 4

3
∫

X6
−J ∧ J ∧ J also for gauged supergravities obtained from compactifications

on SU(3)-structure manifolds. From here it follows that the central charges of BPS particles
charged under the vector multiplets are precisely the periods of B + iJ , that is

Za = eKJ /2
∫

X6
eB+iJ ∧ ω̃a. (6.14)

As in the Calabi-Yau case, such BPS particles should arise from wrapping D2-branes on
two-cycles Πa

2 ⊂ X6 calibrated by J . By dimensionally reducing their DBI action we obtain

m2
a

M2
P
= eKJ

∣∣∣∣∫
X6

(B + iJ) ∧ δ(Πa
2)
∣∣∣∣2 , (6.15)

which implies that ω̃a should be the smeared version of δ(Πa
2). Again, this is independent

of whether ω̃a is de Rham exact or not. When ω̃a is exact, it has to be that Πa
2 is either a

torsion or a trivial class of H2(X6,Z). Finally, the completeness hypothesis implies that
there is a BPS particle per element of the basis {ω̃a}, which again is a standard result in
the Calabi-Yau case.

7 Torsion D-branes in N = 1 vacua

Having discussed the physical meaning of the smeared torsion linking number in 4d N = 2
settings, it is natural to wonder how Conjecture 1 can be physically realised in 4d N = 1
string vacua. In the N = 2 case, the realisation was based on the existence of BPS AB
particles and strings, a set of objects that will be essentially absent in 4d N = 1 type II
orientifold settings. Indeed, there are no BPS particles in N = 1 vacua, and a 4d string
that arises from a D(p + 1)-brane wrapped on a p-cycle Πp ⊂ X6 can only be BPS if Πp is
calibrated by a closed p-form.11 As such, torsion p-cycles cannot yield 4d BPS strings. The
realisation of the smeared linking number must therefore be more subtle in this case.

11The precise statement is that in 4d N = 1 Minkowski vacua the calibration for 4d strings is dH -closed [7–
9], an statement that also holds for the N = 0 Minkowski vacua analysed in [65]. In practice this implies
that, even in compactifications with H-flux, torsion cycles cannot be calibrated.
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As already mentioned in section 3, one possibility is to invoke the extension of Con-
jecture 1 formulated around (2.9), and look for torsion p-cycles that are not calibrated by
themselves, but whose homology class can nevertheless be seen as a linear combination of
calibrated p-cycles. This would in principle allow us to describe AB strings and particles
and their associated smeared p-forms in 4d N = 1 orientifold vacua, connecting our previous
discussion with the setup of [15].

The most natural realisation of the smeared torsion linking form seems instead to
involve the Stückelberg-like terms that involve 4d BPS objects in N = 1 vacua, and that
correspond to (3.25) and (3.26). These two couplings represent 4d membranes ending on
strings and space-time filling branes ending on membranes, and in the context of 4d N = 1
supersymmetry they can be described in the language of three-form multiplets [46]. Notice
that in a type II compactification on a six-dimensional manifold X6, a Dp-brane that looks
like a 4d particle and a D(p + 2)-brane that looks like a 4d membrane can wrap the same
p-cycle Πp ∈ X6, and the same holds for a D(p + 3)-brane and an Euclidean D(p − 1)-brane
instanton. So essentially we are trading the role of 4d particles and instantons for that of 4d
membranes and space-time filling branes, in order to probe a similar set of torsion p-cycles
with BPS objects. In practice, this implies that the topological information that was captured
by (3.9) and (3.15) in the N = 2 case, now is encoded in the couplings (3.25) and (3.26).

