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1 Introduction

String theory is a promising candidate for a consistent theory of quantum gravity. It
postulates a finite number of massless fields and an infinite tower of massive fields, reflecting
the underlying stringy nature of gravity. To study physics within this framework, it is
convenient to use an effective action that includes only the massless fields. The effects of
the massive fields manifest as higher derivatives of the massless fields, commonly referred
to as o'-corrections. Both the bosonic string theory and the five superstring theories share
the same massless NS-NS fields, which include the metric, Kalb-Ramond field, and dilaton.
The superstring theories also feature additional massless fields (see, for example, [1]), but
these are not the focus of this paper. The effective actions of string theory can be derived
by imposing various symmetries and dualities within the theory. These symmetries and
dualities dictate the form of the effective action and provide insight into the fundamental
nature of the theory.

The effective actions of string theory exhibit gauge symmetries corresponding to their
various massless fields. For instance, the metric is associated with diffeomorphism sym-
metry, while the Kalb-Ramond field B is associated with gauge symmetry. The heterotic
string theory, which is the focus of this paper, has an anomaly that can only be cancelled
by assuming the gauge group to be SO(32) or Eg x Eg and introducing nonstandard gauge
transformations and nonstandard local Lorentz-transformations for the B-field [2]. By uti-
lizing the diffeomorphism and B-field gauge symmetries, one can identify the independent
gauge-invariant couplings, or geometrical couplings, at each order of o/ up to field redefi-
nitions. The number of independent couplings depends on the background topology, with
closed spacetime manifolds having fewer independent couplings than open spacetime man-
ifolds with boundaries. However, the coefficients of these independent couplings cannot
be determined by the geometrical gauge symmetries alone. Fortunately, using string field



theory techniques, it has been shown in [3, 4] that the classical effective actions of string
theories at all orders of o/ possess O(d,d,R) symmetry after reducing the theories on the
torus 7@ and ignoring the massive Kaluza-Klein (KK) modes. The effective actions are
invariant under the non-geometrical subgroups of the T-duality group O(d,d,R), such as
the Buscher rules [5, 6] and their o/ corrections, which can be used to establish relations
between the geometrical couplings. This method has been successfully employed to obtain
the effective action of the bosonic string theory at order o/ [7], as well as the NS-NS
couplings in the effective action of the superstring theory at order o’ [8]. In this paper,
we will apply this method to determine the NS-NS couplings in the effective action of the
heterotic string theory at order o'2.

The heterotic string theory features 496 massless vector fields in the adjoint represen-
tation of the SO(32) or Eg x Eg gauge group, as well as NS-NS fields that are scalar in
these groups. For the purposes of this paper, we consider zero vector gauge fields. In this
case, the nonstandard local Lorentz-transformation for the B-field requires a specific field
strength in the effective action, as described in [2]:
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Here, Hy o = 30),B,q), and the Chern-Simons three-form (2 is defined as
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where wm-j is the spin connection, defined in terms of the Christoffel connection I';,,,” and
the vielbein e,f by wmj = 8Heyj e’; — F,ﬂ,pepj e”;. The vielbein is related to the metric G,
via euiel,j nij = G- The above nonlinear field strength organizes the couplings at different
orders of ' into a single action. For instance, the universal leading-order effective action

0 o and o/?, i.e.,

includes couplings at orders o/
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(1.3)

Here, & is related to the 10-dimensional Newton’s constant. The couplings at orders o’

and a'? are even parity, while the coupling at order o/ is odd parity.! The action also

includes a Gibbons-Hawking boundary term [9] that depends on the extrinsic curvature K
and the induced metric on the boundary.

In addition to the odd parity couplings at order o/, there is also a set of even parity
couplings at the same order. The specific couplings depend on the chosen scheme for the
geometrical couplings. In this study, we adopt the Meissner scheme [10] for the even parity
couplings at order /. Upon replacing H in this action with H , it yields the following
couplings at order o/", where n =1,...,5:

Tt is important to note that the world-sheet action of a string in the presence of a background B-field
incorporates the 2-dimensional antisymmetric Levi-Civita tensor. As a result, the B-field exhibits an odd
behavior under world-sheet parity.
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where ¢; = 1/8 and R%;B represents the Gauss-Bonnet couplings. Similar couplings exist
for the bosonic string theory, in which the Chern-Simons 3-form € is zero and ¢; = 1/4.
For spacetime manifolds with boundaries, the corresponding boundary terms have been
found in [11] using T-duality, and they are given by:
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Here, n?

= n,n* and Q)2 represents the Chern-Simons boundary couplings. The couplings
at orders o/, a/3, and o/® are even parity, while the couplings at orders o/ and a/* are odd
parity.

The effective action in (1.3) does not contain any additional odd parity couplings apart
from the one mentioned in this action, which involves 2. The Bianchi identities imply that
there are no geometrical odd parity couplings at order o with a vanishing Chern-Simons
form 2. Therefore, the odd parity coupling in the aforementioned action must be T-duality
invariant. A recent study [12] explicitly demonstrated the T-duality invariance of the odd
parity coupling in (1.3) at order o/. However, there may exist other even or odd parity
couplings at order o/? that do not involve 2, in addition to the couplings presented in the
previous actions that do involve Q. It is worth noting that the even parity coupling 22
in (1.3) is inconsistent with T-duality, indicating the presence of other even parity bulk
and boundary couplings at this order. For the purpose of this paper, we will not consider
the boundary couplings at order a/?.

A previous study [13] demonstrated the existence of 60 even-parity independent geo-
metrical couplings obtained through the most general field redefinitions allowed only for
closed spacetime manifolds. These couplings are scheme-dependent. In a particular scheme,

they are
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Here, ai,--- ,ago are background-independent parameters that cannot be fixed by the
gauge symmetries. The explicit form of all the couplings can be found in [13]. These
couplings were obtained for the effective action of the bosonic string theory in [7], where
they were required to be invariant under the non-geometrical subgroup of the T-duality
group. It is expected that the consistency of the combination of the Q2-term and the
aforementioned terms at order a/? with the non-geometrical T-duality will necessitate some
of the above couplings to be non-zero in the heterotic theory. In (1.6), the couplings at

2 o 3 o/® and o7 are

orders o’?, o/*, o/®, and o/® are even parity, while the couplings at orders o
odd parity. It was shown in [14] that, unlike the case in the effective action of the bosonic
string theory, the S-matrix method requires the coefficients of the Riemann cubed terms to
be zero in the heterotic theory. In this paper, we aim to determine all other couplings in
the effective action presented above by imposing the requirement that the effective action

2 must be invariant under the non-geometrical subgroup of the T-duality group.

at order o/

It has come to light that the odd-parity couplings in (1.4) at order o/? also lack in-
variance under T-duality. Consequently, it is evident that additional odd-parity couplings
at this order must exist, excluding those involving 2. Remarkably, we have identified 13

2. The constraints imposed by

independent odd-parity geometrical couplings at order o/
T-duality play a crucial role in determining these couplings.

