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consider the 2d CPN´1 sigma model as an example and construct a weak-coupling setup of
this interface theory by considering the small S1 compactification with nonzero winding
θ parameter and a suitable symmetry-twisted boundary condition. This system has N
classical vacua connected by fractional instantons, but the anomaly constraint tells us that
the fractional-instanton amplitudes should vanish completely to have N -fold degeneracy at
the quantum level. We show how this happens in this purely bosonic system, uncovering
that the integration over the zero modes annihilates the fractional instanton amplitudes,
in sharp contrast to what happens when the θ angle is constant. Moreover, we provide
another explanation of this selection rule by showing that the N perturbative vacua acquire
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1 Introduction

When a continuous field in a quantum field theory (QFT) is classified by a topological charge
Qtop P Z, the QFT has a parameter θ known as the vacuum angle [1–4]. Its interpretation
as an angle is due to the fact that it enters the path integral weight through the factor
exppi θ Qtopq. Although the 2π-periodicity in θ is a rigorous property of the partition
function and local correlation functions in closed spacetimes, it is not necessarily a property
of the vacuum wavefunction itself. As the 2π-periodicity of the partition function only
implies the unitary equivalence of the systems at θ and θ ` 2π, it is possible that the
ground-state wave functions at θ and θ ` 2π are orthogonal to each other. If this is the
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case, then even if the system is trivially gapped at generic values of θ, there has to be a
phase transition as we continuously rotate θ by 2π, as in fact happens for 4d Yang-Mills
theory [5–8] and the 2d CP 1 sigma model [9, 10].

Recent advances in generalized symmetries and anomalies provide new perspectives
into QFT dynamics and, in particular, clarify the kinematical origin for the existence of the
phase transition at θ “ π. In both 4d Yang-Mills theory and the 2d CPN´1 sigma model,
the partition function with background gauge fields for symmetries is not invariant under a
2π shift in θ, but acquires a local counter term in the background gauge fields [11–18]. This
proves that the trivially gapped states at θ and θ` 2π (for generic values of θ) are different
symmetry-protected topological (SPT) states, and thus there must be a phase transition
separating them.

When two states belong to different SPT phases, there exists nontrivial physics at the
interface between them. We can create such an interface by promoting the θ angle to a
position-dependent background field θpxq such that θpxÑ ´8q ă π and θpxÑ `8q ą π.
Since we can regard the interface as the boundary of an SPT state, the dynamics at the
interface is subject to an ’t Hooft anomaly matching constraint, which rules out the trivially
gapped phase. One of the purposes of this paper is to construct a strategy to study its
dynamics using reliable semiclassical computations.

In this paper, we study the 2d CPN´1 sigma model on S1ˆR with a position-dependent
θ angle as an emblematic example. The θ angle depends on the compactified direction
x P S1, and moreover it can have a nonzero winding number:

θpx` Lq “ θpxq ` 2πw, (1.1)

with some w P Z. Although such a configuration of θ seems to have a discrete jump
at some location in S1, the angular nature of θ allows us to make the jump physically
transparent [17, 18], as in the cases of symmetry-twisted boundary conditions. When the
S1 is much larger than the strong-interaction scale, LΛ " 1, the local dynamics should be
identical to that of the infinite volume limit. At each place θpxq goes across an odd integer
multiple of π, the interface of different SPT states appears and supports the projective
representation of PSUpNq flavor symmetry. In particular, when w is not a multiple of
N , the total Hilbert space should belong to a projective representation of the PSUpNq
symmetry so that each energy eigenstate must have at least N -fold degeneracy, which is a
rigorous consequence of the anomaly matching with nonzero winding θ angle.

For constant θ, the PSUpNq symmetry-twisted boundary condition provides a suitable
framework for the semiclassical analysis of the ground-state property of CPN´1 model [19,
20]. There are N classical vacua in the symmetry-twisted boundary condition, and tunneling
processes connect them with the fractional topological charge, which naturally explains the
N -branch structure of the ground states. There is a symmetry reason behind this adiabatic
continuity, as the symmetry twist retains the ’t Hooft anomaly of 2d theory under the
reduction to quantum mechanics by S1 compactification [21]. Furthermore, in the large-N
limit, this symmetry twist is the necessary and sufficient condition for the theory to satisfy
volume independence [22]. Motivated by these successes, we discuss the PSUpNq twisted
boundary condition with a nonzero winding θ angle.
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Figure 1. With symmetry-twisted boundary condition, the CPN´1 model has N classical vacua
and fractional instantons with moduli τ˚ P R and ϕ˚ P S

1. When θ has nonzero winding around
the spatial circle, the integration over the ϕ˚ modulus gives rise to destructive interference which
annihilates the transition amplitude.

The upshot of our work is the following: depending on whether θ has a nonzero winding
number, the role of fractional instanton becomes completely different. In both situations,
we have N classical vacua, and fractional instanton configurations interpolate between them.
For constant values of θ ‰ π, the fractional instantons lift the degeneracy, and we get the
unique ground state. For winding θ, however, the anomaly tells us that the quantum vacua
should have N -fold degeneracy. How can the instanton amplitudes completely vanish in a
purely bosonic system?

The dilute (fractional) instanton gas analysis in a weak coupling regime is valid either
with a constant or a nonzero winding θ angle. Due to subtle effects associated with the
definition of such a θ term, we find that one of the instanton zero-mode directions affects
the instanton amplitude and adds a purely imaginary term to the instanton action. The
integration over that zero-mode direction leads to the vanishing of all transition amplitudes
between consecutive classical vacua, i.e.

xk ` 1|e´βĤ |ky „
#

e´
SI
N
`i θ

N

ş2π
0 dϕ˚ constant θ,

e´
SI
N
`i θ̄

N

ş2π
0 dϕ˚ eiwϕ˚ “ 0 winding θ,

(1.2)

where ϕ˚ is a bosonic zero mode of the fractional instanton (see figure 1). The latter gives
the destructive interference between Euclidean path histories and the transition amplitude
vanishes. It is opposite to what happens in the case where θ is kept fixed as a function of
the compact dimension. As a consequence, the classical N -fold degeneracy is maintained
even at the quantum level for the nonzero winding θ angle. It is important to emphasize
that the density of instantons in both Euclidean vacua is the same, but the effect they lead
to are opposite.

This remarkable effect has an equally interesting implication in the Hilbert space and
operator formalism. The states |ky acquire nontrivial charges of the Up1qN´1{ZN symmetry
for the winding θ angle, while they are neutral for constant θ. We show this by simply
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applying Noether’s theorem in the presence of winding theta for a Up1q subgroup. We find
the simple formula

Q̂|ky “ wk|ky, (1.3)

where w is winding numnber (1.1). This is analogous to the Witten effect, where magnetically
charged particles acquire an electric charge once a (constant) theta angle is turned on [23].
When the states become charged, the vanishing of the transition amplitudes (1.2) and the
degeneracy of ground states are naturally implied by the selection rule.

To elucidate the destructive interference phenomena, we also provide a basic example
from quantum mechanics with and without the Berry phase, and this example with the
Berry phase also serves as the interface theory between two different SPT states. After
studying its ’t Hooft anomaly, we introduce a potential term to have N classical minima
and perform the dilute instanton gas approximation. Without the Berry phase, these N
classical vacua are lifted non-perturbatively due to instanton effects. Once a particular
Berry phase is added, various instanton paths between a given pair of degenerate minima
add up to zero. As a result of this destructive interference, the N -fold degeneracy remains
intact, which is quite parallel to the weak-coupling analysis of the nonzero winding θ angle.

2 2d CPN´1 model and its generalized anomaly

In this section, we describe the generalized anomaly of 2d CPN´1 sigma model about its θ
periodicity and discuss its physical consequences. This is basically a brief review of ref. [13].
We also give its interpretation from the SUpNq spin chain.

2.1 Generalized mixed anomaly between PSUpNq symmetry and θ periodicity

The 2d CPN´1 sigma model is defined by the Euclidean action,

S “
1
g2

ż

M
|pd` iaq~z |2 ` iθ

2π

ż

M
da. (2.1)

Here, M is the closed 2d spacetime manifold, ~z is the CN -valued field with |~z |2 “ 1, and
a is the Up1q gauge field. In the following sections, we shall extend the case where the θ
parameter depends on the position. Here, for simplicity, let us keep it to be constant.

The θ parameter is 2π periodic due to the Dirac quantization of the Up1q gauge field,
and we also have

• PSUpNq symmetry,

• C symmetry at θ P πZ.

The PSUpNq symmetry refers to the projective SUpNq rotation of the gauge-invariant spin
variables z˚i zj . On the spinon fields ~z, it acts as an SUpNq transformation,

~z ÞÑ U~z, (2.2)
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with U P SUpNq. However, the transformation by center elements, e 2πi
N
k1N , can be absorbed

by the Up1q gauge redundancy, and the actual symmetry acting on local gauge-invariant
operators is given by the quotient group, PSUpNq » SUpNq{ZN .

The C symmetry is the charge conjugation, zi Ñ z˚i , which flips the sign of the gauge
field a Ñ ´a. The kinetic term is manifestly invariant under C, but the θ parameter
effectively flips its sign. Therefore, it is explicitly broken at generic values of θ, but it is
present when θ P πZ. For θ “ 0, it is obvious since C : θ “ 0 Ñ ´θ “ 0. For θ “ π, we have
C : θ “ π Ñ ´θ “ ´π „ π due to the 2π periodicity of θ, and we obtain the C symmetry
at θ “ π.