To see how this works in practice, let us again focus on type IIA string theory on a
compact SU(3)-structure manifold X6, but now with an orientifold projection that introduces
O6-planes. Assuming a 4d Minkowski vacuum leads to the following metric Ansatz

ds2 = e2Ads2
R1,3 + ℓ2

sds2
X6 , (7.1)

with A a warp factor that depends on the coordinates of X6, whose SU(3)-structure metric
satisfies the following equations

d(3A − ϕ) = H + idJ = 0, d(e2A−ϕReΩ) = 0, ℓsd(e4A−ϕImΩ) = −e4A ∗ F2, (7.2)

and F0 = F4 = F6 = 0, with F2p the gauge-invariant RR field strength. In this setup 4d
strings made up of D4-branes wrapping three-cycles are calibrated by ±e2A−ϕReΩ which,
as advanced, is a closed three-form. Therefore, there are no BPS strings of this sort that
correspond to torsion homology classes. The same can be said for membranes, which are
calibrated by e3A−ϕeB+iJ .

The last equation in (7.2), however, features a non-closed three-form that calibrates
space-time filling D6-branes. As such, it can detect calibrated torsion three-cycles. That
such three-cycles exist in certain SU(3)-structure vacua can be deduced from the results
of [48], which imply that a Dp-brane that is point-like in a Calabi-Yau manifold with H-flux
is mapped by mirror symmetry to a D(p + 3)-brane wrapping a torsion three-cycle Πtor

3 . In
our type IIA orientifold context, Πtor

3 will host a 4d BPS object if it is wrapped either by
a D6-brane or by an Euclidean D2-brane. In practice, the DBI action of these objects is
easier to analyse if, following [66], one trades the last equation in (7.2) by an equivalent
one not involving the Hodge star operator. In the case at hand we find [42]

ℓsd(e−ϕImΩ) = −J ∧ F2, (7.3)

which already hints that part of the torsion data of X6 is encoded in the RR flux F2.
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In this context, it is illustrative to consider a simple example, like the twisted six-torus
geometries analysed in [49]. These correspond to an SU(3)-structure of the form (4.5)
and (4.6), with the simplification V = Vi = 1, ∀i, and an orientifold action of the form
R : (J,Ω) 7→ −(J, Ω̄). The p-chains {Πi

2,Πtor
3 ,Σ3,Σi

4} play the same role in terms of torsion
homology information as in section 4, but from an EFT viewpoint they should be associated
to either 4d membranes or space-time filling branes. For concreteness, let us consider a T̃6

with twisting M1 = −M2 = N ∈ N and M3 = 0. This choice fixes the complexified Kähler
moduli as b1 + it1 = b2 + it2 in the vacuum and leads to a background RR flux of the form

F2 = ℓsK
(
η1 ∧ η4 − η2 ∧ η5

)
, K ∈ N , (7.4)

that solves (7.3) in the constant dilaton approximation, by setting Kt1 = Kt2 =
Ne−ϕR1R2R3. This sort of RR flux background is the one that appears in the type
IIA orientifold flux literature, see e.g. [67, 68], but it is important to realise that the
expression is a consequence of the constant-dilaton/smeared approximation. Indeed, what
occurs in this background is that there are eight O6-planes wrapped on [Πtor

3 ]. In a plain
toroidal compactification one could cancel this charge by placing 32 D6-branes in the same
three-cycle class of the covering space. In the twisted torus geometry, because [Πtor

3 ] is
ZN -torsion, one only needs to place 32− kN of such D6-branes, for some k ∈ Z, in order to
cancel the RR tadpole. The lack of D6-branes leads to a RR flux background that satisfies

dF2 ≃ −ℓskNδ3(Πtor
3 ), (7.5)

where for simplicity we have assumed all O6-planes and D6-branes on the same representative
(otherwise one is led to more involved delta-source equations, like the ones solved in [69]).
Upon implementing the smearing approximation one obtains

F2 = −ℓskN d−1δsm
3 (Πtor

3 ) , (7.6)

which reproduces (7.4) for k = 2K, up to a harmonic form. The actual RR flux is, however,
the one that solves (7.5), since it is the only one that can satisfy Dirac’s quantisation
condition, upon the appropriate choice of harmonic piece [42].