This paper investigates the Buscher rules for circular reduction and their o/-corrections,
taking into account the constraint that the generalized Buscher rules must satisfy the
O(1,1,Z)-group and the requirement that the effective actions must be invariant under the
generalized Buscher rules. In section 2, we provide a review of the Buscher rules for circular
reduction and study their o/-corrections under the O(1,1, Z)-transformations. Although
there are still undetermined coefficients in the generalized Buscher rules, we demonstrate
that these coefficients can be fixed by imposing the constraint that the circular reduction
of the effective actions in any scheme must be invariant under O(1, 1, Z)-transformations.
We briefly review this constraint for the effective action at order o’ in subsection 2.1 and
provide the corrections to the Buscher rules for the effective action in the Meissner scheme.
In subsection 2.2.1, we impose the constraint that the effective action at order o/? in the
minimal scheme (equation (1.6) plus Q22-term) must also be invariant under O(1,1,7Z)-
transformations. This allows us to fix all 60 parameters in the effective action as well as all
corresponding corrections to the Buscher rules at order /2. The resulting effective action
is presented in equation (2.39). Since the expressions for the T-duality transformations are
lengthy, we provide them in the appendix. Our calculations reveal some total derivative
terms in the base space. However, since our focus in this paper is solely on closed manifolds
with no boundary, we omit these total derivative terms. In section 2.2.2, we reproduce
the calculations pertaining to the odd-parity couplings. Specifically, we observe that the
odd-parity couplings at order o’ in (1.4) do not conform to T-duality. Consequently, we
ascertain 13 independent couplings at order o/? that do not involve Q. By employing T-
duality, we establish that three of these couplings must possess non-zero coefficients. The
resulting outcome is presented in (2.42). To maintain conciseness, we omit the explicit
expressions of the resulting deformations and the terms that amount to total derivatives.
In section 3, we offer a brief discussion of our findings.



2 T-duality constraint

It has been proved in [3, 4] that if the classical effective action of string theory is compact-
ified on a torus T4 then the massless fields in the base space should be invariant under
the O(d, d, R) transformations. These transformations include the geometrical transforma-
tions which leave the parent geometrical couplings to be invariant and the nongeometrical
transformations which transform a parent coupling to the other couplings. These latter
transformations can be used to find the relations between the background-independent
geometrical couplings in (1.6).

The proof [3, 4] indicates that the effective actions should be also invariant under the
discrete subgroup of O(d,d,R), i.e., O(d,d,Z). These discrete transformations are gener-
ated by the inverse transformation and by the shift transformation. The latter transfor-
mation involves an antisymmetric matrix of integers. While the shift transformation leaves
invariant a geometrical coupling, the inverse transformation connects different geometri-
cal coupling into each other. Hence to simplify the symmetry to the one which has only
nongeometrical transformations, we consider the circular reduction that the corresponding
discrete group O(1,1,7Z) = Zy has only the nongeometrical inverse transformations. The
discrete transformations at the leading order of o’ are the Buscher rules [5, 6].

To write the Buscher rules in their simplest form, it is convenient to use the following
background for the metric, B-field and dilaton [15]:

G — (Tav 9090 90\ 5 _ (bab + 3bagb ~ 3b9a b
m e?qp e? e —by 0

>,<I>:d>+<p/4, (2.1)

where Gap, bap, and ¢ represent the metric, B-field, and dilaton in the base space, respec-
tively. Furthermore, g, and b, denote two vectors, while ¢ represents a scalar within this
space. Inverse of the above metric is

G — (gab 9 ) , (2.2)

—g" €7+ geg°

where g is the inverse of the base space metric which raises the index of the vectors. The
Buscher rules in this parametrization, are the following transformations:

O =—0, gh=ba, by=0a » Gop=20Gab > Vo =bap , &' =9, (2.3)

which abviously form a Zs-group, i.e., (¢') = 1) where v is any field in the base space.

At the higher orders of o, the above transformations receive higher derivative correc-
tions, i.e.,

W =+ > (2.4)
n=1 :



where ¢, are the Buscher rules (2.3) and ¢/, is its corrections at order /. In terms of
different base space fields, the transformations can be written as

o) m e m 0 m
I _ X ALM - ©/2 X A / —p/2 X Apm)
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where Ap(™ (), - , Ag™ () contain some contractions of Vi, Vo, e?/?V,e~¢/?W, H, R
and their covariant derivatives at order o/™. In the above equation Hyp is the torsion in
the base space which is defined as Hgpe = Ba[al;bc] — 39 Whpe where Bab = b+ %ba gy — %bbga.
It can be written in terms of by, as

— = 3 3
Hape = 38[abbc] g[aWbc] b[ %c]

It satisfies the following Bianchi identity [16]:
= 3
a[a‘[_lbcd] = _§WabWCd] : (26)

In the above equations, Vg, is the field strength of the U(1) gauge field gq, i.e., Vyp =
Oagb — Obga, and W, is the field strength of the U(1) gauge field by, i.e., Wy = Oqbp — Opbq.