In order to detect the ’t Hooft anomaly, let us introduce the PSUpNq background gauge
field, which consists of

• A: UpNq 1-form gauge field,

• B: Up1q 2-form gauge field,

satisfying the constraint
NB “ d ptrpAqq . (2.3)

The UpNq 0-form and Up1q 1-form gauge transformations are given by

A ÞÑ h:Ah´ ih:dh` λ1N , (2.4)
B ÞÑ B ` dλ, (2.5)

where h is a UpNq-valued function and λ is a Up1q 1-form gauge field. We have to keep
this invariance in the minimal coupling procedure. In particular, invariance of the gauged
kinetic term,

1
g2 |pd` ia` iAq~z |2, (2.6)

shows that the dynamical fields z and a should transform as

~z ÞÑ h:~z, a ÞÑ a´ λ. (2.7)

As a result, the Up1q field strength da is no longer gauge invariant, so it should be replaced
by the gauge-invariant combination da`B.

The partition function with the PSUpNq background gauge field is given by

ZθrA,Bs “

ż

D~z ˚D~zDa exp
ˆ

´
1
g2

ż

M2

|pd` ia` iAq~z |2 ´ i θ2π

ż

M2

pda`Bq
˙

. (2.8)

This violates the 2π periodic property of the θ angle very mildly, and we find

Zθ`2πrA,Bs “ exp
ˆ

´i
ż

M2

B

˙

ZθrA,Bs. (2.9)

That is, the local counterterm of the background gauge field is shifted by the 2π rotation of
θ. We note that there do not exist any 2d local gauge-invariant counterterms that eliminate
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it. If we regard the above 2d system as a boundary theory of a 3d bulk topological theory,
then the partition function of the combined system,

ZθrA,Bs exp
ˆ

i
ż

M3

1
2πθ dB

˙

, (2.10)

with BM3 “M2 satisfies both the gauge invariance and the 2π periodicity of θ [13, 14] and
this is an analogue of the anomaly cancellation via the inflow mechanism.

This already gives an important constraint: The ground states cannot be trivially
gapped at least for one of the θ angle [16–18]. If the system is trivially gapped, i.e. has the
unique and gapped ground state, then the system belongs to a certain class of 2d SPT state
with PSUpNq symmetry. As we can see from H2pBPSUpNq,Zq » ZN , there are N different
SPT states described by the classical topological action, k

ş

M2
B, with k „ k`N , and thus

ZθrA,Bs

|ZθrA,Bs|
“ exp

ˆ

ik
ż

B

˙

(2.11)

for a certain value of k P ZN . The above relation (2.9) tells that

Zθ`2πrA,Bs

|Zθ`2πrA,Bs|
“

exp
´

´i
ş

M2
B
¯

ZθrA,Bs

|ZθrA,Bs|
“ exp

ˆ

ipk ´ 1q
ż

M2

B

˙

. (2.12)

Therefore, the level of the SPT action must be shifted under the 2π rotation of θ. As k is a
discrete variable, it cannot jump as a function of θ unless there exists a quantum phase
transition. Therefore, for a certain value of θ “ θ˚ P R{2πZ, the system should have a
massless excitation or degenerate ground states.

The presence of the charge-conjugation symmetry at θ “ 0 and θ “ π gives more
detailed data. We can readily obtain the following:

C : Zθ“0rA,Bs ÞÑ Zθ“0rA,Bs, (2.13)

C : Zθ“πrA,Bs ÞÑ Zθ“´πrA,Bs “ exp
ˆ

i
ż

M2

B

˙

Zθ“πrA,Bs. (2.14)

While the partition function at θ “ 0 is manifestly C-symmetric even with the presence of
the PSUpNq background gauge field, the partition function at θ “ π has the shift of the
local counter term.

Let us assume that the system at θ “ π is trivially gapped. If so, the phase of its
partition function is given by the SPT action and thus

ZπrA,Bs “ |ZπrA,Bs| exp
ˆ

i`
ż

B

˙

(2.15)

with some integer ` „ ``N . Then, (2.14) requires that

´ ` “ 1` ` mod N. (2.16)

Since this becomes 2` “ ´1 mod N , such an integer ` does not exist when N is even.
Equivalently, we can argue that there is no local counterterm that eliminates the anomalous
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phase of (2.14) and thus the anomaly matching condition rules out the trivially gapped
phase at θ “ π.

When N is odd, we can find the solution, ` “ N´1
2 . Of course, this does not necessarily

mean that the phase at θ “ π has to be trivially gapped, and it is more natural to assume
the spontaneous breaking of C symmetry at θ “ π as in the case of even N . If we assume
that the system at θ “ π become trivially gapped, it should be described by the specific
level of the SPT action, k “ ` “ N´1

2 . We can look at the charge-conjugation symmetry
at θ “ 0 given in (2.13), which shows that the SPT state at θ “ 0 must have the level
k “ 0. As these levels are different, the phase transition should separate them. Similarly,
the SPT action at θ “ 2π should have the level k “ ´1, so it should also be separated by
the SPT state at θ “ π by the phase transition. The discussion here is the summary of the
global inconsistency condition [12–15]. In the large-N limit, the CPN´1 sigma model can
be solved exactly as the mean-field analysis becomes exact, and it shows that the system is
gapped with the unique ground states for θ ­“ π [24], and that there are doubly degenerate
ground states at θ “ π due to the spontaneous C breaking. This is believed to be true
for N ě 3, and N “ 2 is special because the CP 1 sigma model at θ “ π describes the
SUp2q antiferromagnetic spin chain of half-integer spins [9, 10], which is widely believed to
have critical behaviors described by the SUp2q level-1 WZW theory with the marginally
irrelevant JJ̄ deformations. We then assume in the following discussion that the systems at
θ ­“ π are trivially gapped.

2.2 θ domain wall and interpretation from the SUpNq spin chain

So far, the θ parameter is taken to be a constant in the spacetime. Let us extend our
discussion to the case when the θ parameter depends on the spacetime coordinate px, τq.
For simplicity of the discussion, we may take our spacetime as R2, and θ depends only on
the spatial coordinate x. As an example, we consider the following profile of θpxq:

θpxq “ π ` δθ tanhpx{`q, (2.17)

where δθ is a positive parameter, which is not too large, and ` characterizes the length scale
for the change of θ near the origin.

When x ! ´`, θpxq » π´ δθ behaves almost as the constant, and thus the bulk physics
should be described by the unique and gapped ground state. The same is true for the region
x " `, where θpxq » π ` δθ is again almost a constant. Then, the question is whether we
have an interesting low-energy dynamics around the θ interface at the origin. We will see
that there has to be the N -fold degeneracy for the effective quantum mechanics localized
on the θ domain wall.

To get physical intuition, it is convenient to think this problem in the language of the
SUpNq spin chain. For this purpose, we note that the 2d CPN´1 sigma model at θ “ π

can be regarded as the low-energy effective theory of a certain SUpNq spin chain with the
fundamental representation on odd sites and the anti-fundamental representation on even
sites [25–27] (we also give the derivation in appendix B). As the one-unit lattice translation
associated with the complex conjugation of SUpNq spins leads to the Z2 charge conjugation
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✓ < ⇡ vacuum-1

✓ > ⇡ vacuum-2

✓�wall, free SU(N) spin

Figure 2. By tuning staggering interaction in an SUpNq spin chain, one can emulate θ ă π or
θ ą π, corresponding to two distinct vacua. A free SUpNq spin quantum mechanics lives on the
θ-domain wall.

symmetry in the effective field theory, we can slightly shift the θ parameter from π by
adding the small staggered interaction that explicitly breaks the one-unit lattice translation.

We can now understand the two-fold degenerate ground states at θ “ π as follows. As
the two-fold degeneracy is associated with the spontaneous C breaking in CPN´1 sigma
model, the lattice translation symmetry Z should be spontaneously broken to the even-site
translations 2Z in the SUpNq spin chain. Then, the valence bond solid (VBS) states arise as
a natural picture to interpret such ground states. That is, the ground-state wave function
can be understood as the spin singlet pair between neighboring SUpNq spins. The two-fold
degeneracy is then the consequence of the fact that the spin singlet can be formed with
the equal possibility between odd-even pairs and even-odd pairs (denoted with orange and
blue pairs in figure 2). By adding the staggered interaction, one of the spin singlet pairs is
preferred compared with the another and we get the unique ground state.

The space-dependent θ given in (2.17) can be realized by flipping the sign of the
staggered interaction around x “ 0. As shown in figure 2, one of the spin at the interface is
free from the singlet pairing. Therefore, we should have N degenerate states on the wall.
As the interface state belongs to the projective representation of PSUpNq, it cannot be
screened by the interaction with the bulk excitations.

In other words, the ground state for x ă 0 belongs to the level-0 SPT state, while
the one for x ą 0 belongs to the level-1 SPT state with PSUpNq symmetry, as we have
discussed. Then, the interface at x “ 0 can be regarded as the boundary of the level-1
SPT state, so it must support the low-energy excitations in the projective representation of
PSUpNq symmetry by the anomaly-inflow mechanism.

2.3 Detecting the anomaly with a spatially winding θ configuration

Let us consider the cylinder geometry, M2 “ S1ˆR, and we introduces the space-dependent
θ angle, θpxq with x P S1. Moreover, we introduce the nonzero winding number, θpx`Lq “
θpxq ` 2πw with w P Z. As we will review in appendix A, the 2π jump of the θ parameter
can be made physically transparent thanks to the periodic property. Therefore, when the
size of S1 is large, this is the setup with w interfaces, and each interface supports the
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fundamental representation of SUpNq as discussed above. Then, the Young diagram for the
SUpNq representation of the ground states must be given by some w-box representation
(modN). That is, the Hilbert space of the spatially winding θ angle has to be in the
projective representation of the PSUpNq flavor symmetry when w R NZ.

