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1 Introduction

De Sitter geometry is of particular interest in terms of string cosmology and also in the
context of the holographic principle. De Sitter spacetime plays a central role in the
understanding of our present universe. From the work of [1–3] it has been observed that
our universe is asymptotically dS4, corresponding to a very small positive cosmological
constant. However, the observed value of the cosmological constant differs by many orders
of magnitude from the vacuum energy density value predicted by quantum field theory [4, 5].
Moreover, in the context of string cosmology there are also difficulties in obtaining de Sitter
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space via compactification from higher dimensions. In particular, there are no go-theorems
proving that smooth warped de Sitter solutions with compact, without boundary, internal
manifold cannot be found in ten- and eleven-dimensional supergravity [6–8]. Issues relating
to quantum gravity in de Sitter space have been investigated in [9].

In terms of holography, the AdS/CFT correspondence relates string theory in Anti-de
Sitter (AdS) space to conformal field theories (CFT) defined on an appropriate boundary [10].
This has been particularly useful in developing a deeper understanding of the microscopic
nature of the entropy-area law [11, 12]. In spite of the considerable insights produced via
the holographic principle, there are still many open issues in this area. Building from the
AdS3/CFT2 correspondence proposed by Brown and Henneaux in [13], the relation between
quantum gravity on de Sitter space and conformal field theory on a sphere, the so-called
dS/CFT correspondence, was considered in [14–16]. However, our understanding of the
conjectured dS/CFT correspondence is less complete than for the case of AdS/CFT for a
number of reasons. Firstly, in contrast to AdS, there is a lack of de Sitter space solutions in
string theory (or in any quantum gravity theory) in which the conjecture can be tested.
Also, there are subtle issues with defining the dual CFT on the past and future spheres I±,
relating to the causal structure of dS space. Nevertheless, the macroscopic entropy-area law
applies to a very wide class of black holes, including asymptotically flat, asymptotically AdS,
and also asymptotically dS cases. The universality of this law provides strong motivation
for understanding de Sitter holography.

Motivated by this, it is of particular interest to systematically understand the different
types of de Sitter solutions which are possible in D=10 and D=11 supergravity. Such a
classification may provide interesting new applications of the dS/CFT correspondence. As
it is possible to embed dSn inside both R1,n and AdSn+1 as a warped product geometry [17],
it follows that the maximally supersymmetric AdS7 × S4 solution, as well as R1,10, can
both be regarded as examples of warped product dS4 geometries. However, as we shall
establish here, there is a much larger class of supersymmetric warped product dS4 solutions
in D = 11 supergravity than these two very special solutions, and this is also somewhat in
contrast to the results of recent analysis of supersymmetric warped product dSn geometries
for 5 ≤ n ≤ 10.

In terms of D = 11 supergravity, there has been recent progress in the classification of
supersymmetric warped product dSn geometries for 5 ≤ n ≤ 10 [18]. There are a number
of different possibilities:

• For 7 ≤ n ≤ 10, the geometry is the maximally supersymmetic R1,10 solution with
vanishing 4-form flux.

• For warped product dS6 solutions, the solution is either the maximally supersymmetric
AdS7 × S4 solution, or R1,6 ×N where N is a hyper-Kähler 4-manifold.

• The warped product dS5 solutions are all examples of generalized M5-brane solutions
for which the transverse space is R×N , where N is a hyper-Kähler 4-manifold.

It is clear from this list that the possible warped product dSn geometries for 5 ≤ n ≤ 10
is very highly constrained. In addition, a similar recent analysis of warped product
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dSn solutions in heterotic supergravity [19], including first order α′ corrections, has also
produced a rather restricted class of such solutions. In this case, for n ≥ 3, the geometry
is R1,n ×M9−n, where M9−n is a (9− n)-dimensional manifold. The dilaton depends only
on the co-ordinates of M9−n, and all p-form fields have components only along the M9−n
directions. The heterotic warped product dS2 solutions are the direct product AdS3 ×M7
solutions which have been classified in [20]. Compared to these types of solutions, the
conditions on supersymmetric warped product dS4 solutions in D = 11 supergravity are
rather weaker.

Motivated by these results, in this paper we obtain the necessary and sufficient conditions
for warped product dS4 solutions in D = 11 supergravity to preserve the minimal N = 8
supersymmetry. We find, on integrating the Killing spinor equations along the dS4 directions,
that all of the necessary and sufficient conditions for supersymmetry are encoded in a single
gravitino-type equation, which is satisfied by a spinor ψ+ whose components depend only
on the co-ordinates of the internal space. We analyse the solutions of this equation using
spinorial geometry techniques. This technique was introduced in [21] and consists of writing
the Killing spinors in terms of multi-differential forms and, utilizing the gauge-covariance of
the KSE, gauge transformations are then used to write the spinors in one of several simple
canonical forms. The main outcome of this approach is a linear system which imposes
conditions on the spin connection and the fluxes of the theory. This in turn can be used to
obtain conditions on the geometry which are necessary and sufficient for supersymmetry.
These techniques have been applied to classify a wide variety of supergravity solutions [22].

In the case of warped product dS4 solutions, we state explicitly the Spin(7) gauge
transformations which are used to write the spinor ψ+ in canonical forms with stabilizer
subgroups SU(3) and G2. We then solve the linear system obtained from the Killing
spinor equations. In particular, we show that the linear system implies that there are
no Killing spinors for which the stabilizer of ψ+ is G2. For the case of SU(3) stabilizer
subgroup, the Killing spinor equations determine all components of the 4-form flux in terms
of the geometry of the internal manifold, and we present the geometric conditions and
the components of the flux, written in a SU(3) covariant fashion. On considering these
conditions, we note that the warped product dS4 geometries are manifestly less restricted in
terms of the geometric structure and the 4-form flux in comparison to the warped product
dSn solutions for 5 ≤ n ≤ 10. Our analysis does not utilize the global techniques developed
for the investigation of supersymmetric black holes [23]; we consider only local properties of
the Killing spinor equations. This avoids the no-go theorems which exclude warped product
dSn solutions when the warp product and 4-form flux are smooth, and the internal manifold
is smooth and compact without boundary.

The plan of this paper is as follows. In section 2 we summarize the bosonic field
equations, Bianchi identities, and Killing spinor equations of D = 11 supergravity, we also
describe the ansatz for the warped product dS4 solutions, and present the reduction of the
bosonic conditions to the internal manifold. In section 3, we derive several integrability
conditions from the Killing spinor equations, and we demonstrate how some of these
integrability conditions can be derived from others. In section 4, we explicitly integrate
up the Killing spinor equations along the dS4 directions, and show how the Killing spinor
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equations reduce to a single gravitino-type equation for a spinor ψ+ which depends only
on the internal manifold co-ordinates. We also prove that the supersymmetric dS4 warped
product solutions preserve N = 8n supersymmetries for n = 1, 2, 3, 4. In section 5 we utilize
spinorial geometry techniques, and prove that the spinor ψ+ can be written in a particularly
simple canonical form on applying appropriate Spin(7) gauge transformations. Furthermore,
we prove that such a spinor has stabilizer subgroup which is either SU(3) or G2; in the SU(3)
case we also consider several possible special sub-cases. In section 6, we present the SU(3)
covariant conditions on the flux and geometry, obtained from the gravitino-type equation
in the case of SU(3) stabilizer. In section 7 we also prove that there are no supersymmetric
warped product dS4 solutions for which the stabilizer subgroup of ψ+ is G2. We present
our conclusions in section 8. In appendix A, we list some conventions. In appendix B we
present some properties of the explicit representation of the Clifford algebras in terms of
differential forms, as utilized in the spinorial geometry method. In appendix C we list
some equations which are used in the process of integrating up the Killing spinor equation
along the dS4 directions in section 4. In appendix D we list the linear system of equations
obtained from the gravitino-type equation for the cases of ψ+ with SU(3) and G2 stabilizer.
In appendix E we state a number of useful identities which are used to covariantize the
solutions of the linear systems in terms of gauge-invariant bilinears.