The couplings (3.25) and (3.26) are obtained upon dimensionally reducing the RR
potentials

C5 = ℓ5
s2π

[
B2 0 ∧ β0 + Bi

2 ∧ αi + Ci
3 ∧ ωi

]
, (7.7)

C7 = ℓ7
s2π

[
D3 i ∧ ω̃i + A0

4 ∧ α0 + A4 i ∧ βi
]

, (7.8)

where we have taken into account the orientifold action, and expanded into p-forms that
couple with unit charge to the calibrated p-chains {Πi

2,Πtor
3 ,Σ3,Σi

4}.12 One finds

(2π)2
[
ĝii(dCi

3)2 + F̃ 00
(
dB2 0 + MiC

i
3

)2
+ e−4ϕ4M−4

P F̃ii(dBi
2)2
]

, (7.9)

12For simplicity we are using the notation (4.12), which results in an unusual convention in orientifold
compactifications. The more standard one is obtained by interchanging the basis elements as αi ↔ −βi,
cf. [68, eq. (2.6)].
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and
(2π)2

[
ĝii
(
dD3 i − MiA

0
4

)2
]

e−8ϕ4M−8
P , (7.10)

where we have assumed generic twists Mi and have defined

ĝii = giie
−4ϕ4M−4

P , F̃ AA = F AAe−2ϕ4M−2
P , (7.11)

and ĝii = 1/ĝii, F̃AA = 1/F̃ AA. Note that F̂ AB defined below (6.7) satisfies F̂ AB =
F̃ ABe4ϕ4M4

P , and so (7.9) contains the same kind of information as (4.17). As a result, the
computation of the smeared linking number works exactly as in section 4.2. The main
difference is the expression of the smeared linking number in terms of 4d EFT quantities,
which now involves the physical charges of membranes and strings ending on each other.
More precisely in this N = 1 setup, one finds that the relation (3.11) is substituted by

mst
N

=
√

ĝαα

F̃00
= eϕ4MP

√
gαα

F00
, (7.12)

where N = M = g.c.d.(M1, M2, M3) and ĝαα = e4ϕ4M4
P gαα = e4ϕ4M4

P

∑
i

M2
i

M2 gii. Here ĝαα

represents the squared physical charge Q2 of a BPS membrane ending on a BPS string and
F̃00 the squared charge of such a string, as defined in [26], see also (8.1).

8 Beyond the BPS case

Conjecture 1 proposes a method to compute the linking number between two calibrated
torsion cycles from smeared/EFT data. However, as already mentioned, in Calabi-Yau
manifolds torsion p-cycles cannot be calibrated, or equivalently D-branes wrapped on them
are not BPS objects of the EFT. The extension of the conjecture around (2.9) allows
us to implement the same method whenever the torsion class Πtor

p of interest is a linear
combination of p-cycle homology classes with calibrated representatives. This more general
setup could in principle occur in Calabi-Yau compactifications, and then the extended
conjecture would imply that one can compute torsion in cohomology via smeared data,
provided there exist massive eigenforms of the Laplacian below the compactification scale
that couple to torsion p-cycles. Including such a set of light fields in the 4d EFT would
presumably take us to a structure of the form (6.2) and (6.3), in which giving a non-vanishing
vev to a massive, light field deforms an SU(3)-holonomy metric to an SU(3)-structure one.

Nevertheless, in general, one would expect that a torsion class in homology does
not contain any calibrated representative, and neither can it be understood as a linear
combination of homology classes with them. In that case, our discussion of section 3 suggests
that there should be non-trivial corrections associated to this sector. More precisely, one
would expect that in the EFT description the bump-delta form δ6−p(Πtor

p ) can still be
replaced by its smeared version, but only up to a multiplying constant that could be
interpreted as wavefunction renormalisation. That is, one does not simply project the delta
into its lowest eigenmode component, but also has to multiply the result by some constant
(or a field-dependent function) in order to correctly reproduce the 4d physics. Whenever
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this happens the smeared linking number and the exact linking number do not coincide,
and one should rescale the smeared delta to make it so.

It is hard to have an idea of the magnitude of this rescaling without an example at
hand where the computation can be carried out explicitly. The best we can do is to give
an estimate for the error in the smeared linking number, as follows. In supersymmetric
theories, the EFT kinetic terms obtained from truncating massive modes at zero vev are
exact up to corrections of O(ΛEFT/ΛUV), see e.g. [70]. In our case ΛEFT corresponds to the
mass mst of the massive modes that we keep in our EFT, and ΛUV to the compactification
scale mKK. Notice that this is the suppression that we found in (3.24) when moving away
from the minimal tension representative.

