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1 Introduction

Integrable structure of four-dimensional N = 4 super Yang-Mills (SYM) theory enables us
to compute many physical observables non-perturbatively in the planar limit.1 The study of
integrability in AdS/CFT was initiated by the discovery that the planar one-loop dilatation
operator in the scalar sector is identical to the Hamiltonian of an integrable spin chain [2].
Later this result was generalized to the full sector and all-loop order. In the asymptotic
regime, the spectrum of local operators can be computed by the all-loop asymptotic Bethe
ansatz, which was first proposed in [3] and derived more rigorously in [4]. For operators
with finite length, the so-called finite size corrections should be taken into account. To
solve this challenging problem, different approaches such as the Lüscher formula [5] and the
thermodynamic Bethe ansatz (TBA) [6–9] have been developed, and finally culminated in
the quantum spectral curve (QSC) method [10].

1For a collection of reviews, see [1].
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Single-trace operators in N = 4 SYM are mapped to closed spin chain states. It turns
out that integrable open spin chains also play important roles in AdS/CFT. There are
at least two ways that open chains could emerge. The first is by changing the theory.
Examples include theories with matters in the fundamental representation of the gauge
group, such as four-dimensional N = 2 Sp(N) theory [11, 12] and N = 2 theory obtained
by adding flavors to N = 4 SYM [13]. The second way is considering specific objects within
N = 4 SYM theory which play the role of integrable boundaries. Such objects include
domain walls [14], determinant operators which are dual to giant gravitons [15] and Wilson
lines [16, 17].

More recently, the study of domain wall one-point functions in defect N = 4 SYM [18, 19]
introduced integrable boundary states into AdS/CFT integrability.2 Integrable boundary
states are specific states in the Hilbert space which are annihilated by odd conserved charges.
Later integrable boundary states also appear in the computation of the correlation function
of two determinant operators and a single trace operator [22, 23], ’t Hooft loop one-point
functions [24] and Wilson-loop one-point functions [25].3 Although the integrable boundary
states appear quite naturally in the cases of domain walls, ’t Hooft loops and Wilson loops,
their emergence in the correlation functions involving two determinant operators are less
obvious. The integrable boundary states only show up after some non-trivial computations,
such as using large-N effective field theory or performing partial Wick contractions between
the giant gravitons.

Three-dimensional N = 6 Chern-Simons-matter theory (ABJM theory) [27] is another
important example of supersymmetric gauge theories which are integrable in the planar
limit.4 Compared to N = 4 SYM theory, almost every aspect of integrability gets more
complicated and challenging, due to its smaller symmetry. Similar to N = 4 SYM theory,
the first hint of integrability of ABJM theory comes from the fact that the planar two-loop
dilatation operator in the scalar sector is integrable [29, 30]. All-loop asymptotic Bethe
ansatz equations were proposed in [31]. But there is a to-be-determined interpolating
function h(λ) appearing in the dispersion relation of the magnons. A conjecture for the
exact expression of h(λ) was proposed [32], based on the computation of the planar slope
function using QSC [33] and the result on the vacuum expectation value of 1/6-BPS bosonic
circular Wilson loop [34–36] computed using supersymmetric localization [37, 38].

Integrable open spin chains are relatively less studied from the perspective of 3d super-
Chern-Simons theories. Planar two-loop reflection matrices of open chains from N = 3
flavored ABJM theory was shown to satisfy boundary Yang-Baxter equations in [39], this
is a strong evidence for these chains to be integrable at two-loop. Quite recently, it is
proved [40] that all-loop reflection matrices of open chains from half-BPS Wilson lines
in ABJM theory are integrable, under certain assumptions [41–43]. TBA equations for

2In [20], it was proved that the boundary states from the domain wall in the D3-D5 case satisfy the
condition for the integrable boundary states in [21].

3A class of fermionic BPS Wilson loops in four-dimensional N = 2 quiver theories and N = 4 SYM were
constructed last year [26]. it is interesting to study whether they lead to integrable open chains and/or
integrable boundary states.

4The review [28] summarised the related achievement till the end of 2010.
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composite operators inserted in cusped Wilson lines were also obtained [40]. Solutions of the
TBA equations can be used to confirm the conjectured interpolating function h(λ). As for
the open chain from the determinant operators in ABJM theory, its two-loop integrability
was checked using coordinate Bethe ansatz (CBA) [44] and proved by algebraic Bethe
ansatz (ABA) [45]. A proposal for the asymptotic all-loop Bethe ansatz equations was
given in [46]. The boundary reflection exchanges A-type magnons and B-type magnons in
the flavored ABJM case, while the type of the magnon is preserved during the reflection in
the determinant operator and Wilson line cases.

The study of integrable boundary states in ABJM theory started with the computation
of three-point functions involving two determinant operators and a single trace operator [47].
Later it was shown that certain domain walls in ABJM theory also lead to integrable
boundary states [48].5 In both cases, the integrable boundary states satisfy the untwisted
integrability condition [51] at two-loop level. The aim of this paper is to initiate the study of
correlation functions of a single trace operator and a BPS Wilson loop in ABJM theory. As we
will see, this is another important set-up where integrable boundary states emerges naturally.

There are various types of BPS Wilson loops in ABJM theory (see the review [43]).
The first BPS Wilson loops which were constructed are the bosonic 1/6-BPS ones [34–36].
The construction is based on the bosonic 1/2-BPS (1/3-BPS) Wilson loops in general N = 2
(N = 3) super-Chern-Simons theory [52] and is similar to the half-BPS Maldacena-Wilson
loop [53, 54] in N = 4 SYM. These Wilson loops correspond to F-strings smearing in a
CP1 ⊂ CP3 in the dual AdS4 ×CP3 background [34, 36]. In another word, the worldsheet
theory has Neumann boundary conditions for the directions along the CP1 subspace [55].
The existence of certain half-BPS probe F-string solutions [34, 36] with Dirichlet boundary
conditions in all directions of CP3 indicates the existence of half-BPS Wilson loops which are
invariant under a subgroup SU(3) × U(1) of SU(4)R. Such Wilson loops were constructed
by Drukker and Trancanelli [56], who introduced fermions in the construction of the
Wilson loops. Fermionic 1/6-BPS Wilson loops were constructed in [57, 58], based on the
construction of fermionic half-BPS Wilson loops in generic N = 2 super-Chern-Simons
theories. These fermionic 1/6-BPS Wilson loops in ABJM theory include the above half-BPS
Wilson loops and bosonic 1/6-BPS ones as special cases. A subclass of these fermionic
1/6-BPS Wilson lines are shown to dual to F-strings with complicated mixed boundary
conditions [59]. In this paper, we will study the Wilson-loop one-point function within a
subclass of circular fermonic 1/6-BPS Wilson loops,6 and 1/3-BPS Wilson loops constructed
based on the 1/3-BPS Wilson lines in [60].

We will see that the corresponding structure constant can be calculated as the overlap
of a boundary state and a Bethe state. The tree-level computation of this one-point function
demands the single-trace operator to be an eigenvector of two-loop dilatation operator,
which is identical to an integrable Hamiltonian of an alternating SU(4) spin chain [29, 30].
The eigenvectors can be constructed by Bethe ansatz, with additional zero momentum

5It was shown in [49, 50] that certain D-branes dual to domain walls in both N = 4 SYM and ABJM
theory indeed provide the integrable boundary conditions for open string attached to them.

6More precisely speaking, this subclass was chosen here to insider the Class I of the classification in [57, 58].
The situation for Class II should be similar.
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condition. A particularly interesting question for us is that, which supersymmetric Wilson
loops correspond to integrable boundary states?

We find that the boundary states corresponding to generic 1/6-BPS Wilson loops in
this subclass are not integrable. Only two special cases, namely the bosonic 1/6-BPS and
half-BPS Wilson loops give rise to tree-level integrable boundary states. This result implies
that the boundary states corresponding to 1/3-BPS Wilson loops are also integrable at
tree level. All the aforementioned tree-level integrable boundary states satisfy untwisted
integrability condition which leads to selection rule u = −v,w = −w where u and v
are the two sets of momentum carrying Bethe roots and w are the auxiliary roots. For
these tree-level integrable boundary states, we obtain analytic formulas for the Wilson loop
one-point functions (normalized overlaps) in terms of Bethe roots up to an unimportant
phase factor.

The remaining part of this paper is organized as follows. In section 2, we review the
construction of various supersymmetric Wilson loops in ABJM theory. In section 3 we
compute the Wilson loop one-point functions and find the circular Wilson loops which
correspond to integrable boundary states. We prove the tree-level integrability of such
states by algebraic Bethe ansatz and derive the selection rules for the exact overlap. In
section 4 and 5, we derive the exact overlap formula for the bosonic 1/6-BPS and 1/2-BPS
Wilson loops respectively. We conclude in section 6 and discuss some future directions.
Two appendices include our conventions for ABJM theory and numerical solutions of the
Bethe equations.

2 Various BPS Wilson loops in ABJM theory

In this section, we list Wilson loops that will be studied in this paper. Among these Wilson
loops, the 1/3-BPS circular Wilson loops are new, and they are constructed based on
1/3-BPS Wilson lines in [60]. We consider the ABJM theory in three-dimensional Euclidean
space R3 and adopt the notations in [58]. The spinor convention, the Lagrangian and the
supersymmetry transformation are listed in appendix A.

Bosonic 1/6-BPS circular WLs. These loops were first constructed in [34–36]. We
consider the loops along xµ = (R cos τ,R sin τ, 0), τ ∈ [0, 2π]. The construction is the
following,

WB
1/6 = TrP exp

(
−i
∮
dτAB

1/6(τ)
)
, ŴB

1/6 = TrP exp
(
−i
∮
dτÂB

1/6(τ)
)
, (2.1)

AB
1/6 = Aµẋ

µ + 2π
k
R J

I Y IY †
J |ẋ| , ÂB

1/6 = Âµẋ
µ + 2π

k
R J

I Y †
J Y

I |ẋ| , (2.2)

where ẋµ = dxµ

dτ , and R J
I = diag(i, i,−i,−i).