2 Bosonic field equations and KSE

In this section, we summarize the bosonic field equations and Killing spinor equations (KSE)
of D = 11 supergravity, and describe the ansatz for the warped product dS4 geometries.
The bosonic fields of D = 11 supergravity consist of a metric g, and a 3-form gauge potential
A with 4-form field strength F = dA. The action for the bosonic fields is given by

S = 1
2κ2

∫
d11x
√
−gR− 1

2F ∧ ∗F + 1
6F ∧ F ∧A , (2.1)

where κ2 is proportional to the gravitational coupling constant. The equations of motion
are thus given by

RAB −
1
2RgAB −

1
12FAB1B2B3FB

B1B2B3 + 1
96gABF

2 = 0

d ∗ F − 1
2F ∧ F = 0 . (2.2)

By using
R = 1

144F
2 , (2.3)

the first equation in (2.2) becomes

RAB −
1
12

(
FAB1B2B3FB

B1B2B3 − 1
12gABF

2
)

= 0. (2.4)

The supercovariant derivative DA is defined as

DM ≡ ∇M −
1

288
(
ΓM A1A2A3A4 − 8δA1

M ΓA2A3A4
)
FA1A2A3A3A4 . (2.5)
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Bosonic solutions to the equations of motion that preserve at least one supersymmetry are
those that admit at least one non-vanishing Killing spinor ε, which satisfies

DAε = 0 . (2.6)

In order to analyse supersymmetric warped product dS4 solutions, we shall split the
D = 11 spacetime in a 4+7 fashion ds2 = dS4 ×wM7, where ×w denotes a warped product
of dS4 with an internal manifold M7. In terms of the D = 11 frame, capital latin letters
such as A,B denote D = 11 frame indices. These D=11 frame indices are split in a 4+7
fashion as follows: we use greek letters for dS4 frame directions, and latin letters from
the middle of the alphabet and onwards for M7. Latin letters from the beginning of the
alphabet denote M7 spacetime indices. M7 is equipped with local co-ordinates ya, whereas
dS4 is equipped with local co-ordinates xµ. For further details about the conventions used
are set out in appendix A.

The warped dS4 product metric g is

ds2 = A2ds2
dS4 + ds2

M7 = ηµνeµeν + δijeiej , (2.7)

where the vielbein frame is defined as eµ ≡ A

R
dxµ

ei ≡ eibdyb
(2.8)

with
R(x) =

(
1 + 1

4Kxνx
ν
)
, xν ≡ xαηαν . (2.9)

The conformal factor A and the vielbein eja depend only on ya co-ordinates. The scalar K
is constant and greater than zero.

We require that the field strength F must be invariant under the isometries of dS4,
hence it decomposes as follows:

F = cdvol(dS4) +X , (2.10)

where c is a constant due to the Bianchi identity and X is a closed 4-form on M7 depending
only on ya co-ordinates. The gauge field equation (2.2) is equivalent to

d(A4 ?7 X) = cX . (2.11)

It will be convenient to state the non-vanishing components of the spin-connection, and
curvature components. The non-vanishing spin-connection components are

Ωµ,νρ = K

A
x[νηρ]µ

Ωµ,iν = −∇iA
A

ηµν

Ωijk = Ωijk(M7) , (2.12)

where on the l.h.s. Greek indices are frame indices on dS4, and on the r.h.s. they are
co-ordinate indices on dS4. ∇i denotes the Levi-Civita connection on M7.
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The non-vanishing Riemann tensor components are

Rµναβ = (ηµαηβν − ηναηβµ)
(
K

A2 −
∇iA∇iA
A2

)

Riαjβ = − 1
A
∇i∇jAηαβ

Rijkl = Rijkl(M7) (2.13)

where on the l.h.s. Greek indices are frame indices on dS4, and on the r.h.s. they are
co-ordinate indices on dS4. The Ricci curvature tensor components are

Rµν = ηµν
(
3A−2K −A−1∇i∇iA− 3A−2∇iA∇iA

)
Rµi = 0
Rij = −4A−1∇i∇jA+Rij(M7) (2.14)

where on the l.h.s. Greek indices are frame indices on dS4, and on the r.h.s. they are
co-ordinate indices on dS4.

The (µν)-component of the Einstein equations of motion (2.4), imply that

3KA−1 −∇i∇iA− 3A−1∇iA∇iA+ 1
3c

2A−7 + A

144X
2 = 0 . (2.15)

From the (ij)-component of the Einstein equation of motion (2.4) and the third equation
in (2.14), one finds

Rij(M7) = 4A−1∇i∇jA+ 1
12Xia1a2a3Xj

a1a2a3 + 1
6c

2A−8δij −
1

144X
2δij . (2.16)

On taking the trace of (2.16), and using (2.11) and (2.15), we obtain

R(M7)− 8A−1∇i∇iA− 12A−2∇iA∇iA+ 12A−2K + 1
6c

2A−8 − 1
144X

2 = 0 . (2.17)

3 Integrability conditions from the KSE

In this section, we begin the analysis of the KSE by computing the integrability conditions
associated with (2.6). These results will be particularly useful when we explicitly integrate
up the KSE along the dS4 directions in the next section. From (2.5), we find

∂

∂xµ
ε = 1
R

(
−1

4Kx
αΓαµ + 1

2∇kAΓkΓµ + A

288Γµ /X −
c

6A
−3ΓµΓ̃4

)
ε (3.1)

and
∂

∂ya
ε = eja

( 1
288�

�ΓXj + c

12A
−4ΓjΓ̃4 − 1

36
/Xj −

1
4Ωj,lmΓlm

)
ε , (3.2)

where
Γ̃4 ≡ Γ0Γ1Γ2Γ3 . (3.3)

We remark that (3.2) is equivalent to

∇iε =
( 1

288�
�ΓXi + c

12A
−4ΓiΓ̃4 − 1

36
/Xi

)
ε , (3.4)

where ∇i denotes the Levi-Civita connection on M7.
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We use these expressions to derive several integrability conditions. First, from the
integrability condition on dS4 spacetime(

∂

∂xµ
∂

∂xν
− ∂

∂xν
∂

∂xµ

)
ε = 0 , (3.5)

we get(
|∇A|2 −K − c2

9 A
−6 − A2

(144)2 /X
2 + 2

3cA
−3∇iAΓiΓ̃4 − 1

18A∇iA
/X
i

)
ε = 0 . (3.6)

On the other hand, from the integrability condition with one direction on dS4 and the other
on M7, i.e. (

∂

∂xµ
∂

∂ya
− ∂

∂ya
∂

∂xµ

)
ε = 0 (3.7)

we get (
− 1

2∇i∇kAΓk + A

288∇i
/X + 5

6
A

288
(
Γ[il1l2

j3j4 δj2l3 δ
j1
l4]Xj1j2j3j4 X

l1l2l3l4
)

+ 5
6
A

288
(
Γ[iXl1l2l3l4] X

l1l2l3l4
)

+ c

864A
−3(10 /Xi − Γi /X) Γ̃4

+ A

144Γl1 j3j4 Xi
l1j1j2 Xj1j2j3j4 + c

2A
−4∇iA Γ̃4 + 1

72∇kAΓl1l2l3iX l1l2l3k

− c

12A
−4∇kAΓk i Γ̃4 + 1

12∇kAΓmnXimn
k

)
ε = 0 . (3.8)

The integrability conditions (3.6) and (3.8) are, however, not independent; (3.6) is
implied by (3.8). To see this, contract (3.8) with Γi, and using equation of motion (2.15)
and the Bianchi Identity dF = 0, we are able to derive the integrability condition (3.6).

So far, we have analyzed the integrability conditions involving the dS4 part of the
covariant derivative (3.1). The integrability condition on M7 given by

[∇i,∇j ] ε = 1
4RijmnΓmnε , (3.9)

is

1
4RijmnΓmnε =

[
1

288 (∇i(��ΓXj)−∇j(��ΓXi))−
c

3A
−5 (∇iAΓj −∇jAΓi) Γ̃4

− 1
36
(
∇i /Xj −∇j /Xi

)
+ 1

2882 (��ΓXj�
�ΓXi −��ΓXi�

�ΓXj)

+ 1
362

(
/Xj /Xi − /Xi /Xj

)
+ 1

288
c

12A
−4 (��ΓXjΓi − Γi��ΓXj) Γ̃4

+ 1
288

c

12A
−4 (Γj��ΓXi −��ΓXiΓj) Γ̃4 + 1

288
1
36
(
��ΓXi /Xj − /Xj�

�ΓXi
)

+ 1
288

1
36
(
/Xi�

�ΓXj −��ΓXj /Xi

)
+ c2

72A
−8Γij

+ c

432A
−4 ( /XiΓj − Γj /Xi

)
Γ̃4 + c

432A
−4 (Γi /Xj − /XjΓi

)
Γ̃4
]
ε . (3.10)
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In fact, (3.8) is implied by (3.10). To see this, contract (3.10) with Γj and use the
Einstein equation (2.16), the Bianchi identity, Rl[ijk] = 0, and the condition dX = 0, as
well as the gauge field equations (2.11). In particular:

• The condition dX = 0 is used to derive:

4Γla1a2a3∇lXka1a2a3 = ∇k /X . (3.11)

• The gauge field equation (2.11) implies that from

4A(Γi∇j /Xj −∇j /X
jΓi) + cA−3(Γi /X − /XΓi) Γ̃4

+ 16∇jA(Γi /Xj − /X
jΓi) = 0 , (3.12)

and from this condition, it follows that

AΓia1a2a3∇kXka1a2a3 = −cA−3 /XiΓ̃4 − 4∇kAΓia1a2a3X
ka1a2a3 . (3.13)

• The gauge field equation (2.11) also implies that

4A(Γi∇j /Xj +∇j /XjΓi) + cA−3(Γi /X + /XΓi) Γ̃4

+ 16∇jA(Γi /Xj + /X
jΓi) = 0 , (3.14)

and from this condition, it follows that

AΓab∇kXkiab = − 1
12cA

−3Γi /XΓ̃4 + 1
3cA

−3 /XiΓ̃4 − 4∇kAΓabXkiab . (3.15)

Hence, it follows that the integrability conditions (3.6) and (3.8) are both implied
by (3.10), which is derived from the integrability condition of (3.4).

