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1 Introduction

Hydrodynamics is an effective field theory describing long wavelength, low frequency excita-
tions of fluids, and is thus applicable to a diverse range of physical systems. In high energy
physics, viscous hydrodynamics has proven to be an excellent framework for describing the
experiments on heavy-ion collisions at both the Relativistic Heavy Ion Collider (RHIC)
and the Large Hadron Collider (LHC) [1, 2]. Furthermore, it has been claimed that the
hydrodynamic approximation may even be helpful in collisions involving protons [3, 4].

The hydrodynamic equations are difficult to solve, typically requiring numerical simu-
lation. However, analytical solutions can sometimes be found for flows that preserve a large
degree of symmetry. One such solution is the so-called “Bjorken flow” [5]. Bjorken flow
arises when the colliding nuclei are modelled as infinite planes, leading to a flow that is in-
variant under Lorentz boosts along the beam axis, and translationally-invariant transverse
to the beam axis.

The latter approximation is of course unrealistic: the radius of a nucleus is on the
order of 10 fm, comparable to other scales of typical heavy-ion collisions (for instance, the
hydrodynamisation time is of the order of 1 fm/c [6]). A generalisation of Bjorken flow
with no translational invariance in the transverse plane was found by Gubser in ref. [7].
However, this solution comes with its own unrealistic simplifications, such as that the
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initial state and dynamics respect relativistic conformal invariance, and that the collision
is perfectly central.

Despite the highly simplifying assumptions of the Bjorken and Gubser flows, they
have been extremely useful as a tool for building intuition and as a starting point for
understanding more complicated regimes. In addition to providing analytical insight into
the hydrodynamic equations, they also serve as a check for the numerical performance of
hydrodynamic codes (for example, see ref. [8]).

The aforementioned flows arise in the hydrodynamics of a normal fluid. However, if
the up and down quarks were massless, quantum chromodynamics (QCD) would have a
U(1)×SU(2)L×SU(2)R global symmetry — chiral symmetry — which at low temperatures
would be spontaneously broken to U(1)×SU(2)V. In the presence of spontaneously broken
continuous symmetries, new hydrodynamic modes appear (the Goldstone modes, which we
will refer to as pions), and these should be included in the hydrodynamic equations [9, 10].
The resulting fluid is called a superfluid.

In reality, the up and down quarks are massive, explicitly breaking chiral symmetry.
However, since the scale of the explicit symmetry breaking is small, the corresponding
Noether current is approximately conserved, and so a suitably modified form of super-
fluid hydrodynamics should still apply, with possible phenomenological implications. For
example, refs. [11–14] have advanced the critical dynamics near the pseudo-chiral phase
transition as a possible explanation of an observed enhancement of soft pion production in
Pb–Pb collisions [15–19].

In this paper we will exploit the symmetry arguments used in refs. [5, 7] to find
analytic solutions to the equations of ideal superfluid hydrodynamics. For simplicity we
will consider only the spontaneous breaking of a U(1) symmetry, and thus there will be
only one pion. The solutions we find will also apply to systems with spontaneously broken
non-abelian symmetries, with the U(1) being the diagonal component of the full broken
symmetry group. We leave generalisations of the solutions involving non-abelian effects
to future work. We will also consider simple dissipative corrections to the analytic flows,
which turn out to require some mild numerics.

Superfluid generalisations of Bjorken flow have been considered previously in the lit-
erature [20, 21], and we should comment on the differences between our flows and those
found in these earlier works. Ref. [20] found an analytic solution for superfluid Bjorken
flow in low-temperature QCD by approximating the pion decay constant f by its zero tem-
perature value fπ. Accounting for a realistic temperature dependence of f , ref. [20] also
found some numerical solutions to the hydrodynamic equations. We extend these results
by finding an analytic flow including the leading order low-temperature dependence of f .
Ref. [21] included fluctuations of the chiral condensate (the sigma meson) in the list of
hydrodynamic degrees of freedom, allowing their theory to apply also above and near the
critical temperature. Unfortunately, the resulting equations are sufficiently complicated
that only numerical solutions may be found.

In practice, the solutions we find are unlikely to be directly physically applicable to
heavy-ion collisions. Both because we neglect fluctuations of the order parameter, and due
to the simple equation of state we choose, the solutions will describe superfluid flows with
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local temperatures well below the approximate chiral symmetry breaking temperature Tc.
In heavy-ion collisions, for T . Tc the hadrons chemically decouple [22, 23], and at yet
lower temperatures they also kinetically decouple [24], leading to a breakdown of the hy-
drodynamic description. However, we hope that the solutions we present are at least of
theoretical interest, and that they may serve as a starting point for a more realistic treat-
ment of the physics at temperatures closer to Tc. Perhaps they may also be used to test
future numerical hydrodynamic codes that account for superfluid contributions.