These two Wilson loops preserve the same supersymmetries,

ϑ12 = iR−1γ3θ12 ϑ34 = −iR−1γ3θ34 ,

θ13 = θ14 = θ23 = θ24 = 0 , ϑ13 = ϑ14 = ϑ23 = ϑ24 = 0 . (2.3)
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We can combine the above two connections into a big one,

LB
1/6 =

(
AB

1/6
ÂB

1/6

)
, (2.4)

and construct the following Wilson loops

WB,big
1/6 = TrP exp

(
−i
∮
dτLB

1/6(τ)
)
. (2.5)

Obviously the preserved supersymmetries are still the ones in (2.3).

Fermionic 1/6-BPS circular WLs. These loops were constructed in [57, 58]. We focus
on the Class I loops according to the classification in these papers. Let us consider the loops
along the same contour xµ(τ) = (R cos τ,R sin τ, 0) as the bosonic 1/6-BPS Wilson loops,

WF
1/6 = TrP exp

(
−i
∮
dτLF

1/6(τ)
)
, LF

1/6 =
(
A f̄1
f2 Â

)
, (2.6)

A = Aµẋ
µ + 2π

k
U J

I Y IY †
J |ẋ| , f̄1 =

√
2π
k
ᾱI ζ̄ψI |ẋ| , (2.7)

Â = Âµẋ
µ + 2π

k
U J

I Y †
J Y

I |ẋ| , f2 =
√

2π
k
ψ†IηβI |ẋ| , (2.8)

with

ᾱI = (ᾱ1, ᾱ2, 0, 0) , βI = (β1, β2, 0, 0) , (2.9)

ζ̄α = (eiτ/2, e−iτ/2) , ηα =
(
e−iτ/2

eiτ/2

)
, (2.10)

U J
I =


i− 2ᾱ2β2 2ᾱ2β1 0 0

2ᾱ1β2 i− 2ᾱ1β1 0 0
0 0 −i 0
0 0 0 −i

 . (2.11)

The preserved supersymmetric is the same as the ones in (2.3) for generic ᾱI , βI .
It was later noticed that we have the equivalence relation [43, 61],

(ᾱI , βJ) ∼ (λᾱI , λ−1βJ) , λ ∈ C∗ = C − {0} . (2.12)

One can set ᾱ2 = β2 = 0 to get a subclass of Wilson loops. Then in this subclass, we
have U J

I = diag(i, i− 2ᾱ1β1,−i,−i), and

f̄1 =
√

2π
k
ᾱ1ζ̄ψ1|ẋ| , f2 =

√
2π
k
ψ†1ηβ1|ẋ| . (2.13)

Similar subclass in the fermionic 1/6-BPS Wilson lines was considered in the study of the
dual string theory prescription [59].

– 5 –



J
H
E
P
0
9
(
2
0
2
3
)
0
4
7

Half-BPS circular WLs. Half-BPS Wilson loops were first constructed in [56]. A class
of them, W1/2, appears among the above class of fermionic 1/6-BPS Wilson loops when the
parameters ᾱI , βI satisfy the following constraints,

βI = iαI

ᾱJαJ
, (2.14)

and at least one of ᾱ1, ᾱ2 is non-zero. Here αI is defined by αI = (ᾱI)∗. The preserved
supersymmetries are now enhanced to

ᾱIϑIJ = iR−1γ3ᾱ
IθIJ , ϵIJKLαJϑKL = −iR−1γ3ϵ

IJKLαJθKL . (2.15)

Using a suitable R-symmetry transformation acting only on I = 1, 2, we can choose7

ᾱI = (ᾱ, 0, 0, 0) , βI = (β, 0, 0, 0) , (2.16)

with the constrains ᾱβ = i. Now U J
I = diag(i,−i,−i,−i), f̄1 and f2 become,

f̄1 =
√

2π
k
ᾱζ̄ψ1|ẋ| , f2 =

√
2π
k
ψ†1ηβ|ẋ| . (2.17)

The equivalence relation (2.12) now becomes,

(ᾱ, β) ∼ (λᾱ, λ−1β) , λ ∈ C∗ . (2.18)

We will denote this half-BPS Wilson loops by W 1+
1/2 and the corresponding super-connection

by L1+
1/2. The supersymmetries preserved by W 1+

1/2 are,

ϑ1I = iR−1γ3θ1I , ϵ1IJKϑJK = −iR−1γ3ϵ
1IJKθJK . (2.19)

1/3-BPS circular WLs. In the construction of 1/3-BPS Wilson loops, we start with
the following super-connection L4−

1/2 in another half-BPS Wilson loop W 4−
1/2,

L4−
1/2 =

(
A f̄1
f2 Â

)
, (2.20)

with

A = Aµẋ
µ + 2π

k
|ẋ|Ũ J

I Y IY †
J , f̄1 = 2π

k
ρ̄µ̄ψ4|ẋ| ,

Â = Âµẋ
µ + 2π

k
|ẋ|Ũ J

I Y †
J Y

I , f2 = 2π
k
ψ†4νδ|ẋ| ,

Ũ J
I =


i 0 0 0
0 i 0 0
0 0 i 0
0 0 0 −i

 ,

µ̄α = (eiτ/2,−e−iτ/2) , να =
(
−e−iτ/2, eiτ/2

)
. (2.21)

7Notice that this transformation is inside a SU(2) subgroup of SUR(4) and keeps diag(−i,−i, i, i) invariant.
So its action on the Wilson loop only changes ᾱI , βI .

– 6 –



J
H
E
P
0
9
(
2
0
2
3
)
0
4
7

Here ρ̄, δ are two complex numbers satisfying ρ̄δ = −i, and we have the equivalence relation

(ρ̄, δ) ∼ (λρ̄, λ−1δ) , λ ∈ C∗ . (2.22)

The corresponding Wilson loop

W 4−
1/2 = TrP exp

(
−i
∮
dτL4−

1/2(τ)
)
, (2.23)

preserve the following supersymmetries,

ϑI4 = −iγ3R
−1θI4 , ϵ

4IJKϑJK = iγ3R
−1ϵ4IJKϑJK . (2.24)

This Wilson loop belong to the class II of the fermionic 1/6-BPS Wilson loops in [57, 58].
The 1/3-BPS Wilson loops are constructed by L1+

1/2 and L4−
1/2,

W1/3 = TrP exp
(
−i
∮
dτL1/3(τ)

)
,

L1/3 = diag(L1+
1/2, · · · , L

1+
1/2︸ ︷︷ ︸

n1

, L
1/2
4− , · · · , L

4−
1/2︸ ︷︷ ︸

n4

) . (2.25)

Notice that L1/3 is a ((n1 + n4)N |(n1 + n4)N) supermatrix, since both L1+
1/2 and L4−

1/2 are
(N |N) supermatrices.

The supersymmetries preserved by W1/3 are given by the following ones shared by L1+
1/2

and L4−
1/2,

ϑ12 = iγ3θ12 , ϑ13 = iγ3θ13 , ϑ24 = −iγ3θ24 , ϑ34 = −iγ3θ34 , (2.26)
θ14 = θ23 = ϑ14 = ϑ23 = 0 . (2.27)

3 Wilson loop one-point function in ABJM theory

3.1 The boundary states from Wilson loops

The main goal of this paper is to study the tree-level correlation function of the BPS Wilson
loops reviewed in the previous section and the single-trace operator,

OC = CJ1···JL
I1···IL

Tr(Y I1Y †
J1

· · ·Y ILY †
JL

) , (3.1)

in the scalar sector. The coefficients CJ1···JL
I1···IL

are chosen such that this single-trace operator
is the eigenstate of the planar two-loop dilatation operator. The single-trace operator is put
at the origin of the three-dimensional space. The Wilson loops considered in this paper are
in the fundamental representation of a suitable (super-)group. More precisely, the bosonic
1/6-BPS Wilson loop (2.1) is in the fundamental representation of U(N). WB,big

1/6 is in the
fundamental representation of the gauge group U(N) × U(N). The fermionic 1/6-BPS
Wilson loop (2.6) and the half-BPS Wilson one are in the fundamental representation of
the supergroup U(N |N). Finally, the 1/3-BPS Wilson loop (2.25) is in the fundamental
representation of the supergroup U((n1 + n4)N |(n1 + n4)N).

– 7 –
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Figure 1. Planar Wick contractions between the local operator and the Wilson loop. Here each
blue or red dot indicates a pair of scalar fields and each straight line indicates a pair of contractions.
The outer circle indicates the Wilson loop, and the inner circle indicates the single-trace operator.
Although the single-trace operator is local in space-time, we draw it as a circle to make the color
structure of the operator and the contraction more clear.