4 Integration of KSE

In this section, we will explicitly integrate the KSE along the dS4 directions. In this analysis,
we shall show that the KSE reduce to a single gravitino-type KSE acting on a spinor ψ which
is independent of the dS4 co-ordinates. To begin, we shall define a spinor Φ, as follows:

Φ ≡ A

288
/Xε− 1

2∇kAΓkε+ acA−3Γ̃4ε , (4.1)

where a is a constant to be fixed. We have chosen the relative coefficients between /X and
/dA in (4.1) motivated by the first two terms in (3.8). We shall show that one can choose
the constant a, as well as other constants k1, k2, q1, q2, q3, q4, q5 such that

∇iΦ + k1[Eq. (3.8)] + k2A
−1Γi[Eq. (3.6)]

+ q1��ΓXiΦ + q2 /XiΦ + q3cA
−4ΓiΓ̃4Φ + q4A

−1∇kAΓiΓkΦ + q5A
−1∇iAΦ = 0 . (4.2)

Details of this calculation are presented in appendix C. One finds that

k1 = −1 a = −1
6 q1 = 1

288 q2 = − 1
36 q3 = − 1

12 k2 = q4 = q5 = 0 . (4.3)

– 8 –



J
H
E
P
0
9
(
2
0
2
2
)
2
1
4

Given this choice of constants, the spinor Φ is

Φ =
(
A

288
/X − 1

2∇kAΓk − c

6A
−3Γ̃4

)
ε , (4.4)

which satisfies the following equations

∂

∂xµ
Φ = 1

R

[
−1

4Kx
αΓαµ + Γµ

(1
2∇kAΓk + A

288
/X + c

6A
−3Γ̃4

)]
Φ (4.5)

∂

∂ya
Φ = eja

(
− 1

288�
�ΓXj + c

12A
−4ΓjΓ̃4 + 1

36
/Xj −

1
4Ωj,lmΓlm

)
Φ. (4.6)

These equations are similar, but not identical, to the original Killing spinor equations for
ε (3.1)–(3.2). The differences are in terms of certain signs appearing in (4.5)–(4.6), which
are flipped with respect to (3.1)–(3.2) — in (4.5) the second and the fourth term with
respect to (3.1) and in (4.6) the first and the third term with respect to (3.2).

Equations (4.5) and (4.6), will be particularly useful in the process of integrating up
the KSE along the dS4 directions. By using (3.6), (4.5) becomes

∂

∂xµ
Φ = − K

4Rx
αΓαµΦ− K

4RΓµε . (4.7)

By using the definition of Φ (4.4), one can rewrite ∂
∂xµ ε as

∂

∂xµ
ε = 1
R

(
−1

4Kx
αΓαµε+ ΓµΦ

)
. (4.8)

Applying a second derivative ∂
∂xν to (4.8), using (4.7) and finally exploiting (4.8) to cancel

R−1ΓµΦ terms, one gets a second order differential equation for ε, namely

∂

∂xµ
∂

∂xν
ε+ K

4R

(
xµ

∂

∂xν
ε+ xν

∂

∂xµ
ε

)
− K2

16R2xµxνε+ K

4Rηµνε = 0 . (4.9)

On defining η by
ε = R−

1
2 η , (4.10)

it is straightforward to see that (4.9) is equivalent to

∂

∂xµ
∂

∂xν
η = 0 ⇒ η = ψ + xλτλ , (4.11)

and hence this equation can be integrated to find

η = ψ + xλτλ , (4.12)

where ψ, τλ with λ = 0, 1, 2, 3 are Majorana spinors which do not depend on the xµ
co-ordinates.

Given this expression for ε, i.e.

ε = R−
1
2 (ψ + xλτλ) , (4.13)

– 9 –



J
H
E
P
0
9
(
2
0
2
2
)
2
1
4

we substitute it into the KSEs (3.1) and (3.2). As the spinors ψ, τλ are independent of the dS4
co-ordinates, on expanding (3.1) and (3.2) order-by-order in xα, we find various conditions.

In particular, from the KSE along the dS4 directions (3.1), the vanishing of x-
independent terms imply that the Majorana spinors τµ are given in terms of ψ, as follows:

τµ = Γµ
(
A

288
/X − 1

2∇kAΓk − c

6A
−3Γ̃4

)
ψ . (4.14)

The vanishing of the terms that are linear in xµ in (3.1) imply(
|∇A|2 −K − c2

9 A
−6 − A2

(144)2 /X
2 + 2

3cA
−3∇iAΓiΓ̃4 − 1

18A∇iA
/X
i

)
ψ = 0 , (4.15)

and we remark that this condition is equivalent to the integrability condition (3.6), but
with ε replaced with ψ. The terms in (3.1) which are quadratic in xµ vanish identically;
this then exhausts the content of (3.1).

Next we consider the KSE along the seven-dimensional internal directions, (3.2). Again,
we substitute in (4.13) and expand order-by-order in dS4 co-ordinates. The vanishing of
x-independent terms gives

∇iψ =
( 1

288�
�ΓXi + c

12A
−4ΓiΓ̃4 − 1

36
/Xi

)
ψ . (4.16)

The above equation (4.16) implies that ψ satisfies a gravitino KSE along the internal
directions, which is identical to the condition (4.16) but with ε replaced with ψ.

From the terms in (3.2) which are linear in xµ we obtain[
A

288∇i
/X − 1

2∇i∇kAΓk + A

1728ΓiX2 + A

864Γj1j2j3 l1l2Xij4l1l2X
j1j2j3j4

− A

432Γj1Xij2j3j4X
j1j2j3j4 − A

576Γij1j2 l1l2Xj3j4l1l2X
j1j2j3j4

− 1
864cA

−3Γi /XΓ̃4 + 5
432cA

−3 /XiΓ̃4 + A

144Γm abXimpqX
pqab

+ 1
72∇kAΓij1j2j3Xkj1j2j3 + 1

12∇kAΓabXi
k
ab

− c

12A
−4∇kAΓkΓiΓ̃4 + 7

12cA
−4∇iAΓ̃4

]
ψ = 0 (4.17)

which is identical to the integrability condition (3.8), with ε replaced by ψ. This then
exhausts the content of (3.2).

Hence, we have shown that the spinor ε is given by

ε = R−
1
2 (ψ + xλτλ) , (4.18)

where
τλ = Γλ

(
A

288
/X − 1

2∇kAΓk − c

6A
−3Γ̃4

)
ψ . (4.19)
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The Majorana spinor ψ is independent of the dS4 co-ordinates, and satisfies (4.16). Fur-
thermore, ψ must also satisfy the algebraic conditions (4.17) and (4.15). However, as we
have shown in the previous section, the integrability conditions of (4.16), together with the
bosonic field equations and Bianchi identities, imply that (4.17) holds. Furthermore, we
have shown that (4.17) also implies (4.15). Hence, the necessary and sufficient conditions
for supersymmetry are encoded in (4.16).

4.1 Counting the supersymmetries

Having determined that the necessary and sufficient conditions for supersymmetry are given
by (4.16), we shall now count the number of solutions to this equation. In particular, if ψ
satisfies (4.16), then so does Γµνψ. We choose a null basis for the Majorana representation
of Spin(10,1) and take the dS4 frame directions to correspond with the +,−, 1, 1̄ directions,
see appendix B. The frame directions associated with the internal manifold M7 correspond
to the 2, 3, 4, 2̄, 3̄, 4̄,# directions.

With these conventions for the de Sitter and internal manifold frames, we define
lightcone projection operators as

P± ≡
1
2 (I± Γ+−) . (4.20)

As the projection operator P± commutes with the supercovariant derivative (4.16), we then
decompose the spinor ψ using the lightcone projectors and we define ψ± to be

ψ± ≡ P±ψ ⇒ Γ±ψ± = 0 . (4.21)

Without loss of generality, utilizing these projection operators, any supersymmetric
solution must admit a positive chirality solution ψ+ to (4.16). Given such a ψ+ spinor, we
can then define

ψ̃+ ≡ iΓ11̄ψ+

ψ− ≡ Γ−(Γ1 + Γ1̄)ψ+

ψ̃− ≡ iΓ−(Γ1 − Γ1̄)ψ+ . (4.22)

ψ̃+ is an additional positive chirality solution to (4.16), and {ψ−, ψ̃−} are two negative
chirality solutions to (4.16). {ψ+, ψ̃+, ψ−, ψ̃−} are linearly independent, as by construction
they are mutually orthogonal with respect to the Dirac inner product 〈 · , · 〉.

