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1 Introduction

The top quark mass mt is a fundamental parameter of the Standard Model and has an
important role in many predictions, both directly and via higher-order corrections. For
instance, together with the values of the strong coupling constant αs and the mass of
the Higgs boson, it determines the stability of the electroweak vacuum [1–4]. Yet, quark
masses are formal parameters of the Standard Model QCD Lagrangian and depend on the
adopted renormalization scheme. The frequently used top quark pole mass mpole

t is based
on the concept of an on-shell observable particle and entails that real and virtual self-energy
radiation can be resolved at arbitrarily small energy scales. While the picture of an on-shell
top quark allows for consistent cross section field theory computations, it is not physical
because the top quark is a colored object and decays. This results in a sizeable linear
infrared (IR) sensitivity of mpole

t of the order of the QCD scale ΛQCD [5–7]1 which leads
to the pole mass renormalon problem at high orders in perturbation theory. Quark masses
defined in so-called short-distance mass schemes such as the modified minimal subtraction
(MS) scheme [10, 11] mass mt(µm), or the MSR scheme [12, 13] mass mMSR

t (R), do not have
this issue, and their renormalization scales µm and R, respectively, act as a finite resolution
scale. This means that real and virtual self-energy radiation are treated inclusively for the
scales below µm and R. The absence of the O(ΛQCD) renormalon problem, together with
the additional freedom to adopt suitable choices for µm and R, can be very useful to
achieve higher precision concerning the mt dependence in top mass sensitive observables.
In particular, the freedom of scheme and scale choice is important for predictions at lower
orders, since it leads to a systematic absorption of sizeable corrections, not originating from
the pole mass renormalon, into the quark mass parameter.

A well-known example is the highly mt-sensitive tt cross section at the production
threshold in e+e− annihilation, where switching from the pole mass scheme to the threshold

1We note that linear IR sensitivities arise in cross sections whenever cuts on soft radiation are imposed,
see e.g. ref. [8]. These are associated to physical nonperturbative corrections in contrast to the pole mass,
where the IR sensitivity arises purely from the choice of scheme [9].
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mass schemes such as the PS (at the scale of around 25 GeV) or the 1S mass schemes can
minimize the large tt quasi-bound state corrections at any order, since these mass schemes
encode a sizeable fraction of the binding energy corrections ∆E ∼ mtα

2
s into the mass

value [14]. In the case of the tt quasi-bound state, the scale choice for the PS mass
is related to the fact that these mt-sensitive bound state corrections arise from physical
dynamical scales of the order of the inverse Bohr radius ⟨1/rB⟩ ∼ mtαs ∼ 25 GeV, and the
MSR mass mMSR

t (25 GeV) is a suitable choice as well [13]. Thus, the scale dependence of
mt(µm) and mMSR

t (R) allows to properly adapt to these dynamical scales of the top mass
sensitivity for an observable under consideration. The respective renormalization group
equations (RGEs) and matching relations provide the tool to unambiguously relate the mt
values extracted at different dynamical scales. This concept is well known for the running
strong coupling αs and applies to the quark masses as well.

In this work, the dependence of the invariant mass of the tt pair, mtt, on the MSR
mass scale R and the MS mass scale µm is investigated concurrently, for the first time,
accounting for QCD corrections. Using experimental measurements of tt production at the
LHC at

√
s = 13 TeV [15], the next-to-leading order (NLO) prediction of the mtt differential

cross section from refs. [16, 17] and the scheme implementation procedure of refs. [18, 19],
we demonstrate that the proper scheme choice — which concerns the proper kind of top
mass scheme and the renormalization scale — is of key importance and affects the size
of higher-order corrections as well as the resulting value of the extracted top quark mass.
Our analysis provides in particular a re-investigation of the “indirect” mpole

t measurement
of ref. [20] by the CMS Collaboration which obtained mpole

t = 170.5±0.8 GeV based on the
same NLO theory prediction. This result is systematically lower than other indirect pole
mass measurements [21–23] and was reconfirmed by the subsequent analysis in ref. [24]. The
latter analysis also extracted the MSR mass at the low scale R = 3 GeV, mMSR

t (R = 3 GeV),
yielding a low value as well, consistent with ref. [20] after conversion to a common reference
scheme. In the present analysis, we show that using the MSR mass mMSR

t (R = 80 GeV)
would lead to a larger value, compatible with earlier measurements, after conversion to
a common reference scheme. We provide general arguments that this particular scale
choice leads to a systematic resummation of sizeable higher order QCD corrections that
arise in the tt threshold region at the LHC, where the tt pairs are produced in color
singlet as well as octet states and sizeable bins of the mtt distribution are used in the
analysis. This summation does not take place either in the pole mass scheme or when
mMSR

t (R = 3 GeV) is used, explaining the results obtained in refs. [20, 24]. The result
of our investigation constitutes an important recommendation relevant for upcoming top
quark mass measurements from differential tt production cross sections at the LHC. We
note that the theoretical prediction used in the present analysis does not account for
the next-to-next-to-leading order (NNLO) corrections [25, 26] or resummed Coulomb-type
quasi-bound state corrections [27–29]. A coherent theory code that accounts for these
results in a way adequate for the needs of the presented analysis is not yet available in
either mass scheme. We also note that recently the MSR mass has been investigated by
the ATLAS collaboration in ref. [30] in the context of simulation and top mass calibration
studies of the groomed jet mass for boosted top production.