At tree level, the correlator ⟨W (C)B
1/6OC(0)⟩ only gets contributions from

∮
· · ·
∮
dτ1>2>···>L

(2π
k

)L

⟨tr(RJ̃1
Ĩ1
Y Ĩ1(x1)Y †

J̃1
(x1) · · ·RJ̃L

ĨL
Y ĨL(xL)Y †

J̃L
(xL))

CJ1···JL
I1···IL

tr(Y I1(0)Y †
J1

(0) · · ·Y IL(0)Y †
JL

(0))⟩ , (3.2)

where xi = (R cos τi, R sin τi, 0), i = 1, · · · , L, and∮
· · ·
∮
dτ1>2>···>L =

∫ 2π

0
dτ1

∫ τ1

0
dτ2 · · ·

∫ τL−1

0
dτL . (3.3)

In the large N limit, we only take into account planar Wick contractions, as is shown in
figure 1. One can easily obtain

⟨W (C)B
1/6OC(0)⟩ = λ2LkL

(L− 1)!(2R)2L
CJ1···JL

I1···IL
RIL

JL
· · ·RI1

J1
, (3.4)

where λ ≡ N
k is the ’t Hooft coupling of ABJM theory and the tree-level propagators of

the scalar fields (A.15) have been used. For later convenience, we introduce the following
two-site boundary state which is specified by a 4 × 4 matrix M as

⟨BM | ≡M I1
J1
M I2

J2
· · ·M IL

JL
⟨I1, J1, · · · , IL, JL|

=
(
M I

J⟨I, J |
)⊗L

. (3.5)

Then
|BM ⟩ =

(
(M I

J)∗|I, J⟩
)⊗L

(3.6)

Our convention for the Hermitian conjugation of the spin chain states is

(⟨I1, J1, · · · , IL, JL|)† = |I1, J1 · · · , IL, JL⟩ . (3.7)

– 8 –
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We define the 1/6-BPS boundary state as8

|BB
1/6⟩ = |BR⟩ , (3.8)

where RI
J = diag(i, i,−i,−i). Then the above correlation function can be expressed as

⟨W (C)B
1/6OC(0)⟩ = λ2LkL

(L− 1)!(2R)2L
⟨BB

1/6|OC⟩ , (3.9)

where |OC⟩≡ CJ1···JL
I1···IL

|I1, J1, · · · , IL, JL⟩ is the spin chain state corresponding to the operator
OC . Our convention for the overlap of two spin chain states is

⟨I1, J1, · · · , IL, JL|M1, N1, · · · ,ML, NL⟩ = δM1
I1
δJ1

N1
· · · δML

IL
δJL

NL
. (3.10)

Let us define the normalization factor NO using the two-point function of O and O† as

⟨O(x)O†(y)⟩ = NO
|x− y|2∆O

, (3.11)

where ∆O is the conformal dimension of O. At tree level and the planar limit, we have

NO =
(
N

4π

)2L

L⟨O|O⟩ . (3.12)

We define the Wilson-loop one-point function as

⟨⟨O⟩⟩W (C) ≡
⟨W (C)O⟩√

NO
. (3.13)

Then for WB
1/6 we have

⟨⟨O⟩⟩W (C)B
1/6

= πLλL

R2L(L− 1)!
√
L

⟨BB
1/6|O⟩√
⟨O|O⟩

. (3.14)

The computation of the Wilson loop one-point function thus amounts to the calculation of

⟨BB
1/6|O⟩√
⟨O|O⟩

. (3.15)

Similar computations for other Wilson loops studied in this paper can also be reduced
to the computation of overlaps of the form in (3.15), with the corresponding boundary
states. For Ŵ (C)B

1/6, the boundary state is

⟨B̂B
1/6| = RI1

JL
RI2

J1
· · ·RIL

JL−1
⟨I1, J1, · · · , IL, JL| . (3.16)

We can rewrite |B̂B
1/6⟩ as

|B̂B
1/6⟩ = Ueven|BB

1/6⟩ (3.17)

8Notice that RI
J should not be confused with R which is the radius of the circular Wilson loop.
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where Ueven is the shift operator which shifts all even site to the left by two units and leave
the odd sites untouched,

Ueven|I1, J1, I2, J2, · · · , IL−1, JL−1, IL, JL⟩ = |I1, J2, I2, J3, · · · , IL−1, JL, IL, J1⟩. (3.18)

Combining (3.8) and (3.16), we obtain the boundary state of W (C)B,big
1/6

|BB,big
1/6 ⟩ = |BB

1/6⟩ + |B̂B
1/6⟩ = (1 + Ueven)|BR⟩ . (3.19)

For W (C)F
1/6, we simply replace RI

J by U I
J given in (2.11),

|BF
1/6⟩ = (1 + Ueven)|BU ⟩ . (3.20)

The boundary state corresponding to W (C)1/2, which will be denoted by |B1/2⟩ is given by
|BF

1/6⟩ with the additional constraints (2.14).
In particular, the boundary state |B1+

1/2⟩ corresponding to W (C)1+
1/2 is

|B1+
1/2⟩ = (1 + Ueven)|BU ⟩ , (3.21)

with U I
J = diag(i,−i,−i,−i). Similarly, the boundary state |B4−

1/2⟩ corresponding to
W (C)4−

1/2 is
|B4−

1/2⟩ = (1 + Ueven)|BŨ ⟩ , (3.22)

with Ũ I
J = diag(i, i, i,−i).

Finally, for W (C)1/3, we have

|B1/3⟩ = n1|B1+
1/2⟩ + n4|B4−

1/2⟩ . (3.23)

3.2 Integrable and non-integrable boundary states

In this subsection, we will prove that the boundary states |BB
1/6⟩, |B̂

B
1/6⟩, |B1/2⟩ and |B1/3⟩

are integrable at tree level by employing the method proposed in [21]. We will also show
that the |BF

1/6⟩ with ᾱ2 = β2 = 0 is not integrable unless ᾱ1β1 = 0, i.
Let us consider the boundary state |BM ⟩ defined by a matrix M as in (3.5). In what

follows, we will encounter several examples in which M is a diagonal matrix. In this case,
the overlap ⟨BM |u,v,w⟩ is nonzero only if the numbers of the Bethe roots, Ku,Kv,Kw,
and the length of the spin chain 2L, satisfy Ku = Kv = Kw = L. Notice that this selection
rule has nothing to do with integrability of the boundary state.

In the algebraic Behte ansatz approach, the SU(4) sector R-matrices of the ABJM
theory at two-loop level are given by

R••
12(u) = R◦◦

12(u) = u+ P12 ≡ R12(u) ,
R•◦

12(u) = R◦•
12(u) = −u− 2 +K12 ≡ R̄12(u) ,

(3.24)

where • denotes the states in the 4 representation of SU(4)R, while ◦ denotes the states in
the 4̄ representation. The R-matrices satisfy the following crossing symmetry relations

R12(u)t1 = R̄12(−u− 2), R̄12(u)t1 = R12(−u− 2) , (3.25)
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and the relation

R12(u)t1t2 = R12(u), R̄12(u)t1t2 = R̄12(u),
P12R12(u)P12 = R12(u), P12R̄12(u)P12 = R̄12(u) , (3.26)

where ti denotes transposition in the i-th space. One key feature of algebraic Bethe ansatz
approach of the ABJM spin chain is that it requires two R-matrices, R(u) and R̄(u), due
to its alternating nature. This is different from the case when the spin on each site is in the
same representation.

In the following, we will show that when there exists a four-dimensional matrix K(u)
satisfying the boundary Yang-Baxter equation (BYBE)9

R12(u− v)K1(u)R12(u+ v)K2(v) = K2(v)R12(u+ v)K1(u)R12(u− v) , (3.27)

then the boundary state |BM ⟩ with M = K(−1)∗ is integrable in the sense that it satisfies
the following untwisted integrability condition [51, 62],

τ(−u− 2)|BM ⟩ = τ(u)|BM ⟩ , (3.28)

or equivalently [63], Πτ̄(u)Π|BM ⟩ = τ(u)|BM ⟩ , where

τ(u) = Tr0
(
R01(u)R̄02(u) · · ·R0,2L−1(u)R̄0,2L(u)

)
, (3.29)

τ̄(u) = Tr0′
(
R̄0′1(u)R0′2(u) · · · R̄0′,2L−1(u)R0′,2L(u)

)
, (3.30)

are the transfer matrices. Here 0, 0′ denote two auxiliary spaces and Π is the parity operator

Π|I1, J1, · · · , J2L⟩ = |J2L, · · · , J2, I1⟩ . (3.31)

Using the explicit forms of eigenvalues of τ(u) and τ̄(u) [63], we conclude that for integrable
boundary states, the overlap ⟨BM |u,v,w⟩ is non-zero only if the selection rules

u = −v , w = −w (3.32)

are satisfied.
Let us define the state

|ϕ(u− 1)⟩ab = KI
J(u− 1)|I⟩a ⊗ |J⟩b . (3.33)

The boundary Yang-Baxter equation (3.27) leads to

Ř34(v − u) ˇ̄R23(−u− v) |ϕ0(u− 1)⟩12 ⊗ |ϕ0(v − 1)⟩34

= Ř12(v − u) ˇ̄R23(−u− v) |ϕ0(v − 1)⟩12 ⊗ |ϕ0(u− 1)⟩34 ,
(3.34)

where Ř12 = P12R12 and ˇ̄R12 = P12R̄12. This relation can be shown pictorially as in figure 2.
9Notice that here we only need to use the BYBE involving one of the R-matrices, R(u).
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Figure 2. A pictorial representation of eq. (3.34) from the boundary Yang-Baxter equation. Here
the red node denotes ˇ̄R(−u− v) and the blue node denotes Ř(v − u).

Notice that R̄(u) also appears here, since we have used one of the crossing symmetry
relations (3.25).

Introducing two four-dimensional auxiliary spaces h0 and h2L+1 and following the
derivation in the section 4 and appendix C of [21], we can prove that

Ř2L+1,2L(v − u) ˇ̄R2L,2L−1(−v − u) · · · Ř32(v − u) ˇ̄R21(−v − u)
|ϕ(u− 1)⟩01 ⊗ |ϕ(v − 1)⟩23 ⊗ · · · ⊗ |ϕ(v − 1)⟩2L,2L+1

= Ř2L+1,2L(v − u) ˇ̄R2L,2L−1(−v − u) · · · Ř01(v − u) ˇ̄R12(−v − u)
|ϕ(v − 1)⟩01 ⊗ |ϕ(u− 1)⟩23 ⊗ |ϕ(v − 1)⟩45 ⊗ · · · ⊗ |ϕ(v − 1)⟩2L,2L+1

= · · ·

= Ř01(v − u) ˇ̄R12(−v − u) · · · Ř2L−2,2L−1(v − u) ˇ̄R2L−1,2L(−v − u)
|ϕ(v − 1)⟩01 ⊗ |ϕ(v − 1)⟩23 ⊗ · · · ⊗ |ϕ(v − 1)⟩2L−2,2L−1 ⊗ |ϕ(u− 1)⟩2L,2L+1 .