It would therefore appear, a priori, that the number of supersymmetries is 4n. However,
there are, in fact further additional spinors. To see this, note that (4.6) implies that

ψ̌+ ≡ (Γ1 + Γ1̄)
(
A

288
/X − 1

2∇kAΓk − c

6A
−3Γ̃4

)
ψ+ , (4.23)

is also a positive chirality solution of (4.16). Furthermore, it can be shown that {ψ+, ψ̃+, ψ̌}
are linearly independent. To see this, suppose that

ψ̌+ = c1ψ+ + ic2Γ11̄ψ+ , (4.24)
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for real constants c1, c2. Acting on both sides of this condition with the operator (Γ1 +
Γ1̄)
(
A

288 /X −
1
2∇kAΓk − c

6A
−3Γ̃4), and utilizing the integrability condition (4.15) to simplify

the l.h.s., we find
− K

2 ψ = (c2
1 + c2

2)ψ , (4.25)

where we have also used (4.24) to simplify the r.h.s. It is clear that this admits no solution,
as K > 0. Hence, we find that we can construct four linearly independent positive chirality
spinors which solve (4.16), corresponding to {ψ+, ψ̃+, ψ̌+,

˜̌
ψ+}, where

˜̌
ψ+ ≡ iΓ11̄ψ̌. There

are also four corresponding negative chirality spinors given by {ψ−, ψ̃−, ψ̌−, ˜̌
ψ−}, where

ψ̌− = Γ−(Γ1 + Γ1̄)ψ̌+ ,
˜̌
ψ− = iΓ11̄ψ̌− . (4.26)

Hence we have constructed 8 linearly independent solutions to (4.16),{
ψ+, ψ̃+, ψ̌+,

˜̌
ψ+, ψ−, ψ̃−, ψ̌−,

˜̌
ψ−

}
(4.27)

and it follows that the number of supersymmetries for warped product dS4 solutions is 8n,
n = 1, 2, 3, 4.

We remark that the existence of the additional spinors ψ̌±, ˜̌
ψ± is somewhat analogous

to results found in the analysis of near-horizon geometries of supersymmetric extremal
black holes [23] and also for warped product AdS solutions [24]. In these cases, given a
Killing spinor, one also finds that additional Killing spinors can be generated by the action
of certain algebraic operators constructed out of the fluxes of the theory.

5 Spinorial geometry: canonical forms for ψ

In this section we shall use Spin(7) gauge transformations to bring the spinor ψ+ to one of
several simple canonical forms. We will describe the gauge transformations used to do this
explicitly.

The most general form of a positive chirality Majorana spinor ψ+ ∈ ∆32 can be
expressed by using (B.7), i.e.

ψ+ = w1 + w̄e1234 + λ1e1 + λ̄1e234 + λjej −
1
3!(∗λ̄)l1l2l3el1l2l3

+ Ωqe1q −
1
2!Ω̄

qεq
mnemn , (5.1)

with l, q,m,m = 2, 3, 4. As the action of SU(N) on CPN−1 is transitive, one can apply
a SU(3) gauge transformation in the 2,3,4 directions to set, without loss of generality,
Ω3 = Ω4 = 0,1 i.e.

ψ+ = w1 + w̄e1234 + λ1e1 + λ̄1e234 + λjej −
1
3!(∗λ̄)l1l2l3el1l2l3 + Ωe12 − Ω̄e34 . (5.2)

1Generally, the complex value Ω2 can be set to be real with the same SU(3) transformation used to
set Ω3 = Ω4 = 0. It does not happen in this specific case due to the fact that Ω2 will be promoted to be
complex value in the next gauge transformation.
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To proceed further, we define T 1, T 2, T 3 as

T1 ≡
1
2(Γ34 + Γ3̄4̄) T2 ≡

i

2(Γ34 − Γ3̄4̄) T3 ≡ T1T2 = i

2(Γ33̄ + Γ44̄) . (5.3)

It is straightforward to verify that T i with i = 1, 2, 3, which satisfy the algebra of the
imaginary unit quaternions, preserve the span of the following basis elements

v1 ≡ (1 + e1234) v2 ≡ i(1− e1234)
v3 ≡ (e12 − e34) v4 ≡ i(e12 + e34) (5.4)

and we remark that the Spin(7) gauge transformation generated by the Ti is of the form
p4id + piTi where (p1, p2, p3, p4) ∈ S3.

Then one can carry out a SO(2) gauge transformation generated by T3 to set w ∈ R.
So far, the spinor ψ+ can be written as

ψ+ = w(1 + e1234) + λ1e1 + λ̄1e234 + λjej −
1
3!(∗λ̄)l1l2l3el1l2l3 + Ωe12 − Ω̄e34 . (5.5)

A SU(3) gauge transformation generated by i(Γ22̄ − 1
2Γ33̄ − 1

2Γ44̄), which leaves {1, e1234}
invariant, is then used to set Ω ∈ R, so

ψ+ = w(1 + e1234) + λ1e1 + λ̄1e234 + λjej −
1
3!(∗λ̄)l1l2l3el1l2l3 + Ω(e12 − e34) . (5.6)

We next exploit a SO(2) transformation generated by T1, acting on v1 and v3 to put
Ω = 0. Then, we make a further SU(3) gauge transformation along the 2, 3, 4 directions to
set λ3 = λ4 = 0 with λ2 ∈ R, i.e.

ψ+ = w(1 + e1234) + λ1e1 + λ̄1e234 + λ2(e2 − e134) . (5.7)

In order to simplify further the spinor ψ+, we shall introduce additional Spin(7) generators
L1, L2, L3 given by

L1 ≡
1√
2

Γ](Γ2 + Γ2̄), L2 ≡
i√
2

Γ](Γ2 − Γ2̄), L3 ≡ L1L2 = iΓ22̄ . (5.8)

The Lj also satisfy the algebra of the imaginary unit quaternions, and commute with the
Ti, and the Spin(7) gauge transformation generated by the Lj is of the form q4id + qjLj
where (q1, q2, q3, q4) ∈ S3. We shall then consider a generic gauge transformation generated
by the Ti and Lj of the acting on the spinor (5.7) of the form(

p4id + piTi
)(
q4id + qjLj

)
ψ+ . (5.9)

We set q2 = q3 = 0 and q1 = sin σ, q4 = cosσ, such that

wλ2 cos 2σ + 1
2 sin 2σ(ω2 − (λ2)2 − |λ1|2) = 0 (5.10)

and

p1 = `Re(λ1) sin σ, p2 = −`Im(λ1) sin σ,
p3 = 0, p4 = `(ω cosσ − λ2 sin σ) (5.11)
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where the constant ` is chosen such that (p1, p2, p3, p4) ∈ S3. With this choice of parameters,
the gauge transformation given in (5.9) can be used to set λ2 = 0 in (5.7), so the simplest
canonical form for the spinor ψ+ is given by

ψ+ = w(1 + e1234) + λe1 + λ̄e234 w ∈ R, λ ∈ C . (5.12)

5.1 Stabilizer group of ψ+

It is useful to consider the stabilizer subgroup of Spin(7) which leaves ψ+ invariant. In
particular, we must determine the generators f ijΓij , where f ij ∈ R are antisymmetric in
i, j, and satisfy

f ijΓijψ+ = 0 i, j = #, α, ᾱ . (5.13)

The conditions obtained from (5.13) are

2wfαβ =
√

2λ̄f#ρ̄ερ̄
αβ

2λfαβ =
√

2wf#ρ̄ερ̄
αβ

fα α = 0 . (5.14)

Depending on w and λ, there are two possible different stabilizer subgroups:

(a) if w2 − |λ|2 6= 0 then (5.14) implies that fαβ = 0 and f]α = 0, hence the stabilizer is
SU(3).

(b) if w2 − |λ|2 = 0, the stabilizer is G2.

In the SU(3) stabilized case it is particularly useful to consider the complex SU(3)
invariant spinor bilinear scalar 〈ψ+,Γ1̄ψ+〉 = 2

√
2wλ. There are various different cases,

corresponding to whether this scalar vanishes, or it does not vanish:

(i) w 6= 0, λ = 0,

(ii) λ 6= 0, w = 0,

(iii) w 6= 0, λ 6= 0.