– 2 –



J
H
E
P
0
9
(
2
0
2
3
)
0
3
7

In section 2, we review the MS and MSR top quark mass schemes and the formulae to
implement them, and in section 3 we carry out a detailed investigation concerning the best
choice of the MSR renormalization scale R. In section 4 we quote the results for mMSR

t (R =
1 GeV) and higher R values from the fits to the LHC measurements, demonstrating the
impact of the renormalization scale choice. We close in section 5 with a summary and an
outlook on future improvements.

2 Running mt and the tt pair production cross section at NLO

In terms of a general mass renormalization scale µm, the pole and MS masses are related
in perturbative QCD as

mpole
t = mt(µm)

(
1 +

∑
n=1

dMS
n (µm)

(
a(6)

s (µm)
)n
)

, (2.1)

where as ≡ αs/π. Here and everywhere else in this study, we explicitly indicate by the
superscript whether we use the strong coupling α

(5)
s in the 5-flavor or α

(6)
s in the 6-flavor

scheme. For the parton distribution functions (PDFs) only the 5-flavor scheme is employed.
All quarks except for the top quark are treated as massless. The coefficients dMS

n (µm) in
eq. (2.1) are known up to four loops [31] and the first few orders read [32–34]

dMS
1 (µm) = 4/3 + L ,

dMS
2 (µm) = 7.1952 + 4.6806L + 1.4167L2 ,

dMS
3 (µm) = 54.161 + 21.776L + 9.2026L2 + 1.7940L3 , (2.2)

where the expansion uses α
(6)
s in the 6-flavor scheme and L = log((µm/m(µm))2). The

running of the MS mass is described by the RGE

µ2
m

dmt(µm)
dµ2

m

= −mt(µm)
∑
i=0

γm
i

(
a(6)

s (µ)
)i+1

, (2.3)

where the anomalous dimensions γm
i are known to five loops [35, 36]. The first few or-

ders [37–42] are given by

γm
0 = 1 ,

γm
1 = 3.3750 ,

γm
2 = 4.8387 ,

γm
3 = −4.5082 . (2.4)

Electroweak corrections (see, e.g. [43, 44]) are not considered. The RGE in eq. (2.3) has
the solution

mt(µ1) = mt(µ0) exp
{
−2
∑
i=0

∫ µ1

µ0

dµ

µ
γm

i

(
a(6)

s (µ)
)i+1

}
, (2.5)

yielding the MS mass at a scale µ1 via evolution from the known mass at a reference
scale µ0. Here and below we quote relations at O(α3

s) and evolution equations at O(α4
s).
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We have also used these relations in our analysis for determining numerical values for the
quark masses (and the strong coupling), even though our cross section analysis is based on
a fixed-order theory description at NLO. Since the mass (and strong coupling) matching
relations and RGE equations are well convergent series and no subtle cancellations between
the different ingredients need to be taken care of (which would be the case for the PDFs)
this approach is fully consistent and has the advantage that the theoretical uncertainties in
the numerical values of the masses (and the strong coupling) are eliminated entirely from
our analysis. We recommend this approach also for future phenomenological analyses. For
implementing different mass schemes in the analytic expression for the differential mtt cross
sections at NLO, see eq. (2.14) below, only the O(αs) coefficients from eqs. (2.1) and (2.6)
are used.

The MS mass is by construction a 6-flavor quantity and should only be used in observ-
ables where the dynamical scale of the top-quark mass sensitivity is of order mt or larger,
i.e. µm ≳ mt. The MSR mass is, like the MS mass, determined from top-quark self-energy
corrections [13, 45], but designed such that all virtual and off-shell top-quark quantum
fluctuations are integrated out in the on-shell limit.2 The MSR mass mMSR

t (R) is therefore
a 5-flavor quantity and its R-dependence properly captures all radiation off the top quark
that is soft in the top quark rest frame, which is not the case for the MS mass. The MSR
mass is the proper choice if the dynamical scale of the top quark mass sensitivity is below
mt, i.e. R ≲ mt.

The pole and MSR masses are related as

mpole
t = mMSR

t (R) + R
∞∑

n=1
dMSR

n

(
a(5)

s (R)
)n

, (2.6)

where the coefficients dMSR
n read [13]

dMSR
1 = 4/3 ,

dMSR
2 = 8.1330

dMSR
3 = 71.602 . (2.7)

In the limit R → mt(mt), mMSR
t (R) approaches the MS mass mt(mt) and matches on

it in analogy to the 5-flavor and 6-flavor strong coupling, see below. In contrast to the
logarithmic µm evolution of mt(µm), the R-evolution of mMSR

t (R) is linear and captures
the correct physical logarithms for observables with mt dependence, generated at dynamical
scales R < mt, such as resonances, thresholds, and low-energy endpoints [46]. The mass
renormalization constant of the MSR mass only contains the on-shell self-energy corrections
for scales larger than R in contrast to the pole mass which contains self-energy corrections
at all scales. So while the MSR mass is numerically close to the pole mass for small R

at low orders, it is free of the pole mass renormalon problem. Formally the MSR mass
approaches the pole mass for R → 0, but the Landau pole prevents taking this limit in
practice. For small R values in the range of 1 to 2 GeV the MSR mass captures the kinematic