The rest of the paper is organised as follows. In section 2 we will write down our model
superfluid equation of state, and review the equations of superfluid hydrodynamics. In
section 3 we will find both boost- and translationally-invariant solutions to these equations,
mimicking Bjorken’s treatment for a normal fluid. Flows with no translational invariance
will be found in section 4, following Gubser’s method. In section 5 we will estimate the
size of corrections to our flows arising from small, non-zero pion mass. Finally, in section 6
we will summarise our results and comment on possible directions for future work.

2 Superfluid hydrodynamics

2.1 Thermodynamics and ideal hydrodynamics

In a normal fluid the hydrodynamic degrees of freedom are the densities of conserved
charges, since they relax only slowly to equilibrium; a conserved charge relaxes over macro-
scopic timescales since it must spread throughout the system, while other quantities typ-
ically relax over microscopic timescales. In a superfluid, the gradient ∂λϕ of the massless
Goldstone boson also relaxes over macroscopic timescales, so must be included among the
microscopic degrees of freedom, see e.g. ref. [10].

In the superfluids of interest in this work, the conserved currents are the stress tensor
Tµν and a U(1) current Jµ. Their equations of motion are the continuity equations

∇µTµν = ∇µJµ = 0. (2.1)

In ideal superfluid hydrodynamics, the currents take the form [10]

Tµν = Tµνideal ≡ εu
µuν + p∆µν + µf2 (uµξν + ξµuν) + f2ξµξν ,

Jµ = Jµideal ≡ ρu
µ + f2ξµ, (2.2)

where uµ is the normal fluid velocity, ∆µν ≡ gµν+uµuν (with gµν being an arbitrary metric)
is a projector orthogonal to uµ, ξµ ≡ ∆µν∂νϕ is proportional to the relative superfluid
velocity, and ε, p, µ, ρ and f2 are the energy density, pressure, chemical potential, charge
density, and pion susceptibility, respectively. In addition, we must impose the Josephson
condition on the pion, which in ideal hydrodynamics reads

uλ∂λϕ = −µ ⇒ ξλ = ∂λϕ− µuλ. (2.3)

The Josephson condition may be motivated in a number of different ways: it arises from
the canonical conjugacy of the pion and the charge density [10]; it may be derived by
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demanding that the entropy current is conserved at the ideal order [25, 26]; finally, it arises
as a natural consequence of a higher form symmetry associated to winding of the superfluid
phase [27, 28].

To complete the ideal hydrodynamic equations, we must specify an equation of state
p(T, µ, ξ), where ξ ≡

√
ξλξλ is real since ξλ is spacelike (as it is by definition orthogonal to

the timelike vector uµ). The entropy density s, charge density ρ, and pion susceptibility f2

are determined through the first law dp = s dT + ρ dµ − f2ξ dξ, while the energy density
is given by ε = Ts + µρ − p. For clear discussions of the thermodynamics of superfluids,
see refs. [10, 29].

Throughout this work, in order to obtain concrete solutions to the equations of super-
fluid hydrodynamics we will use a model equation of state of the form1

p(T, µ, ξ) = nT 4 + 1
2χ(T )µ2 − 1

2f
2(T )ξ2. (2.4)

The first term describes a normal fluid with conformal equation of state. This is one of the
simplifying assumptions mentioned in the introduction that limits applications to QCD, in
which the equation of state at µ = ξ = 0 takes a rather more complicated form [30, 31].2

The simplicity of the T 4 term will be crucial in allowing us to derive exact solutions to the
hydrodynamic equations.

The second and third terms in equation (2.4) represent the leading corrections to the
pressure at small non-vanishing chemical potential and superfluid velocity. The restriction
to small chemical potential is merely a simplifying assumption, but it will at least turn out
to be self-consistent; when we come to construct boost-invariant superfluid flows with this
equation of state, we will find that they require us to set µ = 0. On the other hand, the
restriction to small ξ is physically motivated. At large ξ superfluidity breaks down due to
the creation of vortex filaments [33, 34]. This has been observed in superfluid helium, for
example [35].

We will take the susceptibilities in equation (2.4) to have the form3

f2(T ) = f2
π − kT 2, χ(T ) = f2

π − k′T 2. (2.5)

for some constants (fπ, k, k′). These are the leading order behaviours of the susceptibilities
at low temperature in O(N) linear sigma models, for example [36]. Since we are now also
making a low temperature expansion, we expect the model equation of state (2.4) with
susceptibilities (2.5) to be appropriate for superfluid flows with the hierarchy of scales

µ, ξ � T � fπ. (2.6)

1Our equation of state is a special case of the more general equation of state for nuclear matter discussed
in ref. [9], obtained by treating the normal fluid component as being conformal.