In fact, it is straightforward to see that the spinors associated with cases (i) and (ii)
above are related by a Pin(7) transformation. To see this, consider the spinor from case (ii),

ψ+ = λe1 + λ̄e234 . (5.15)

The Spin(7) gauge transformation generated by L3 produces a SO(2) which acts transitively
on {e1 +e234, i(e1−e234)}, and hence without loss of generality we can set ψ+ = λ(e1 +e234)
for λ ∈ R. Next, note that

Γ234(e1 + e234) = −(1 + e1234) . (5.16)

It therefore follows that the spinor ψ+ in case (ii) is Spin(7) gauge-equivalent to a spinor
which in turn is Pin-equivalent, with respect to Γ234 ∈ Pin(7), to the spinor in case (i). The

– 14 –
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effect of the Γ234 transformation is to flip holomorphic with anti-holomorphic directions
and to reflect along the # direction, namely

α→ ᾱ , #→ −# . (5.17)

It is therefore sufficient to consider spinors ψ+ corresponding to the G2 stabilizer case,
and the two SU(3) stabilizer cases (i), (iii). Having determined the stabilizers associated
with these three canonical types of spinors, we next proceed to obtain a linear system of
equations by substituting these expressions for ψ+ into (4.16). The linear system consists
of relations between the flux and spin-connection, which when covariantized with respect to
the appropriate stabilizer group, give rise to conditions on the flux X and the geometry of
the internal manifold M7. In the following sections, we shall present the covariant solution
of the linear system for each of the stabilizer subgroups.

6 SU(3) invariant spinor

In this section, we solve the KSEs (4.16) when the stabilizer of ψ+ is SU(3), corresponding to

ψ+ = w(1 + e1234) + λe1 + λ̄e234 w ∈ R, λ ∈ C , (6.1)

for w2 − |λ|2 6= 0. We begin by considering the case for which both w and λ are non-
vanishing. Furthermore, we will write λ = ρeiθ, where ρ > 0 and θ ∈ [0, 2π[ are two real
spacetime functions. The associated linear system and the components of the flux are
presented in appendix D. The linear system is initially expressed non-covariantly in terms
of SU(3)-components of the spin-connection and the fluxes, but, it can be rewritten in
SU(3)-covariant form by using the SU(3) gauge invariant bilinears. In appendix E we set
out the main relations which are used to write the relations in a manifestly SU(3) covariant
fashion, in terms of the following SU(3) invariant bilinears:

ξ ≡ e# , ω ≡ −iδαβ̄ e
α ∧ eβ̄ , χ ≡ 1

3!εαβγe
α ∧ eβ ∧ eγ . (6.2)

The above forms are obtained from the following SU(3)-invariant spinor bilinears:

〈ψ+,Γaψ+〉ea = −2(w2 − |λ|2)ξ (6.3)
1
2!〈ψ+,ΓabΓ̃4ψ+〉ea ∧ eb = −2(w2 − |λ|2)ω (6.4)

1
3!〈ψ+, (Γ1 + Γ1̄)Γabcψ+〉ea ∧ eb ∧ ec = 2iw(λ̄− λ)ξ ∧ ω

+ 4(w2 − λ2)χ+ 4(w2 − λ̄2)χ̄ (6.5)

where a, b, c = α, ᾱ,#.
In constructing the solution to the linear system (D.2)–(D.13), it is convenient to make

use of the two Lee forms built from χ, and ω, which are

Zi ≡ ∇jχjklχ̄kl i , Wi ≡ ∇jωjkωk i . (6.6)
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After some computation, the SU(3)-covariant conditions are as follows (here i, j, k = #, α, ᾱ
are frame indices on M7):

∇iξi =− 6ξj
(w2−|λ|2)2

[
w(2w2+3|λ|2)(dw)j+(3w2+2|λ|2)Re(λdλ̄)j

]
(6.7)

∇iξjωij =−cA−4−6w2 ξ
kIm(λdλ̄)k
w4−|λ|4

(6.8)

χijk(Lξχ̄)ijk =−6ξl
[
λ̄

(2w4+2|λ|4+11w2|λ|2)
(w2+|λ|2)(w2−|λ|2)2 (dλ)l

+λ(7w4+4|λ|4+4w2|λ|2)
(w2+|λ|2)(w2−|λ|2)2 (dλ̄)l

+3w (2w2+3|λ|2)
(w2−|λ|2)2 (dw)l

]
−4icA−4 (6.9)

iχijk(dω)ijk = 9
√

2ξl
[
λ̄

(9w2+|λ|2)
(w2−|λ|2)2 (dw)l+w

(w2+4|λ|2)
(w2−|λ|2)2 (dλ̄)l

+5 λ̄2w

(w2−|λ|2)2 (dλ)l
]

(6.10)

(dξ)ijχijk =
√

2
(w2−|λ|2)

[
w
λ̄

λ
(dλ)k−w(dλ̄)k

]
(6.11)

Z = 4
w2−|λ|2

[
w2dlogρ+w2idθw−

|λ|2

w
dw+ξ

(
|λ|2

w
(dw)j−w2(dlogρ)j

)
ξj
]

(6.12)

W =−1
3

1
w2−|λ|2

[ 1
w

(w2−4|λ|2)
(
dw−ξ(dw)jξj

)
+(5w2+4|λ|2)

(
dlogρ+idθw−ξ(dlogρ)jξj

)]
(6.13)

Lξξ= 1
3

[ 1
w

(7w2+2|λ|2)
(
dw−ξ(dw)jξj

)
+(w2+2|λ|2)

(
ξ(dlogρ)jξj−dlogρ−idθw

)]
(6.14)

χml[i(dξ)mnχ̄j]n l =
1
3cA

−4ωij
(w2+|λ|2)
(w2−|λ|2) +2ωij

w2

(w4−|λ|4)ξ
kIm(λdλ̄)k (6.15)

8|λ|2(5w2+|λ|2)dw+4wdρ2(w2+5|λ|2)+8wρ2 idθω(w2−|λ|2)
−ξi

[
8|λ|2(5w2+|λ|2)dw+4wdρ2(w2+5|λ|2)+8wρ2 idθω(w2−|λ|2)

]
i
= 0 . (6.16)

We also obtain a SU(3) invariant expression for the flux X. In general, any real 4-form
on M7 can be written as

X = e# ∧ Y + ω ∧ σ + β ∧ χ+ β̄ ∧ χ̄+XTT (6.17)
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where

• σ is a real two-form;

• β is a complex one-form, and β̄ is its complex conjugate;

• Y is real 3-form;

• XTT is the traceless (2,2)-part of the flux.

We remark that XTT is the only part of the flux that is not fixed by the linear system.
However, a traceless (2, 2) 4-form in 6 dimensions vanishes identically. To see this, note that
XTT is dual (in 6 dimensions) to a (1,1) 2-form R, R = ∗6XTT. Furthermore, by definition

Rαβ̄ = 1
4!εαβ̄

b1b2b3b4XTT
b1b2b3b4 = 1

4εαβ̄
µ1µ2ν̄1ν̄2XTT

µ1µ2ν̄1ν̄2

= i

4εα
ν̄1ν̄2εβ̄

µ1µ2XTT
µ1µ2ν̄1ν̄2 = i3!

4 δβµ1µ2
αν1ν2 X

TT
µ1µ2

ν1ν2 = 0 (6.18)

as the contribution from trace terms in the final term vanishes. Hence R vanishes identically,
and so XTT = 0.

It follows that the flux can be written as

X = e# ∧ Y + ω ∧ σ + β ∧ χ+ β̄ ∧ χ̄ (6.19)

where all of these terms are fixed by the Killing spinor equations. In particular, the
components of the real 2-form σ and of the complex 1-form β are given by

σij = −(w2 − |λ|2)
(w2 + |λ|2) (Lξω)ij

− 2ωij
ξk

(w2 − |λ|2)(w2 + |λ|2)
[
w(w2 + 2|λ|2)(dw)k + (2w2 + |λ|2)Re(λdλ̄)k

]
(6.20)

βi = −3
√

2 λw

(w2 − |λ|2)
[
(Lξξ)i + i (Lξξ)j ω

j
i

]
+ 3

2
(w2 + |λ|2)
(w2 − |λ|2)(dξ)kjχ̄kji

+ i
(w4 + 4w2|λ|2 + |λ|4)
(w2 − |λ|2)(w2 + |λ|2) (Lξω)kj χ̄kji . (6.21)

The real 3-form Y has components

Yijk = qω[i
l(dω)jk]l + (ω ∧ V )ijk + hχijk + h̄χ̄ijk (6.22)

where q and h are functions, and V is a real one-form, given by:

q = −3(w2 − |λ|2)
(w2 + |λ|2) (6.23)

Vi = (w2 − |λ|2)
(w2 + |λ|2)ωi

j(Lξξ)j (6.24)

h = 3
√

2
2

ξk

(w2 − |λ|2)

[
λ(dw)k + w3

(w2 + |λ|2)(dλ)k + wλ2

(w2 + |λ|2)(dλ̄)k
]

− q i6 χ̄
ijk(dω)ijk . (6.25)
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6.1 SU(3) invariant spinor with λ = 0, w 6= 0

Next, we consider the special case of the SU(3) invariant spinor

ψ+ = w(1 + e1234) w ∈ R, w 6= 0 . (6.26)

The SU(3) covariant geometric conditions obtained from the linear system are:

(dω)(3,0) = (dω)(0,3) = 0 (6.27)

d(w4ξ) = − c3A
−4ωw4 (6.28)