The deformed transformations (2.5) must satisfy the Zo-group (¢') = 1. It produces
the following relations between the o/-corrections of the Buscher rules:

—Z—Agp +Z—Ag@ V=0,

_ ad a n ’ Oé/n n
2 WQZ FAb((l )(¢)+€w/22 HAQCS (') =0,
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The corrections Ap™ (1), -- -, A¢(™ (1)) involve all contractions of the base space fields at
order o/™ with arbitrary coeffients that satisfy the above constraints.
The constraint (¢")" = ¢ also leads to the following relation:

i S AED () + Z AH(” W) =0. (2.8)

n! abc abc
n=1

However, we cannot conclude that the correction AHY () is also all contractions of the base

abc
m+1/2

space fields at order « with arbitrary coefficients that satisfy the above constraint. In



fact, the corrections AH (ggc), Ag,gn), and Abgn) satisfy another constraint resulting from the

fact that the T-dual transformed fields must satisfy the Bianchi identity (2.6). In terms of
forms db = 2W and dg = 2V, the Bianchi identity can be written as:

dH' = —6dg’ A dl' . (2.9)

Inserting the expansions (2.5) into it, one finds

0 o™ _ s o’ - N o a'™ B . et o™ .
s ln+
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3 Z —— [e AgMYAd(e=?/2AN™) +d(e?/2 Ag™) A (e=#/2Ab )},

where the 3-form H™ contains U(1) x U(1) gauge-invariant couplings at order o/™ and
is a closed 3-form, i.e., dH™ = 0. However, the aforementioned corrections must also be
expressible in terms of corrections to the base space field by, which imposes constraints on
H®™ to be exact, i.e., H™ = 3dB™. To clarify this point, we first insert the o/-expansions
in equation (2.5) and the following o/-expansion of the T-duality of b/,,:

m
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into the relation between H and b:
H' =3dV — 3¢’ Adb — 30 Adg'. (2.12)

Then one finds the following relation between AH ™ and Ab(™):
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Equating the right-hand sides of equations (2.10) and (2.13), and using the relation d(A A
B) = dA N B — AN dB for any two vectors A and B, one can derive that if H is exact,
then the corrections Ab(™ can be expressed as follows:

AD™ = 3B™ —3p A (e7¢/2A0M) — 3g A (e/2Ag™) . (2.14)

This relation was first derived in [16] for the case of n = 1. It is worth noting that the
right-hand side of equation (2.10) is gauge invariant under U(1) x U(1), whereas the right-
hand side of equation (2.13) is not. Therefore, we will utilize equation (2.10) to investigate
the T-duality constraint on the effective action.

Therefore, the relation in equation (2.10), in which H®™ is an exact form, relates
AH (n ) to Ag,(l ") and Ab((ln). The exact form H™ should also satisfy the constraint in



equation (2.8). Since the transformed fields ¢’ and 1)’ have o/-expansions, one must first
insert their expansions into the constraints in equations (2.7) and (2.8), and then Taylor
expand the corrections Ap™ (¢), - AH™ (¢') around ). This yields an expansion in
terms of different orders of /. One can then set the terms at each order of o’ to be zero
to find the appropriate constraints at that order, i.e.,

[e'e} Oém oo Oé/n ln+m
- Z W&P(”) () + Z WAW(” )+ Z P () = 0,
= ’ = ' n,m=1 !
Oé /n+m
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n=1 n! n,m=1 tm
o0 a/n /n+m ( m)
> Agy () + Z ngab (v6) + Z 9o (W) =0,
n=1 "" n! n,m=1
[ee} m B /n+m
> rAdmw) + Z LA+ 3 ST At = o,
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where the perturbations A" (yh),--- , AH (m,m) (1) are defined as
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Therefore, the corrections to the Buscher rules must satisfy the constraints in equa-
tion (2.15). However, these constraints cannot fix all parameters in the corrections. The
unfixed parameters should be determined by other constraints, such as the requirement
that the effective actions be invariant under T-duality transformations.

Before discussing the T-duality of the effective actions, we would like to point out that
the last constraint in equation (2.15) can also be expressed in the following form using the
relation in equation (2.10):



n=1
oo a/n+mdb ©/2 A g(ntm) o0 a/n+md ©/2 Ap(n+m) (4!
_GH%; lml A(e™ g (v5)) — GH%LW g (e (W)
el m—+m
-3 Z O‘n'm| {(e‘P/QAg(”))/\d(e_‘P/QAb(m))+d(etp/2Ag(n))/\(e—ap/QAb(m))}
n,m=1 e
> m+m
3 Y0 S (el g™ i) Ad(em A () + d(e# 200" (W) Al AN ()]
n,m=1 '
o0 a/n+m nm)
+ Z n'm' abc (¢O): (217)
n,m=1 o

This indicates that the coefficients of the couplings in the exact form H™ at order o/ are

related to themselves, as well as to the corrections Ag, Ab, and H at orders o/, o2, -+,

O/n—l.

We now impose the constraint that the effective actions be invariant under the
O(1,1,Z)-group. To do so, we need to reduce the theory on a circle with a U(1) isom-
etry to obtain the 9-dimensional effective action Seg(1)), which we then transform under

the O(1,1, Z)-transformations to produce Seg(¢)'). The O(1,1,Z) invariance is given by

Sen(®) = Ser(¥') = [ o/ TGVale 00 (w)] (218)

where J® is an arbitrary covariant vector made up of the 9-dimensional base space fields,
with the following o’-expansion:

o0 am
JO=> —Jg, (2.19)

|
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where J? is an arbitrary covariant vector at order /™. Note that by imposing (¢)') = 9
n (2.18), it can be deduced that the total derivative terms must satisfy the following

V=GV T W) = —V=3Vale T )]

If the effective action and its circular reduction have the following o/-expansions:

relation:
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Expanding the second term above around vy, i.e.,

Sy = +Z 'S(”m W), (2.22)



yields the constraint in equation (2.23):
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(2.23)
To find the appropriate constraints on the effective actions, one must set the terms at each

order of o/ to be zero.

2.1 T-duality constraint at orders o/, o/

In this subsection, we review how the effective actions at orders o/ and o are found
by imposing the nongeometrical T-duality transformations on the effective action. The
constraint in equation (2.23) at order o’® is given by:

SO _ gO) (g1 = / P/ =GV (e22JE) (2.24)

where J§ is an arbitrary vector at the leading order of o/, and ¢y, is the Buscher rules (2.3).
Reduction of different geometrical couplings in S(®) are the following (see e.g., [17]):

_ 1 1
aiR = ay (R — VWV, — =V,pV% — 690V2) , (2.25)

2 4
1 - 1
aaV, VI ® = ay (vaw% + 5 Vad Ve + mvaw“¢> ,
asH? = ag(Hyp HYC + 3¢ ¥W?).

The terms on the left-hand sides of the above equations are geometrical (gauge invariant)
in the 10-dimensional spacetime, while the terms on the right-hand sides are geometrical
and gauge invariant in the 9-dimensional base space. However, the terms on the right-hand
sides are not invariant under the nongeometrical T-duality transformation in equation (2.3).
Requiring them to be invariant under the nongeometrical transformations fixes the coef-
ficients a1, as,as up to an overall factor to those in equation (1.3). Moreover, there is a
total derivative term in the base space that fixes the coefficient of the boundary term to
be that in equation (1.3).