2A conformal normal fluid may be more appropriate for models with chiral symmetry-broken phases
that are deconfined, such as can occur in the holographic Sakai–Sugimoto model [32].

3Our motivation for the notation fπ is that in QCD, f(T = 0) =
√
χ(T = 0) is the pion decay constant.

In the QCD literature the susceptibility f is usually referred to as the spatial pion decay constant, and is
often denoted fs, while χ is the square of the temporal pion decay constant ft. See for example ref. [36].
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The equation of state that we have chosen contains only one dimensionful parameter,
fπ, and so for fπ = 0 the superfluid is conformal. Indeed, the energy density following
from the equation (2.4) is

ε = 3nT 4 + 1
2 (T∂Tχ+ χ)µ2 − 1

2
(
T∂T f

2 − f2
)
ξ2, (2.7)

and we find the trace of the stress tensor to be Tµµ = −ε+ 3p+ f2ξ2 = −f2
π(∂ϕ)2, which

vanishes when fπ = 0. Notice that this expression for Tµµ is precisely what one would
obtain for a free, massless scalar field ϕ with action S = −f2

π

∫
d4x
√
−g (∂ϕ)2. We will see

that f2
π plays very little role in the hydrodynamic equations, and so in section 4 we will be

able to leverage the powerful conformal-symmetry based method of ref. [37] to construct
boost-invariant superfluid flows with non-trivial energy density profiles, even when fπ 6= 0.

2.2 First-order hydrodynamics

The first-order dissipative corrections to superfluid hydrodynamics are rather involved: the
most general constitutive relations of first-order superfluid hydrodynamics contain twenty
transport coefficients [38]. We will consider only parity invariant superfluids, eliminating
six of these coefficients [38]. Further, the assumption of small relative superfluid velocity
discussed above eliminates a further nine, leaving only the five transport coefficients dis-
cussed in ref. [33]. Adopting the notation of ref. [25] for the dissipative corrections, one
then obtains the constitutive relations4

Tµν = Tµνideal − ησµν −
(
ζ1∆µν + 2ζ2f

2u(µξν)
)
∇λuλ −

(
ζ2∆µν + 2ζ3f

2u(µξν)
)
∇λ(f2ξλ),

Jµ = Jµideal − κ∆µν∇ν
(
µ

T

)
, (2.8)

uµ∂µϕ = −µ+ ζ2∇λuλ + ζ3∇λ(f2ξλ),

where Tµνideal and Jµideal are the ideal currents given in equation (2.2), {η, κ, ζ1,2,3} are the five
transport coefficients, 2u(µξν) ≡ uµξν + ξµuν , and

σµν ≡ ∆µα∆νβ (∇αuβ +∇βuα)− 2
3∆µν∇λuλ. (2.9)

The five first-order transport coefficients are not completely free. Demanding that the
entropy current has postive divergence imposes that η, κ, ζ1, ζ3 ≥ 0 and ζ2

2 ≤ ζ1ζ3 [25, 39,
40]. Further, taking the trace of the stress tensor in equation (2.8), one finds

Tµµ = (Tideal)µµ − 3ζ1∇λuλ − 3ζ2∇λ(f2ξλ). (2.10)

We thus see that a conformally invariant theory has ζ1 = ζ2 = 0. In section 3.2 we will
use this fact to argue that the shear viscosity η is the most important first-order transport
coefficient for the physics of superfluid Bjorken flow.

4Our variables are related to the ones used in ref. [25] by f2|here = ρs
µs |there and ξλ|here = µsn

λ|there.
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3 Superfluid Bjorken flows

3.1 Ideal superfluid

The natural coordinate system for studying Bjorken flow may be obtained starting from
four-dimensional Minkowski space in cylindrical coordinates,

ds2 = gµνdxµdxν = −dt2 + dz2 + dx2
⊥ + x2

⊥dθ2, (3.1)

where we will refer to the z direction as the beam axis, while (x⊥, θ) are polar coordinates
in the transverse plane. One then defines the Milne time τ and spatial rapidity w through
t = τ coshw and z = τ sinhw. We use the symbol w for the spatial rapidity, rather
than the more conventional η, in order to avoid confusion with the shear viscosity. The
Milne time is invariant under boosts along the beam axis, while the rapidity is shifted to
w → w + 1

2 log
(

1−v
1+v

)
, where v is the boost velocity. In the new coordinates, the metric is

ds2 = −dτ2 + τ2dw2 + dx2
⊥ + x2

⊥dθ2. (3.2)

We now seek solutions of the ideal superfluid hydrodynamic equations that are invari-
ant under boosts in the z direction, rotations about the z axis, and translations perpen-
dicular to z. Together, these conditions imply that observables will depend only on τ . Let
us take the normal fluid velocity to be u = ∂τ . The combination of the Josephson condi-
tion (2.3) and symmetry then demand that ξ = ξw(τ)∂w. The fact that ∂λϕ = ξλ + µuλ is
a gradient implies that ∂τ (τ2ξw) = 0, so we may take ξw(τ) = ξ̂/τ2, for some constant ξ̂.
If we assume that µ = µ(τ), then we can straightforwardly solve ξλ = ∂λϕ − µuλ for the
Goldstone boson field, ϕ = ξ̂w −

∫
dτµ(τ).