If the torsion cycle is not calibrated, it means that the EFT data is not computing its
minimal volume properly. In some cases, like in Calabi-Yau vacua the ‘expected’ volume
VBPS

p , namely the integral of the appropriate calibration over Πtor
p , vanishes. In general,

the volume of a non-calibrated cycle should be larger than the integral of its would-be
calibration over the given homology class. One can think of the mismatch between volumes
as how much one needs to deform a would-be calibrated cycle to match the actual one.
Finally, one usually converts differences of internal volumes to differences of field vevs via
the physical 4d charge Q of the corresponding EFT object [27], which here we define as

Q2(Πp) =
∑

λi≪ℓsmKK

c2
i , (8.1)

with ci the coefficients of the smeared delta-form of Πp, as in (2.4).
With these considerations in mind, let us consider the smeared linking number between

a calibrated cycle Πtor
6−p−1 and a non-calibrated one Πtor

p . One may propose the following
upper bound

|L − Lsm| <
Vp − VBPS

p

Q
mst

mKK
, (8.2)

where V is the actual volume of Πtor
p , in string units. This upper bound estimates the

error when computing the smeared linking number, with respect to the actual one L. If
the bound is small, it still makes sense to compute (2.8), because it gives a good estimate
of the actual linking number. That is, one may still use EFT data to characterise torsion
in cohomology.

9 Conclusions

In this work we have proposed a method to detect topological invariants of torsion coho-
mology groups via smooth p-forms. The proposal is based on what TorHp(Xn,Z) means
when performing dimensional reduction of type II string theory on Xn and obtaining a
lower-dimensional EFT with a massive sector, and it can be summarised in two main points:

i) If a D-brane wrapped on a torsion cycle Πtor
p has a non-trivial backreaction at EFT

wavelengths, it is because there are light massive eigenmodes of the Laplacian sourced
by it. In geometric terms, this means that Πp has a non-trivial smeared delta form
δsm

n−p(Πp), which is a necessary requirement to apply our approach.
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ii) Whenever Πtor
p is calibrated, a D-brane wrapped on it is a BPS object of the theory

whose smeared backreaction is protected from dimensional reduction corrections.
As a result one can compute the torsion linking numbers of Πtor

p using its smeared
delta form.

This second statement, which is the content of Conjecture 1, provides a method to
detect the ZN factors in Hp(Xn,Z). The method has a wider application if one assumes
the extension of the conjecture made around (2.9), and it would be really interesting to see
if it can be applied to manifolds with special holonomy metrics.

The use of smooth p-forms to compute torsion in cohomology may seem quite surprising
because such ZN factors are projected out in de Rham cohomology groups. One should
however keep in mind that in our approach we are starting with a set of objects that contain
the information of singular homology groups, namely the bump delta forms δn−p(Πp), and
replacing them by a countable set of smooth forms δsm

n−p(Πp) that should remember part of
the torsion data. As a possible analogy, one may consider a finite good cover of Xn and its
nerve N , which is a triangulation of Xn [21]. We then consider the delta forms δn−p(σp,α)
of the p-simplexes σp,α of N , with a small smearing (such that 1/λmax is below the spacings
in N). This produces a lattice of smooth p-forms from which one can compute Hp(Xn,Z)
via singular cohomology. Our proposal can be thought of as a limit of this construction,
in the sense that we perform a much more dramatic smearing, namely at wavelengths
above Vol(Xn)1/n. This more drastic coarse-graining is allowed geometrically because, if the
assumptions behind Conjecture 1 are true, then there should be a G-structure manifold that
one can construct by fibering Xn over flat space, which is the EFT solution of a D-brane
wrapped on Πp. One could then use this non-compact, higher-dimensional manifold to
compute topological information of Xn via smeared data.