In general, non-geometric T-duality transformations yield two distinct sets of relations
among the geometrical couplings. The first set comprises terms involving the zeroth and
first partial derivatives of the base space metric, while the second set encompasses terms
involving the second partial derivative of the base space metric and higher. Interestingly,
a noteworthy observation made in [7] is that all the relations derived from the second set
are already encompassed by the relations obtained from the first set. Consequently, we can
disregard the relations belonging to the second set. Within the context of the first set of
relations, owing to the covariant nature of the formalism, we can select a local frame where
the first partial derivative of the metric vanishes. This enables us to simplify the analysis
by assuming, for the sake of simplicity, that the base space metric is flat. Henceforth, we
consider the base space to be flat in our endeavor to determine the relations between the
parameters via T-duality.

~10 -



The constraint (2.23) at order o for flat base space is
S = s wh) — SOV () = [ dwaule 1) (2:26)

In the heterotic theory, .S () has both even and odd parity terms. As a result, S @) and the
corrections to the Buscher rules that appear in S (071)(1/)6) have both even and odd parity
terms. However, as we mentioned earlier, the constraint (¢') = ¢ on the corrections to
the Buscher rules cannot fix the parameters in these corrections. Therefore, we can fix
them for effective actions in different schemes, reflecting the fact that the corrections to
the Buscher rules depend on the scheme of the effective actions [17]. The corrections to
the Buscher rules at order o for the effective actions in equations (1.3) and (1.4) at order
o’ have been found in [10, 12] to be:

_(1)
Ag((lb = U,
Ap =0,
1
AW = 1200900 + €PV2 4 T PW?) + VW,

_ 1 _

Ag) = e1(2e772 0P oWy + PP Hupe V™) = 16 (26720 Vi — 2 Hape ™)
_ 1 _

AN = ¢ (2ew/2ab<pva,, - e_‘P/QHabCWbC) - 1—6(26_‘P/23bchab + e‘o/QHachbc> :

AHY) = =12010,,(Wy"Vga) — 3¢ Vi Mgy — 3¢/ W o A0 (2.27)

c] c]

There are also total derivative terms in the base space that fix the geometrical boundary
terms at order o’ to those in equation (1.5). Importantly, there are no odd parity corrections
for Agfl})
effective action in the Meissner scheme [10]. In this scheme, the corrections involve only

and A¢(1). The even parity correction for Agfj} and A¢W) is zero only for the

the first derivative of the base space fields. This property is required for spacetimes that
have boundaries because T-duality should respect the data on the boundary [12]. There is
another scheme in which the corrections involve the first derivative of the base space fields;
however, the correction A¢(Y) is non-zero in that scheme [18]. It is worth noting that
the base space dilaton ¢ does not appear in the aforementioned T-duality corrections that
have zero A(;_S(l), whereas it appears in the corrections of the T-duality in the scheme [18]
in which A¢(®) is non-zero.

At higher orders of o/, there exist schemes where Aggﬁ) = (0. This is due to the fact
that if the spacetime has a boundary, the unit vector to the boundary in the string frame
must be invariant under T-duality at any order of o/. This scheme can also be used for
spacetimes that have no boundary. There may be schemes where both Agfjg) and A¢(™ are
zero, meaning that the measure 6*2‘2’\/—7[] is invariant under T-duality at all orders of o’
in those schemes. However, these schemes have more couplings than the minimal scheme
in which the most general field redefinitions are used to find the independent couplings. If
we consider the geometrical couplings to be in the minimal scheme, such as the scheme in
equation (1.6), then the corrections Agfjg) and Ad;(”) are non-zero. However, if we require
the unit vector in the string frame and the Einstein frame to be invariant under the field
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redefinitions, then the metric and the dilaton remain fixed under these restricted field
redefinitions. In that case, there are many other couplings besides those in equation (1.6).
In the ensuing subsection, we investigate closed spacetime manifolds without boundaries,
which allow for the most comprehensive field redefinitions. In this context, we encounter a
total of 60 independent even-parity and 13 independent odd-parity geometrical couplings.

2.2 T-duality constraint at order o'?

There are both even and odd parity couplings at order o/ in the actions given by equa-
tions (1.3) and (1.4), which involve €. Interestingly, neither of these couplings is invariant
under T-duality. Consequently, there must exist additional couplings at this order that do
not involve 2. In the subsequent subsection, we identify such couplings that are necessary
to ensure the consistency of the even-parity couplings with T-duality. Furthermore, in
subsection 2.2.2, we determine the couplings required to establish the consistency of the
odd-parity couplings with T-duality.

2.2.1 Even-parity couplings

We will now examine the constraint in equation (2.23) in detail at order a/? to determine
the 60 parameters in equation (1.6). This constraint at order o/? is given by

S - @ (h) - SO (wh) — S0 g) = [ dadle s3], (2.28)
where J§ is an arbitrary vector at order a'? constructed from the base space fields d¢, d¢,
e?/2V, e=?/21/ and H. In the heterotic theory, S has both even and odd parity terms.
However, since we are interested in determining the parameters in equation (1.6), we will
only consider the even parity terms at order o/ in this subsection. Thus, we take S@ to

be the Q2 term in equation (1.3) and the couplings in equation (1.6) at order o2

The Kaluza-Klein reduction of the frame e, is given by

% éai 0
= , 2.29
Cu <e<p/2ga e®/2 > (229)

where éa;ébi M35 = Jab- This reduction is consistent with the Kaluza-Klein reduction of the
metric in equation (2.1). Using this reduction and the reductions in equation (2.1), we can
determine the circular reduction of the Q?-term for flat base space. The calculation can be
performed using the “xAct” package [19], i.e.,

02 — 471863govacvabvbd‘/cevdf‘/ef + 4718634pvabvabvfcevcdvdfv;f + %esgavabvabvcdvcdvefvef
+§e“‘mdvb%@vdeaas06%o+ %ewmvbcvdevdeaawaw - ie”vacvzdvcevdea%abw
+de2wvacwcvdevdea%pab<p+ %wmdvcdaa@a%pabcpabw iew VOV VoD Vo
+$e2wvacvababvdeacvde — %eﬂvcdaacpawa%amc + 21—46“’ VOV l9.0,00400p

1

1 1
3 eV Vb0, 00%00 0.0 — ﬂe“"aa(pab@&%d@d‘/f + ﬂe*"aﬂpab@amcadvac
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1 1 1
+—e?V0%0,V, 30200 — ﬁe*"vbcawadvacadaw + ﬂe“"VaCVabad@C(p@d&go

12
1 1 1

— IV IV PO Vaa — 57 € Vi VIV 0" 00 Vaa + 75 Va Ve V0" 00: Vi
1 1 1

+ € Va Ve V0 00 Vea — 5V VIV IV 0 0ap — o€ Var VI VeV 0 Dacp.