We can explain this physical intuition in more formal language. As we have discussed
in (2.10), the 2d CPN´1 sigma model with the spatially varying θ angle can be understood as
the boundary of the 3d SPT action, 1

2π
ş

M3
θ dB „ ´ 1

2π
ş

M3
dθ^B. By takingM3 “ S1ˆM 1

2,
where BM 1

2 “ R (here we formally regard R is the infinitely large S1),

1
2π

ż

S1ˆM 1
2

dθ ^B “ 1
2π

ż

S1
dθ

ż

M 1
2

B

“ w

ż

M 1
2

B. (2.18)

Therefore, the effective quantum mechanics should be regarded as the boundary of the
classical 2d Dijkgraaf-Witten-type theory, and via the anomaly inflow, its Hilbert space is
in some projective representation of PSUpNq symmetry with N -ality w mod N .

We note that the above analysis only specifies the N -ality of the projective representa-
tion, and we need more detailed data to specify exactly which representation appears.

3 CPN´1 quantum mechanics with Berry phase

In this section, we discuss the quantum mechanics with CPN´1 target space with the
Berry phase. For a suitable choice of the level for the Berry phase, this is expected to be
the interface theory. Furthermore, this gives a nice exercise for the semiclassical study of
nontrivial winding θ studied in the next section.

The Euclidean action is

S “ p

ż

~z :Bτ~z dτ `
ż
"

1
g2 |pBτ ` iaτ q~z |2 ` V pz˚i zjq

*

dτ. (3.1)

The first term is the Berry phase and the second term describes the kinetic and potential
terms. This action has the local Up1q gauge invariance, ~zpτq ÞÑ e´iαpτq~zpτq and aÑ a` dα.
The gauge invariance of the kinetic term and the potential term is manifest. On the other
hand, the Berry phase does not have such a manifest invariance as the time derivative is
not gauge covariant. The change of the Berry phase is given by

SB “ p

ż

~z :d~z ÞÑ p

ż

peiα~z :qdpe´iα~z q “ SB ´ ip
ż

dα. (3.2)

Since
ş

S1 dα P 2πZ, the path-integral weight does not change under the Up1q gauge trans-
formation if and only if p P Z. We note that the Berry-phase term naturally appears when
we consider the coherent-state path integral of SUpNq spins (see appendix B.1), and p P Z
corresponds to the number of boxes in the Young tableaux for totally symmetric represen-
tation.

– 9 –



J
H
E
P
0
9
(
2
0
2
3
)
0
3
3

3.1 Anomaly of ZN ˆ ZN Ă PSUpNq

PSUpNq anomaly. When the potential term V is absent, this system has PSUpNq “
SUpNq{ZN symmetry. We can introduce the PSUpNq background gauge field pA,Bq as we
have discussed in section 2.1. Let us discuss the Berry phase with the presence of pA,Bq.
In order to have the UpNq gauge invariance, we must replace it by

SB “ p

ż

~z :d~z ñ SBrAs “ p

ż

~z :pd` iAq~z. (3.3)

Even though this has the local UpNq gauge invariance, it changes under the Up1q 1-form
gauge transformation,

SBrA` λ1N s “ SBrAs ` ip
ż

λ. (3.4)

To cancel this anomaly, we can introduce the local counterterm, ´i pN
ş

trpAq, but this
is not large UpNq gauge invariant unless p is an integer multiple of N . Therefore, for
p R NZ, the relation (3.4) describes an ’t Hooft anomaly of PSUpNq symmetry. Indeed,
this quantum mechanical system can be regarded as the boundary excitations of p1` 1qd
symmetry-protected topological (SPT) system, and its topological action is given by

S2d SPTrA,Bs “ ip
ż

B, (3.5)

with p „ p`N . The anomaly (3.4) is now canceled by the anomaly-inflow mechanism. As
a consequence of the anomaly matching, energy eigenstates must have nontrivial degeneracy
for p ­“ 0 mod N . Especially when gcdpp,Nq “ 1, each energy eigenvalue must have at least
N degenerate states.

ZN ˆ ZN anomaly. Let us turn on the potential term V , which breaks the PSUpNq spin
rotation symmetry to a smaller subgroup. We are interested in the case when V preserves
the nontrivial subgroup,

pZN qclock ˆ pZN qshift Ă PSUpNq, (3.6)

of the spin rotation symmetry. We shall see that this carries the essential information of
the above ’t Hooft anomaly [15].

These ZN symmetries are generated by the clock and shift matrices in UpNq,

pCqmn “ e
2πi
N
pn´1qδmn, pSqmn “ δm`1n, (3.7)

where indices are understood in mod N . This satisfies

CN “ SN “ 1N , (3.8)

and they commute up to the center elements,

SC “ e
2πi
N CS. (3.9)

This shows that the ZN ˆ ZN symmetry is projectively realized for the spinon fields z.
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In order to see the ’t Hooft anomaly, let us introduce the background gauge field AC
for pZN qclock. It can be realized as the Up1q gauge field with the constraint,

NAC “ dΦC , (3.10)

where ΦC is a 2π-periodic scalar field. We require the Up1q gauge invariance,

AC ÞÑ AC ` dα, ΦC ÞÑ ΦC `Nα, (3.11)

and

zn ÞÑ e´ipn´1qαzn. (3.12)

When we set α P 2π
N Z, this is identical to the global pZN qclock transformation on the spinon

field z. Since V maintains pZN qclock, it can be made invariant under the continuous Up1q
symmetry by multiplying an appropriate integer power of eiΦC to each term of V . To satisfy
the above Up1q gauge invariance, the kinetic term is replaced as

1
g2

N
ÿ

n“1
|pd` ia` ipn´ 1qACqzn|2. (3.13)

In this way, we can obtain the pZN qclock gauged action.
Next, let us determine the pZN qshift transformation under the presence of the background

gauge field AC . It is convenient to require that the gauged kinetic term becomes invariant
under the transformation, and it should reduce to the original one zn ÞÑ zn`1 and a ÞÑ a

when we turn off AC . After some trials, we can find the following transformation satisfies
the above requirements,

pZN qshift :

$

’

&

’

%

zn ÞÑ zn`1, pn “ 1, . . . , N ´ 1q
zN ÞÑ e´iΦCz1,

a ÞÑ a`AC .

(3.14)

It is evident that this reduces to the original transformation when we set AC “ 0, ΦC “ 0.
We can also confirm that (3.13) is invariant under (3.14) by noting that NAC “ dΦC .

So far, we have seen that pZN qclock can be gauged in a pZN qshift symmetric way for
the kinetic and potential terms. We must examine the property of the Berry phase. The
pZN qclock gauge-invariant Berry phase is given by

SBrACs “ p

ż N
ÿ

n“1
z˚npd` ipn´ 1qACqzn. (3.15)

Under the pZN qshift transformation, it changes as

pZN qshift : SBrACs

ÞÑ p

ż

˜

eiΦCz˚1 pd` ipN ´ 1qACqpe´iΦCz1q `
N´1
ÿ

n“1
z˚n`1pd` ipn´ 1qACqzn`1

¸

“ p

ż N
ÿ

n“1
z˚npd` ipn´ 2qACqzn

“ SBrACs ´ ip
ż

AC . (3.16)
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Since
ş

S1 AC P
2π
N Z, this gives a nontrivial anomaly if p ­“ 0 mod N and it corresponds to

the PSUpNq anomaly (3.4). For gcdpp,Nq “ 1, this requires the N -fold degeneracy of each
energy eigenvalue despite the fact that the PSUpNq symmetry is explicitly broken down to
ZN ˆ ZN . Indeed, when we simultaneous introduce the background gauge fields AC , AS for
the clock and shift ZN symmetries, the B field of the PSUpNq gauge field can be replaced as

B “
N

2πAC ^AS , (3.17)

and this quantum mechanical system can be regarded as the boundary of the 2d SPT
action (3.5) by substituting this expression [15].

3.2 Semiclassics, destructive interference, and N-fold degeneracy

In this section, we shall observe the N -fold degeneracy for the p “ 1 case in an explicit
manner. For this purpose, we introduce a specific potential V that breaks PSUpNq to
ZN ˆ ZN , and perform the semiclassical calculations to find the ground states.

Let us decompose the potential V as

V “ V0 ` V1, (3.18)

where V0 " V1, and thus we can restrict the effective degrees of freedom to the classical
vacuum of V0. As a specific choice, we can take

V0 “ J0

N´1
ÿ

n“1
p|zn|

2 ´ |zn`1|
2q2, (3.19)

with J0 Ñ8. The classical moduli are now restricted to

|z1| “ |z2| “ ¨ ¨ ¨ “ |zN | “
1
?
N
, (3.20)

and it is parametrized as the pN ´ 1q-dimensional torus TN´1,

~z “
1
?
N

¨

˚

˚

˚

˚

˝

1
eiφ1

...
eiφN´1

˛

‹

‹

‹

‹

‚

. (3.21)

This makes computations much easier since the target space is significantly simplified from
CPN´1 to TN´1. Here, we completely fix the Up1q gauge redundancy by declaring z1 ą 0.
We note that this can be done without introducing any singularities because |z1| “

1?
N
­“ 0

everywhere. Substituting this expression (3.21) into the action, we obtain

S “
ip
N

ż N´1
ÿ

n“1
pdφnq `

ż

dτ
˜

1
2

N´1
ÿ

n,m“1

9φnMnm
9φm ` V1pφnq

¸

, (3.22)

where 9φn “ Bτφn and the mass matrix Mnm is given by

Mnm “
2

g2N

ˆ

δnm ´
1
N

˙

. (3.23)

Here, we describe V1 as a function of φn.
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Let us determine how the ZN ˆ ZN symmetry acts on the fields φn. The pZN qclock
symmetry is obvious and it acts as

pZN qclock : φn ÞÑ φn `
2π
N
n. (3.24)