2We are using the natural MSR mass definition (MSRn), where virtual top-quark loops are integrated
out consistently, see [13].
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particle mass interpretation commonly associated of the pole mass. Within perturbative
uncertainties at NLO, where we can still ignore the pole mass renormalon problem, the
scheme choice mMSR

t (R = 1 GeV), or for some other very low value of R, is therefore a
proxy for the pole mass scheme. The matching of the 5-flavor MSR mass to the 6-flavor
MS mass at the scale R = mt(mt) reads [13]

mMSR
t (mt) = mt(mt)

[
1 + 0.10357

(
a(5)

s (mt)
)2

+ 1.8308
(
a(5)

s (mt)
)3
]

, (2.8)

and the inverse at the scale R = mMSR
t (mMSR

t ) reads [13]

mt(mt) = mMSR
t

(
mMSR

t

) [
1 − 0.10357

(
a(5)

s (mMSR
t )

)2
− 1.6927

(
a(5)

s (mMSR
t )

)3
]

. (2.9)

The matching starts at O(α2
s), where virtual top quark loops first appear. In the matching

relations in eqs. (2.8) and (2.9) we have indicated the 5-flavor scheme for the strong cou-
pling. At the order shown, the coefficients are identical to the ones in the 6-flavor scheme.
These relations are in close analogy to the corresponding strong coupling matching relation
which reads

a(6)
s (mt) = a(5)

s (mt)
[
1 − 0.15278

(
a(5)

s (mt)
)2

− 0.54881
(
a(5)

s (mt)
)3
]
. (2.10)

Note, the corrections to the matching relation shown in the brackets of eq. (2.10) are known
to O(α4

s) [47, 48]. The MSR mass at an arbitrary scale R is then obtained from a given
MS mass, applying eq. (2.8), and evolving the scale R from mt(mt) to the desired value by
solving the RGE

R
d

dR
mMSR

t (R) = −R
∑

n

γR
n

(
a(5)

s (R)
)n+1

, (2.11)

where the anomalous dimensions γR
n are given by [45]

γR
0 = 4/3

γR
1 = 3.0219 ,

γR
2 = 2.8047 ,

γR
3 = −73.257 . (2.12)

The solution of eq. (2.11) yields

mMSR
t (mt) − mMSR

t (R) = −
∑
n=0

γR
n

∫ mt

R
dR′

(
a(5)

s (R′)
)n+1

+ O
(
a4

s

)
≡ ∆m , (2.13)

so that the MSR mass at R is obtained as mMSR
t (R) = mMSR

t (mt) − ∆m. As far as QCD
corrections are concerned, the formulae above allow to relate MSR and MS top quark mass
values at any (perturbative) scale with a precision of better than 20 MeV. The REvolver
library [46] provides this functionality in a user-friendly software package.

– 5 –
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In the present work, the MCFM program (version 6.8) [16, 17] is extended to include
the implementation of the MSR scheme in the computation of the hadronic tt produc-
tion cross section for single-differential kinematics. Based on the procedure presented in
refs. [18, 19], the tt production cross section differential with respect to an observable X

at NLO reads

dσ

dX
= (as(µr))2 dσ(0)

dX

(
m, µr, µf

)
+ (as(µr))3 dσ(1)

dX

(
m, µr, µf

)
+ (as(µr))3 R̃ d1

d

dmt

(
dσ(0)(mt, µr, µf )

dX

) ∣∣∣∣
mt=m

, (2.14)

where σ(0) is the leading order (LO) and σ(1) the NLO cross section in the pole mass
scheme. At NLO, the derivative term (the third summand in eq. (2.14)) implements the
MS or MSR top quark mass schemes. In the present work, the observable of interest is the
invariant mass of the tt system, and X = mtt. In particular, we have the following set of
parameters in eq. (2.14))

(
as(µr), m, d1, R̃

)
=


(
a(5)

s (µr), mMSR
t (R), dMSR

1 , R
)

, R < mt(mt) (MSR regime) ,(
a(5)

s (µr), mt(µm), dMS
1 (µm), mt(µm)

)
, µm > mt(mt) (MS regime) .

(2.15)
It is important to note that the choice of the renormalization and factorization scales µr

and µf is independent of the mass renormalization scales R or µm in this implementation.
We emphasize that it is essential that the mass scheme correction proportional to d1 is
consistently used at the renormalization scale µr, which yields logarithms ln(R/µr) or
ln(µm/µr) beyond NLO to consistently cancel the pole mass renormalon. Since MCFM is
based on renormalization with 5 dynamical flavors, one has to consistently expand a

(6)
s (µr)

for the MS top mass scheme corrections of eq. (2.1) in powers of a
(5)
s (µr) in the cross section

formula of eq. (2.14). At NLO this leads to eq. (2.15).
We note that the fixed-order perturbative corrections for the differential cross section

in the pole mass scheme are known at NNLO accuracy in QCD [25, 26] and at NLO in the
electroweak theory [49, 50]. In addition, the MS mass scheme at NNLO has been studied
in ref. [51]. The conversion of the mass renormalization scheme from the pole mass to the
MS or the MSR mass beyond NLO accuracy in QCD (and LO for electroweak effects as
presented here) needs to be performed numerically and requires theory predictions for dif-
ferential cross sections with the pole mass at NNLO accuracy for a large array of pole mass
values (typically in a range 150 GeV < m < 180 GeV)). The required NNLO computations
(including scale variations and PDF uncertainties) are numerically demanding and such
results are currently not readily available in the literature.