We can now evaluate the continuity equations (2.1). Conservation of the U(1) charge
and the momentum, ∇λJλ = 0 and ∇λT λw = 0 respectively, imply that

∂τ (τµχ) = 0 and ξ̂∂τ (τµf2) = 0. (3.3)

For non-zero ξ̂ and µ, this implies that ∂τ (χ/f2) = 0. Since χ and f2 are generically
different functions of the local temperature [36, 41], we conclude that superfluid Bjorken
flow is usually consistent only for µ = 0. Concretely, for χ and f2 given by equation (2.5),
equations (3.3) imply that µ = 0 unless k = k′. We will therefore set the local chemical
potential to zero for the remainder of this section, satisfying the charge and momentum
conservation equations (3.3) trivially. The solution for the Goldstone mode is then ϕ = ξ̂w.

A notable example of a theory with k = k′ is actually chiral perturbation theory, where
it has been shown that f2

π and χ differ by a term O(T 4) at low temperatures [42, 43]. Thus,
at the level of the low-temperature approximation used in equation (2.5), the equation of
state from chiral perturbation theory permits superfluid Bjorken flow with non-zero µ.
Unfortunately, we have not been able to find an analytic solution for the µ 6= 0 case.5 This
case is studied numerically in ref. [20].

5Note that µ = 0 still provides a consistent solution to equation (3.3) even when k = k′, so our results
are still applicable to this case.
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With µ = 0, the only non-trivial conservation law is the conservation of energy,
∇λT λτ = 0, which implies

1
τ1/3∂τ

(
τ1/3T

)
+ kξ̂2∂τ (T/τ)

12nτT 2 = 0. (3.4)

The general solution is

T (τ) = 3nΣ(τ)2/3 − kξ̂2

6nτΣ(τ)1/3 , Σ(τ) = 4τ2

τ2
0

+

√√√√16τ4

τ4
0

+ k3ξ̂6

27n3 , (3.5)

where τ0 is an integration constant. Substituting this solution into equation (2.7) we obtain
the corresponding energy density,

ε(τ) = 3n
[

3nΣ(τ)2/3 − kξ̂2

6nτΣ(τ)1/3

]4

+ kξ̂2

2τ2

[
3nΣ(τ)2/3 − kξ̂2

6nτΣ(τ)1/3

]2

+ f2
π ξ̂

2

2τ2 . (3.6)

At late times, this energy density decays as

ε(τ) = 3n
τ08/3τ4/3 + f2

π ξ̂
2

2τ2 −
kξ̂2

2τ04/3τ8/3 + . . . . (3.7)

The first term in the expansion is the usual Bjorken flow energy density, with superfluidity
providing subleading corrections. Notice that the zero temperature pion decay constant
fπ appears only in the first subleading correction to the late-time energy density, which
decays as τ−2. We then obtain a series of further corrections decaying as larger powers of
τ−1, controlled by the finite temperature correction to the susceptibility f2.

The term in equation (3.7) proportional to τ−2 is reminiscent of a similar term found
in the superfluid Bjorken flow of ref. [20], however it has a different origin. Their flow has
ξ̂ = 0, but a non-zero chemical potential µ ∝ τ−1 (allowed because they set f2 = χ = f2

π).
This leads to an energy density containing a term ∝ µ2 ∝ τ−2.

Expanding equation (3.5) at small proper time τ → 0, one finds that the local temper-
ature grows linearly as T (τ) ≈ 4nτ/(kξ̂2τ2

0 ) for non-zero ξ̂. Thus, the system appears to
heat up with τ at early times, and then cool down at late times. However, this may just
be an artifact of our definition of the local temperature. In particular, no such heating is
apparent in the energy density, which also decreases at early times as

ε(τ) ≈ f2
π ξ̂

2

2τ2 + 8n2

kξ̂2τ2
0

+ . . . . (3.8)

Finally, we make a brief comment on the behaviour of the U(1) current Jµ in our
solutions. In the fluid frame, the charge density uµJ

µ = 0, while there is a non-zero
current in the w-direction that decays with increasing τ . The situation is rather more
intricate in the “laboratory frame” (3.1). In cylindrical coordinates (t, z) the current is