The pZN qshit symmetry is less trivial, and it is good to work on the z field. It turns out
that we should combine the Up1q gauge transformation after the multiplication of the shift
matrix S:

~z “
1
?
N

¨

˚

˚

˚

˚

˝

1
eiφ1

...
eiφN´1

˛

‹

‹

‹

‹

‚

pZN qshift
ÝÝÝÝÝÑ S~z “

1
?
N

¨

˚

˚

˚

˚

˚

˚

˝

eiφ1

eiφ2

...
eiφN´1

1

˛

‹

‹

‹

‹

‹

‹

‚

Up1qgauge
ÝÝÝÝÝÝÑ

1
?
N

¨

˚

˚

˚

˚

˚

˚

˝

1
eipφ2´φ1q

...
eipφN´1´φ1q

e´iφ1

˛

‹

‹

‹

‹

‹

‹

‚

. (3.25)

As a result, the pZN qshift symmetry acts on φn as follows,

φn ÞÑ φn`1 ´ φ1 pn “ 1, . . . , N ´ 2q, φN´1 ÞÑ ´φ1. (3.26)

Although it is not so apparent, it is straightforward to confirm that the kinetic term is
invariant under the pZN qshift symmetry. The Berry phase transforms as

SB ÞÑ
ip
N

ż

˜

N´2
ÿ

n“1
pdφn`1 ´ dφ1q ´ dφ1

¸

“ SB ´ ip
ż

dφ1, (3.27)

and thus the path-integral weight is invariant for p P Z.
The potential term V1pφnq must satisfy the above symmetry requirements. For our

purpose, its detailed form is not important at all, and let us assume that its classical vacua
are given by the following N sets,

~φpkq “

¨

˚

˚

˚

˚

˝

φpkq,1
φpkq,2
...

φpkq,N´1

˛

‹

‹

‹

‹

‚

“
2πk
N

¨

˚

˚

˚

˚

˝

1
2
...

N ´ 1

˛

‹

‹

‹

‹

‚

, (3.28)

with k “ 0, 1, . . . , N ´ 1. For example, in the case of N “ 3, we can realize this condition
by setting

V1pφ1, φ2q “ ´ J1 pcosp3φ1q ` cosp3φ2q ` cosp3pφ1 ´ φ2qqq

´ J2 pcospφ1 ` φ2q ` cospφ1 ´ 2φ2q ` cosp2φ1 ´ φ2qq , (3.29)
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with J1, J2 ą 0. Each vacuum ~φpkq is invariant under pZN qshift,

~φpkq
pZN qshift
ÝÝÝÝÝÑ

2πk
N

¨

˚

˚

˚

˚

˝

1
...

N ´ 2
´1

˛

‹

‹

‹

‹

‚

“ ~φpkq ´

¨

˚

˚

˚

˚

˝

0
...
0

2πk

˛

‹

‹

‹

‹

‚

„ ~φpkq, (3.30)

and the pZN qclock symmetry permutes them in a cyclic way, ~φpkq ÞÑ ~φpk`1q.
We would like to discuss if these N classical vacua are lifted by the quantum effect

or not. For this purpose, let us consider the imaginary-time tunneling process ~φpτq from
~φp0q to ~φpkq, i.e. ~φp0q “ ~φp0q and ~φpT q “ ~φpkq. When such a tunneling path exists, there is
always another path related by the pZN qshift symmetry, S ¨ ~φpτq. We note that the initial
and final points are the same for ~φpτq and S ¨ ~φpτq, but these paths are topologically distinct
in TN´1. Because of symmetry, the real parts of their Euclidean actions must be the same
for those paths. However, the Berry phase can be different because of its transformation
property (3.27), and we find that

SBrS ¨ ~φpτqs “ SBr~φpτqs ´ ip
ż τ“T

τ“0
dφ1

“ SBr~φpτqs ´
2πi
N
kp. (3.31)

Therefore, the Berry phase can cause the destructive interference. When there is not the
Berry phase, i.e. p “ 0, such an interference does not occur and we obtain the unique
ground states. For general values of p, however, we get

N´1
ÿ

`“0
e´SBrS

`¨~φpτqs “ e´SBr~φpτqs

#

“ 0 pk R NZ,
­“ 0 pk P NZ.

(3.32)

The destructive interference occurs unless k is a multiple of N{ gcdpp,Nq. We then obtain
N{ gcdpp,Nq degenerate vacua. Especially when p “ 1, the tunneling effects completely
cancel with each other (see figure 3). As a result, the N -fold degeneracy of the ground
states is robust, and this is consistent with the anomaly argument.

4 Semiclassical analysis of the 2d CPN´1 model on S1 ˆ R with winding
θ

In this section, we perform a semiclassical analysis of the 2d CPN´1 sigma model on S1ˆR.
In order to understand the physics of the θ interface, we promote θ to a background field
with nonzero winding number w P Z around the S1 direction:

ş

S1 dθ “ 2πw.
Since θ has nontrivial winding, it must be a nonconstant function on S1. In this case,

the proper definition of the θ term 1
2π

ş

“θ da” requires some care, as θ is not a genuine
real-valued function. For the general definition on arbitrary closed 2d manifolds, see ref. [17]
or the brief review in appendix A. For our specific situation in the cylinder spacetime,
a more naive approach can be given as follows. Let x be the coordinate of S1 with the
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2⇡i
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4⇡i
3
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1

1

Figure 3. In the pZN qclock ˆ pZN qshift symmetry preserving perturbation of the CPN´1 models
(figures are for N “ 2 and N “ 3), there exists N isolated vacua. Between a fixed pair of distinct
vacua, there exists N topologically distinct tunneling paths. The instanton actions associated with
these paths are equal due to symmetries. However, each path is associated with a distinct Berry
phase. As a result, there exists an exact destructive interference between tunneling paths, and the
N -fold vacuum degeneracy survives quantum mechanically. This is the semi-classical Berry phase
reason behind the anomaly.

periodic identification x „ x` L and regard θ as an angle-valued function on r0, Ls. Then
by choosing a smooth real-valued lift θ̂ : r0, Ls Ñ R of θ, we might attempt to define

1
2π

ż

S1ˆR
“θ da” ?

–
1

2π

ż

r0,LsˆR
θ̂ da. (4.1)

This, however, is not quite satisfactory. Because of the nontrivial winding of θ, we must
have θ̂pLq “ θ̂p0q ` 2πw, and therefore when we identify x “ L with x “ 0, θ̂ suffers a 2πw
jump, which implies a physical defect at x “ 0 „ L. Indeed, if we try to move the location
of the defect from x “ 0 to some other place x “ x0, then the value of the above integral is
changed by the amount

w

ż `8

´8

aτ px, τq dτ
ˇ

ˇ

ˇ

ˇ

x“x0

x“0
. (4.2)

To cancel this contribution, we dress the defect with the charge-w temporal Wilson line.
That is to say, if we take the definition

1
2π

ż

S1ˆR
“θ da” –

1
2π

ż

r0,LsˆR
θ̂ da´ w

ż `8

´8

aτ p0, τq dτ, (4.3)

then the location of the 2πw jump of θ̂ at x “ 0 can be moved to any other place on S1 as
long as the Wilson line is moved with it. It is with this definition of the θ term that we will
work, although in what follows we abuse notation and conflate θ with its lift θ̂.

If the size of S1 is much larger than the strong scale, LΛ " 1, then we have a θ interface
whenever θ crosses θ “ π which separates different SPT states with PSUpNq symmetry. At
an interface, there has to be a physical degree of freedom in a projective representation of
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PSUpNq symmetry, which gives rise to spectral degeneracy on the interface. We note that
since the 2π jump of θ is made physically transparent, there is no anti-wall in this setup.
In the following, we study the physics when the size of S1 is sufficiently small, NLΛ À 1,
using semiclassical computations with the flavor-twisted boundary condition.

4.1 Flavor-twisted boundary condition

Some compactifications provide settings in which strong coupling phenomena can be contin-
uously connected to the weak-coupling regimes where one gains control over nonperturbative
dynamics [28, 29]. In the 2d CPN´1 sigma model, such a compactification can be achieved
by using the flavor-twisted boundary condition

~zpx` L, τq “ C ¨ ~zpx, τq, (4.4)

where C is the clock matrix (3.7), or in components,

znpx` L, τq “ e
2πi
N
pn´1qznpx, τq. (4.5)

With this choice of boundary condition, the 2d CPN´1 sigma model can be studied using
reliable semiclassical computations when NLΛ À 1, and its dynamics is adiabatically
connected to the one in the infinite spacetime R2 [19, 20, 30–33]. The large-N limit of this
set-up satisfies volume independence and the compactified theory is equivalent to the theory
on R2 [22]. Moreover, the symmetry-twisted boundary condition plays an essential role in
maintaining the anomaly-matching constraint on the ground states as clarified in ref. [21]
(see also refs. [34–36]).

4.1.1 Symmetries and anomalies

When we take the flavor-twisted boundary condition, the continuous part of the PSUpNq
flavor symmetry is broken to its maximal Abelian subgroup Up1qN´1{ZN . In addition,
there is the ZN shift symmetry that cyclically permutes the flavor label combined with the
ZN center transformation [21, 37] (see also [38–40]). This contains the pZN qclock ˆ pZN qshift
subgroup, and the discussion in section 2.3 shows that the effective quantum mechanical
system can be regarded as the boundary of the 2d SPT phase,

Nw

2π

ż

AC ^AS , (4.6)

where AC and AS are the ZN gauge fields for the clock and shift symmetries, respectively.
The minimal number of the ground states to match this anomaly is given by

N

gcdpN,wq , (4.7)

and this would be the natural guess for the number of degenerate ground-states. Although
we have restricted our discussion to the pZN qclock ˆ pZN qshift subgroup of the full symmetry
group pUp1qN´1{ZN q ¸ pZN qshift, we reach the same conclusion even when we take into
account the full symmetry group [15, 41].
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4.1.2 Classical vacua

A key feature of the flavor-twisted boundary condition is that, at the classical level, there
are only N vacua, whereas in the absence of the twist, there is a whole manifold of classical
vacua given by CPN´1. To see this, let us look for zero action configurations, which we
may take to be independent of the time. Such a configuration z must satisfy the equations

Bτ~z “ 0, Bx~z “ ´iax~z.