Non-relativistic quasi-bound state QCD corrections are important for the region mtt ∼
340-360 GeV, where the strongest top quark mass sensitivity arises in the mtt distribution.
In this threshold region the produced top quarks attain small non-relativistic velocities
v ≪ 1 in the tt center-of-mass frame, and the dynamics of the tt system are hence governed
by the mass mt, the relative momentum mtv, and the kinetic energy mtv

2 of the top quark.
Since mt ≫ mtv ≫ mtv

2, the appearance of ratios involving the masses, momenta and

– 6 –
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kinetic energy of the top quark renders the standard fixed-order expansion in powers of αs

unreliable in this mtt range. The most pronounced quasi-bound state effects arise from the
Coulomb corrections due to the exchange of gluons between the produced t and t yielding
a dependence of the prediction on the ratio mt/(mtv). This leads to a singular (αs/v)n

behavior in the fixed-order perturbative QCD correction at n-loops [52]. The quasi-bound
state effects have been considered in refs. [27, 28], and more recently again in [29]. For tt
pairs in a color octet state, the effects of soft gluon exchanges with other parts of the hard
production process can yield further significant corrections, which are currently unknown.
The available predictions do not provide an adequate description of the lowest mtt bin
in the region between 300 GeV and the quasi-bound state region around 350 GeV, where
the imaginary energy approach and the use of the optical theorem [14] predict a sizeable
and unphysical finite tt production rate, see the results shown in ref. [29]. In this region
the differential cross section depends on the experimental cuts on the top and antitop
quark decay products [53, 54], which complicates the theoretical prediction as well as the
experimental analysis, but any sensible choice of cuts leads to a strongly suppressed rate
for mtt close to 300 GeV. This latter aspect is actually better described by the fixed-order
predictions for stable top quarks where the rate vanishes identically for mtt < 2mt (for a
correct top mass scheme choice as discussed below). Furthermore, a systematic treatment
of the intermediate region, where the non-relativistic and relativistic calculations need to
be matched, is currently not available with a reliable matching error estimate.3 We also
mention that for the electroweak corrections different scheme choices for the MS mass
are available related to the definition of the vacuum expectation value [43, 44]. Their
effects concerning the MSR mass and their impact on the use of different mass schemes in
experimental observables are unknown. Overall, there is currently no complete and reliable
theory prediction for the low mtt distribution available for experimental analysis. For the
study of the tt differential cross section as a function of mtt and its dependence on the
MSR mass scale R, the NLO fixed order prediction for stable top quarks based on the
MCFM program is appropriate, since it properly describes the generic size of subleading
QCD corrections and vanishes for mtt < 2mt. For a reliable measurement of the MSR top
quark mass, however, a more complete code including the features mentioned above has to
be made available.

3 First investigation of the R scale dependence

In this section we examine the dependence of the mtt distribution in different representative
bins in the range between 300 and 700 GeV on the scales µr, µf , and R in the MSR mass
scheme as well as µm in the MS scheme using as input the results of the ABMP16 PDF
fit at NLO [56] with α

(5)
s (mZ) = 0.11905 at mZ = 91.19 GeV. For the MS mass the

value mt(mt) = 160.68 GeV has been chosen close to the fit of ref. [57]. The latter value
corresponds to MSR masses at R = 1 GeV and R = 80 GeV of mMSR

t (1 GeV) = 170.48 GeV
and mMSR

t (80 GeV) = 164.98 GeV, respectively.

3Such a treatment is available only for top quark production in e+e− annihilation, see ref. [55].
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Figure 1. The mtt ∈ [300, 333] GeV range of the mtt distribution. There is no tt production at
R ≲ 60 GeV, but the region above it suffers from the lack of Coulomb corrections. The discontinuity
at µm ≳ 410 GeV is due to the tt production threshold becoming artificially low, and such high
values of the scale µm should be avoided.

In figure 1, the cross section for the bin mtt ∈ [300, 333] GeV, i.e. the region below the
tt production threshold, is shown for different scale choices at LO and NLO. The cross
section is zero for R < 60 GeV, which corresponds to 2mMSR

t (R) > 333 GeV. Non-zero
contributions to the cross section in the mtt ∈ [300, 333] GeV range appear only at large
values of R or when using the MS mass, which correspond to smaller values of mMSR

t (R)
or mt(µm). The LO contribution to the cross section is zero or positive throughout the
probed range of R and µm. At NLO, however, the quick decrease of the derivative terms
in eq. (2.14) in comparison to the increase of the positive contributions would lead to
unphysical negative values of the NLO cross section in this kinematic range, as was also
pointed out in ref. [51], where the MS mass scheme was examined.

Since tt production in the range mtt ∈ [300, 333] GeV is impossible, the results in
figure 1 also show that R values above 80 GeV must be avoided. This also implies that
the MS mass cannot be used if the tt cross section in this mtt range is included in the
experimental analysis. This conclusion holds even in the presence of quasi-bound state
effects, since these provide a more precise prediction of the tt production threshold, which is,
however, located at mtt values above 333 GeV. A further feature of the mtt ∈ [300, 333] GeV
range, shown in figure 1, is the rapid increase of the cross section at µm ≳ 410 GeV. This
occurs when mt(µm) is so small, such that LO tt production is even possible below 300 GeV.