It is also instructive to compare our approach with some of the discussion in the
string theory literature, like the one carried in [48] based on the classification theorems of
Wall [71] and Žubr [72]. As pointed out in [48] these theorems classify six-manifolds up
to diffeomorphisms and the classification data match the content of the massless sector
of the compactification, discarding exact and co-exact p-forms. Our results are not in
tension with this classification, because we need to endow Xn with a G-structure metric
in order to extract the torsion cohomology data. This choice of metric also specifies the
set of calibrated cycles and the light spectrum of the Laplacian, so it is crucial in order to
select those exact and co-exact forms that contain the torsion information. In this light, it
would be interesting to see if the presence of torsion in cohomology restricts the choice of
G-structure metrics on a manifold, or if one can always choose a G-structure metric where
all the smeared delta forms of calibrated torsion cycles vanish.

An important part of our analysis is based on constructing explicit examples of SU(3)-
structure manifolds with calibrated torsion cycles. This allowed us to perform a direct
comparison of the torsion linking number and its smeared version, where we observed a
remarkable cancellation between terms in the eigenmode expansion of the delta form, that
is reminiscent of the computations of topological indices. It would be very interesting to
understand the meaning of this feature and if it is also realised in more involved setups,
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providing further evidence of Conjecture 1. Our explicit constructions also provided
concrete EFT descriptions of BPS configurations of branes ending on branes, like the 4d
Aharanov-Bohm strings stretching between a domain wall and a monopole in N = 2 gauged
supergravities. Moreover, the properties of such objects resulted in a physical interpretation
of the Hitchin flow equations, which could be useful to further understand the properties of
these subtle objects. It is likely that this connection sheds light into the physics of N = 2
gauged supergravities, like for instance when applied to the black hole supergravity solutions
recently revisited in [73], and which share many properties with AB strings and particles.

As a direct application of our proposal, we have revisited the dimensional reduction
framework developed in [29–32] to furnish it with one of its main missing elements. That
is, a geometric prescription to define the basis of p-forms in which the RR potentials and
the calibration forms must be expanded. We have verified that our definition fits perfectly
with the physical properties that these forms should have, and which define the periodicity
properties of massive axions and gauge bosons of the 4d N = 2 EFT. Such periodicities
are crucial to define the global gauge transformations for massive p-form in more general
setups. This applies in particular to 4d N = 1 compactifications, where the Stückelberg-like
couplings related to our method involve the gauging of three- and four-forms in 4d.

To sum up, our findings seem to point out that torsion in cohomology could lead to
specific, measurable physics in the massive sector of 4d EFTs obtained from string theory.
It could be that exploiting this new link between geometry and physics could give us a new,
more approachable understanding of the subtle objects that are torsion p-cycles.
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A NS5-branes and domain wall solutions

In [29] a 4d domain-wall solution based on a backreacted N5-brane is considered, in order
to arrive at a background of the form (4.1) via mirror symmetry. In this appendix we
review the NS5-brane setup, and describe a set of type IIB D-branes that are mutually
BPS with the NS5-brane. Such D-branes have a well-defined interpretation from the 4d
domain-wall viewpoint, and are in one-to-one correspondence with the type IIA D-brane
objects discussed in section 4.

Following [29], let us consider a toroidal compactification of type IIB string theory to 4d.
Let us call the three complex coordinates of T6 = (T2)1×(T2)2×(T2)3 as dzj = dxj+idxj+3,
j = 1, 2, 3. Then one places M NS5-branes along the three-cycle (1, 0)1(1, 0)2(0, 1)3 (that
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is, the coordinates {x1, x2, x6}) and spanning two spatial dimensions in R1,3. One then
backreacts such NS5-branes and smears the solution down to 4d. In this approximation the
harmonic function V that describes an NS5-brane backreaction becomes a linear function of
its transverse coordinate in 4d, therefore V = 1− ζξ with ζ a real constant.13 One obtains
the background

ds2 = ds2
R1,2+ℓ2

sV (dξ)2+ℓ2
sds2

T6 , (A.1)

ds2
T6 =(2π)2

[
(r1dx1)2+(r2dx2)2+V (r3dx3)2+V (r4dx4)2+V (r5dx5)2+(r6dx6)2

]
, (A.2)

H =−Mdx4∧dx5∧dx3, (A.3)
e2ϕ = e2ϕ0V, (A.4)

with M ∈ N. Upon three T-dualities along the coordinates {x1, x2, x3} one is led to a type
IIA background with constant dilaton, no H-flux, and an internal metric of the form (4.2),
more precisely with M3 = M and Rj = 1/rj for j = 1, 2, 3.