It follows that z must take the form

~zpx, τq “ ~ζ eiσpxq

where ~ζ is a constant unit vector in CN and Bxσpxq “ ´axpxq. By a constant Up1q gauge
transformation, we may set σp0q “ 0. Now, we impose the requirement that ~z obey the
flavor-twisted boundary condition, and it gives

C ¨ ~ζ “ ~ζ eiσpLq;

that is, ~ζ is an eigenvector of C with eigenvalue eiσpLq. This eigenvalue problem is solved by

~ζ “ λ êk`1, σpLq “
2πk
N

mod 2π,

for some integer k P t0, . . . , N ´ 1u and λ P C of unit modulus. Here, êk`1 is the unit vector
along the pk ` 1q-th direction, êk`1 “ p0, . . . , 0, 1, 0, . . . , 0qT. By applying a τ -independent
Up1q gauge transformation, we can take λ “ 1 and σpxq in the form

σpxq “
2πkx
NL

.

Thus, we have found exactly N gauge-inequivalent classical vacua |ky, where the wave
function of |ky is supported on the gauge equivalence class of the field configuration

~ζpkqpxq “ exp
ˆ

2πikx
NL

˙

êk`1. (4.8)

Using the relation a “ i~z :d~z, we find that the gauge field associated with ~ζpkq is given by

aτ r~ζpkqs “ 0, axr~ζpkqs “ ´
2πk
NL

, (4.9)

which is a flat connection with holonomy expp´2πik{Nq around S1. Evidently, these
classical vacua are invariant under the clock symmetry and cyclically permuted by the
shift symmetry. By exchanging the role of clock and shift matrices, the situation is quite
analogous to the case of CPN´1 quantum mechanics with the Berry phase discussed in
section 3.
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4.1.3 Fractional instantons

Let us discuss the tunneling solution connecting these classical vacua, and another key
feature of the flavor-twisted boundary condition is that the tunneling configuration has
the fractional topological charge, 1

2π
ş

S1ˆR da P 1
NZ. Such fractional instantons of CPN´1

sigma model were first discussed in refs. [42–44] and later used for the semiclassics on
S1 ˆ R [19, 20].

To see the fractionalized topological charge, we should note that the requirement of
finite action implies that in the far past and future, ~z must approach a classical vacuum
configuration. Thus, up to gauge equivalence, we must have

~zpx, τ Ñ ˘8q “ ~ζpk˘qpxq “ exp
ˆ

2πi
NL

k˘x

˙

~ζpk˘qp0q. (4.10)

Using the fact ax “ i~z :Bx~z, we find axpτ Ñ ˘8q “ ´2πk˘{NL; whence the topological
charge is given by

1
2π

ż

S1ˆR
da “ ´ 1

2π

ż

S1
ax dx

ˇ

ˇ

ˇ

ˇ

τ“`8

τ“´8

“
k` ´ k´

N
P

1
N

Z. (4.11)

This is the 1{N quantization, as claimed.
To find the explicit form of the fractional instanton, we use the Bogomol’nyi-Prasad-

Sommerfield (BPS) equality:
ż

S1ˆR
|pDτ ˘ i Dxq~z |

2d2x “

ż

S1ˆR
|Dµ~z |

2d2x¯

ż

S1ˆR
da. (4.12)

Here, Dµ “ Bµ ` iaµ. For the tunneling from |0y to |1y, we set ~z “ 1?
1`|n|2

p1, n, 0, . . . , 0qT

with nÑ 0 as τ Ñ ´8 and |n| Ñ 8 as τ Ñ8. The BPS equation becomes pBτ ` iBxqn “ 0
and thus n should be a holomorphic function of the complex coordinate τ ` ix. The flavor-
twisted boundary condition fixes it completely up to gauge transformation and classical
moduli, which gives

~zp0qpx, τ ;x˚, τ˚q “
1

a

1` |eu´u˚ |2

¨

˚

˚

˚

˚

˚

˚

˝

1
eu´u˚

0
...
0

˛

‹

‹

‹

‹

‹

‹

‚

(4.13)

Here, we have defined the complex coordinate u– 2π
NLpτ ` ixq, and u˚ “ 2π

NLpτ˚ ` ix˚q is
a complex collective coordinate with τ˚ P R and x˚ P r0, NLs. The associated Up1q gauge
field is given by

aτ r~zp0qs “ 0, axr~zp0qs “ ´
2π
NL

1
1` e´ 4π

NL
pτ´τ˚q

. (4.14)
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Crucially, there is no size modulus, and so the dilute fractional instanton gas approximation
does not suffer from infrared divergences. The other fractional instanton configurations are
given by tunneling between consecutive vacua

|0y Ñ |1y Ñ |2y Ñ ¨ ¨ ¨ Ñ |N ´ 1y Ñ |0y ¨ ¨ ¨ (4.15)

and can be obtained by applying the shift symmetry operator. Recall that each fractional
instanton configuration has exactly two-zero modes. N of these fractional instantons make
the 2d instanton with topological charge one, which has 2N bosonic zero modes. This
indeed accounts the number of zero modes of the 2d instanton.

4.2 Semiclassical destructive interference with winding θ

Using the fractional instanton solution (4.13), we can now compute the imaginary-time
transition amplitudes

xk ` 1|e´βĤ |ky (4.16)

in the limit β Ñ8 within the leading-order semiclassical approximation of the path integral.
In most cases, these are nonvanishing, and as a result, the degeneracy of the classical vacua
is lifted, giving a unique quantum ground state. This is indeed what happens when θ is a
constant generic value. However, when θ has nontrivial winding w, the anomaly discussed in
section 4.1.1 requires that at the quantum level, we should have a groundstate degeneracy of
at least N{gcdpN,wq. This suggests that the transition amplitudes xk ` 1|e´βH |ky should
completely vanish. How does this happen?

As we will now show, when θ has a nonzero winding number, the integration over the
compact modulus x˚ gives total destructive interference in the transition amplitude. At
first sight, this may seem impossible, for as we computed above, the gauge configuration
ar~zp0qs of the fractional instanton does not have any x˚ dependence, and so neither would
the θ term 1

2π
ş

“θ dar~zp0qs”. The key point is to take the correct boundary condition for
τ Ñ ˘8, which requires applying a time-dependent gauge transformation that will affect
the θ term.

Let us look at the fractional-instanton solution (4.13) in more detail. Taking the limit
τ Ñ ´8 and τ Ñ `8, we find

lim
τÑ´8

~zp0qpτ, x; τ˚, x˚q “

¨

˚

˚

˚

˚

˚

˚

˝

1
0
0
...
0

˛

‹

‹

‹

‹

‹

‹

‚

, lim
τÑ`8

~zp0qpτ, x; τ˚, x˚q “

¨

˚

˚

˚

˚

˚

˚

˝

0
e 2πi
NL
px´x˚q

0
...
0

˛

‹

‹

‹

‹

‹

‹

‚

. (4.17)

We note that the configuration at τ “ 8 has an overall phase depending on x˚ and thus it is
in a different gauge compared with ~ζp1q in (4.8). This means that expp´Sr~zp0qpτ, x; τ˚, x˚qsq
with different x˚ compute the transition amplitude from |0y to |1y with different choice of
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the gauge at the future boundary. However, the physical amplitude should be given by a
path integral over configurations with fixed boundary conditions at past and future infinity:

lim
βÑ8

x1|e´βĤ |0y „ lim
βÑ8

x~ζp1q|e´βĤ |~ζp0qy “
ż

D~z ˚D~z

~zpτÑ´8q“~ζp0q

~zpτÑ`8q“~ζp1q

e´Sr~z s. (4.18)

Therefore, we should fix the gauge at the boundaries before integrating over the moduli to
obtain the physical transition amplitude.

For this purpose, we introduce the τ -dependent gauge transformation,

~zp0q ÞÑ h:pτq~zp0q “ exp
ˆ

2πix˚
NL

fpτq

˙

~zp0q, (4.19)

where fpτq is any smooth function with

fpτq Ñ

#

0 as τ Ñ ´8,

1 as τ Ñ `8.
(4.20)

On making the gauge transformation z ÞÑ h:z, the theta term is transformed as (see
appendix A.2)

1
2π

ż

“θ dar~zp0qs” ÞÑ
1

2π

ż

“θ dar~zp0qs”´
2πwx˚
NL

, (4.21)

where w is the winding number, θpLq´θp0q “ 2πw. We thus find that the imaginary part of
the fractional instanton action depends on x˚ through the term 2πwx˚{NL— wϕ˚, which
is enough to see the vanishing of the imaginary-time transition amplitude x1| expp´βĤq|0y:

x1|e´βĤ |0y “ e´
SI
N
`i θ̄

N

ż 2π

0
dϕ˚ eiwϕ˚ “ 0, (4.22)

for w ­“ 0. This means fractional instantons do not lift the degeneracy of the states |ky
at the leading order of semiclassics. As a result, we obtain N -fold degeneracy from the
semiclassical analysis, which is the minimal degeneracy required to match the anomaly
when the winding of θ satisfies gcdpN,wq “ 1.