In figure 2, the cross section for the bin mtt ∈ [333, 366] GeV, i.e. the region where the tt
production threshold is located, is shown as a function of R and µm at NLO in the left panel.
The right panel displays the relative size of the NLO corrections with respect to the LO
description. Here, the quasi-bound state effects already contained in the NLO prediction are
sizeable and our NLO result only provides a qualitative description. Similar as in the lowest
bin, we observe a quite strong dependence on the mass renormalization scale. We see that
for very small values of R the size of the NLO correction increases significantly, particularly
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Figure 2. The NLO cross section (left) and the ratio of the LO and NLO cross sections (right) for
mtt ∈ [333, 366] GeV. The transition from a region suffering from the missing Coulomb corrections
to a more stable region where the threshold effects become less important is seen at R ≳ 60 GeV
(dashed blue). Further, predictions obtained using small values of µr, µf are observed to stabilize
the prediction quickly as a function of R or µm.

for large µr and µf values, making the use of fixed-order perturbation theory unreliable for
these choices. This shows that the impact of the higher-order QCD corrections, including
the quasi-bound state corrections, is particularly sizeable and essentially maximized in the
pole mass scheme. This is closely mimicked by the result for R = 1 GeV.

On the other hand, with increasing R, the impact of the NLO corrections decreases
substantially. This is illustrated in the right panel of figure 2, where the ratio of cross
sections at NLO to that at LO is shown to be closer to unity. This should be interpreted as
the NLO corrections being small at these R. Particularly, with R in the range 60 GeV to
80 GeV, the cross section remains robust under variations of all the scales: it changes only
little as a function of R, while the differences between the curves corresponding to smaller
or larger central values for µr and µf remain small. This is not accidental, but expected
from the fact that the smaller value of the MSR mass at larger R values accounts for the
fact that the mass of the tt system is reduced on average by the Coulomb-binding effects.
Therefore, with R in the range 60 GeV to 80 GeV, also the impact of the (missing) Coulomb
corrections can be expected to be moderate and in particular much smaller than they would
be for very small values of R, which serve as a proxy for the pole mass scheme. It is also
observed that setting µr and µf to values below the top quark mass further diminishes
the size of the NLO corrections. The reason is that for this particular R-range and chosen
µr and µf , mMSR

t (R) captures a sizable part of the non-relativistic bound-state dynamics
relevant in the region mtt ∈ [333, 366] GeV. In other words, a significant part of the binding
effects is already absorbed into the mass value, so that the fixed-order prediction at NLO
in the MSR scheme provides a more precise description of the process as compared to the
pole mass scheme. Considering the observations in the mtt range of [300, 366] GeV (figure 1
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Figure 3. The NLO cross section (left) and the ratio of the LO and NLO cross sections (right) for
mtt ∈ [465, 498] GeV.
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Figure 4. Same as figure 3 for the bin mtt ∈ [663, 696] GeV.

and figure 2), it can be concluded that the most stable predictions are obtained for R in
the range of 60 to 80 GeV. Out of this range, the highest choice for the scale, R = 80 GeV is
preferred as the default choice, to avoid entering the regime of R < 60 GeV while allowing
the examination of the R scale variation uncertainties, see section 4. From the experience
gained in studies of the tt threshold scan at e+e−-colliders [14] one may expect that a MSR
mass scale R ∼ 25 GeV should be more appropriate. However, due to the integration over
the mtt range, the values of R and µr need to be larger, than those used to describe the
peak of the bound-state resonance, corresponding to a much narrower mtt distribution.

At this point it is also instructive to examine mtt far above threshold. In figures 3 and 4,
the results for mtt ∈ [465, 498] GeV and mtt ∈ [663, 696] GeV, respectively, are shown. Here
the NLO predictions provide an appropriate theoretical description. In contrast to the low
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mtt bins discussed above, the mass renormalization scale behavior is very smooth. This is
partly related to the much smaller top quark mass sensitivity, but also means that none of
the top quark mass schemes (and values for R or µm) provide any advantage concerning
capturing essential QCD corrections. Here, only the choices of the scales µr and µf are
essential for the prediction showing a preference for values of around mt. This observation
applies also to other invariant mass bins covering large mtt values, see ref. [58].

Overall, our examination suggests that the MSR top quark mass mMSR
t (R) and the

choice for the central value of R = 80 GeV provide the most reliable theoretical predictions
for all mtt bins. For the scales µr and µf the central values mt(mt) and, in particular
mt(mt)/2 for the mtt range containing the tt threshold, are adequate choices. We note
that these findings are also in line with the optimal scale choices for the total cross section
for tt hadro-production, when using the top quark mass in the MS scheme. In this case,
central values for µr and µf of the order mt(mt)/2 ≈ 80 GeV are in the region of fastest
apparent convergence considering perturbative QCD corrections through NNLO and also
minimize the scale sensitivity of the total cross section [19]. Settings for PDF factorization
scale µf different from µr have been explored in refs. [24, 51], corroborating these findings.
On the other hand, for the total cross section with the top quarks in the pole mass scheme,
which is well modeled by the MSR scheme mass mMSR

t (1 GeV), the preferred central values
for µr and µf , which minimize scale sensitivity and optimize perturbative convergence
through NNLO, are of the order mpole

t /4 ≈ 45 GeV, see e.g. ref. [19]. This is also visible in
the ratio plots on the right in figures 2–4. In the following, we demonstrate the impact of
the mass scheme and the scale setting on the value of the top quark mass obtained in fits
to the experimental data of ref. [15].