J =
(
f2
π − kT 2

)(z ∂t + t ∂z
t2 − z2

)
, (3.9)
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with T given by equation (3.5) (and τ2 = t2−z2). At late Minkowski time t the contribution
from T 2 is negligible, and the current (3.9) takes a rather simple form J = f2

π(z ∂t +
t ∂z)/(t2 − z2). For fixed t, we see that the current density diverges as J t → ±∞ as
the lightcone at z = ±t is approached. The solution thus describes two shockwaves of
equal and opposite infinite charge density travelling outwards at the speed of light. The
total charge in the z ≥ 0 region increases with t, due to the non-zero Jz. At early and
intermediate t, the behaviour of the current is rather more intricate due to the temperature
dependence in equation (3.9). In particular, the charges of the shockwaves can flip sign at
intermediate times.

3.2 Dissipative corrections

We would now like to study dissipative corrections to the flow in equation (3.6). As for the
ideal case, the assumed symmetries force observables to be functions only of τ . We continue
to take the normal fluid velocity to be u = ∂τ , and consequently the relative superfluid
velocity is still of the form ξ = ξw(τ)∂w. With this ansatz, two of the five transport
coefficients discussed in section 2.2 have no effect on the flow: it is straightforward to show
that when T and µ are functions only of τ ,

∇µ
[
f(T )2ξµ

]
= ∆µν∇ν

(
µ

T

)
= 0. (3.10)

Comparing to the first-order constitutive relations in equation (2.8), we see that ζ3 and κ
drop out of the hydrodynamic equations completely.

We are then left with three transport coefficients: the shear viscosity η, the bulk
viscosity ζ1, and ζ2. In principle, we would need to do a microscopic calculation to compute
how these transport coefficients depend on T , µ and ξ. However, as noted in section 2.2,
for a conformal superfluid ζ1 = ζ2 = 0. Although our superfluid is not conformal, the
only dimensionful parameter is fπ, which drops out of all equations when µ = ξ = 0. We
therefore expect ζ1,2 = 0 in this limit.6 In the case of interest, namely µ = 0 and small
non-zero ξ, we thus expect the shear viscosity η to be much larger than ζ1,2. For the
remainder of this section, we will therefore set ζ1,2 = 0 and concentrate on the effects of
the shear viscosity. We will further approximate the shear viscosity by its conformal form
η ≈ η̄T 3 where η̄ is a dimensionless constant, neglecting any corrections at non-zero ξ.

The net effect of these approximations is that we are keeping terms up to O(ξ2) in
ideal hydrodynamics, while throwing away everything except the normal fluid contribution
to first-order hydrodynamics. In principle, given formulas for η, ζ1, and ζ2 at non-zero
ξ, there is no barrier to extending the treatment in this section to account for dissipative
superfluid corrections to the flow. However, we expect these corrections to be doubly small
in the physically interesting regime, being suppressed in both the small-ξ and derivative
expansions. With µ = 0 and the only non-trivial transport coefficient being η = η̄T 3, the

6More precisely, ζ2 may not be zero, but the combination ζ2f
2u(µξν) appearing in the stress tensor in

equation (2.8) vanishes in the ξ = 0 limit. A non-zero, τ -dependent ζ2 will provide a contribution to uµ∂µϕ
even at ξ = 0 via the Josephson condition on the last line of equation (2.8), but this will not affect the
conservation equations of Tµν and Jµ, which depend on ϕ only through the transverse gradient ∆µν∂νϕ.
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Josephson condition implies ϕ = ξ̂w for some dimensionless constant ξ̂, as in the ideal case,
while the only non-trivial conservation equation is the conservation of energy ∇λT λτ = 0,
which implies

1
τ1/3∂τ

(
τ1/3T

)
+ kξ̂2∂τ (T/τ)

12nτT 2 − η̄

9nτ2 = 0. (3.11)

This equation is solved implicitly by the solution to the algebraic equation

4η̄√
36nkξ̂2 − η̄2

arctan


√

36nkξ̂2 − η̄2

η̄ + 12nT (τ)τ

+log
[
τ2

0T (τ)3
(

η̄

6nT (τ) + kξ̂2

4nτT (τ)2 +τ
)]

= 0,

(3.12)
where τ0 is an integration constant, chosen such that the leading order behaviour of T (τ)
at late times matches that of the inviscid solution (3.5). That equation (3.12) solves
equation (3.11) was found using Mathematica. The solution may be verified explicitly by
differentiating both sides of equation (3.12) with respect to τ .