The reduction of the couplings in equation (1.6) that involve only the Riemann curvature,
H,VH,V®, and VV®, can be found in [7]. Therefore, S, which is the reduction of the
couplings in equation (1.6) at order a2, and the above reduction, can be calculated. Once
S@) is determined, its transformation under the Buscher rules can be calculated to find
S@ (¥p).

The circular reduction of the leading order bulk action (1.3) is

2 5[ - 1 1
5O == / dwy/—ge {R —VVap — VgV — PV 4 W)

o _ 1 - _
+4V 6V + 2V V% — EHabcHabC , (2.30)

where k' is related to the 9-dimensional Newton’s constant. When we apply the deformed

Buscher rules in equation (2.5) to the action, we obtain two sets of terms at order o2

The first set contains two first-order corrections, denoted by S 02)

(11)’
contains the second-order corrections, denoted by S((%Q). Specifically, we have:

while the second set

SO =502 45

0,2
o (02 (2.31)

2 -
The first one is

SO (wh) = -

12

3 1 . - - 1
/d%e—2¢ {— EAH<1>abcAH(Uabc — ge“’VabV‘lb(Ag@(l))z (2.32)

K

—ée_“’WabW“b(Ago(l))z - iaamp(l)aamp(l) — %Ab(l)aaaAb(l)baw
+%Ag(1)“6aAg(1)b8bgD+ %Ab“MAbU)baa@abw éAg(l)aAg(l)baagaﬁbgo
+%Ab(1)“8b<p8bAb(1)a — e 2V, ApM P Ape 4 %aaAb“)babAb(l)“
—%&,Ab(l)aabAb(l)“ _ %Ag(l)aabgp@bAg(l)a +e=e/2,, ApD b AgDe
+%8aAg(1)babAg(1)a _ %&Ag(l)aamg(l)a + %eW/QVabAb(l)“Ago(l)é'b@
+%e**"/2WabAg(”“A<p“)3bso - éAb“)aAb“)“awé’b@— éAg(”aAg“)“@wabw :

(1)

where we have used the fact that A{]a}, and A¢() are zero for the first-order corrections

in equation (2.27). By inserting these first-order corrections into the equation, we obtain
S((?j)) (1), which contains no free parameters and includes both even and odd parity terms.
However, since we are only interested in the even parity part of equation (2.28) in this
subsection, we keep only the even parity terms in the resulting S((?f)) (¥()-

To find the second term in equation (2.31), we note that for the minimal couplings in

equation (1.6), we cannot expect Agfj,) and A¢®? to be zero. Therefore, we need to keep
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these corrections in the second-order perturbation of equation (2.30). The second term in

equation (2.31) is given by:
2
S(o 2)(%) 2a /dg _2¢[ o cdechg(Q)ab_%ﬁbcdﬁbchg(Q)aa
@17 cyrab A =(2) 1 —p cyr7ab A =(2) 1 ®» ab A =(2)c
—i-fe Vo VP Ag b6+16 W WP Ag be = 16° Vap V@ AGe,
1 R | _
—1—66 TWa WA t  Ha HAGD + 2PV VO MG
- 1
+Ze_‘PWabW“bA¢>(2) + fe‘pVabVabAgo(Q) - ge—wwa,,wabmp@)

—76 3“Ag0 A¢ %) 0% + Ag baaqsaaqs 4A¢ aéa%
+40, 00D + 0, AP 0% — §A§<2>%aasoaaa’s + 280,00

—0ap0" AP + iaaw%cp@) + %&Ag‘ 0,0%0 — TGAQ( 0

FEAG000% — L0 AT" + 00N — S AGEP0 0,0

1 - 5- 1
—iababAg@)aa + 1A§(2)aaﬁb8b¢ —2A§? ;0% + 56@/21/&1,(9%19(2)&

1 1 1
+§e_5"/2Wab8bAg(2)“ - Ze‘P/QVabAb@)“(‘)bgo + Ze_W/QWabAg(2)“8bg0
1 - _
+A§? 4,070 + 8Ag< ) 0% — EH“bCAH@)abC . (2.33)

The second-order corrections Ag®) ... A¢p? contain all contractions of d¢, d¢, e?/2V,
e %/2W, H, and thelr derivatives at order o/2. In this subsection, we only consider the
contractions in Ap® Ap? Ag b) and Ab( ) that have even parity, and the contractions
in Ag((l) and AH ébz that have odd parity. This is because when these contractions are

inserted into equation (2.33), they produce even parity terms in S((%Q). These corrections

must satisfy the constraints in equation (2.15) at order o'2, i.e.,

1 1
—586P @) + 520 (9g) + A" (vg) = 0,

1 1
AP (1) + = AgP () + MgtV () = 0,

2 2
S8 () + L AN (W) + AKD(wh) = 0,
1

1
“AGD () + =AgD (Wh) + AgliP () = 0,

2 2
1 - 1
S0 () + 5867 (vg) + A6 () = 0,
SAHG(W) + 5 IAED () + AEED W) = 0, (2.34)
where

+2(e#/2Ag1) A d(e?2AbD) + 2d(e#/2Ag ™M) A (92 20D)] .
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The 2-form B® contains all contractions of dy, 8¢, e?/2V, e=¥/2W, H, and their deriva-
tives at order o’ that have odd parity. The constraint in equation (2.34) does not fix all the
parameters in the second-order corrections. The unfixed parameters appear in S((g)’Q) (¢p)-

The effective action at order o’ has both even and odd parity terms. The odd parity
term appears in equation (1.3), and the even parity terms are the couplings in equation (1.4)
at order o/. Therefore, S(!) has both even and odd parity terms, i.e.,

S = g1 4 g1, (2.36)
(1)

Since the first-order correction Ag a}) is zero, and we only need the first-order corrections in
the perturbation S(1) in equation (2.28), we only need to consider the reduction of these
actions when the base space is flat.