4 Extraction of the top quark MSR mass

The MSR mass mMSR
t (R) is extracted from the differential tt production cross section

measured by the CMS Collaboration in pp collisions at the LHC at
√

s = 13 TeV, corre-
sponding to an integrated luminosity of 35.9 fb−1 [15]. The tt cross section is measured as
a function of mtt in the ranges: mtt < 420 GeV, mtt ∈ [420, 550] GeV, mtt ∈ [550, 810] GeV
and mtt > 810 GeV.

The theoretical predictions are obtained using the ABMP16 5-flavor PDF set [57]
at NLO. According to the preferred MSR mass scale settings described in the previous
section, the initial value of the scale R is set to 80 GeV in eq. (2.14), and the cross section
is calculated for a range of assumed values of mMSR

t (80 GeV). The function

χ2 =
∑
i,j

(σexp
i − σth

i )C−1
ij (σexp

j − σth
j ), (4.1)

is computed for each mMSR
t (80 GeV). The indices i, j in eq. (4.1) run over the bins of the

mtt distribution, while σexp
i are the experimental data and σth

i the theoretical predictions.
The inverse covariance matrix C−1

ij provided in ref. [15] is used.
The scales µr and µf are set to mMSR

t (80 GeV) for all 4 bins of the mtt distribution or,
alternatively, to mMSR

t (80 GeV)/2 for mtt < 420 GeV, to stabilize the prediction against the
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Figure 5. A 4th order polynomial fitted to the χ2 resulting from comparing the experimental
data to theory predictions assuming different values of mMSR

t (80 GeV). The scales µr and µf

are set to mMSR
t (80 GeV) considering the whole mtt distribution (left), or to mMSR

t (80 GeV)/2 for
mtt < 420 GeV and to mMSR

t (80 GeV) for the remainder (right). The number of degrees of freedom
in the fits is denoted by Ndof .

missing quasi-bound state corrections, and to mMSR
t (80 GeV) for the remainder. Figure 5

shows a 4th order polynomial fit to the χ2 values resulting from each configuration.
The fit uncertainties are obtained via the ∆χ2 = 1 tolerance criterion, while the µr

and µf scale uncertainties are evaluated by varying their central values in each bin up
and down by a factor of 2, avoiding the cases where one scale is multiplied by 1/2 and
the other by 2, and constructing an envelope. For comparison with previous analyses, the
extracted values of mMSR

t (80 GeV) are evolved to the reference scales R of 1 and 3 GeV.
Note that determining mMSR

t (1 GeV) requires evaluating αs(1 GeV) rather close to the
Landau pole, which is expected to lead to an increased perturbative uncertainty in the
MSR mass at R = 1 GeV due to missing higher order corrections. Reporting the mass
value also at R = 3 GeV thus ensures the stability of the result, and the use of reference
scales R > 1 GeV will become increasingly important in future extractions of mMSR

t (R).
Furthermore, the results are translated into the standard MS mass mt(mt) by iteratively
finding mMSR

t (mMSR
t ) via the condition R = mMSR

t (R), and applying the matching formula
in eq. (2.9) up to O(a3

s). The uncertainty related to the initial choice of R is assessed by
repeating the fits at R = 60 GeV and R = 100 GeV, and the difference in the resulting
masses at the reference scales to the respective values obtained in the R = 80 GeV fit is
taken as the R scale uncertainty. The resulting values for the top quark mass are listed in
table 1.

In particular, setting the central µr and µf to mMSR
t (80 GeV) and considering the

complete mtt distribution yields

mMSR
t (1 GeV) = 173.2 ± 0.6 (fit)+0.4

−0.6 (µr, µf )+0.4
−0.5 (R) GeV . (4.2)
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mMSR
t mMSR

t mMSR
t mt Fit µr, µf R

µr, µf χ2/Ndof (80 GeV) (1 GeV) (3 GeV) (mt) unc. unc. unc.
setting [ GeV] [ GeV] [ GeV] [ GeV] [ GeV] [ GeV] [ GeV]

Const. 1.86/3 167.7 173.2 172.9 163.3 +0.6
−0.6

+0.4
−0.6

+0.4
−0.5

SD 3.03/3 169.3 174.8 174.5 164.8 +0.5
−0.5

+0.2
−0.4

+0.2
−0.3

Table 1. The values of mMSR
t (R) obtained at different scales R (given in brackets below mMSR

t ),
and the corresponding mt(mt), the χ2 divided by the number of degrees of freedom Ndof in the
fit, along with the fit and scale uncertainties for the mMSR

t (R) extracted at R = 80 GeV. The
results are shown for the constant µr, µf setting, where the central µr and µf values are set to
mMSR

t (80 GeV) in the whole mtt distribution, and for the semi-dynamical (SD) setting where they
are set to mMSR

t (80 GeV)/2 for mtt < 420 GeV and to mMSR
t (80 GeV) for higher mtt. The fit and

µr, µf uncertainties correspond to the MSR mass extracted at R = 80 GeV. Within the reported
accuracy, the uncertainty in the initial choice of R agrees in all cases when the extracted mMSR

t (R)
is evolved to the reference R.