This smeared solution is interpreted as the long-wavelength description of the M

NS5-branes’ backreaction, more precisely as the 4d domain-wall solution that is perceived
at wavelengths much larger than the compactification radii. As such, a D-brane that is
BPS in the microscopic background should also be so in its long-wavelength approximation.
In practice, this means that if we consider D-branes that are mutually BPS with the
NS5-branes sourcing the solution, they should correspond to BPS objects in the 4d domain-
wall background. To match out discussion with that of section 4, we will consider type
IIB D-branes whose embedding survives the Z2 × Z2 orbifold projection with generators
θ1 : (x1, x2, x3, x4, x5, x6) 7→ (x1,−x2,−x3, x4,−x5,−x6) and θ2 : (x1, x2, x3, x4, x5, x6) 7→
(−x1,−x2,−x3,−x4,−x5, x6).

For instance, D1 and D5-branes are mutually supersymmetric with respect to an
NS5-brane if the system has 2 + 4k ND directions.14 We may then consider

- A D5-brane wrapping (T 2)i × (T 2)j and extended along ξ =⇒ 6 ND directions.

- A D1-brane extended along ξ =⇒ 6 ND directions.

- An Euclidean D5-brane wrapped on T6 =⇒ 6 ND directions.

Additionally, a D3-brane is mutually BPS with an NS5-brane if the system has 4k ND
directions. So for instance we can have:

- A D3-brane wrapping (0, 1)i(0, 1)j(1, 0)k and point-like along ξ =⇒ 4 or 8 ND direc-
tions.

- An Euclidean D3-brane on (0, 1)i(1, 0)j(1, 0)k and along ξ =⇒ 4 or 8 ND directions.

All these objects are mutually BPS with the NS5-brane sources. If their orientation is
reversed, they will still be BPS in the NS5-brane background, but preserving a disjoint set
of supercharges.

13See footnote 5 for an explanation of different choice of V compared to [29].
14In an abuse of language, we are borrowing the nomenclature used for configurations of pairs of D-branes.
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Upon three T-dualities along {x1, x2, x3}, these D-branes are mapped to some of the
type IIA D-branes discussed in section 4. More precisely, the D1-brane becomes a D4-brane
wrapped on Πtor

3 and the Euclidean D5-brane is mapped to the Euclidean D2-brane wrapping
the three-chain Σ3. Similarly, the D3-branes become the D4-branes on the four-chains
Σi

4 and the Euclidean D3-branes become the Euclidean D2-branes wrapped on Πi
2. The

configurations of AB strings and particles ending on monopoles and instantons described
in section 4 have a clear microscopic origin in this dual type IIB setup. For instance, a
D3-brane wrapped on (0, 1)1(0, 1)2(1, 0)3 intersects the NS5-brane at a point in T6 and
is pointlike in 4d, by a Hanany-Witten effect (see e.g. [12, appendix B]) it must have M

D1-branes stretched along ξ between the NS5-branes and its 4d location. The same occurs
in the smeared description (A.1), where the Freed-Witten anomaly induced by the H-flux
on such a D3-brane is cured by the same stack of M D1-branes.

B Massive p-from spectra in twisted tori

The aim of this appendix is to provide the explicit p-form eigenforms and eigenvalues of the
twisted tori T̃3, whose p-form spectrum was discussed in section 5 based on the method
of [61]. Furthermore, we compare the results with the analyses carried out in [62], to show
that the said spectrum is complete.