4.3 Flavor charges due to the winding θ and exact N-fold degeneracy

In section 4.2, we have observed the N -fold degeneracy of ground states at the leading
order of semiclassics whenever w ­“ 0. This is contrary to the minimal requirement for
the anomaly matching because it only requires the N

gcdpN,wq degeneracy as discussed in
section 4.1.1. Since

N “ gcdpN,wq ¨ N

gcdpN,wq , (4.23)

the N -fold degeneracy is perfectly consistent with the anomaly. Nevertheless, it is still
somewhat surprising that we should have a degeneracy of ground states that is not the
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minimal one required. For gcdpN,wq ą 1, it is tempting to suspect that the classical
degeneracy is partially lifted at a higher order in semiclassics, as would be detected by the
nonvanishing of some transition amplitudes between nonconsecutive classical vacua.

However, this does not happen — the vanishing of all transition amplitudes xk1|e´βĤ |ky
turns out to be exact. As we will now show, in the presence of a winding θ angle, the states
|ky acquire distinct charges under the Up1qN´1 global symmetry, and hence all transitions
between them are forbidden.

Let us consider the charge QT associated with the Up1q symmetry ~z ÞÑ eiαT~z, where T
is a diagonal matrix. Using the standard Noether formula

QT “ ´

ż
"

δL

δpBt~z q
δ~z ` δ~z :

δL

δpBt~z :q

*

dx (4.24)

with δ~z “ iT~z, we find

QT “ ´
1
g2

ż
"

ipBt~z :T~z ´ ~z :TBt~z q ` 2atp~z :T~z q
*

dx. (4.25)

Here, at is determined by its classical equation of motion, which is modified by the nontrivial
spatial dependence of θ:

at “ i~z :Bt~z ´
g2

4πBxθ. (4.26)

The Noether charge can thus be rewritten

QT “ ´
i
g2

ż
"

Bt~z
:T~z ´ ~z :TBt~z ` 2p~z :Bt~z qp~z :T~z q

*

dx` 1
2π

ż

Bxθ p~z
:T~z q dx. (4.27)

Substituting ~z “ ~ζpkq, we find the charge of the state |ky to be given by

QT rζpkqs “ w
´

~ζ :
pkqT

~ζ
pkq

¯

. (4.28)

This establishes that the classical vacua ~ζpkq acquire distinct charges under the Up1q
symmetry generated by T due to the winding of the θ angle. In particular, choosing
T “ diagp0, 1, . . . , N ´ 1q, we have (Q– Qdiagp0,1,...,N´1q)

Qr~ζpkqs “ wk. (4.29)

As the states |ky (with k “ 0, 1, . . . , N ´ 1) have different Up1qN´1 charges, the tunneling
processes between them do not occur at all.

To get a better understanding, let us discuss a more elementary example showing the
same phenomenon: the single SUp2q spin system with the Hamiltonian

Ĥ “ JŜ2
z , (4.30)

which breaks the SUp2q{Z2 » SOp3q spin rotational symmetry to pUp1q{Z2q ¸ Z2 » Op2q.
For half-integer spins, the Op2q symmetry has an ’t Hooft anomaly, while for integer spins

– 21 –



J
H
E
P
0
9
(
2
0
2
3
)
0
3
3

there is no anomaly. The crucial difference between them is whether the Sz “ 0 state
exists or not, which gives a singlet state. When J ą 0 (the so-called easy-plane case), it
strongly affects the ground-state structure: For half-integer spins, the ground states are
two-fold degenerate given by Sz “ ˘1

2 , while for integer spins, we have the unique ground
state, Sz “ 0. This realizes the minimal requirement of the ’t Hooft anomaly of the Op2q
symmetry. When J ă 0 (the so-called easy-axis case), however, we always have two-fold
degeneracy given by Sz “ ˘s whether the spin s is integer or half-integer. Thus, the
easy-axis case is similar to our current situation in the CPN´1 model on Rˆ S1 with the
flavor-twisted boundary condition and a winding θ angle.

We can see the similarity more clearly by looking at the path integral for (4.30) with
spin s. The action is given by

Srϑ, φs “ i p2sq
ż

sin2 ϑ

2 dφ`
ż

dτ
´m

2 p
9ϑ2 ` sin2 ϑ 9φ2q ` Js2 cos2 ϑ

¯

. (4.31)

Here, we take the polar coordinate, ~z “ pcos ϑ2 , eiφ sin ϑ
2 q, and m “ s δτ{2 pÑ 0q. The

Up1q{Z2 symmetry shifts φ ÞÑ φ` α, and the Z2 symmetry acts as the charge conjugation,
φ ÞÑ ´φ and ϑ ÞÑ π ´ ϑ. The classical vacua for J ă 0 are given by ϑ “ 0, π, which
correspond to ~zp0q „ p1, 0q and ~zp1q „ p0, 1q, respectively. Whenever s ­“ 0, the destructive
interference of the Berry phase gives the complete annihilation of the transition amplitude
due to the continuous modulus φ associated with the Up1q spin symmetry, and it occurs
exactly in the same way as we discussed in section 4.2. This is the semiclassical manifestation
of the fact that the Berry phase assigns the different Up1q charges to the classical vacua,
and thus those states, ~zp0q and ~zp1q, cannot be mixed unless the Up1q symmetry is broken
to a smaller subgroup.

Upon adding some perturbations that break the PSUpNq symmetry down to ZN ˆ ZN ,
we should get the minimal degeneracy N

gcdpN,wq required by the anomaly. Indeed, even
when Q itself is no longer a conserved charge, (4.29) still implies that the state |ky has
the eigenvalue e 2πi

N
wk for the clock symmetry operator, and the selection rule is relaxed

to allow transitions |ky Ñ |k1y with wk “ wk1 mod N . Similarly, in the above SUp2q
spin example, we can resolve the degeneracy for the integer spin by a small perturbation,
JxŜ

2
x „ Jxs

2 sin2 ϑ cosp2φq, but this perturbation does not lift the degeneracy for the
half-integer spins as we have seen in section 3.

In summary, the degeneracy of N we have obtained is exact, and independent of the
profile and winding number w of the θ parameter in the sufficiently small circle regime. For
the case of w “ 1 and a monotonic profile of θ, it seems plausible that this degeneracy is
maintained as the circle size is increased and the volume independence may work. However,
we cannot say much about what happens for the case of generic winding numbers w and
generic profiles of θ and they would require more detailed analysis on each case.

5 Summary and discussions

We have discussed the θ interface of the 2d CPN´1 sigma model from various perspectives.
If the spatial direction is sufficiently large, then the ground-state wave function is trivially
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gapped inside the bulk, but low-energy excitations still exist and localize on the wall. We
provide its intuitive understanding by realizing the CPN´1 sigma model as the effective
theory of the SUpNq spin chain. The two-fold degeneracy at θ “ π is then associated
with the spontaneous breaking of lattice translation, and the θ interface should have a free
SUpNq spin. As a model of its dynamics, we consider the CPN´1 quantum mechanics with
the Berry phase and have studied its properties to confirm the N degenerate vacua.

We also considered the small S1 compactification with the flavor-twisted boundary
condition and nontrivially winding θ angle. Due to the flavor twist, we can use reliable
semiclassical computations to study the asymptotically free field theory. At the classical
level, there are N degenerate vacua whether or not θ has nonzero winding number. When
there is no winding of θ, the dilute gas approximation of fractional instantons shows the
uniqueness of the ground state at generic values of θ so that we also get the N -branch
structure of the vacua as we expect from the adiabatic continuity. We have confirmed that
this story becomes totally different when θ has nonzero winding number. In such cases, the
moduli integral of the fractional instanton gives the complete cancellation of the transition
amplitude, and the N -fold degeneracy remains even after taking into account the effects of
fractional instantons.

Although we have focused on the 2d CPN´1 sigma model in this paper, our observation
itself should be quite general and we believe that our semiclassical techniques can be
extended to many other cases. As a straightforward extension, we can consider the 2d
SUpNq{Up1qN´1 sigma model instead of CPN´1. This theory has N ´ 1 independent
topological charges, so we have many θ parameters, θi“1,...,N´1, to be discussed. We can
obtain this theory as the low-energy effective theory of an anti-ferromagnetic SUpNq spin
chain [45–47]. As it has an ’t Hooft anomaly between PSUpNq and the θ periodicity [15],
the θ interface should support a projective representation so we must obtain the N -fold
degeneracy. When we perform the S1 compactification with the flavor-twisted boundary
condition, we have N ! classical vacua instead of N , and the transition amplitudes can be
computed by using fractional instantons characterized by N ´ 1 topological charges [48].
It would be interesting to see if we can obtain the N degenerate vacua out of N ! classical
vacua when one of the θs has a winding number.

A more challenging subject is to extend this work to the case of 4d gauge theories with
a winding θ angle. Some recent works try to achieve the adiabatic continuity of various
compactified setups of 4d gauge theories [49–52]. For example, ref. [49] shows the connection
between the 4d Yang-Mills theory on RˆT 3 with the ’t Hooft flux and the 2d CPN´1 sigma
model on R ˆ S1 with the flavor-twisted boundary condition and ref. [51] relates the 4d
massless quantum chromodynamics (QCD) and the 2d Wess-Zumino-Witten model. These
observations strongly suggest that we can study the physics of the θ interface of 4d gauge
theories also by a suitable compactification with winding θ using the reliable semiclassics.