The value for mMSR
t (80 GeV) in this fit translates into mt(mt) = 163.3+0.8

−1.0 GeV. This is
compatible within uncertainties with the value of mt(mt) = 162.1+1.0

−1.0 GeV obtained at
NLO in the ABMP16 5-flavor PDF set [56].

In accordance with the results shown in figure 1, multiplying the scales µr and µf by
1/2 within mtt < 420 GeV is observed to increase the NLO cross section at R = 80 GeV.
To compensate for this effect, the fit for mMSR

t (80 GeV) leads to a somewhat larger value
for the top quark MSR mass, reducing the predicted cross section especially in the vicinity
of the tt production threshold. This results in the value

mMSR
t (1 GeV) = 174.8 ± 0.5 (fit)+0.2

−0.4 (µr, µf )+0.2
−0.3 (R) GeV. (4.3)

It is expected that the impact of the choices for µr and µf , i.e. the shift of 1.6 GeV in the
central values between eqs. (4.2) and (4.3), will be reduced at NNLO accuracy and once a
reliable description of the quasi-bound state effects is available. Nonetheless, as anticipated
from the observations in section 3, the scale setting in eq. (4.3) already increases the
robustness against scale variations, yielding somewhat smaller uncertainties than eq. (4.2).
Even though one may consider the 1.6 GeV difference as a quantification of the uncertainty
of our current NLO analysis, a proper uncertainty analysis should include the NNLO and
quasi-bound state corrections as well as order dependent input quantities (including PDFs,
the strong coupling and their correlation) and is postponed to future work.

In order to illustrate the main conceptual novelty and the phenomenological impor-
tance of the mass scheme choice, we also perform the following variant of the fit: in-
stead of determining the top quark MSR mass at R = 80 GeV and evolving the extracted
mMSR

t (80 GeV) value to R = 1 GeV, as in eqs. (4.2) and (4.3), we perform the fit to data
directly with the initial scale set to R = 1 GeV in NLO cross section of eq. (2.14). Using
also the central scales µr, µf set to mMSR

t (1 GeV), this results in

mMSR
t (1 GeV) = 170.1 ± 0.6 (fit)+1.1

−0.9 (µr, µf ) GeV , (4.4)
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Figure 6. Same as figure 5, now fitting mMSR
t (1 GeV) and with the scales µr and µf set to

mMSR
t (1 GeV) in the whole mtt distribution.

where the corresponding fit to χ2 is shown in figure 6. In eq. (4.4) the µr and µf scale
uncertainties are twice as large as those of eq. (4.2). The even more sizeable discrepancy
to the results of eqs. (4.2) and (4.3) indicates that scale variation does not provide a
proper estimate of the theoretical uncertainties due to the missing higher order and quasi-
bound state corrections for the result quoted in eq. (4.4). Since using mMSR

t (1 GeV) closely
approximates the outcome using pole mass scheme, this confirms our conclusions drawn in
section 3 that the use of the pole mass scheme (or a very small initial R value for the MSR
mass) leads to less reliable results in a fixed order QCD description at NLO accuracy, where
the resummation of the quasi-bound state effects is missing. The significant difference of
4.7 GeV between the central values in eqs. (4.3) and (4.4), as compared to the quoted scale
uncertainties, demonstrates the phenomenological relevance of this issue. This underpins
the importance of an adequate top mass scheme choice as well as a proper scale setting in
future mt extractions based on the mtt measurements.

Let us now comment on other recent extractions of the top-quark mass, which have
employed different methodologies. Data from the CMS Collaboration for the tt production
cross section collected in pp collisions at the LHC at

√
s = 13 TeV have been used pre-

viously for a determination of the top-quark mass using both, the pole and the MS mass
scheme [20, 59]. The emphasis of those analyses has been on keeping the correlations of
the top-quark mass with the strong coupling αs(mZ) and the PDFs. In a different thread
of analyses, the running of top quark MS mass mt(µm) has been studied at NLO [15] and
NNLO [60] with dynamical scales, using data from the CMS Collaboration for the mtt
distributions.4

Of these analyses, the results of ref. [20] can be compared to the present work, since they

4See also http://cms-results.web.cern.ch/cms-results/public-results/publications/TOP-19-007/
index.html#Figure-aux_001.
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are obtained from normalized multi-differential cross sections which also include the low mtt
region discussed here, and the theoretical predictions are also based on the NLO MCFM
cross section description. Ref. [20] quotes mpole

t = 170.5 ± 0.8 GeV, which, if interpreted
as the asymptotic pole mass [46], translates into mMSR

t (1 GeV) = 170.2 ± 0.8 GeV. This is
compatible with the variant of the present study in eq. (4.4) obtained by directly fitting
mMSR

t (1 GeV) to data, although the combined fit of mpole
t , αs(mZ) and PDFs in ref. [20]

reports a smaller value of αs(mZ) than used in eq. (4.4) on the basis of the ABMP16 PDF
set, and a somewhat different gluon PDF. The result of ref. [20] is systematically lower
than those obtained using inclusive tt cross section measurements [21–23]. The results of
our analyses shown in eqs. (4.2) and (4.3) demonstrate that a larger and more reliable value
could be obtained once the quasi-bound state, and potentially also NNLO corrections, are
accounted for.