We cannot solve the transcendental equation (3.12) for T (τ) analytically, but it is
straightforward to obtain numerical solutions, for example with the Newton–Raphson
method. Substituting the resulting temperature into equation (2.7), we then obtain nu-
merical results for the energy density as a function of τ . For example, in figure 1 we show
results for the energy density for various different values of η̄, for the following sample
values of the parameters: n = π2/30, k = 1/6, ξ̂ = 1/10, and τ0 = 1/fπ.7

At small τ the curves appear to coincide in figure 1(a) at ε ≈ f2
π ξ̂

2/2τ2, due to the
dominance of the final term in the energy density (3.6). At large τ the curves coincide again,
as can be seen from the following argument. We can solve equation (3.11) perturbatively
in 1/τ to determine the late-time behaviour of the local temperature. Substituting the
result into equation (2.7), we find that the energy density decays at late times as

ε(τ) = 3n
τ

8/3
0 τ4/3

+ τ2
0 f

2
π ξ̂

2 − 4η̄
2τ2

0 τ
2 − nkξ̂2 − η̄2

2nτ4/3
0 τ8/3

+ . . . . (3.13)

We see that the leading order correction to ε(τ) due to non-zero shear viscosity occurs at
the same order in the late-time expansion as the leading-order correction from non-zero ξ.

We note that the superfluid component regularises a singularity present in the Bjorken
flow of a viscous normal fluid. The normal fluid local temperature, obtained by solving
equation (3.11) with ξ̂ = 0, is

T (τ) = 1
τ

2/3
0 τ1/3

− η̄

6nτ . (3.14)

As pointed out in ref. [7], for example, this local temperature becomes negative at early
times, when the second term dominates over the first. This is not a huge problem, it is

7The choices of n and k were motivated by O(N) sigma models, for which n = (N − 1)π2/90 and
k = (N − 2)/12 [44]. We obtain the chosen values of n and k by taking N = 4, as relevant for QCD. The
value k = 1/6, which is also found in chiral perturbation theory [42, 43]. The qualitative behaviour of ε(τ)
does not depend sensitively on the choices of n and k.
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(b) Subtracted energy density

Figure 1. (a) Numerical results for the energy density as a function of τ for superfluid Bjorken flow
with non-zero shear viscosity η. The different curves correspond to different values of η̄ ≡ η/T 3. To
make the plot, we have chosen the parameters in the equation of state and the integration constants
to be n = π2/30, k = 1/6, ξ̂ = 1/10, and τ0 = 1/fπ. (b) The same data as in (a), but with the
dominant early-time behaviour ε ≈ f2

π ξ̂
2/2τ2 subtracted, highlighting the difference between the

curves for different η̄.
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just a symptom of the expected breakdown of hydrodynamics at early times when gradi-
ents become large. However, it is perhaps pleasing that no such singularity exists in the
superfluid case, as visible from the lack of a zero in the subtracted energy densities plotted
in figure 1(b). Concretely, solving equation (3.11) perturbatively at small τ , we find that
at leading order the local temperature scales linearly in τ as

T (τ) ≈ 4n
kξ̂2τ2

0

 η̄ −
√
η̄2 − 36nkξ̂2

η̄ +
√
η̄2 − 36nkξ̂2

2η̄/
√
η̄2−36nkξ̂2

τ + . . . . (3.15)

The proportionality coefficient is (perhaps contrary to first appearance) real and positive
for all real η̄.

However, notice that at intermediate τ there is a very large deviation between the
η̄ = 0 curve in figure 1 and those corresponding to all but the smallest η̄ 6= 0. The zero-
and first-order terms in the hydrodynamic expansion are thus comparable in this regime,
so we cannot trust hydrodynamics along the whole flow except for small values of η̄.

Finally, we comment on the sharp local minimum in the curve for η̄ = 1 visible in
figure 1(a), which arises due to a competition between superfluid and viscous effects. As
visible in figure 1(b), non-zero shear viscosity leads to a suppression of the subtracted
energy density ∆ε ≡ ε − f2

π ξ̂
2/(2τ2) at early and intermediate times. As η̄ is increased,

this suppression becomes larger and persists to larger τ , and there develops a range of τ
for which ∆ε is a rapidly increasing function of τ . In the full energy density, this leads to
a very sharp crossover between the small-τ regime, where ε ≈ f2

π ξ̂
2/(2τ2), and the large τ

regime where ε ≈ ∆ε.

4 Transversely expanding flows

4.1 Review of the normal fluid case

In the previous section we described a boost-invariant superfluid flow that is also invariant
under translations transverse to the beam axis. For real applications, for example to heavy-
ion collisions, this translational invariance is unrealistic, since the fluid will be expanding
from some central collision region.