We suspect that the S1 compactification with winding θ has an application in the
semiclassical study of 4d chiral gauge theories on R3 ˆ S1. Applying the double-trace
deformation to the gauge sector, we can study the confinement dynamics of 4d gauge
theories by the dilute gas of monopole-instantons [28, 53–56], but it always requires the
gapping out of the dynamical electric charges by a suitable choice of boundary condition. In
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the case of chiral gauge theories, we have to introduce the chiral-symmetric mass by using
the twisted boundary condition of chiral symmetry. In such cases, due to the Adler-Bell-
Jackiw (ABJ) anomaly, it should be related to the situation with a nonzero winding θ angle.
As we have seen, such a winding θ angle can drastically change the consequence of the
semiclassical analysis. Since this possibility has been overlooked in previous studies [57, 58],
it would be interesting to reconsider the chiral gauge theories on R3ˆS1 taking into account
the effect of winding θ.

Even in the study of vector-like theories, the QCD-like theories with higher representa-
tion fermions possess discrete chiral symmetries. In such cases, one can consider chirally
twisted boundary conditions to study the physics on the interface. As emphasized above,
due to the ABJ anomaly, this can also be formulated as a winding theta when the theory is
formulated on R3 ˆ S1. If we consider these theories in set-ups where the center-symmetry
acting on the Polyakov loop is stable and the theory abelianizes at long distances, one
lands on theories with monopole-instantons in the presence of Chern-Simons terms [59, 60]
(The case with winding θ and broken center symmetry is recently studied in [61]). These
regimes should lead to deconfinement despite the presence of monopoles [62–64]. It would
be interesting to understand the microscopic mechanism through which this takes place.
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A Spacetime-dependent θ term of the 2d CPN´1 model

In this appendix, following ref. [17], we discuss the definition of the θ term,

i
2π

ż

M2

θ da, (A.1)

for the 2d CPN´1 model when the θ parameter has the spacetime dependence, i.e. θ “ θpxq

is no longer a constant in terms of x PM2. We would like to maintain the identification,
θ „ θ ` 2π, so that θpxq can be regarded as a background 2π-periodic scalar field. Then,
the 2π periodicity, θ „ θ ` 2π, is a kind of the gauge redundancy, so the integrand θda
is not gauge invariant. We shall give a gauge-invariant definition on general 2d oriented
closed manifolds M2 by using its simplicial decomposition. Based on the gauge-invariant
definition, we also describe the explicit form for the case, where M2 “ S1 ˆ R and θ has
the nontrivial winding along the circle.
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A.1 Definition of the spacetime-dependent θ term

As we have seen above, the problem of the spacetime-dependent θ term is very similar to
the problem of defining the 3d Chern-Simons action, CSras “ “ i

4π
ş

M3
ada”, where we put

the quotation mark to remember that the right-hand-side is the heuristic definition. We
usually resolve this subtlety by regarding M3 as the boundary of M4, BM4 “M3, and set

CSras “ i
4π

ż

M4

dã^ dã, (A.2)

where ã is a Up1q gauge field on M4 with ã|BM4 “ a. This is manifestly gauge invariant,
and it is independent of the choice of spin 4-manifolds M4 and extensions ã in mod 2πi,
which is sufficient to define the path-integral weight. Therefore, one may think that we can
apply the same trick, and claim that the following definition should work,

i
2π

ż

M2

“ θ da ” ?
“

i
2π

ż

M3

dθ̃ ^ dã, (A.3)

where M3 is a 3d manifold with BM3 “M2, and θ̃ and ã are the extensions of θ and a to
M3, respectively. However, this does not work because of the following reasons.

In the case of 3d Chern-Simons action, 3d Up1q gauge fields always have an extension
to a 4d manifold, which is ensured by the bordism group, Ωspin

3 pBUp1qq “ 0. This is why we
can define the 3d Chern-Simons action by extending the spacetime manifolds. On the other
hand, 2d Up1q gauge fields, or 2d CPN´1 fields, do not necessarily have the 3d extension
as Ωspin

2 pCPN´1q » Ωspin
2 pBUp1qq » Z. To see this obstruction explicitly, let us consider

the Up1q gauge field on S2 Ă R3 with the Dirac monopole at the origin of R3. Due to the
monopole singularity at the origin, we cannot have its 3d extension as a smooth Up1q gauge
field. As a result, we cannot use (A.3) when the Up1q gauge field has a nontrivial instanton
number, and we need to discuss another way to define the spacetime dependent θ term.

Let us approximate the closed 2-manifold M2 by a polyhedron. That is, σi is a
polygon including its boundary, σij “ σi X σj is a connected line segment (or empty), and
σijk “ σij XσjkXσki is a point (or empty), and

Ť

i σi is homeomorphic to M2. Since we are
going to define the topological term i

2π
ş

M2
“θ da”, we just identify M2 “

Ť

i σi for simplicity
of notation. Let us assume that M2 is oriented, then the orientation of 2-simplex σi is
chosen consistently. For i ă j, the orientation of σijpĂ Bσiq is fixed by σi in a canonical
way, and σji has the opposite orientation. In the following explanation, we assume that
there is no quadruple overlap, but the extension to such cases should be straightforward.

Next, we describe the 2π-periodic scalar θ and the Up1q gauge field on each patch of
the polyhedron

Ť

i σi. The θ field consists of the following data,

• θi : σi Ñ R,

• wij : σij Ñ Z,

which satisfy
pθi ´ θjq|σij “ 2πwij . (A.4)
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The consistency requires that wji “ ´wij and

wij ` wjk ` wki “
1

2π ppθi ´ θjq ` pθj ´ θkq ` pθk ´ θiqq
ˇ

ˇ

ˇ

ˇ

σijk

“ 0. (A.5)

Its 2π periodicity is realized by postulating the gauge invariance under

θi ÞÑ θi ` 2πωi, wij ÞÑ wij ` ωi ´ ωj , (A.6)

where ωi P Z is the gauge parameter. We denote pδωqij “ ωi ´ ωj , then wij ÞÑ wij ` pδωqij .
The Up1q gauge field a consists of the data

• ai: an R-valued 1-form on σi,

• gij : σij Ñ Up1q,

which satisfy
aj “ ai ´ ig´1

ij dgij (A.7)

on σij . On σijk, we impose the cocycle condition,

gijgjkgki “ 1. (A.8)

Although this is one of the standard ways to define the Up1q gauge field, it turns out that
this does not give enough data to define “θda”. We should take an R-valued lift of the
transition function gij , so we need the following data

• φij : σij Ñ R,

• nijk : σijk Ñ Z,

that satisfy gij “ e´iφij and
φij ` φjk ` φki “ 2πnijk (A.9)

on σijk. We can rewrite the connection formula for taiui as ai ´ aj “ dφij . The gauge
identification is given by

ai ÞÑ ai ` dαi, φij ÞÑ φij ` pδαqij ` 2πνij , nijk ÞÑ nijk ` pδνqijk, (A.10)

where αi : σi Ñ R, νij P Z and pδνqijk “ νij ´ νik ` νjk. As an example, we can compute
the topological charge in the following way,

1
2π

ż

M2

da “
ÿ

i

1
2π

ż

σi

dai “
ÿ

i

1
2π

ż

Bσi

ai

“
ÿ

iăj

1
2π

ż

σij

pδaqij “
ÿ

iăj

1
2π

ż

σij

dφij

“
ÿ

iăj

1
2π

ż

Bσij

φij “
ÿ

iăjăk

1
2π

ż

signpσijkqσijk
pδφqijk

“
ÿ

iăjăk

signpσijkqnijk, (A.11)

where signpσijkq is the orientation of σijk determined from Bσij for i ă j ă k.
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The gauge-invariant definition of the spacetime-dependent θ term is given by [17]
1

2π

ż

M2

“θ da” “
ÿ

i

1
2π

ż

σi

θidai ´
ÿ

iăj

ż

σij

wijaj `
ÿ

iăjăk

ż

signpσijkqσijk
wijφjk. (A.12)

For constant θ, this reduces to the original definition as we can set θi “ θ and wij “ 0.
Let us check the gauge invariance of this expression. The first term on the right-hand-side
transforms as

ÿ

i

1
2π

ż

σi

pθi ` 2πωiqdpai ` dαiq ´
ÿ

i

1
2π

ż

σi

θidai

“
ÿ

i

ωi

ż

Bσi

ai

“
ÿ

iăj

ż

σij

pωiai ´ ωjajq

“
ÿ

iăj

˜

ż

σij

pωi ´ ωjqaj `

ż

Bσij

ωiφij

¸

“
ÿ

iăj

ż

σij

pωi ´ ωjqaj `
ÿ

iăjăk

ż

signpσijkqσijk
pωiφij ´ ωiφik ` ωjφjkq

“
ÿ

iăj

ż

σij

pωi ´ ωjqaj ´
ÿ

iăjăk

ż

signpσijkqσijk
pωi ´ ωjqφjk pmod 2πZq. (A.13)

In the last step, we used pδφqijk “ 2πnijk. Now the necessity of the second and third
term on the right-hand-side of (A.12) becomes evident by noting that wij transforms as
wij ÞÑ wij ` pωi ´ ωjq: The second term of (A.12) is necessary to cancel the first term
of (A.13), and the third term of (A.12) is also necessary to cancel the last term of (A.13).
To complete the discussion, we also need to check if the second and third terms of (A.12) is
invariant under the Up1q gauge transformation. The second term of (A.12) transforms as

´
ÿ

iăj

ż

σij

pwijpaj ` dαjq ´ wijajq

“ ´
ÿ

iăj

ż

Bσij

wijαj

“ ´
ÿ

iăjăk

ż

signpσijkqσijk
pwijαj ´ wikαk ` wjkαkq

“ ´
ÿ

iăjăk

ż

signpσijkqσijk
wijpαi ´ αjq. (A.14)

As φij transforms as φij ÞÑ φij ` pδαqij ` 2πνij , this is exactly cancelled by the gauge
variation of the third term of (A.12). We have confirmed that the definition (A.12) is gauge
invariant mod 2π, and we can use it to define the path-integral weight.