(3.35)

This in turn implies

Tr0
(
R01(−u− 2)R̄02(−u− 2) · · ·R0,2L−1(−u− 2)R̄0,2L(−u− 2)

)
|BM ⟩

= Tr0
(
R01(u)R̄02(u) · · ·R0,2L−1(u)R̄0,2L(u)

)
|BM ⟩ .

(3.36)

Here the condition K(−1) = M∗ has been used. Pictorially the above derivation is shown
in figure 3.

In terms of the transfer matrices τ(u) and τ̄(u) given in (3.29), (3.36) can be written as

τ(−u− 2)|BM ⟩ = τ(u)|BM ⟩. (3.37)

As mentioned above, this equation is equivalent [63] to the untwisted integrability condi-
tion [51, 62], Πτ̄(u)Π|BM ⟩ = τ(u)|BM ⟩.10 This finishes the proof about the integrability
of the boundary state |BM ⟩ assuming that there exists the matrix K(u) satisfying the
BYBE, (3.27), and K(−1) = M∗. We can similarly prove that for such M , the boundary
state |B̂M ⟩ ≡ Ueven|BM ⟩ is also integrable and leads to the same selection rule.11

10In fact, there exist twisted integrability condition [51, 62], Πτ(u)Π|BM ⟩ = τ(u)|BM ⟩, Πτ̄(u)Π|BM ⟩ =
τ(u)|BM ⟩, which leads to the selection rule u = −u, v = −v, w = −w. But such case has not appeared in
the boundary states in the ABJM theory yet [47, 48].

11This result can be also obtained from the general classification of integrable boundary states in [64].
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Figure 3. A pictorial derivation of (3.35).

Now we turn to boundary states from some BPS Wilson loops we list above. For
|BB

1/6⟩(= |BR⟩) and |B̂B
1/6⟩(= |B̂R⟩), one can check that the matrix K(u) = R∗ is the solution

of BYBE (3.27), so these two boundary states are both tree-level integrable. Then |BB,big
1/6 ⟩

is tree-level integrable as well. As for the boundary state |B1+
1/2⟩(= (1 + Ueven)|BU ⟩), we

can just choose K(u) = U∗ = diag(−i, i, i, i) since it also satisfies the BYBE (3.27). Then
we get that |B1+

1/2⟩ is integrable at tree level. Since the tree-level integrability of |BM ⟩ is
preserved when we perform a SU(4)R transformation on M or multiply M by a constant,
we get that the generic |B1/2⟩ and |B4−

1/2⟩ are also tree-level integrable. This leads to the
conclusion that |B1/3⟩ is tree-level integrable.

Now we turn consider the boundary state

|BF
1/6⟩ = |BU ⟩ + |B̂U ⟩ = (1 + Ueven)|BU ⟩ , (3.38)

with U = diag(i, i− 2ϵ,−i,−i). This boundary state corresponds to the generic fermionic
1/6-BPS Wilson loops with ᾱ2 = β2 = 0 and ϵ is given by ϵ = ᾱ1β1.

In the following we will show that when ϵ ̸= 0, i, this state is not integrable. The idea
is to employ the following set of Bethe roots with L = 3,Ku = Kw = 1,Kv = 2,

u1 = 0.866025, w1 = 0.866025, v1 = −0.198072, v2 = 0.631084 , (3.39)

which does not satisfy the selection rule u = −v,w = −w. Notice that the set of roots also
satisfy the zero momentum condition. However these roots do not satisfy the first selection
rule Ku = Kv = Kw = L. This fact leads to the result that the overlap ⟨BF

1/6|u,v,w⟩ = 0
for this set of Bethe roots and whether the |BF

1/6⟩ is integrable or not can not be detected by
this result. The way out is to perform the following SO(4) ⊂ SU(4)R transformation [65],

Uθ = g(θ)Ug(θ)−1 , (3.40)

– 13 –



J
H
E
P
0
9
(
2
0
2
3
)
0
4
7

with

g(θ) =


cos2 θ sin θ 0 sin θ cos θ

− sin θ cos2 θ cos2 θ sin θ − sin2 θ cos θ
sin2 θ cos θ − sin θ cos θ cos θ sin3 θ

− sin θ 0 0 cos θ

 , (3.41)

where θ satisfies 0 < θ < π
2 . Due to SU(4)R invariance, |BF

1/6⟩ is integrable if and only if
|BF

1/6, θ⟩ ≡ (1 + Ueven)|BUθ
⟩ is. Through direct computation, we found that ⟨BF

1/6, θ|u,v,w⟩
is zero if and only if ϵ = 0 or ϵ = i. This shows that generic fermionic 1/6-BPS Wilson
loop gives non-integrable boundary state. More precisely, such boundary state satisfies
neither the twisted condition nor the untwisted one. Notice that, when ϵ = i, there is
supersymmetric enhancement for this fermionic 1/6-BPS Wilson loop and it in fact becomes
half-BPS. When ϵ = 0, the bosonic part of this fermionic 1/6-BPS Wilson loop is the same
as the big bosonic 1/6-BPS Wilson loop WB,big

1/6 .12 We have already shown that ϵ = 0 and
ϵ = i lead to integrable boundary states.

To sum up, we find that only some of the supersymmetric Wilson loops correspond to
tree-level integrable boundary states, they are listed as follows

• The bosonic 1/6-BPS Wilson loop corresponding to the state

|BB,big
1/6 ⟩ = (1 + Ueven)|BR⟩, RI

J = diag(i, i,−i,−i) (3.42)

• The 1/2-BPS Wilson loop corresponding to the state

|B1+
1/2⟩ = (1 + Ueven)|BU ⟩, U I

J = diag(i,−i,−i,−i) (3.43)

• The 1/2-BPS Wilson loop corresponding to the state

|B4−
1/2⟩ = (1 + Ueven)|BŨ ⟩, Ũ I

J = diag(i, i, i,−i) . (3.44)

• The 1/3-BPS Wilson loop corresponding to the state

|B1/3⟩ = n1|B1+
1/2⟩ + n4|B4−

1/2⟩ (3.45)

Notice that in the above states, both |BM ⟩ and Ueven|BM ⟩ (M = R,U, Ũ) are integrable at
tree level. In the next section, we will derive the exact overlap formula of the tree-level
integrable boundary states and the on-shell Bethe states of the SU(4) alternating spin chain.

12If we consider the vacuum expectation value of the Wilson loop or the correlators of the Wilson loop
with operators out of it, this fermionic 1/6-BPS Wilson loop with ϵ = 0 is identidical to the bosonic 1/6-BPS
Wilson loop W B,big

1/6 [61].
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4 Overlap of 1/6 BPS Wilson loop

In this section, we derive the exact overlap formula for the 1/6-BPS Wilson loop |BB,big
1/6 ⟩

in (3.42). We will derive the formula for |BR⟩ and Ueven|BR⟩ separately and then take
the sum.

We will use the method developed in [51]. For a two-site state |B⟩ with the selection
rule (3.32), one expects that the overlap takes the following form

⟨B|u,v,w⟩√
⟨u,v,w|u,v,w⟩

=
Ku∏
j=1

h(1)(uj)
Kw/2∏
k=1

h(2)(wk) ×
√

detG+
detG−

, (4.1)

where detG± are the Gaudin-like determinants whose definitions were given in [47]. The
prefactors h(1)(u) and h(2)(w) can be calculated by a nesting procedure in the sparse limit
where L→ ∞ and the number of excitations are kept finite [51, 65, 66]. In this limit, the
ratio of determinants detG+/ detG− → 1 and we are left with the contribution from the
prefactors. However, this method can not be applied directly in the current situation, for
the following two reasons.

First, the Bajnok-Gombor nesting procedure starts with evaluating the overlap ⟨B|0⟩,
where |0⟩ is the pseudovacuum state. However, it is easy to see this overlap is vanishing
for our Wilson loop boundary states. Second, from R-charge conservation, the overlap
⟨B|u,v,w⟩ for the Wilson loop boundary states are non-zero only if Ku = Kv = Kw = L.
Therefore we cannot take the limit L→ ∞ while keeping the excitation numbers finite.

4.1 Rotating boundary state

To address these two issues, one can rotate the boundary state by a certain angle θ [65]. The
K-matrix in (3.27) still satisfies the BYBE under a SO(4) rotation and hence integrability
is preserved. The overlap for the rotated boundary state |Bθ⟩ is no longer constrained by
the selection rule Ku = Kv = Kw = L and we can apply Bajnok-Gombor approach to
obtain the prefactor. Assuming the θ → 0 limit is smooth, we then obtain the prefactors of
the original boundary state by taking θ = 0. We will see that this method indeed gives the
correct result for the 1/6-BPS Wilson loop.