In ref. [7], Gubser describes an elegant method for deriving simple, transversely ex-
panding, boost-invariant flows of normal, uncharged fluids with conformal equation of state
p = ε/3. Gubser’s method works by replacing the transverse translational invariance with
a generalised conformal invariance. In this subsection we will review Gubser’s method. In
section 4.2 we will show how the method may be applied to superfluids.

The first step is to define a vector field [7]

ζ = a+ q2b

= 2q2τx⊥ cos θ ∂τ + (1 + q2τ2 + q2x2
⊥) cos θ ∂x⊥ −

1 + q2τ2 − q2x2
⊥

x⊥
sin θ ∂θ, (4.1)

where q is a constant with dimensions of inverse length, a is the vector generating a unit
translation in the θ = 0 direction, and b is the vector generating a unit special conformal
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transformation in the same direction. Thus, ζ is a conformal Killing vector of the Minkowski
metric (3.2),

Lζgµν = 1
2
(
∇λζλ

)
gµν , (4.2)

where Lζ is the Lie derivative along ζ.
Given a tensor field T ν1ν2...

µ1µ2... , we say that it transforms covariantly under ζ if it satisfies

LζT ν1ν2...
µ1µ2... = −

α[T ν1ν2...
µ1µ2... ]
4

(
∇λζλ

)
T ν1ν2...
µ1µ2... , (4.3)

where the weight α[T ν1ν2...
µ1µ2... ] is a real constant. For instance, equation (4.2) implies that the

metric has weight α[gµν ] = −2. The inverse metric gµν correspondingly has α[gµν ] = 2,
ensuring that the Kronecker delta δµν = gµλgνλ has vanishing weight.

Gubser’s flows are constructed by demanding that the fluid velocity and energy density
transform covariantly under ζ. Applying Lζ to the normalization condition gµνuµuν = −1
and using α[gµν ] = 2, it is straightforward to show that the fluid velocity must have weight
α[uµ] = −1, so that

Lζuµ = 1
4
(
∇λζλ

)
uµ. (4.4)

Assuming rotational invariance around the beam axis — implying that uθ = 0 — and
boosting to a frame where uw = 0, the solution to the differential equation (4.4) is [7]

u = cosh κ ∂τ + sinh κ ∂x⊥ , κ = arctanh
(

2q2τx⊥
1 + q2τ2 + q2x2

⊥

)
. (4.5)

Having fixed the fluid velocity, we now turn to the conservation of the stress tensor. If
we demand that the energy density transforms covariantly under ζ with weight α[ε] ≡ αε,
this implies [7]

ε = ε̂(g)
ταε

, g = 1− q2τ2 + q2x2
⊥

2qτ , (4.6)

where ε̂(g) is a so far arbitrary function. The variable g is the only independent scalar
combination of τ and x⊥ satisfying Lζg = 0, up to trivial redefinitions, so any scalar with
vanishing weight must be a function of g only. Assuming a conformal equation of state
p = ε/3, at the level of ideal hydrodynamics the stress tensor is Tµν = ε (4uµuν + gµν) /3.
With the fluid velocity given by equation (4.5) and the energy density taking the form (4.6),
conservation of the stress tensor implies that the energy density satisfies

3(1 + g2)ε̂′(g) + 4g(αε − 2)ε̂(g) + 4qτ(αε − 4)ε̂(g) = 0. (4.7)

Plainly this equation is only consistent with the assumption that ε̂(g) is a function only
of g and not τ if αε = 4. This value may also be obtained from dimensional analysis:
if ε̂(g) is dimensionless, then αε = 4 correctly assigns the energy density dimensions of
(length)−4. We may straightforwardly solve equation (4.7) with αε = 4, and substitute
into equation (4.6) to find the energy density [7]

ε(τ, x⊥) = ε̂0
(2q)8/3τ4(1 + g2)4/3 = ε̂0

τ4/3 [1 + 2q2(τ2 + x2
⊥) + q4(τ2 − x2

⊥)2]4/3 , (4.8)

where ε̂0 is an integration constant.
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Ref. [7] also computed the first-order dissipative correction to equation (4.8). Since the
fluid is assumed to have conformal equation of state, the bulk viscosity vanishes and so the
only non-zero first-order transport coefficient is the shear viscosity η, which contributes to
the stress tensor as in equation (2.8). Further, by dimensional analysis, the shear viscosity
in the conformal fluid must take the form η = η̄ε3/4 for some dimensionless coefficient η̄.
The stress tensor therefore reads

Tµν = ε

3 (4uµuν + gµν)− η̄ε3/4 σµν , (4.9)

with the fluid velocity given by equation (4.5). Conservation of this stress tensor leads to
a modified version of equation (4.7), with solution [7]

ε(τ, x⊥) = 1
τ4

{
ε

1/4
0

(1 + g2)1/3 + η̄g√
1 + g2

[
1− (1 + g2)1/6

2F1

(1
2 ,

1
6; 3

2;−g2
)]}4

, (4.10)

where we leave implicit that g is the function of τ and x⊥ appearing in equation (4.6).