The value for the top quark MSR mass of mMSR
t (3 GeV) = 169.6+0.8

−1.1 GeV, which cor-
responds to mMSR

t (1 GeV) = 169.9+0.8
−1.1 GeV, has been extracted in ref. [24], using the CMS

data of ref. [20] and the same methodology, i.e. using fixed-order QCD perturbation theory
at NLO accuracy, so that mMSR

t (3 GeV) has been fitted simultaneously with the PDFs and
strong coupling constant. Evolving the result of the present study in eq. (4.3) to R = 3 GeV
yields

mMSR
t (3 GeV) = 174.5 ± 0.5 (fit)+0.2

−0.4 (µr, µf )+0.2
−0.3 (R) GeV , (4.5)

which indicates some tension as well.5 The result of ref. [24] is very close to the one obtained
in ref. [20] because using the MSR mass with a very low R results in a value very close to
the pole mass, as discussed above. The result obtained for the MSR mass mMSR

t (3 GeV) in
ref. [24] and the differences obtained in our analyses shown in eq. (4.4) in comparison to
eqs. (4.2) and (4.3) underline that just using the MSR mass mMSR

t (R) instead of the pole
mass may not lead to a different result at all if the scale R is not chosen in an adequate way.
Further, ref. [24] has obtained αs(mZ) = 0.1132+0.0023

−0.0018, which is two standard deviations
away from the value of the ABMP16 fit at NLO [56] used in the extraction of eq. (4.5). The
similar values of mMSR

t (3 GeV) in ref. [24] and in eq. (4.4) indicate a less significant impact of
the value of αs(mZ) on the mt extraction for the observable under consideration. A related
observation was made for the top quark mass sensitivity in the 2-jettiness distribution
analyzed in refs. [61] for boosted top pair production e+e− collisions.

Notably, neither any of the cited previous top quark mass extractions based on the
LHC data nor the present work have included the aforementioned corrections for the quasi-
bound state effects. However, the extraction of the top quark MSR mass using predictions
in the MSR scheme at the scale R = 80 GeV profits from the smaller size of these effects
and thus from an improved stability of the cross section.

We note that the ATLAS Collaboration has derived a value for the top quark MSR
mass at the reference scale R = 1 GeV in ref. [30] by comparing QCD predictions at next-
to-leading logarithmic accuracy for the soft-drop groomed top quark jet mass distribution

5The computations in ref. [24] rely on the practical MSR (pMSR) definition [13] instead of the natural
MSR (nMSR) scheme used in this work. The difference is at the level of 10 MeV [13] and thus negligible
for the uncertainties quoted.
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to parton shower Monte Carlo simulations for a Monte-Carlo top quark mass mMC
t =

172.5 GeV. Obtained in the Monte Carlo calibration (following [61]), the result of ref. [30]
is not based on experimental data and hence cannot be directly compared to the results of
the present study.

5 Summary and conclusions

We have presented the first comprehensive study of the mtt distribution in its dependence
on the mass renormalization scales R and µm of the MSR and MS top quark mass schemes.
Our findings suggest that using the MSR mass mMSR

t (R) with the scale setting of R close
to 80 GeV improves the robustness of the predictions for the mtt distribution against scale
variations in general and, in particular, against the impact of quasi-bound state corrections
in the region of mtt close to the tt threshold. The theory predictions used in our study are
based on the NLO fixed order QCD description provided by the MCFM program, adapted
to the MSR and MS top quark mass schemes. The optimized scale choices for those mass
schemes are characterized by low values of the renormalization and factorization scales µr

and µf . This holds in particular in the vicinity of the tt production threshold region in
the mtt distribution, where values µr ≃ µf ≃ mt/2 are observed to stabilize cross section
predictions and to decrease the scale uncertainty in the determination of the MSR mass.

These settings have been applied in an extraction of the top quark MSR mass at
R = 80 GeV, using tt pair production cross section, measured as a function of mtt in
pp collisions at

√
s = 13 TeV at the LHC by the CMS Collaboration, using fixed-order

perturbative QCD predictions at NLO accuracy and also the semi-dynamical scales for
µr, µf in the low-mtt regime. The fitted value of mMSR

t (80 GeV) has then been evolved
to various low reference scales R, rather than computing the cross sections directly at
low R as performed in earlier analyses. This procedure yields the value mMSR

t (3 GeV) =
174.5+0.6

−0.7 GeV, which is discussed in the context of other recent extractions of the top
quark mass from LHC data. The observed differences are explained to a large part by the
scale choice of R = 80 GeV for the top quark MSR mass, advocated by the present study,
signifying the achieved systematic resummation of higher order QCD corrections. Other
reasons for differences are due to the choice of the value for the strong coupling αs(mZ),
which directly affects the normalization of the cross section and is anti-correlated with the
top quark mass, and, to a lesser extent, due to the particular PDF sets used.

While we have argued that the implementation of the MSR mass scheme in the tt
cross section calculation and the optimal scale choice for R of 80 GeV provide more robust
predictions even at NLO accuracy, the findings should be corroborated by extending the
analysis to NNLO accuracy. In addition, the proper treatment of both, the quasi-bound
state effects, together with a matching to the relativistic tt region, and the mtt region below
the threshold are further important improvements to be implemented. A final reliable
measurement of the top quark MSR mass needs to address those issues as well as the
correlation of the top quark mass with the other theoretical parameters, which control the
cross section predictions. We leave these aspects for future studies.
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