We first consider the boundary state ⟨BR| in (3.5) with the following SO(4) rotation [65]

g(θ) =


cos θ 0 0 − sin θ

0 cos θ − sin θ 0
0 sin θ cos θ 0

sin θ 0 0 cos θ

 (4.2)

and define

R(θ) = g(θ)Rg(−θ). (4.3)

The rotated dual boundary state is given by13

⟨BR(θ)| =
(
R(θ)I

J⟨I, J |
)⊗L

(4.4)
13For the computation of the overlap, we consider the dual boundary state.
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Similarly, we define

⟨B̂R(θ)| = ⟨BR(θ)|U †
even . (4.5)

We find that

R(θ)I
J⟨I, J | = i cos(2θ)

(
⟨11̄| + ⟨22̄| − ⟨33̄| − ⟨44̄|

)
(4.6)

+ i sin(2θ)
(
⟨14̄| + ⟨23̄| + ⟨32̄| + ⟨41̄|

)
where the second line which breaks the selection rule Ku = Kv = Kw = L. The pseudovac-
uum state is

|0⟩ = (|14̄⟩)⊗L. (4.7)

We thus have

⟨BR(θ)|0⟩ = (i sin 2θ)L, ⟨B̂R(θ)|0⟩ = (i sin 2θ)L. (4.8)

We will perform the Bajnok-Gombor procedure for the state |BR(θ)⟩, the state |B̂R(θ)⟩ can
be treated similarly. We first define the renormalized state

⟨B(1)
R(θ)| =

⟨BR(θ)|
(i sin 2θ)L

, ⟨B(1)
R(θ)|0⟩ = 1. (4.9)

4.2 Two-particle state

Now we consider the excited state with two particles with rapidities u and v. We denote
the type of the particles by a and b, where a, b = 1, 2. When a type-a sites on an odd (even)
site, the field Y 1 (Ȳ4) is replaced by Y 1+a (Ȳ4−a). It is also possible for two particles with
different labels to occupy the same site, leading to the composite excitations Y 4 on odd
sites and Ȳ1 on even sites. In what follows, we will denote a state with two particles of
type-a and -b at sites 2n − 1 and 2m by |2n − 1, 2m⟩⟩a,b. If the two particles are on the
same site n, we denote the state by |n⟩⟩•. The asymptotic two-particle Bethe state of the
SU(4) alternating spin chain has been constructed in [65] and reads

|{u}, {v}⟩a,b =
L∑

m,n=1
eipn+iqm

2∑
c,d=1

(−1)d−1χc,d
a,b(u− v)|2n− 1, 2m⟩⟩c,d

+
L∑

n=1
ei(p+q)n

(
ζ

(1)
a,b (u, v)|2n− 1⟩⟩• + ζ

(2)
a,b (u, v)|2n⟩⟩•

)
.

(4.10)

where

eip = u+ i/2
u− i/2 , eiq = v + i/2

v − i/2 . (4.11)

The coefficients are given by

χc,d
a,b(u) =

{
δc

aδ
d
b , 2n− 1 < 2m

Rcd
ab(u), 2n− 1 > 2m (4.12)

– 16 –



J
H
E
P
0
9
(
2
0
2
3
)
0
4
7

with

Rcd
ab(u) = u

u− i
δc

aδ
d
b − i

u− i
δd

aδ
c
b (4.13)

The coefficients for the double occupation factor read

ζ
(1)
ab (u, v) = ϵab

−v + i/2
u− v − i

, ζ
(2)
ab (u, v) = ϵab

u+ i/2
u− v − i

. (4.14)

Two comments are in order for the two particle state (4.10). Firstly, this state is an eigenstate
of the Hamiltonian in the asymptotic sense. This means it is only an eigenstate for L→ ∞.
Secondly, when constructing the asymptotic two-particle state, in principle we should also
take into account the possibilities where the two particles are on two different even or odd
sites. Nevertheless such states will not contribute to the overlap and can be ignored.

4.3 First level nesting

The first level K-matrix is given by

K
(1)
ab (u) = lim

L→∞

1
AL

〈
BR(θ)|{u}, {−u}

〉
a,b√

⟨{u}, {−u}|{u}, {−u}⟩a,b

, (4.15)

where AL = ⟨BR(θ)|0⟩ = (−i sin 2θ)L. The overlap is given by

〈
BR(θ)|u,−u

〉
a,b

=
(
A11 A12
A21 A22

)
(4.16)

Taking v = −u, the two-particle state is simplified further to

|{u}, {−u}⟩a,b =
∑
n,m

eip(n−m)
2∑

c,d=1
(−1)d−1χc,d

a,b(2u)|2n− 1, 2m⟩⟩c,d (4.17)

+ ϵab

2
u+ i/2
u− i/2

∑
n

(|2n− 1⟩⟩• + |2n⟩⟩•)

We have

⟨BR(θ)|2m− 1, 2n⟩⟩1,1 = ⟨BR(θ)|2m− 1, 2n⟩⟩2,2 = (i sin 2θ)L δm,n , (4.18)
⟨BR(θ)|2m− 1, 2n⟩⟩1,2 = i cos 2θ(i sin 2θ)L−1δm,n ,

⟨BR(θ)|2m− 1, 2n⟩⟩2,1 = −i cos 2θ(i sin 2θ)L−1δm,n ,

and

⟨BR(θ)|2n− 1⟩⟩• = −(i cos 2θ)(i sin 2θ)L−1, ⟨BR(θ)|2n⟩⟩• = (i cos 2θ)(i sin 2θ)L−1 . (4.19)

From (4.19), it is clear that the boundary state has vanishing overlap with the second line
in (4.17) for all a, b = 1, 2. Using (4.18) and (4.19), the matrix components of (4.16) can
be computed straightforwardly, yielding

A11 = L (i sin 2θ)L , A22 = −L (i sin 2θ)L , (4.20)
A12 = A21 = −L(i cos 2θ)(i sin 2θ)L−1.
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The norm of the Bethe state is more involved, but the L→ ∞ the leading term is simply

lim
L→∞

⟨{u}, {−u}|{u}, {−u}⟩a,b = L2 + · · · (4.21)

where the ellipsis denote subleading terms. Therefore in the L→ ∞ limit, we obtain

K
(1)
ab (u) = lim

L→∞

1
L(−i sin 2θ)L

(
A11 A12
A21 A22

)
=
(

1 − cot 2θ
− cot 2θ −1

)
(4.22)

for 1/6-BPS Wilson loop. Following Bajnok-Gombor approach, (4.22) implies that

h(1)(u) = K
(1)
1,1 (u) = 1 (4.23)

4.4 Second level nesting

At the second level, we can take a shortcut. It has been shown [51] that for a boundary
state described by the following K-matrix

K =
(

1 −ie−γ(cosh β + 2α sinh β)
−ie−γ(cosh β − 2α sinh β) −e−2γ

)
(4.24)

the absolute value of the prefactor is given by

h(2)(w) = e−2γ(sinh β)2 w2 + α2

w(w − i/2) (4.25)

Comparing (4.24) with (4.22), we find that they are identical if we take

γ = 0, α = 0, cosh β = −i cot(2θ) (4.26)

Therefore we conclude that

h(2)(w) = − 1
(sin 2θ)2

w

w − i/2 . (4.27)

One comment is that in principle at the second level nesting we should consider the
inhomogeneous spin chain and the resulting prefactors contains contributions from the
inhomogeneities — Bethe roots from the first level nesting. At the same time, we should
renormalize the second level boundary state similar to (4.9). This cancels precisely the
contributions from the inhomogeneities. Therefore our result is valid. Plugging h(1)(u) = 1
and (4.27) into (4.1), we obtain the general overlap formula14

|⟨BR(θ)|u,−u,w⟩|2

⟨u,−u,w|u,−u,w⟩
= (sin 2θ)2(L−Kw)

Kw/2∏
i=1

4w2
i

4w2
i + 1 × detG+

detG− . (4.28)

We have L ≤ Ku = Kv ≤ Kw. From (4.28), we find that the limit θ → 0 is none vanishing
only if L = Ku = Kv = Kw, in which case we obtain

|⟨BR|u,−u,w⟩|2

⟨u,−u,w|u,−u,w⟩
=

Kw/2∏
i=1

w2
i

w2
i + 1/4 × detG+

detG− . (4.29)

14This overlap formula can be also obtained using the recursion method in [64].
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We have tested (4.29) numerically up to L = Ku = Kv = Kw = 4, which is already
quite non-trivial.15 Notice that the above result is derived for Kw being even. Numerical
computation shows that the overlap vanishes for odd Kw.

4.5 Exact overlap for the shifted boundary state

Now we move to compute the exact overlap for ⟨B̂R| = ⟨BR|U †
even where Ueven is defined

in (3.18) and it shifts all the even sites to the left for one unit. We make the same
assumption (4.1) about the exact overlap for ⟨B̂R|u,v,w⟩. To determine the prefactors, we
need to compute the overlap with the two-particle state

⟨B̂R|{u}, {−u}⟩a,b = ⟨BR|U †
even|{u}, {−u}⟩a,b (4.30)

From the definition of Ueven, it is clear that

U †
even|{u}, {−u}⟩a,b =

∑
n,m

eip(n−m)
2∑

c,d

(−1)d−1χc,d
a,b(2u)|2n− 1, 2(m+ 1)⟩⟩c,d (4.31)

+ ϵab

2
u+ i/2
u− i/2

∑
n

(|2n− 1⟩⟩• + |2n⟩⟩•)

=
(
u+ i/2
u− i/2

)∑
n,m

eip(n−m)
2∑

c,d

(−1)d−1χc,d
a,b(2u)|2n− 1, 2m⟩⟩c,d

+ ϵab

2
u+ i/2
u− i/2

∑
n

(|2n− 1⟩⟩• + |2n⟩⟩•) .

Namely, after the action of U †
even, the first line is multiplied by a global factor while the

second line is left invariant. As we have shown that the second line does not contribute to
the overlap. Therefore, ⟨B̂R|{u}, {−u}⟩a,b is simply proportional to ⟨BR|{u}, {−u}⟩a,b. The
corresponding first level K-matrix is given by

K̂
(1)
ab (u) = lim

L→∞

1
AL

〈
B̂R(θ)|{u}, {−u}

〉
a,b√

⟨{u}, {−u}|{u}, {−u}⟩a,b

=
(
u+ i/2
u− i/2

)
K

(1)
ab (u) . (4.32)

Therefore we arrived at the following exact overlap formula for |B̂R⟩

⟨B̂R|u,v,w⟩√
⟨u,v,w|u,v,w⟩

=
Ku∏
j=1

uj + i/2
uj − i/2

⟨BR|u,v,w⟩√
⟨u,v,w|u,v,w⟩

. (4.33)

Hence there is a relative phase between these two boundary state. From this we get

|⟨BB,big
1/6 |u,−u,w⟩|2

⟨u,−u,w|u,−u,w⟩
=
∣∣∣∣∣1 +

Ku∏
j=1

uj + i/2
uj − i/2

∣∣∣∣∣
2

|⟨BR|u,−u,w⟩|2

⟨u,−u,w|u,−u,w⟩
. (4.34)

15The Bethe roots used in this numerical test are listed in appendix B. We exploit the coordinate Bethe
ansatz in [47] to construct the Bethe states.
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5 Overlap of 1/2-BPS Wilson loop

We derive the overlap formula for the 1/2-BPS Wilson loop in this section. The procedure
is basically the same as for the 1/6-BPS case. There are two types of 1/2-BPS Wilson
loops (3.43) and (3.44), we will consider them in the following two subsections.