χ̄ijk (Lξω)jk = 0 (6.29)

Zi = −20(w−1dw)i + 20ξiξk(w−1dw)k (6.30)
Wi = 8(w−1dw)i − 8ξiξk(w−1dw)k (6.31)

Im
(
χ̄ijk(Lξχ)ijk

)
− 4cA−4 = 0 (6.32)

∇iξi = −12ξkw−1(dw)k (6.33)
∇iξjωij = −cA−4 . (6.34)

The flux X can be expressed as

X = e# ∧ Y + ω ∧ σ (6.35)

with
σ = −w−2Lξ(w2ω) (6.36)

and
Yijk = −3ω[i

l(dω)jk]l + (ω ∧ V )ijk (6.37)
where

Vi = ωi
j(Lξξ)j . (6.38)

7 G2 invariant spinor

In this section, we shall consider the case when the stabilizer of ψ+ is G2, corresponding to
the case

ψ+ = w(1 + e1234) + λe1 + λ̄e234 w ∈ R, λ ∈ C , (7.1)
with w2 = |λ|2. We shall show that this orbit admits no solutions to the Killing spinor
equations and the bosonic field equations. To establish this result, we set λ ≡ eiζw, where
ζ is a real function. The geometric conditions we obtained by solving the linear system are:

dw = dζ = 0 (7.2)
Ωµ,α

α = 0 (7.3)

Ω#,α
α = i

c

6A
−4 (7.4)

Ω#,αβε
αβγ =

√
2 eiζ Ω#,#

γ (7.5)
Ωµ̄,αβε

αβγ =
√

2 eiζ Ωµ̄,#
γ (7.6)

2Ωµ̄
γρ −

√
2 e−iζεγραΩµ̄,#α + i

√
2 c6e

−iζA−4εµ̄
γρ = 0 . (7.7)
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Furthermore, we find that all of the components of the flux X vanish,

X = 0 . (7.8)

As X = 0, the integrability condition Γj [∇i,∇j ]ψ+ from (3.8) implies that[
−1

2∇i∇kAΓk + c

2A
−4∇iA Γ̃4 − c

12A
−4∇kAΓk i Γ̃4

]
ψ+ = 0 . (7.9)

Multiplying (7.9) by Γl, we find[
−1

2∇i∇kA(δkl + Γl k) + c

2A
−4∇iAΓl Γ̃4

− c

12A
−4∇kA(Γl k i + δkl Γi − δliΓk) Γ̃4

]
ψ+ = 0 . (7.10)

We next take the inner product of (7.10) with ψ+, noting that the anti-hermitian terms
vanish identically as ψ+ is Majorana. The hermitian part gives

〈ψ+,

[
−1

2∇i∇lA−
c

12A
−4∇kAΓl k i Γ̃4

]
ψ+〉 = 0 . (7.11)

The symmetric part of (7.11) then gives

∇i∇lA||ψ+||2 = 0 ⇒ ∇i∇lA = 0 , (7.12)

and the antisymmetric part of (7.11) implies

− c

12A
−4∇kA〈ψ+,Γl k iψ+〉 = 0 . (7.13)

The 3-form spinor bilinear in (7.13) is proportional to the G2-invariant 3-form ϕ given by

ϕ = e# ∧ ω − 2i
√

2 Im(eiθχ) , (7.14)
ϕ#αβ̄ ≡ −iδαβ̄ ϕαβγ = −i

√
2 eiθεαβγ = (ϕᾱβ̄γ̄)∗ . (7.15)

Hence (7.13) implies that
ϕlik∇kA = 0 (7.16)

which in turn implies that dA = 0, so A is constant. However, from the Einstein field
equation (2.15) we obtain

3KA−1 −∇i∇iA− 3A−1∇iA∇iA+ 1
3c

2A−7 + A

144X
2 = 0 . (7.17)

It is clear that this equation admits no solution in the case for which A is constant and X = 0,
as the l.h.s. is strictly positive. Therefore, we conclude that there are no supersymmetric
warped product dS4 solutions for which the spinor ψ+ is G2 invariant.
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8 Conclusion

We have obtained the necessary and sufficient conditions for warped product dS4 ×wM7
solutions in D = 11 supergravity to preserve the minimal N = 8 supersymmetry. To do
this, we first integrated explicitly the gravitino equation along the dS4 directions. This
reduces the conditions imposed by supersymmetry to a gravitino-type equation on M7
acting on a Majorana spinor ψ+, whose components depend only on the co-ordinates of
M7. Using spinorial geometry techniques, the spinor ψ+ was then simplified to two possible
canonical forms by Spin(7) gauge transformations. These two canonical forms have stabilizer
subgroups corresponding to G2 and SU(3). In the G2 case, we show that there is no solution
to the Killing spinor equations. For the SU(3) case we have determined the 4-form flux
in terms of SU(3) invariant geometric structures on M7, as well as determining all of the
conditions imposed on the geometry of M7.

Having obtained these conditions for the N = 8 solutions, it would be interesting
to further investigate the resulting (local) conditions on the geometry. It would also be
interesting to consider the N = 16 case, as well as the N = 24 and N = 32 cases. In
particular, for the latter two cases of N = 24 and N = 32 supersymmetry, it is possible
to find further conditions on such solutions utilizing the homogeneity theorem analysis
constructed in [25]. To proceed with this, suppose that there we have N linearly independent
solutions {ψr : r = 1, . . . , N} for N = 24 or N = 32 to the gravitino equation (4.16). We
then consider the integrability condition (4.15), which implies(

|∇A|2 −K − c2

9 A
−6 − A2

(144)2 /X
2 + 2

3cA
−3∇iAΓiΓ̃4 − 1

18A∇iA
/X
i

)
ψs = 0 . (8.1)

This implies that

〈ψr,Γ0Γ̃4
(
|∇A|2 −K − c2

9 A
−6 − A2

(144)2 /X
2

+ 2
3cA

−3∇iAΓiΓ̃4 − 1
18A∇iA

/X
i
)
ψs〉 = 0 (8.2)

and hence
c〈ψr,Γ0Γiψs〉∇iA = 0 . (8.3)

On defining vector fields Θrs
i = 〈ψr,Γ0Γiψs〉, this implies

cLΘrsA = 0 . (8.4)

For N = 24 and N = 32 solutions, it follows from the homogeneity theorem analysis of [25]
that the Θrs span pointwise the tangent space of M7, and hence

cdA = 0 . (8.5)

If c 6= 0, then this implies that dA = 0. However, (7.17) implies that there are no solutions
for which A is constant. Hence, for N = 24 or N = 32 solutions, we must take c = 0.
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This determines all possible N = 32 warped product dS4 solutions. From [26], where
all maximally supersymmetric solutions in D = 11 supergravity were determined, the
maximally supersymmetric solutions are R1,10 with F = 0; AdS4 × S7 with 4-form F

proportional to the volume form of AdS4, AdS7 × S4, with 4-form F proportional to the
volume form of S4, and a maximally supersymmetric plane wave solution which has F 6= 0,
but F 2 = 0. In terms of possible N = 32 warped product dS4 solutions, the condition c = 0
implies that F 2 ≥ 0 with equality if and only if F = 0. Hence we exclude AdS4×S7 and the
maximally supersymmetric plane wave as N = 32 warped product dS4 solutions. It follows
that the N = 32 warped product dS4 solutions are R1,10 and AdS7 × S4. In particular, it
is possible to write both R1,4 and AdS7 as warped product dS4 geometries [17]. It would
be interesting to further understand the possible N = 16 and N = 24 warped product dS4
solutions, though the homogeneity theorem does not apply to the N = 16 solutions.
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A Conventions

We use the mostly plus sign signature η = diag(−,+, . . . ,+). The gamma matrices satisfy

{ΓA,ΓB} = 2gAB . (A.1)

In these conventions, we take
Γ0123456789# = I , (A.2)

and consequently the following duality relation holds

ΓA1...Ap = (−1)
(p+1)(p−2)

2
1

(11− p)!εA1...Ap
Ap+1...A11ΓAp+1...A11 , (A.3)

where
ε0123456789# = +1 . (A.4)

The Hodge star of a p-form ω is defined by

∗ ωA1...A11−p = 1
p!εA1...A11−p

B1...BpωB1...Bp . (A.5)

For every k-form ω, one can define a Clifford algebra element /ω given by

/ω ≡ ωA1...AkΓA1...Ak . (A.6)

In addition, one can define

/ωC ≡ ωCA1...AkΓA1...Ak , and ��ΓωC ≡ ΓCA1...Akω
A1...Ak . (A.7)

– 21 –



J
H
E
P
0
9
(
2
0
2
2
)
2
1
4

B Spinors from forms

The Majorana representation of Spin(10,1) can be constructed from the Spin(9, 1) spinor
representations and then adding the tenth gamma matrix Γ#. This construction is derived
in an explicit representation, in terms of differential forms, in [27, 28]. We take the space
U of 1-forms on R5, with basis {e1, . . . , e5}. The space of Dirac spinors, ∆c = Λ∗(U ⊗ C),
is identified with the complexified space of multi-forms constructed from this basis. ∆c is
equipped with a canonical Euclidean Hermitian inner product 〈 · , · 〉