A.2 Concrete expression for the cylinder

Consider the cylinder S1ˆR with circumference L. If we regard θ as an S1-valued function
on r0, Ls ˆ R such that θpL, τq “ θp0, τq, then we can lift it to a real-valued function θ̂ on
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r0, Ls ˆ R such that θ̂pL, τq “ θ̂p0, τq ` 2πw, where w is the winding number of θ. Note
also that on a cylinder, it is always possible to choose the transition functions of the Up1q
gauge field a to be trivial: gij “ 1. That is to say, it is possible to choose ai “ â|σi for some
global 1-form â. We shall show that the theta term (A.12) can be rewritten just in terms
of θ̂ and â.

A good cover of the cylinder can be achieved by taking three rectangular cells σ1,2,3,
say

σ1 “ r0, L{3s ˆ R, σ2 “ rL{3, 2L{3s ˆ R, σ3 “ r2L{3, Ls ˆ R. (A.15)

With respect to this cover, there are just three transition functions for θ: w12, w23, w31.
However, if we choose θi “ θ̂|σi , then w12 and w23 vanish, and w31 “ w. With this choice,
the theta term (A.12) reduces to the following simple form:

1
2π

ż

S1ˆR
“θ da” “ 1

2π

ż

r0,LsˆR
θ̂ dâ´ w

ż `8

´8

âτ p0, τq dτ. (A.16)

It is very important to realize that the theta term on the cylinder is not fully gauge
invariant: under a gauge transformation a ÞÑ a` dα, we have

1
2π

ż

S1ˆR
“θ da” ÞÑ 1

2π

ż

S1ˆR
“θ da”´ wtαp0,`8q ´ αp0,´8qu. (A.17)

Thus, the theta term can gauge transform nontrivially only if (1) the winding number w
is ‰ 0, and (2) αp0,`8q ´ αp0,´8q ‰ 0, i.e. the gauge transformation is “large” in time.
This simple observation will be crucial for the present work.

B SUpN q spin chain and 2d CPN´1 sigma model

Here, we give a review about the realization of the 2d CPN´1 sigma model around θ “ π

by the SUpNq spin chain. For N “ 2, it is found by Haldane [9, 10] that the SUp2q
antiferromagnetic spin chain of spin S gives the CP 1 sigma model with θ “ 2πS. Its
extension to the 2d CPN´1 model has been discussed in the context of D-theory [25–27].

B.1 Spin coherent state and path integral

We denote the SUpNq spin operator as Ŝαβ with α, β “ 1, . . . , N . For U P SUpNq, they
transform as Ŝαβ Ñ pUŜU :qαβ . They satisfy Ŝ:αβ “ Ŝβα and the commutation relation,

rŜα1α2 , Ŝβ1β2s “ δα2β1Ŝα1β2 ´ δβ2α1Ŝβ1α2 . (B.1)

We introduce the Schwinger boson to conveniently describe the spin coherent state [65]. The
Schwinger boson is the N -component harmonic oscillator, whose creation and annihilation
operators are â:α and âα, respectively, with the commutation relation,

râα, â
:

βs “ δαβ . (B.2)

We can readily check that
Ŝαβ “ â:αâβ (B.3)
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satisfies the above SUpNq commutation relation. In this convention, â:α transforms as the
defining representation of SUpNq and âα transforms as its conjugate representation.

Let |0y be the vacuum of the harmonic oscillators annihilated by âα for α “ 1, . . . , N .
This belongs to the trivial representation of SUpNq. Applying p creation operators to the
vacuum, we find that those states,

â:α1 ¨ ¨ ¨ â
:
αp |0y, (B.4)

form the totally symmetric p-box representation of SUpNq. Let ~φ P CN with |~φ |2 “ 1, then
we define the coherent state for the p-box symmetric representation by

|~φ y “
1
?
p!pφ1â

:
1 ` ¨ ¨ ¨ ` φN â

:

N q
p|0y. (B.5)

It satisfies the following property,

x~φ1 |~φ y “ p~φ1: ¨ ~φ qp, (B.6)
x~φ |Ŝαβ |~φ y “ p φ˚αφβ , (B.7)

ż

dΩφ|
~φ yx~φ | “ 1. (B.8)

Using these formula, we can, for example, obtain the path integral formula for the Hamilto-
nian Ĥ “ JαβŜαβ as follows:

Trpexpp´βĤqq “
ż

Dφ expp´Srφsq, (B.9)

where the Euclidean action is given by

Srφs “

ż β

0
p ~φ : ¨ d~φ`

ż β

0
p Jαβφ

˚
αφβdτ. (B.10)

The first term is the Berry phase, and the second term describes the classical energy. Strictly
speaking, we use the semiclassical approximation to describe the path integral expression,
and this approximation is valid in the limit pÑ8.

B.2 Low-energy limit of spin chains

To obtain the CPN´1 sigma model, we define the spin chain with even number of sites,
i “ 1, 2, . . . , 2L, and we put the p-box symmetric representation on the odd sites, i “
1, 3, . . . , 2L´ 1 and put its conjugate representation on the even sites, i “ 2, 4, . . . , 2L.

Let us denote the spinon field on the odd site 2n´ 1 as ~φ 1
n and the one on the odd site

2n as ~φ 2
n , then the Euclidean action becomes

S “

ż β

0
dτ

L
ÿ

n“1

!

p p~φ 1:
n ¨ Bτ ~φ

1
n ´

~φ 2:
n ¨ Bτ ~φ

2
nq ´ p

2
´

J1|~φ
1:
n ¨ ~φ 2

n |
2 ` J2|~φ

2:
n ¨ ~φ 1

n`1|
2
¯)

.

(B.11)
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Since the spin on the even sites belong to the conjugate representation, its Berry phase has
the opposite sign compared with that of the spin on odd sites. We choose the ferromagnetic
couplings, J1, J2 ą 0, so that the classical vacua are given by the parallel spin fields. When
J1 “ J2, we have the following symmetry,

~φ 1
n ÞÑ

~φ 2˚
n , ~φ 2

n ÞÑ
~φ 1˚
n`1, (B.12)

and this becomes the charge conjugation symmetry in the infrared effective theory.
To derive the low-energy effective continuum theory, we denote x “ an by introducing

the lattice constant a, and put

~φ 1
n “ ~zpxq, ~φ 2

n “
a

1´ |~εpxq|2 ~zpxq ` ~εpxq, (B.13)

with

~z : ¨ ~ε “ 0. (B.14)

When ~ε “ 0 and ~z is uniform, it describes the classical ground states. ~ε describes the
short-distance fluctuation and it turns out that |~ε | „ Opp

a

pJ1 ` J2q pq
´1q. Especially

when |p| " 1, we can integrate it out by the Gaussian integration to obtain the 2d CPN´1

sigma model.
When performing the Gaussian integral for ~ε, it is convenient to pay attention to the

following point. As |~z |2 “ 1, we have

pBµ~z
:q ¨ ~z ` ~z : ¨ Bµz “ 0. (B.15)

Due to the presence of the first term on the left-hand-side, Bµ~z does not belong to the space
of ~ε. Still, we have

~z : ¨Dµ~z “ 0, (B.16)

where Dµ~z “ Bµ~z´ p~z
: ¨ Bµ~z q~z, and thus Dµ~z belongs to the space of ~ε. In particular, when

we find ~ε : ¨ Bµ~z, we may replace it by ~ε : ¨Dµ~z.
We now compute each term of the Euclidean action:

~φ 1:
n ¨ Bτ ~φ

1
n ´

~φ 2:
n ¨ Bτ ~φ

2
n “ ~ε : ¨Dτ~z ´ pDτ~z

:q ¨ ~ε, (B.17)
|~φ 1:
n ¨ ~φ 2

n |
2 “ 1´ |~ε |2, (B.18)

|~φ 2:
n ¨ ~φ 1

n`1|
2 “ 1´ |~ε |2 ` ap~ε : ¨Dx~z ` pDx~z

:q ¨ ~ε q ´ a2|Dx~z |
2. (B.19)

The Euclidean Lagrangian then becomes

L “ p2pJ1 ` J2q|~ε |
2 ´ pp~ε : ¨Dτz ´ pDτ~z

:q ¨ εq

´ p2J2ap~ε
: ¨Dxz ` pDx~z

:q ¨ εq ` p2J2a
2|Dx~z |

2. (B.20)

Performing the Gaussian integration of ~ε, we find that

Leff “ p2J2a
2|Dx~z |

2 ´
p2

J1 ` J2

ˆ

J2aDx~z
: ´

1
p

Dτ~z
:

˙

¨

ˆ

J2aDx~z `
1
p

Dτ~z

˙

(B.21)

“
1

J1 ` J2
|Dτ~z |

2 ` p2a2 J1J2
J1 ` J2

|Dx~z |
2 ` pa

J2
J1 ` J2

εµνDµ~z
: ¨Dν~z. (B.22)
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Replacing a
ř

n by the spatial integration
ş

dx, the Euclidean action is given by

S “

ż

dτ
ż

dx
ˆ

1
pJ1 ` J2qa

|Dτ~z |
2 ` p2a

J1J2
J1 ` J2

|Dx~z |
2
˙

` iθ Qtop, (B.23)

with

θ “ πp

ˆ

1´ J1 ´ J2
J1 ` J2

˙

. (B.24)

By rescaling the imaginary time, τ Ñ 1
pa
?
J1J2

τ , this becomes the relativistic CPN´1 sigma
model with 1

g2 “
p
?
J1J2

J1`J2
and the above θ parameter. Especially when J1 “ J2, θ P πZ and

it enjoys the C symmetry, which is the remnant of the one-unit lattice translation symmetry
associated with the complex conjugation (B.12).

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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