5.1 1/2-BPS Wilson loop |B1+
1/2⟩

Similar to the 1/6-BPS approach, we need to perform an SO(4) rotation in order to apply
the Bajnok-Gombor approach. We take the same rotation as in (4.2) and define

U(θ) = g(θ)Ug(−θ), ⟨BU(θ)| =
(
U(θ)I

J⟨I, J |
)⊗L

, ⟨B̂U(θ)| = ⟨BU(θ)|U †
even . (5.1)

More explicitly, we have

U(θ)I
J⟨I, J | = i cos(2θ)

(
⟨11̄| − ⟨44̄|

)
− i

(
⟨22̄| + ⟨33̄|

)
+ i sin(2θ)

(
⟨14̄| + ⟨41̄|

)
(5.2)

We start with the first level nesting. We have

⟨BU(θ)|0⟩ = (i sin 2θ)L . (5.3)

We then compute the overlap ⟨BU(θ)|{u}, {−u}⟩a,b where |{u}, {−u}⟩a,b is defined in (4.17).
Using

⟨BU(θ)|2m− 1, 2n⟩⟩1,1 = ⟨BU(θ)|2m− 1, 2n⟩⟩2,2 = 0 , (5.4)
⟨BU(θ)|2m− 1, 2n⟩⟩1,2 = −i(i sin 2θ)L−1 δm,n ,

⟨BU(θ)|2m− 1, 2n⟩⟩2,1 = i(−i sin 2θ)L−1 δm,n ,

⟨BU(θ)|2n− 1⟩⟩• = −(i cos 2θ)(i sin 2θ)L−1 ,

⟨BU(θ)|2n⟩⟩• = (i cos 2θ)(i sin 2θ)L−1 .

We find that

K
(1)
ab (u) = lim

L→∞

1
L(−i sin 2θ)L

⟨BU(θ)|{u}, {−u}⟩a,b = ϵab

sin 2θ , (5.5)

which is nothing but the dimer state. For the second level nesting, we can directly apply
the result of the dimer state [51], which leads to

|⟨BU(θ)|u,−u,w⟩|2

⟨u,−u,w|u,−u,w⟩
= (−1)L

(sin2θ)2(Kw−L)

Ku∏
i=1

(
u2

i + 1
4

) [Kw/2]∏
j=1

1
w2

i (w2
i +1/4)

detG+
detG−

. (5.6)

Again, we find that in the θ → 0 limit, we must have Ku = Kv = Kw = L and the finite
result reads

|⟨BU |u,−u,w⟩|2

⟨u,−u,w|u,−u,w⟩
= (−1)L

Ku∏
i=1

(
u2

i + 1
4

) [Kw/2]∏
j=1

1
w2

i (w2
i + 1/4)

detG+
detG−

. (5.7)

This result has been tested numerically. Our numerical results also reveal that this formula
is also correct when L is odd although the above derivation was performed for even L. This
aspect is different from the bosonic 1/6-BPS case in the previous section.

– 20 –



J
H
E
P
0
9
(
2
0
2
3
)
0
4
7

Shifted state. We find that the shifted state overlap is again proportional to the un-shifted
one as

⟨B̂U |u,−u,w⟩√
⟨u,−u,w|u,−u,w⟩

=
Ku∏
j=1

(
uj + i/2
uj − i/2

)2 ⟨BU |u,−u,w⟩√
⟨u,−u,w|u,−u,w⟩

. (5.8)

Notice that the phase factor is different from the 1/6-BPS case. We have tested this result
numerically up to L = Ku = Kv = Kw = 4. Naively, one might expect that according
to the same argument of 1/6-BPS case, one should obtain the same phase factor (4.33).
However, generalizing this argument to the Dimer state seems a bit subtle, as K̂11 = 0 in
this case.

Then we have

|⟨B1+
1/2|u,−u,w⟩|2

⟨u,−u,w|u,−u,w⟩
=
∣∣∣∣∣1 +

Ku∏
j=1

(
uj + i/2
uj − i/2

)2 ∣∣∣∣∣
2

|⟨BU |u,−u,w⟩|2

⟨u,−u,w|u,−u,w⟩
. (5.9)

5.2 1/2-BPS Wilson loop |B4−
1/2⟩

We take the same rotation as in (4.2) and define

Ũ(θ) = g(θ)Ũg(−θ), ⟨BŨ(θ)| =
(
Ũ(θ)I

J⟨I, J |
)⊗L

, ⟨B̂Ũ(θ)| = ⟨BŨ(θ)|Ũ
†
even . (5.10)

More explicitly, we have

Ũ(θ)I
J⟨I, J | = i cos(2θ)

(
⟨11̄| − ⟨44̄|

)
+ i

(
⟨22̄| + ⟨33̄|

)
+ i sin(2θ)

(
⟨14̄| + ⟨41̄|

)
(5.11)

The rest of the computations are almost identical to the state ⟨B1+
1/2|. The only difference is

that at the first level nesting we have an additional minus sign, this leads to the following
relative phase between the two overlaps

⟨BŨ |u,−u,w⟩ = (−1)L⟨BU |u,−u,w⟩ (5.12)

The norm of the overlap is thus the same as ⟨B1+
1/2|

|⟨BŨ |u,−u,w⟩|2

⟨u,−u,w|u,−u,w⟩
= (−1)L

Ku∏
i=1

(
u2

i + 1
4

) [Kw/2]∏
j=1

1
w2

i (w2
i + 1/4)

detG+
detG−

. (5.13)

Shifted state. The overlap for the shifted state leads to the same phase factor as for
⟨B1+

1/2| case

⟨B̂Ũ |u,−u,w⟩√
⟨u,−u,w|u,−u,w⟩

=
Ku∏
j=1

(
uj + i/2
uj − i/2

)2 ⟨BŨ |u,−u,w⟩√
⟨u,−u,w|u,−u,w⟩

. (5.14)

So as in the previous case, we have,

|⟨B4−
1/2|u,−u,w⟩|2

⟨u,−u,w|u,−u,w⟩
=
∣∣∣∣∣1 +

Ku∏
j=1

(
uj + i/2
uj − i/2

)2 ∣∣∣∣∣
2

|⟨BŨ |u,−u,w⟩|2

⟨u,−u,w|u,−u,w⟩
. (5.15)
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Finally for |B1/3⟩, we have

|⟨B1/3|u,−u,w⟩|2

⟨u,−u,w|u,−u,w⟩
=
∣∣∣∣∣(n1 + (−1)Ln4)

1 +
Ku∏
j=1

(
uj + i/2
uj − i/2

)2
 ∣∣∣∣∣

2

× |⟨BU |u,−u,w⟩|2

⟨u,−u,w|u,−u,w⟩
. (5.16)

6 Conclusion

In this paper, we computed the correlation function of a circular BPS Wilson loop and
a single-trace operator in ABJM theory. This correlation function is proportional to the
overlap of a boundary state from the Wilson loop and the Bethe state corresponding to the
single-trace operator. We proved that among a sub-class of the fermionic 1/6-BPS Wilson
loops, only two special cases, bosonic 1/6-BPS Wilson loops and half-BPS Wilson loops can
lead to tree-level integrable boundary states. The boundary state from the 1/3-BPS Wilson
loop is integrable at tree level as well. Our result for the subclass of fermionic 1/6-BPS
Wilson loops is in some sense similar to the results on integrability of the open chains from
bosonic (non-)supersymmetric Maldacena-Wilson lines in the N = 4 SYM [17]. There it
was found that only the two special cases, half-BPS Maldacena-Wilson loops and the usual
Wilson loops, lead to integrable open chains. We also obtained the exact overlap formulae
up to a phase for all the tree-level integrable boundary states corresponding to WB

1/6, ŴB
1/6,

WB,big
1/6 , W 1+

1/2, W 4−
1/2 and W1/3.

There are various directions that deserve further investigations. One immediate problem
is to fix the phase of the overlaps for WB

1/6, and W 1+
1/2. Although as long as the Wilson loop

one-point function is concerned, the phase is unimportant, as a spin chain problem it is
still nice to have a method which also gives the phase factor. It is valuable to generalize
our result to other closed sectors even to the full sector at two loop level. If some BPS
Wilson loops give integrable boundary states in the full sector, the constraints from the
bosonic and fermionic duality [48, 67, 68] of the Bethe ansatz equations may help us to pin
down the full sector overlap formulas. The next step is to obtain all loop overlap in the
asymptotic sense using integrable bootstrap method, as done for some integrable boundary
states in N = 4 SYM [22, 23, 69] case. An even more ambitious goal would be computing
the finite-size corrections using the worldsheet g-function approach [22, 23].

In this paper, we only consider certain BPS Wilson loop in the fundamental repre-
sentation of a suitable group or super-group. It is interesting to study whether similar
Wilson loops in higher dimensional representations can also lead to integrable boundary
states. Generating functions of Wilson loops in various representations [70] and the method
of introducing one-dimensional scalars and/or fermions along the contour of the Wilson
loop [25, 71–73] should be very helpful here.