We then take the following representation for the gammma matrices:

Γ0η = −e5 ∧ η + ie5η Γ5η = e5 ∧ η + ie5η

Γiη = ei ∧ η + ieiη i = 1, . . . , 4
Γi+5η = i(ei ∧ η − ieiη) (B.1)

where η ∈ ∆c and iei is the inner derivative along the direction ei. The tenth gamma matrix
can be chosen as

Γ# = −Γ0123456789 . (B.2)

One can verify that Γ2
# = I. The gamma matrices satisfy the Clifford Algebra, namely

ΓAΓB + ΓBΓA = 2ηABI. The Hermitian inner product, acting only on 1-forms, is defined by

〈 zaea, wbeb〉 = (za)∗ηabwb , (B.3)

and is then extended to the complexified space of multi-forms, ∆c.
The gamma matrices are chosen such that Γ0 is skew-hermitian and Γi, i = 1, . . . , 9 are

hermitian with respect to 〈 · , · 〉. The Spin(10, 1) invariant Dirac inner product is defined as

D(η, θ) = 〈Γ0η, θ〉 . (B.4)

In eleven dimensions a spinor can be Majorana; the reality condition is

η∗ = Γ6789η , (B.5)

where C = Γ6789 is the charge conjugation matrix, and C∗ commutes with the gamma matri-
ces, i.e. C∗ΓA = ΓAC∗ . The Dirac representation of Spin(10,1) admits an oscillator basis as

Γ− = 1√
2

(Γ5 − Γ0) =
√

2 e5∧ Γα = 1√
2

(Γα − iΓα+5) =
√

2 eα∧

Γ+ = 1√
2

(Γ5 + Γ0) =
√

2 ie5 Γᾱ = 1√
2

(Γα + iΓα+5) =
√

2 ieα (B.6)

and Γ] defined as in (B.2). In this oscillator basis, the gamma matrices satisfy the Clifford
Algebra, ΓAΓB + ΓBΓA = 2ηABI, with non-vanishing components are η+− = η]] = 1,
ηαβ̄ = δαβ̄ .

We note that (Γ+)† = Γ− and (Γα)† = Γᾱ; (Γ+,Γᾱ) act as creation operators on the
Clifford vacuum represented by the 0-degree form 1, where ΓA = ηABΓB. A general spinor
ε can be written as

ε =
5∑

k=0

1
k!φā1...ākΓā1...āk1 , ā = +, ᾱ . (B.7)
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C Derivation of equation (4.2)

Given the spinor Φ defined in (4.1), we consider (4.2). In particular we begin by examining
the following terms:

∇iΦ + k1[Eq. (3.8)] , (C.1)

where k1, k2 are some constants to be determined. To begin with, note that the terms
which are linear in X are:

(1 + k1) A288∇i
/X + 1

576∇iA
/X + (12a+ 1− 4k1)

12
1

288cA
−3Γi /XΓ̃4

+ (5k1 − 1− 18a)
432 cA−3 /XiΓ̃4 − 1

576∇
kAΓki /X + 1

48∇kAΓkj1j2j3Xij1j2j3

+ (3 + 4k1)
48 ∇kAΓabXikab + k1

72∇kAΓij1j2j3Xkj1j2j3 . (C.2)

In order to set to zero the term involving ∇i /X, we set k1 = −1. Having done so, we then
consider imposing the condition

∇iΦ− [Eq. (3.8)] + k2A
−1Γi[Eq. (3.6)] + q1��ΓXiΦ + q2 /XiΦ

+ q3cA
−4ΓiΓ̃4Φ + q4A

−1∇kAΓiΓkΦ + q5A
−1∇iAΦ = 0 , (C.3)

and compute all of the terms on the l.h.s., choosing the constants a, k2, q1, q2, q3, q4, q5 so
that the identity above holds. The terms involving the quadratic contribution of X are

A

[(4k2 + 1− 288q1)
1152 Γl1l2 ij1j2Xj3j4l1l2X

j1j2j3j4

+ (288q1 − 72q2 − 3)
1728 Γj1j2j3 l1l2Xij4l1l2X

j1j2j3j4

+ (8k2 − 288q1 − 72q2 − 1)
576 ΓabmXimpqX

pq
ab −

(1 + 4k2 − 288q1)
12

1
288ΓiX2

+ (3− 288q1 + 72q2)
864 Γj1Xij2j3j4X

j1j2j3j4

]
. (C.4)

The terms involving the linear contribution of X are

(1− 288q1 + 2q4 + 2q5)
576 ∇iA /X + (12a+ 5 + 12q3 + 3456aq1)

12
1

288cA
−3Γi /XΓ̃4

+ (288q1 − 2q4 − 1)
576 ∇kAΓki /X + (1 + 24q2 − 96q1)

48 ∇kAΓkj1j2j3Xij1j2j3

+ (8k2 − 1− 288q1 − 72q2)
48 ∇kAΓabXikab −

(1 + 4k2 − 288q1)
72 ∇kAΓij1j2j3Xkj1j2j3

− (6 + 18a+ 1728aq1 − 432q2a)
432 cA−3 /XiΓ̃4 . (C.5)
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The terms involving no contribution of X are

1
24(1− 16k2 − 24aq4 + 12q3)cA−4∇kAΓkΓiΓ̃4

+ 1
12(16k2 − 7− 36a− 12q3 + 24aq4 + 12aq5)cA−4∇iAΓ̃4+

+
(
k2 −

1
2q4

)
A−1|∇A|2Γi − k2A

−1KΓi −
1
2q5A

−1∇kA∇iAΓk

− 1
36(3a+ 4k2 + 36q3a)c2A−7Γi . (C.6)

By requiring that all terms in the above expressions should vanish, we are able to determine
the constant values, that are

a = −1
6 q1 = 1

288 q2 = − 1
36 q3 = − 1

12 k2 = q4 = q5 = 0 . (C.7)

D KSE linear system — SU(3) stabilizer

The linear system associated to the KSEs (4.16), with the spinor given by

ψ+ = w(1 + e1234) + λe1 + λ̄e234 w ∈ R, λ ∈ C (D.1)

is as follows:

∂#w+w

2 Ω#,α
α+ 1

24wXα
α
β
β−i c12A

−4w−
√

2
3 λ̄X#234 = 0 (D.2)

∂#λ+λ

2 Ω#,α
α− 1

24λXα
α
β
β+
√

2
3 wX#234−i

c

12A
−4λ= 0 (D.3)

wΩ#,αβε
γαβ−

√
2λΩ#,#

γ+
√

2
3 λX#α

αγ+w

3X
γ

234 = 0 (D.4)

λ̄εγαβΩ#αβ−
√

2wΩ#,#
γ−w

√
2

3 X#α
αγ− λ̄3X

γ
234 = 0 (D.5)

∂µw+ 1
2wΩµ,α

α− 1
4wXµ#α

α = 0 (D.6)

∂µλ+ 1
2λΩµ,α

α+ 1
4λXµ#α

α = 0 (D.7)

∂µw−
w

2 Ωµ,α
α− w

12X#µα
α−
√

2
3 λXµ2̄3̄4̄ = 0 (D.8)

∂µλ̄−
λ̄

2 Ωµ,α
α+ 1

12 λ̄X#µα
α+
√

2
3 wXµ2̄3̄4̄ = 0 (D.9)

wΩµ̄,αβε
αβγ−

√
2λΩµ̄,#

γ−w2 ε
γαβXµ̄#αβ−

w

3 εµ̄
γρX#ρα

α+
√

2
6 λεµ̄

γρXρ2̄3̄4̄ = 0 (D.10)

wΩµ̄,
γρ−
√

2
2 λ̄εγραΩµ̄,#α+εµ̄ γρ

[
w

6X#2̄3̄4̄−
λ̄
√

2
24 Xα

α
β
β

+ic
√

2
12 λ̄A−4

]
−
√

2
4 λ̄εγραXµ̄αβ

β = 0 (D.11)
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λ̄Ωµ̄,αβε
αβγ−

√
2wΩµ̄,#

γ+ λ̄

2 ε
γαβXµ̄#αβ+ λ̄

3 εµ̄
γρX#ρα

α−
√

2
6 wεµ̄

γρXρ2̄3̄4̄ = 0 (D.12)

λΩµ̄,
γρ−
√

2
2 wεγραΩµ̄,#α+εµ̄ γρ

[√
2w

24 Xα
α
β
β

+ic
√

2
12 wA−4−λ6X#2̄3̄4̄

]
+
√

2
4 wεγραXµ̄αβ

β = 0 . (D.13)