The reduction of the odd parity term for flat base space can be found in [12]:
(1) 3a/ 9. —2¢ 1 @y cyyabysd 1 © abycd
So = _W d’xe ﬂe Va Vv ‘/b ch+ @8 %bv \%4 ch
1 = 1 — 1
56 HueaV ™ 0V + e HyeaVa" V0" p + VI WioBuip0p
0,V — VW08 + e ElyaV POV (2.37)
12 POcVab 12 a OcOpp 126 bed a |- .

For a detailed derivation of the reduction of the couplings in Sgl), we recommend refer-
ring to [7]. In this paper, the author provided a comprehensive analysis of the couplings
involving the Riemann curvature, H, VH, V®, and VV®. The reduction is

2da — o3l 1 = =
8 == / d’x\/=ge ? [mHabcHabCHdefHdef +] (2.38)

The ellipsis (...) denotes numerous additional terms in this reduction. To find S (),
the first-order correction to S™), we can straightforwardly perturb S to first order. We
then insert the first-order corrections in equation (2.27) and keep only the terms that
have even parity. The resulting expression is the desired SV (y}) in equation (2.28).
Importantly, this expression has no free parameters.

Inserting all the aforementioned ingredients into equation (2.28), we obtain an equation
that involves the 60 parameters in equation (1.6), the unfixed parameters of the second-
order corrections A90(2), AP, Agg), Ab((f), Ag((f), B®  and the parameters in the current
J§ of the total derivative terms. The 60 parameters in equation (1.6) are all independent;
however, the other parameters in equation (2.28) resulting from the current and the second-
order corrections are not independent. Some of the corresponding couplings are related by
Bianchi identities, and some of the couplings in equation (2.28) resulting from the second-
order corrections are related to the couplings in equation (2.28) resulting from the total
derivative terms. Hence, the parameters in the total derivative terms and the second-order
corrections can be divided into two parts: one part includes the independent parameters,
and the second part includes the dependent parameters. These latter parameters must be
removed from equation (2.28). While equation (2.28) can fix the parameters in the former
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set, it cannot fix the parameters in the latter set. To remove the second set of parameters,
we first solve equation (2.28), and then we set all the unfixed parameters to zero.

The equation (2.28) includes gauge-invariant couplings in flat base space. However,
to solve this equation, one must impose various Bianchi identities that the first derivative
of V, W, and H are satisfied. To impose these Bianchi identities, we write the field
strengths V, W, and H in terms of the derivatives of gq, bs, and bg,. In this way, we
find an equation in terms of independent couplings that are not gauge-invariant. The
fact that equation (2.28) is gauge-invariant ensures that any terms that have gauge fields
ga or by without derivatives must be canceled in the equation. Hence, to simplify the
calculations, we remove the gauge fields g, and b, without derivatives from the equation.
The coefficients of the remaining independent terms must be zero. This produces a set
of algebraic equations that involve all the parameters mentioned above. The resulting
equations can easily be solved. After solving them, we set the unfixed parameters of the
total derivative terms and the second-order corrections to zero.

We have found that the algebraic equations have no solution if we consider the coupling

Q2 to be the only coupling at order a'?

. However, when we include the 60 couplings in
equation (1.6) in our calculations, the equations have a solution. Interestingly, we have
found that the solution fixes all 60 parameters in terms of the overall number c¢f. The

couplings that we have found are as follows:
(2,3,4,5,6,7,8) zal%f 10 20 | L 7 sepy 2 2 2 2
§#345.0.7.8) — 7/d v/ ~Ge~ [uHa CHOPYHgs  H, " H M Hepy
1 4 A A PPN S 1 . N . PN .
_%HaﬂéHaﬁ’YH’ye(Hém sC#Hmu + %HO(/B6HaﬁfyH'yECH6€LHCKI—LHLK;L
2 A A A N A . .
—gHaéeHaﬁWHBCLHwRWH +2H,HPYR5 5" Roycer — 2H PV HP Rops' Royee

—EHaﬁ‘SHQBVHeC”HE“RWM —2H, HPYR5 5" Rypec +2H, HPV R, Ry,

1 A age (7 €C 11 LK 8 » € fra & T LK
—EHO,B‘;H PYRLCH, Rm@—gﬂ(ﬁ HPY Hys H, " Rey¢r

€
20

1. s 2o s
=T M;CH”&RMMVBVO‘(I)—gHa”‘SHfCRBa;CVﬂVa(I)

N ~ ~ ~ 1 - ~ ~ ~
Hog HPYH “ Hs" Reyr — Q—OHQ’V5 Hp,“Hs* H o VPV D

1. 5n 1 R .
+3Hoﬂ‘sH[fC Rye5cVPVAD — TOVBVO‘CDVEHM(;VeHaw

1 o rgus s N 1 o gon o~ X
- 2T)Hﬁﬁarw Hs'VO®V, Hoe + 4—0Jﬂfaﬂ’vhr(;;hr&C VOOV, Hao e

1 A s~ . . 1A s R R
—%HQ&H“'H"’VLH&CV‘HMC - EHJEHWVCHWVLHBEC

1o s . . 1o sn A N
+5HQ5EHC“MVLH%<VLHMC + gﬂaﬁﬁmﬁvvcﬂgavwﬁ

3 A ~ ~ N
—EHQB‘*HWWLHMVLHﬁ ) (2.39)

Note that the coefficients of the Riemann cubed terms become zero, which is consistent
with the S-matrix [14]. The algebraic equations also fix the parameters in the second-order
corrections to the Buscher rules and the parameters of the total derivative terms at order

a'? in terms of ¢?. However, since these couplings are correct only for closed spacetime
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manifolds, the total derivative terms are not important, so we do not write them. The
solution for the second-order corrections is presented in the appendix. These corrections
are required if one would like to study the T-duality of couplings at order a'®, which is
beyond the scope of this paper.

2.2.2 Odd-parity couplings
The odd-parity couplings in (1.4) at order o/? involving € are listed below:

3a/? 1 1
S(2) — —%/dwx /_Ge_2®|:_2HA/6€RQB’Y6QQ§5+H76€RQBQ’YQ,35€_3H’Y56Raﬂaﬁ9"/66

1 1
+H55€Raﬁa79’yée - §HaBERaBV69'y§e + EHQ&HQBVH&SEQWEE

1 1 4
—§Ha55ﬂa5m;m§eg +35 gy HOPVHOS Q50 — gHﬁwmmvav%

+§H5759ﬂ75va<1>v%+4Ha759675vﬂv% : (2.40)

If we reduce the aforementioned couplings on a circle, apply the Buscher rules (2.3) to the
resulting reduction, insert them into the constraint (2.28), and account for all the odd-parity
terms in —S(©2) (yh) — SUD (4} that were previously neglected in the subsection 2.2.1, as
well as include all odd-parity total derivative terms at order /2, we would find that they
do not satisfy the constraint (2.28). Therefore, there must exist other odd-parity couplings
at this order that do not involve (.