Consider the three-dimensional twisted torus T̃3 with metric

ds2
T̃3 = (2π)2

[
(Riη

i)2 + (Rj+3ηj+3)2 + (Rk+3ηk+3)2
]

, (B.1)

and twist dηi = −Nηj+3 ∧ ηk+3. We choose angular coordinates xa ∈ [0, 1] such that the
ηa are parametrised as

ηi = dxi + Nxk+3dxj+3, ηj+3 = dxj+3, ηk+3 = dxk+3, (B.2)

with N = 2πλχRk+3Rj+3/Ri and λχ ∈ R.
Then, we take the one-form Killing vector χ = 2πRiη

i/
√

V , which satisfies the assumed
properties presented in section 5:

⋆dχ = λχ χ , ∆3χ = λ2
χ χ , χ2 = 1 , λχ,∈ R , (B.3)

where V = 8π3RiRj+3Rk+3 is the volume of T̃3.
Let {ϕi} represent the basis of complex scalar eigenforms of the Laplacian. The explicit

shape of these eigenforms is [62]

ϕp,q = e2πiqxj+3
e2πipxk+3

√
V

, (B.4)

ϕk,l,n =
√

2πRj+3
|N |V

1√
2nn!

√
π

e2πik(xi+Nxk+3xj+3)e2πlxk+3 ∑
m∈Z

e2πikmxk+3Φλ
n(ωm), (B.5)
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with eigenvalues

σ2
p,q = q2

R2
j+3

+ p2

R2
k+3

, (B.6)

σ2
k,l,n = k2

R2
i

+ (2n + 1)k |λχ|
Ri

, (B.7)

where we have defined λ = kλχ/Ri, ωm = 2πRj+3(xj+3 + m
N + l

kN ) and Φλ
n(z) =

|λ|1/4Φn(|λ|1/2z) with Φn being the Hermite polynomial. The integers have the following
ranges

p, q ∈ Z2, k ∈ Z/{0}, n ∈ N, l = 0, 1, . . . , |k| − 1. (B.8)

Moreover, the exact one-forms are given by the complete set {dϕi}. Based on the
approach presented in section 5, we observe that the sets of co-exact one-forms, denoted by
Si and Ti and defined in equation (5.5), exhibit closure properties when subjected to the
⋆d operator.

Substituting the scalar eigenforms (B.4) and (B.5) into the sets Si and Ti, we obtain
the eigenforms U±

i defined in (5.7). Also, the corresponding eigenvalues λ±
i can be obtained

from (5.8).
Using the first tower of scalar eigenforms, ϕp,q, we acquire the following results:

For p, q ∈ Z2/{0, 0}:

U±
p,q = 2π ϕp,q√

(λ±
p,q)2 + σ2

p,q

(
(λ±

p,q)2 − σ2
p,q

iλχ
Ri ηi − Rj+3

Rk+3
p ηj+3 + Rk+3

Rj+3
q ηk+3

)
,

(λ±
p,q)2 = q2

R2
j+3

+ p2

R2
k+3

+
λ2

χ

2 ± λχ

2

√
λ2

χ + 4 q2

R2
j+3

+ 4 p2

R2
k+3

. (B.9)

For p = q = 0:

U− = 0, U+
0,0 = 2πRi√

V
ηi, (B.10)

λ+
0,0 = λ2

χ. (B.11)

Comparing with the analysis carried out in [62] one can see that the above results
reproduce exactly half of the co-exact one-form spectrum (see [62], eq. (2.34) and table 1).

Finally, for the second type of eigen-scalars, ϕk,l,n, due to its very intricate expression
(see eq. (2.59) from [62] for details), let us focus exclusively on the resulting eigenvalues
and their degeneracy. Substituting again in (5.8) we obtain

(λ±
k,l,n)

2 = k2

R2
i

+ (2n + 1)k|λχ|
Ri

+
λ2

χ

2 ± λχ

2

√
λ2

χ + 4k2

R2
i

+ 4(2n + 1)k|λχ|
Ri

, n ∈ N∗. (B.12)

Therefore, we observe an exact correspondence with the remaining spectrum. It
is important to note that we have shifted n to n + 1 in (B.12). This is because the
solution (B.12) with n = 0 is in fact trivial using our method, and the matching with [62]
occurs at our n ≥ 1.
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