One common feature of the Wilson loops considered here is that the scalar coupling is con-
stant. There are also other BPS Wilson loops whose scalar couplings are τ -dependent [73–75],
where τ is used to parameterise the Wilson loop contour. The correlator of such Wilson loops
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and a single-trace operator in the SU(4) sector will lead to boundary states involving integra-
tion of τ along the circle. It is interesting to seek integrable boundary states among them.

Comparing with the N = 4 SYM case, the study of correlators of BPS Wilson loops and
single-trace operators is much more preliminary and there are far less results. One direction
complementary to the study here is using localization [37] to compute the correlation
functions of BPS Wilson loops and certain BPS local operators and comparing the results
at strong coupling in the large N limit with holographic computations. Some computations
in N = 4 SYM case in this direction can be found in [76–81], however the localization
computation in the ABJM case seems more challenging and calls for new developments.
Some important progress in this direction was made recently in [82].
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A The Lagrangian and supersymmetry transformations of ABJM theory

Spinor convention. The circular BPS Wilson loops in ABJM theory can only exist
when the theory is put in the Euclidean space R3 [83]. We follow the spinor convention
in [83]. The metric on R3 is δµν = diag(1, 1, 1), the coordinates are xµ = (x1, x2, x3). The
γ matrices are

γµ β
α = (−σ2, σ1, σ3) . (A.1)

They satisfy
γµγν = δµν + iϵµνργρ , (A.2)

where ϵµνρ is the rank-3 antisymmetric tensor with ϵ123 = 1. We raise or lower the spinor
indices using anti-symmetric tensor ϵαβ and ϵαβ

θα = ϵαβθβ , θα = ϵαβθ
β , (A.3)

with ϵ12 = −ϵ12 = 1. We will use the shorthand notation,

θψ = θαψα , θγ
µψ = θαγµ β

α ψβ . (A.4)

Field content. ABJM theory is the three-dimensional N = 6 super-Chern-Simons theory
with gauge group U(N) × U(N). The Chern-Simons levels are k and −k, respectively.
Besides the gauge fields Aµ, Âµ in the adjoint representation of each U(N). The matter
fields include four complex scalars Y I and four Dirac spinors ψI in the bi-fundamental
representation of the gauge group. Y I ’s are in the 4 representation of R-symmetry group
SUR(4) and ψI ’s are in the 4̄ representation.
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Lagrangian. The Lagrangian of ABJM theory can be written as the sum of four parts,

LABJM = LCS + Lk + Lk + LY , (A.5)

with

LCS = − k

4πϵ
µνρTr

(
Aµ∂νAρ + 2i

3 AµAνAρ − Âµ∂νÂρ + 2i
3 ÂµÂνÂρ

)
,

Lp = Tr
(
−DµY

†
I D

µY I + iψ†IγµDµψI

)
,

Lp = 4π2

3k2 Tr
(
Y IY †

I Y
JY †

J Y
KY †

K + Y IY †
J Y

JY †
KY

KY †
I + 4Y IY †

J Y
KY †

I Y
JY †

K

−6Y IY †
J Y

JY †
I Y

KY †
K

)
,

LY = −2πi
k

Tr
(
Y IY †

I ψJψ
†J − 2Y IY †

JψIψ
†J − Y †

I Y
Iψ†JψJ + 2Y †

I Y
Jψ†IψJ

+ϵIJKLY
Iψ†JY Kψ†L − ϵIJKLY †

I ψJY
†

KψL

)
. (A.6)

Here the covariant derivatives are defined as

DµY
I = ∂µY

I + iAµY
I − iY IÂµ ,

DµY
†

I = ∂µY
†

I + iÂµY
†

I − iY †
I Aµ ,

DµψI = ∂µψI + iAµψI − iψIÂµ , (A.7)

and ϵIJKL, ϵ
IJKL is totally anti-symmetric tensor with ϵ1234 = ϵ1234 = 1.

Supersymmetry transformations. The ABJM action is invariant under the following
supersymmetry transformations [84–87]:

δAµ = 2π
k

(Y Iψ†JγµεIJ + ε̄IJγµψJY
†

I ) , (A.8)

δÂµ = 2π
k

(ψ†JY IγµεIJ + ¯εIJY †
I γµψJ) , (A.9)

δY I = iε̄IJψJ , δY
†

I = iψ†JεIJ , (A.10)

δψI = γµεIJDµY
J + ϑIJY

J − 2π
k
εIJ(Y JY †

KY
K − Y KY †

KY
J)

− 4π
k
εKLY

KY †
I Y

L , (A.11)

δψ†I = −ε̄IJγµDµY
†

J + ϑ̄IJY †
J + 2π

k
ε̄IJ(Y †

J Y
KY †

K − Y †
KY

KY †
J )

+ 4π
k
ε̄KLY †

KY
IY †

L . (A.12)

The supersymmetry parameters are εIJ = θIJ + xµγµϑIJ and ε̄IJ = θ̄IJ − ϑ̄IJxµγµ.
Here θ’s give the Ponicaré supersymmetry, and ϑ’s give the conformal supersymmetry. They
satisfy the following constraints,

θIJ = −θJI , θ̄IJ = 1
2ϵ

IJKLθKL , (A.13)

ϑIJ = −ϑJI , ϑ̄IJ = 1
2ϵ

IJKLϑKL . (A.14)

– 24 –



J
H
E
P
0
9
(
2
0
2
3
)
0
4
7

Notice that for the theory in the Euclidean signature we do not impose that θ̄IJ (ϑ̄IJ) is
the complex conjugation of θIJ (ϑIJ) [88].

Propagators of the scalar fields. The tree-level propagators of the scalar fields are,

⟨Y Iα
β̄
(x)Y † γ̄

J ρ(y)⟩ =
δI

Jδ
α
ρ δ

γ̄

β̄

4π|x− y|
, (A.15)

where α, β̄, γ̄, ρ are color indices.

B Numerical solutions of the Bethe equations

In this appendix, we present a collection of numerical solutions for the Bethe equations in
the SU(4) sector of the ABJM theory

1 = eiϕuj =
(
uj + i

2
uj − i

2

)L Ku∏
k=1
k ̸=j

S (uj , uk)
Kw∏
k=1

S̃ (uj , wk) , (B.1)

1 = eiϕwj =
Kw∏
k=1
k ̸=j

S (wj , wk)
Ku∏
k=1

S̃ (wj , uk)
Kv∏
k=1

S̃ (wj , vk) , (B.2)

1 = eiϕvj =
(
vj + i

2
vj − i

2

)L Kv∏
k=1
k ̸=j

S (vj , vk)
Kw∏
k=1

S̃ (vj , wk) , (B.3)

where the S-matrices S(u, v) and S̃(u, v) are given by

S(u, v) ≡ u− v − i

u− v + i
, S̃(u, v) ≡

u− v + i
2

u− v − i
2
. (B.4)

Here the numbers of rapidities u,v,w are denoted by Ku,Kv,Kw.
The cyclicity property of the single trace operator is equivalent to the zero momentum

condition

1 =
Ku∏
j=1

uj + i
2

uj − i
2

Kv∏
j=1

vj + i
2

vj − i
2
. (B.5)

In table 1, we present a collection of solutions that fulfill both Bethe ansatz equations
and the zero momentum condition. Rational Q-system [89, 90] plays an important role here.

Notice that all of the above sets of Bethe roots satisfy the selection rules Ku = Kv =
Kw = L and (3.32).

Moreover, we have also found a set of Bethe roots with L = 3,Ku = Kw = 1,Kv = 2
that satisfies the zero momentum condition and Bethe equations, however it does not satisfy
the selection rules Ku = Kv = Kw = L and (3.32). This set of Bethe roots is

u1 = 0.866025 w1 = 0.866025, (B.6)
v1 = −0.198072 v2 = 0.631084 .
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L Kw [u, v, w]
1 1 [{0}, {0}, {0}]

2 2
[
{
√

3
20 ,−

√
3

20}, {−
√

3
20 ,
√

3
20}, { 1√

5 ,− 1√
5}
]

3 3 [{−0.61842989257770833, 0 , 0.61842989257770833},

{0.61842989257770833, 0 ,−0.61842989257770833},

{0.71410132990930250,−0.71410132990930250, 0}]
[{ 0.36628143864284446, −0.18314071932142223 − 0.5006211833519472i

−0.18314071932142223 + 0.5006211833519472i},

{−0.36628143864284446, 0.18314071932142223 + 0.5006211833519472i

0.18314071932142223 − 0.5006211833519472i},

{−0.4472135954999579i , 0 , 0.4472135954999579i}]
[{−0.9393910431943004i, 0 , 0.9393910431943004i},

{ 0.9393910431943004i, 0 , −0.9393910431943004i},

{−1.0847153433251056i , 0 , 1.0847153433251056i}]
4 4 [{−0.30330564928014186 − 0.4984162134634997i, −0.30330564928014186+

0.4984162134634997i , 0.02628462005210284 , 0.5803266785081809},

{ 0.30330564928014186 + 0.4984162134634997i, 0.30330564928014186−
0.4984162134634997i , −0.02628462005210284 ,−0.5803266785081809},

{−0.5162715680301216 , −0.5001222335995396i , 0.5162715680301216
0.5001222335995396i}]
[{−0.16030976462353738 − 0.9768494810075854i, −0.16030976462353738+
0.9768494810075854i , −0.14056546652006302 , 0.46118499576713784},

{ 0.16030976462353738 + 0.9768494810075854i, 0.16030976462353738−
0.9768494810075854i , 0.14056546652006302 ,−0.46118499576713784},

{0.2416681458566768 , −1.0684026594894636i , 0.24166814585667684
1.0684026594894636i}]
[{−0.7905846950242429, −0.18184585032628545 ,

0.18184585032628545 , 0.7905846950242429},

{ 0.7905846950242429, 0.18184585032628545 ,

−0.18184585032628545 ,−0.7905846950242429},

{−0.9018353804885377 , −0.25327661600652046 ,

0.9018353804885376 , 0.25327661600652046}]
[{−0.4913865158293109 − 0.5254890261600584i, −0.4913865158293109+
0.5254890261600584i , 0.49138651582931087 − 0.5254890261600584i ,

0.49138651582931087 + 0.5254890261600584i},

{ 0.4913865158293109 + 0.5254890261600584i, 0.4913865158293109−
0.5254890261600584i , −0.49138651582931087 + 0.5254890261600584i ,

−0.49138651582931087 − 0.5254890261600584i},

{0.53872049128905 − 0.5800492329412736i , −0.538720491289058+
0.5800492329412736i , 0.538720491289058 + 0.5800492329412736i ,

0.538720491289058 − 0.5800492329412736i}]
[{−0.14792308614892888i, 0.14792308614892888i ,

−0.8757024703174519i , 0.8757024703174519i},

{ 0.14792308614892888i, −0.14792308614892888i ,

0.8757024703174519i ,−0.8757024703174519i},

{0.1144398362148366 , 1.0318645990119506i ,

0.1144398362148366 , 1.0318645990119506i}]

Table 1. Some numerical solutions to the zero-momentum condition and Bethe ansatz equations
with Ku = Kv = Kw = L.