In accordance with [13], one can determine all the independent odd-parity geometrical
couplings at order a/?. There are a total of 13 independent couplings, listed as follows:

20/2

s?) = -= / d'z fGe’Q‘I’[alHngﬁV‘sH,;E“RaEEMV%DJragHﬁ“"sRaeggR%(sEV“fI)

K
tazHo "V Hg* Hs Ry VO® +as HPVHY RV g H o™
tasHop’ Hy“ Hse. VOOV VP D+ ag H R5, . VOOVIVA D
+arHy, P H,“Vo®VP OV Hps +agH, ° H, VPV OV Hps.
tagH o HPVH.,“ H MV  He o +aroHop? HYPVH,“ HFV - Hs.,,
tarsHo* H*Y Hys  HyPV e Heepp +a10Ha* H*P R, VW Hpgo f
+a11Haﬁ‘SH“57R5MEEV“Hf€} . (2.41)

Here, a1, - - - , a1z are background-independent parameters that cannot be fixed by the gauge
symmetries.

By incorporating the aforementioned action into the action (2.40) and following the
aforementioned steps, it becomes evident that three parameters in (2.41) exhibit non-zero
values. That is

2.2
S(2,3,4,5,6,7) _ 200 c1 /dwm _Ge—2<1> |:4ﬁaﬂwﬁ665R’yesuvﬁﬁa5u _ 2ﬁa6€ﬁa5’yR655pvuﬁ6w6

K2

1o st o on N
—iHJEHQBVHﬁwaCVCHEW : (2.42)

Furthermore, in the aforementioned context, we have substituted H with H. In addition,
there are corresponding deformations of the Buscher rules similar to the ones outlined in
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the appendix, as well as the inclusion of total derivative terms. However, as these details
do not provide significant insight, we have chosen not to explicitly present them.

3 Discussion

In this paper, we have demonstrated that the Chern-Simons Q?-term in the effective action
of heterotic string theory, at order o/2, does not possess invariance under T-duality trans-
formations. We have examined the Buscher rules, along with their o/-corrections, which
satisfy the O(1,1,Z)-group. However, the requirement that the generalized Buscher rules
adhere to the O(1, 1, Z)-group does not determine the parameters within these rules. Irre-
spective of the chosen values for these parameters, the Q2-term fails to exhibit invariance
under O(1,1,7Z) transformations.

To address this predicament, we introduce 60 independent NS-NS couplings at order
a'?, each with arbitrary coefficients, to the Q2-term. We then impose the condition that
these even-parity couplings remain invariant under O(1,1,Z) transformations. The inves-
tigation also necessitates the inclusion of the effective action at order o/. We employ this
action within the Miessner scheme, which allows us to determine all 60 parameters, as well
as the independent parameters in the O(1,1,Z) transformations, at order /2. The result-
ing 60 couplings are presented in equation (2.39), while the corrections to the Buscher rules
at order a'? are provided in the appendix. In [13], the 60 independent couplings at order o’
were derived using the most general field redefinitions permissible solely for closed spacetime
manifolds [18]. Consequently, the couplings presented in equation (2.39) are only applicable
to closed spacetime manifolds. Thus, we have disregarded the total derivative terms asso-
ciated with ensuring the invariance of the effective action under O(1, 1, Z) transformations.

Additionally, we have observed that the odd-parity couplings in the Miessner ac-
tion (1.4) at order o/? are incompatible with T-duality. To resolve this issue, we intro-
duce 13 independent odd-parity couplings, also at order o', with arbitrary coefficients to
the Miessner action. We then enforce the invariance of these couplings under O(1,1,7)
transformations. This condition allows us to determine all 13 parameters, as well as the
independent parameters in the corresponding O(1, 1,Z) transformations, at order o/2. The
couplings are presented in equation (2.42).

Similar calculations to those in subsection 2.2.1 were carried out in [7] to find the

2. However, the effective action

effective action of the bosonic string theory at order o'
and the corrections to the Buscher rules at order o in that paper are different from those
in equations (1.4) and (2.27). In that work, the effective action in the Metsaev-Tseytlin
scheme [20] and its corresponding O(1, 1, Z)-transformations at order o/, which were found
in [17], were used. It is known that the effective action at order a/? depends on the scheme
used for the effective action at order o [21]. If we set the coefficient of Q to zero in
our calculation, then our results give the effective action for the bosonic string theory at
order o/ when using the effective action at order o’ in the Meissner scheme (1.4) and
its corresponding O(1, 1, Z)-transformations at order o given in equation (2.27). Our

calculations yield the following action for the bosonic string theory:
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S(Q)_Qoﬂc% 26 G —2® 1H 55Ho¢,6"yH (H IRE B 3.1
—7 dzv—Ge Ea B6 L1~y €L Crp ()

1
30
4 e ¢ papByé 4 e¢ pafyd 2 de rrafy (L K
+§Ra 4R RBC&e—gRaﬁ R R,ye(s(—gHa H Hg> Hs¢" Ry
3
+2H P HPYR5 5" Royee, — %Haﬁ(s HOPYH NHC Ry 50 — 2HPYHOC Riygs' Royuec
—2H, " H*"V Ry 5" Ryvec +2Ho " H*" R " Rscer + Hap” H*PV Ry Rice,
3 8 1
=5 Hap" HOP Hy S H™ Ry — 2 Ho™ H™ Hgo Hy '™ Resgt < Hop” HOV Hy © Hy'™ e

3 3 12
—EHﬂHB;HﬂHerﬁ ViR o gHJ‘stg Rpesc VPV

6 3 3
+3Ha75H55< Ry VPV — gVBVa@VEH/MV‘HJ‘S - EHMEHWH(SCLV%VLHMC

1
Ho" HP Hy S Hy'™ Hec" Hugy = 55 Hog” H?7 Ho S Ho He™ Hopg

Hy s HY Repc VPV D —

3 1 1
—s—%HaB’YH(;E"H‘;EC VOOV, Hp o — %Haf‘eﬂaﬁvvbffggcv"ﬂﬁf - 3Ha5€H“57V¢HWVLH354

1 1 1
+3Ha56HaﬂWvLHMVLHB5< + EHM‘SH@BWWHMVLH;C - gHaﬁéHaﬁvaH(;ngH;C :

where ¢; = 1/4. Note that the coefficients of the Riemann cubed terms in the action pre-
sented above are non-zero. This action should be related to the action found in [7] by field
redefinitions that transform the Meissner action (1.4) into the Metsaev-Tseytlin action [20].