D.1 Solution for λ 6= 0, w 6= 0

From the linear system (D.2)–(D.13), we find that the components of the flux are given by
the following expressions

X#α
αγ = 3

w2 − |λ|2
[√

2wλ̄εγαβΩ#,αβ − (w2 + |λ|2)Ω#,#
γ
]

(D.14)

Xγ̄234 = 3
w2 − |λ|2

[
2
√

2λwΩ#,#
γ − (w2 + |λ|2)Ω#,αβε

γαβ
]

(D.15)

X#234 = 1
w2 − |λ|2

[
− 3√

2
λ∂#w −

3√
2
w∂#λ−

3√
2
wλΩ#,α

α + i
c

2
√

2
A−4λw

]
(D.16)

Xα
α
β
β = 1

w2 − |λ|2
[
− 24w∂#w − 24λ̄∂#λ

− 12(w2 + |λ|2)Ω#,α
α + 2icA−4(w2 + |λ|2)

]
(D.17)

Xµ̄#αβ = 2Ωµ̄,αβ −
√

2 λ
w
εγαβΩµ̄,#

γ + δµ̄[α

(
2Ω#,#β] −

√
2 λ
w
εβ]δσΩ#

δσ
)

(D.18)

Xµ̄αβ
β =
√

2w
λ̄
εαγρΩµ̄,

γρ − 2Ωµ̄,#α + δµ̄α
w2 − |λ|2

(
3w∂#w −

w2

λ̄
∂#λ̄

+ 4λ̄∂#λ+ Ω#,α
α(3w2 + 2|λ|2)− i c6A

−4(4|λ|2 + w2)
)
. (D.19)

From the linear system (D.2)–(D.13), we also find the following geometric conditions:

4(w2 − |λ|2)∂µw + 2w(w2 − |λ|2)Ωµ,α
α

− 3
√

2w2λεµαβΩ#,
αβ + 3w(w2 + |λ|2)Ω#,#µ = 0 (D.20)

4(w2 − |λ|2)∂µλ+ 2λ(w2 − |λ|2)Ωµ,α
α

+ 3
√

2wλ2εµαβΩ#,
αβ − 3λ(w2 + |λ|2)Ω#,#µ = 0 (D.21)

4(w2 − |λ|2)∂µw − 2w(w2 − |λ|2)Ωµ,α
α

+
√

2λ(5w2 + 4|λ|2)εµαβΩ#,
αβ − w(w2 + 17|λ|2)Ω#,#µ = 0 (D.22)

4(w2 − |λ|2)∂µλ̄− 2λ̄(w2 − |λ|2)Ωµ,α
α

−
√

2w(4w2 + 5|λ|2)εµαβΩ#,
αβ + λ̄(17w2 + |λ|2)Ω#,#µ = 0 (D.23)

2λ̄wεγαβΩµ̄,αβ −
√

2(w2 + |λ|2)Ωµ̄,#
γ

− 2λ̄wεγβ µ̄Ω#,#β +
√

2(w2 + |λ|2)Ω#,µ̄
γ = 0 (D.24)

8(|λ|2 + w2)Ωµ̄
γρ − 8

√
2wλ̄εγραΩµ̄,#α

+
√

2εµ̄ γρ
[
2wλ̄Ω#,α

α − 2w∂#λ̄− 2λ̄∂#w + icA−4λ̄w
]

= 0 (D.25)
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6(λ̄∂#λ− λ∂#λ̄) + 6(w2 + |λ|2)Ω#,α
α − icA−4(w2 + |λ|2) = 0 (D.26)

2w(w2 − |λ|2)Ωα
,αγ +

√
2λ(w2 − |λ|2)Ωα

,#
βεαβγ

− wΩ#,#γ(w2 + 5|λ|2) +
√

2λ(2w2 + |λ|2)εγαβΩ#,
αβ = 0 (D.27)

2
√

2w(w2 − |λ|2)Ωαβγεαβγ − 4λ̄(w2 − |λ|2)Ωα
,#α − 30wλ̄∂#w

− 6w2∂#λ̄− 24λ̄2∂#λ− 6λ̄(w2 + 2|λ|2)Ω#,α
α + 3icA−4λ̄w2 = 0 (D.28)

(w2 − |λ|2)2 (Ωµ,#ᾱ − Ωᾱ,#µ) + δµᾱ

[
(3w2 + 2|λ|2)(λ∂#λ̄− λ̄∂#λ)

− 2(w4 + 3w2|λ|2 + |λ|4)Ω#,α
α + i

c

3A
−4(2w4 + w2|λ|2 + 2|λ|4)

]
= 0 . (D.29)

D.2 Solution for λ = 0, w 6= 0

We next present the components of the flux and the geometric conditions associated to the
KSEs (4.16), with the spinor given by

ψ+ = w(1 + e1234) w ∈ R . (D.30)

We find that the components of the flux are given by the following expressions

X#234 = Xµ̄234 = 0 (D.31)
X#α

αγ = −3Ω#,#
γ (D.32)

Xα
α
β
β = −24w−1∂#w (D.33)

Xµ̄#αβ = 2Ωµ̄,αβ + 2δµ̄[αΩ#,#β] (D.34)
Xµ̄νβ

β = (Ωµ̄,#ν + Ων,#µ̄) + 4δµ̄νw−1∂#w . (D.35)

Furthermore, we find that the geometric conditions are given by the following expressions

Ω#,αβε
γαβ = 0 (D.36)

Ω#,#µ = −4w−1∂µw (D.37)
Ωµ,α

α = 4w−1∂µw (D.38)
Ωµ,αβ = 0 (D.39)
Ωµ,#β = 0 (D.40)

Ωα
αβ = −2∂βw

w
(D.41)

Ωα
#α − 6∂#w

w
− i

2cA
−4 = 0 (D.42)

(Ωᾱ,#β − Ωβ,#ᾱ)− i c3A
−4δᾱβ = 0 (D.43)

Ω#,α
α = i

c

6A
−4 . (D.44)
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E Covariant relations

In this appendix, we present the main relations used to covariantize the linear system.
These expressions relate spin connection terms to SU(3)-covariant terms involving the SU(3)
invariant 1-forms ξ, ω and χ, their Lie derivatives with respect to ξ, and also the Lee forms
W and Z:

∇#ξµ = (Lξξ)µ = −Ω#,#µ (E.1)
∇ᾱξβ = −Ωᾱ,#β (E.2)
∇#ωαβ = 2iΩ#,αβ (E.3)

Wα = −Ω#,#α − 2Ωβ
βα (E.4)

Wᾱ = −Ω#,#ᾱ − 2Ωβ̄
β̄ᾱ (E.5)

Zρ̄ = 2Ω#,#ρ̄ + 2Ωρ̄,γ
γ + 2Ωγ̄

γ̄ρ̄ (E.6)
Zρ = 2Ω#,#ρ + 2Ωρ,γ̄

γ̄ + 2Ωγ
γρ (E.7)

(Lξω)αβ = 2iΩ#,αβ + i(dξ)αβ (E.8)
(Lξω)ᾱβ̄ = −2iΩ#,ᾱβ̄ − i(dξ)ᾱβ̄ (E.9)
(Lξω)αβ̄ = i(Ωβ̄,#α + Ωα,#β̄) (E.10)

(Lξχ)αβγ = 3Ω#,[γ
λεαβ]λ − 3Ω[γ,#

λεαβ]λ = (Ω#,λ
λ − Ωλ,#

λ)εαβγ (E.11)
(Lξχ)αβγ̄ = (Ω#,γ̄

λ − Ωγ̄,#
λ)ελαβ (E.12)

Lξχ̄ = (Lξχ)∗ . (E.13)

The spin-connection components are rewritten in terms of those covariant quantities as

Ωµ,α
α = −1

2 ((Lξξ)µ +Wµ + Zµ) (E.14)

Ω#,#µ = −∇#ξµ = −i∇#ω#µ = −(Lξξ)µ (E.15)

Ω#,αβ = − i2∇#ωαβ = −1
2 (i(Lξω)αβ + (dξ)αβ) (E.16)

Ωᾱ,βγ = − i2(dω)ᾱβγ (E.17)

Ωᾱ,#β̄ = 1
2
(
i(Lξω)ᾱβ̄ − (dξ)ᾱβ̄ − εβ̄

γρ(Lξχ)γρᾱ
)

(E.18)

Ωᾱβ̄γ̄ = i

2∇ᾱωβ̄γ̄ (E.19)

εαβγ∇αωβγ = 1
3εαβγ(dω)αβγ (E.20)

Ωᾱ,#β = −∇ᾱξβ = −i∇ᾱω#β (E.21)

Ω#,ρ
ρ = −1

6εαβγ(Lξχ̄)αβγ +∇λξλ (E.22)

Ωβ
βα = 1

2 ((Lξξ)α −Wα) (E.23)

Ω[α
#
β] = −1

2(dξ)αβ (E.24)

Ωα
#α = −∇αξα = −i∇αω#α . (E.25)
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