– 26 –



J
H
E
P
0
9
(
2
0
2
3
)
0
4
7

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.

References

[1] N. Beisert et al., Review of AdS/CFT Integrability: An Overview, Lett. Math. Phys. 99 (2012)
3 [arXiv:1012.3982] [INSPIRE].

[2] J.A. Minahan and K. Zarembo, The Bethe ansatz for N = 4 super Yang-Mills, JHEP 03
(2003) 013 [hep-th/0212208] [INSPIRE].

[3] N. Beisert and M. Staudacher, Long-range psu(2, 2|4) Bethe Ansatze for gauge theory and
strings, Nucl. Phys. B 727 (2005) 1 [hep-th/0504190] [INSPIRE].

[4] N. Beisert, The SU(2|2) dynamic S-matrix, Adv. Theor. Math. Phys. 12 (2008) 945
[hep-th/0511082] [INSPIRE].

[5] Z. Bajnok and R.A. Janik, Four-loop perturbative Konishi from strings and finite size effects
for multiparticle states, Nucl. Phys. B 807 (2009) 625 [arXiv:0807.0399] [INSPIRE].

[6] J. Ambjorn, R.A. Janik and C. Kristjansen, Wrapping interactions and a new source of
corrections to the spin-chain/string duality, Nucl. Phys. B 736 (2006) 288 [hep-th/0510171]
[INSPIRE].

[7] D. Bombardelli, D. Fioravanti and R. Tateo, Thermodynamic Bethe Ansatz for planar
AdS/CFT: A Proposal, J. Phys. A 42 (2009) 375401 [arXiv:0902.3930] [INSPIRE].

[8] N. Gromov, V. Kazakov and P. Vieira, Exact Spectrum of Anomalous Dimensions of Planar
N=4 Supersymmetric Yang-Mills Theory, Phys. Rev. Lett. 103 (2009) 131601
[arXiv:0901.3753] [INSPIRE].

[9] G. Arutyunov and S. Frolov, Thermodynamic Bethe Ansatz for the AdS5 × S5 Mirror Model,
JHEP 05 (2009) 068 [arXiv:0903.0141] [INSPIRE].

[10] N. Gromov, V. Kazakov, S. Leurent and D. Volin, Quantum Spectral Curve for Planar N = 4
Super-Yang-Mills Theory, Phys. Rev. Lett. 112 (2014) 011602 [arXiv:1305.1939] [INSPIRE].

[11] B. Chen, X.-J. Wang and Y.-S. Wu, Integrable open spin chain in superYang-Mills and the
plane wave/SYM duality, JHEP 02 (2004) 029 [hep-th/0401016] [INSPIRE].

[12] B. Chen, X.-J. Wang and Y.-S. Wu, Open spin chain and open spinning string, Phys. Lett. B
591 (2004) 170 [hep-th/0403004] [INSPIRE].

[13] T. Erler and N. Mann, Integrable open spin chains and the doubling trick in N = 2 SYM with
fundamental matter, JHEP 01 (2006) 131 [hep-th/0508064] [INSPIRE].

[14] O. DeWolfe and N. Mann, Integrable open spin chains in defect conformal field theory, JHEP
04 (2004) 035 [hep-th/0401041] [INSPIRE].

[15] D. Berenstein and S.E. Vazquez, Integrable open spin chains from giant gravitons, JHEP 06
(2005) 059 [hep-th/0501078] [INSPIRE].

[16] N. Drukker and S. Kawamoto, Small deformations of supersymmetric Wilson loops and open
spin-chains, JHEP 07 (2006) 024 [hep-th/0604124] [INSPIRE].

[17] D. Correa, M. Leoni and S. Luque, Spin chain integrability in non-supersymmetric Wilson
loops, JHEP 12 (2018) 050 [arXiv:1810.04643] [INSPIRE].

– 27 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s11005-011-0529-2
https://doi.org/10.1007/s11005-011-0529-2
https://arxiv.org/abs/1012.3982
https://inspirehep.net/literature/881932
https://doi.org/10.1088/1126-6708/2003/03/013
https://doi.org/10.1088/1126-6708/2003/03/013
https://arxiv.org/abs/hep-th/0212208
https://inspirehep.net/literature/604848
https://doi.org/10.1016/j.nuclphysb.2005.06.038
https://arxiv.org/abs/hep-th/0504190
https://inspirehep.net/literature/681255
https://doi.org/10.4310/ATMP.2008.v12.n5.a1
https://arxiv.org/abs/hep-th/0511082
https://inspirehep.net/literature/697133
https://doi.org/10.1016/j.nuclphysb.2008.08.020
https://arxiv.org/abs/0807.0399
https://inspirehep.net/literature/789783
https://doi.org/10.1016/j.nuclphysb.2005.12.007
https://arxiv.org/abs/hep-th/0510171
https://inspirehep.net/literature/695757
https://doi.org/10.1088/1751-8113/42/37/375401
https://arxiv.org/abs/0902.3930
https://inspirehep.net/literature/813986
https://doi.org/10.1103/PhysRevLett.103.131601
https://arxiv.org/abs/0901.3753
https://inspirehep.net/literature/811726
https://doi.org/10.1088/1126-6708/2009/05/068
https://arxiv.org/abs/0903.0141
https://inspirehep.net/literature/814468
https://doi.org/10.1103/PhysRevLett.112.011602
https://arxiv.org/abs/1305.1939
https://inspirehep.net/literature/1232519
https://doi.org/10.1088/1126-6708/2004/02/029
https://arxiv.org/abs/hep-th/0401016
https://inspirehep.net/literature/642156
https://doi.org/10.1016/j.physletb.2004.04.013
https://doi.org/10.1016/j.physletb.2004.04.013
https://arxiv.org/abs/hep-th/0403004
https://inspirehep.net/literature/645416
https://doi.org/10.1088/1126-6708/2006/01/131
https://arxiv.org/abs/hep-th/0508064
https://inspirehep.net/literature/689440
https://doi.org/10.1088/1126-6708/2004/04/035
https://doi.org/10.1088/1126-6708/2004/04/035
https://arxiv.org/abs/hep-th/0401041
https://inspirehep.net/literature/642285
https://doi.org/10.1088/1126-6708/2005/06/059
https://doi.org/10.1088/1126-6708/2005/06/059
https://arxiv.org/abs/hep-th/0501078
https://inspirehep.net/literature/674702
https://doi.org/10.1088/1126-6708/2006/07/024
https://arxiv.org/abs/hep-th/0604124
https://inspirehep.net/literature/714759
https://doi.org/10.1007/JHEP12(2018)050
https://arxiv.org/abs/1810.04643
https://inspirehep.net/literature/1697692


J
H
E
P
0
9
(
2
0
2
3
)
0
4
7

[18] M. de Leeuw, C. Kristjansen and K. Zarembo, One-point Functions in Defect CFT and
Integrability, JHEP 08 (2015) 098 [arXiv:1506.06958] [INSPIRE].

[19] I. Buhl-Mortensen, M. de Leeuw, C. Kristjansen and K. Zarembo, One-point Functions in
AdS/dCFT from Matrix Product States, JHEP 02 (2016) 052 [arXiv:1512.02532] [INSPIRE].

[20] M. De Leeuw, C. Kristjansen and G. Linardopoulos, Scalar one-point functions and matrix
product states of AdS/dCFT, Phys. Lett. B 781 (2018) 238 [arXiv:1802.01598] [INSPIRE].

[21] L. Piroli, B. Pozsgay and E. Vernier, What is an integrable quench?, Nucl. Phys. B 925 (2017)
362 [arXiv:1709.04796] [INSPIRE].

[22] Y. Jiang, S. Komatsu and E. Vescovi, Structure constants in N = 4 SYM at finite coupling as
worldsheet g-function, JHEP 07 (2020) 037 [arXiv:1906.07733] [INSPIRE].

[23] Y. Jiang, S. Komatsu and E. Vescovi, Exact Three-Point Functions of Determinant Operators
in Planar N = 4 Supersymmetric Yang-Mills Theory, Phys. Rev. Lett. 123 (2019) 191601
[arXiv:1907.11242] [INSPIRE].

[24] C. Kristjansen and K. Zarembo, ’t Hooft loops and integrability, JHEP 08 (2023) 184
[arXiv:2305.03649] [INSPIRE].

[25] Y. Jiang, S. Komatsu and E. Vescovi, Wilson loops and exact g-functions, to appear.

[26] H. Ouyang and J.-B. Wu, Fermionic Bogomolǹyi-Prasad-Sommerfield Wilson loops in
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