The corrections to the Buscher rules at order o/? that we have derived have non-zero
Agﬁ) (see the appendix). However, in the presence of a boundary, one expects the unit
vector to the boundary in the string frame and its length to be invariant under T-duality

(n)

transformations at all orders of o/. Therefore, Ag az should be zero for spacetime manifolds
with a boundary. This implies that the geometrical couplings at order o/? in the presence
of a boundary should incorporate the 60 even-parity couplings in equation (1.6), the 13
odd-parity couplings in (2.41), as well as additional couplings. These additional couplings
are necessary to ensure that the invariance under T-duality results in a vanishing Agfj).
It has been observed in [18] that in the presence of a boundary, one cannot use the most
general field redefinitions and must use only restricted field redefinitions, such as those

that leave the metric unchanged. If one uses these restricted field redefinitions, then the
(n)

— ab
A¢™ . On the other hand, if one requires both the metric and dilaton to be invariant under

T-duality transformations should produce zero Ag},”, though they may produce non-zero
the restricted field redefinition, i.e., requiring the unit vector in the string frame and in
the Einstein frame to be invariant under the field redefinitions, then the measure 6_2(5\/—7§
remains invariant under T-duality at all orders of o/, i.e., Ag(™ = 0. It would be interesting
to find the geometrical couplings when there is only a field redefinition for the B-field and
use them for the couplings in equation (1.6). In that case, one may find the corrections
at order o/ to have zero Agﬁ) and A¢®?). The non-zero corrections Agp®, ... ,Bg)) and
the terms of the total derivatives may then be used to find the corresponding boundary

couplings at order a'? by T-duality. We leave the details of this calculation for future work.
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A Correction to the Buscher rules at order a’?

In this appendix we write the second order corrections to the Buscher rules corresponding
to the effective action (2.39) in the heterotic string theory. A¢®)/c? is
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In addition to first and second derivatives, the above expression also involves third and

(2)

fourth derivatives of the base space. To simplify our notation for witting Ag,,’, we intro-
duce a symmetric tensor S% and multiply it with Agfj}. This allows us to write Agﬁ) in
a simpler form. S“bAg /c is
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The expression for Agab also involves various terms with third and fourth derivatives of
the base space. AbS / cf is
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It has the third derivatives of the base space at various terms. Agc(bz) /c3 is
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The above expression also involves various terms with third derivatives of the base space.
2

To simplify the expression for B op > We introduce an antisymmetric tensor A and multiply

it with B((ﬁ)) This allows us to write B((IIQJ) in a simpler form. AabBéi) /c3 is
o 4 L U
DA gV W —SAabedf Hlg VoW 4 22 Ay Hge VoW

4 _ 48
*ggetpAbchde ad‘/beaad) ewAbCHaoededeaa¢+

230 _
7Abc%dch8a (baa(b + gAbCvadaa ch8a¢

7¢AbCHcdeWadeeaa(5

12
+Ee_¢AbcHaceWded68“¢—

24 = 24 = =
+§e“’Ab°HcdeVadwaaw — geWA’”Hade%dwaw+6e¢A"°HaceVdedeaaso

24 _ 24 7 2
+367¢AbchdeWadeeaagoi geitpAbcHachdeceaa@+6€7¢AbcHaceWdedeaa90

» b de Ha 432 beysd a 96 beys d a
—24e™ 7 A" Heae Wap W 0% o+ == AVi 06 Wea0®p — - A Vi WeaDap0" 0
L2 ; 2 A, Oy Hyey —EAC 1Y o Wi 30— AbcvdWada%c‘)”w— F D VW0 50
+T0Ac 100 Hpeg?® pO°p — EAC W W0 0% + EAachdedaaﬁpab(P_ gAac%dWCdﬁawabw

- _ 36 _
—72A4°9% pOy HyeqOPp — 24e~ % AW, W€D, Hy g + = e? A% Hy o V4.V, °

o 63 _ 663 -
—ﬁe—wAabedewcdaCWae + %Aabacacwadffabd — %Abcaawawadmcd

414 651 _ 12— _ 468 -
A“bacaaandec 0 —— A9°0, 00 Hp.? — gA“bHaCdHcef OaHyer+ ?A“Wabawadvcd
24 _ 6
—72AbCWabaagoadvcd — —AabWbcawadvcd — ge%"Aabecevacadvde — 5A‘“’acvCdadvva,,
792

5
336

672 414 - 432 -
AbPV daa¢adWac Abc‘/bdaa @8dWac + ?Abc‘/bcaa (badWad + 7Abcvadaa¢adec

Ay, daa@adeC—GAaba Vo COaWy +72AV,,0% 00 W4 — 72 A%V,,0% 00y W, 2

24 207
ngabec@“w@dWCd — gAababVac(?dWc + ge’“’A“beceWaC@dee

3

Abcawa Do Hp"

—%Aabvacwcdadab&24Aabvcdwacadab<p —
207

12
5 ZZ ANV W, 0,40y 0 + —Aabv Wy, 040:0
—48 AV, W, 2030, — Ab°6“¢6 O%H ype + —Abcaagpadad abe + 384 AV, Wy 070%
+42ACW, 0,0V — 42Aabvacadadwbc — gAbﬂaracdaagoadabgﬁ+ EAb%racdaaqsadabcp

3 _ 9 _ 9 _ 48 _
+3AabadHabcadacgp — gemabvcevcdaeHabd + ge**"AabechaeHabd — ge”AabVaCVdeﬁeHbcd

— 96 —



48 _ 6 _ 6 _
+€e’“"A“bWaCWde<9€Hbcd + 56¢A“bva%daeHbde - ge’@A“bWaCWCdﬁeHbde

+§€LpAabBbdeVCd86Vac — 6e¢AabedeVac8e%d — 126_¢AabgcdeWCdaeWab
_ _ 24 _ _ _
—ge—WAabedewcdaewac +54e% A Hyqo W, 0°W, @ — EAf“?hrﬂ}ar;f O Hyge - (A.6)

2

The above corrections at order o’ are required if one would like to study the effective

action at order o® for closed spacetime manifolds.
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