4.2 Superfluid case, ideal hydrodynamics

We will now show how to generalise the conformal symmetry based-approach reviewed in
section 4.1 to a superfluid with equation of state (2.4). We will once again seek flows
in which all physical quantities transform covariantly under ζ as in equation (4.3). The
procedure for determining the normal fluid velocity is unchanged, so that u is still given by
equation (4.5). We then fix the superfluid velocity ξ by demanding that it transforms as in
equation (4.3) with weight α[ξµ] ≡ αξ. Combining this with the condition that uµξµ = 0
that arises from the definition ξµ ≡ ∆µν∂νϕ, one finds

ξ = ξ̂(g)
ταξ

∂w. (4.11)

We now impose the condition that ∂λϕ = ξλ + µuλ is a gradient, which implies that
∂µ(ξν + µuν)− ∂ν(ξµ + µuµ) = 0. If we assume that µ transforms with weight α[µ] ≡ αµ,
so that µ = µ̂(g)/ταµ , then the various components of this gradient condition imply

(αξ − 2)ξ̂(g) = 0, (αµ − 1) µ̂(g) = 0, ξ̂′(g) = 0. (4.12)

Thus, non-zero solutions for ξ̂ and µ̂ are only possible if αξ = 2 and αµ = 1, respectively,
and the only possible solution for ξ̂ is that it is constant.

Now we can attempt to solve the conservation equations. We will assume that the
local temperature transforms covariantly under ζ with weight αT , so that we may write
T = T̂ (g)/ταT . As for the Bjorken flow described in section 3, we find that simultaneous
conservation of Jλ and T λw is impossible unless the local chemical potential vanishes.
Concretely, taking a linear combination of the equations ∇λJλ = 0 and ∇λT λw = 0, we
find the condition

(k − k′)ξ̂ T̂ (g)µ̂(g)
[
(1 + g2)T̂ ′(g) + αT (g + qτ)T̂ (g)

]
= 0. (4.13)
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This equation makes clear that for the generic case k 6= k′, flows with non-trivial superfluid
component ξ̂ 6= 0 and non-trivial local temperature are only possible if µ̂(g) = 0. We then
find that the conservation equations for the remaining components of the stress tensor are
only consistent with the assumption that T̂ (g) is a function only of g if αT = 1, which is
also what one would expect from dimensional analysis. In this case, conservation of the
stress tensor implies

(1 + g2)
[
12nT̂ (g)2 + kξ̂2

]
T̂ ′(g) + 2g

[
4nT̂ (g)2 + kξ̂2

]
T̂ (g) = 0. (4.14)

Equation (4.14) may be solved explicitly for T̂ (g). The resulting expression for the
local temperature T = T̂ (g)/τ is

T (τ, x⊥) = 3nΣ̃ (g)2/3 − kξ̂2

6nτ Σ̃ (g)1/3 , (4.15)

where Σ̃ is related to the function appearing in equation (3.5) by

Σ̃(g) = Σ
(

1
2q
√

1 + g2

)
= 1
q2τ2

0 (1 + g2)
+

√√√√ 1
q4τ4

0 (1 + g2)2 + k3ξ̂6

27n3 , (4.16)

where τ0 is an integration constant, chosen such that T reduces to the Bjorken flow re-
sult (3.5) in the q → 0 limit. Substituting the solution for the local temperature into
equation (2.7) with µ = 0, we then obtain the energy density

ε(τ, x⊥) = 3n
[

3nΣ̃(g)2/3 − kξ̂2

6nτ Σ̃(g)1/3

]4

+ kξ̂2

2τ2

[
3nΣ̃(g)2/3 − kξ̂2

6nτ Σ̃(g)1/3

]2

+ f2
π ξ̂

2

2τ2 . (4.17)

Since this is a rather complicated function of τ and x⊥, we plot the typical dependence of
ε on x⊥ of the energy density in figure 2, for several values of τ . The plots were made by
setting n = π2/30, k = 1/6, ξ̂ = 1/10, and τ0 = 1/fπ, the same values as in figure 1. We also
need to fix a value of q. For the normal fluid case, ref. [7] suggests q ≈ 0.23 fm−1 ≈ 0.09fπ
as a phenomenologically sensible value. However, as explained in section 1 we do not
expect the superfluid Gubser flow to be directly applicable to experiment, and in any case
the qualitative behaviour of the energy density is not sensitive to the value of q (provided
q 6= 0), so for simplicity we choose q = fπ.

The solid blue curves in the figure show the result for the energy density (4.17), while
the dashed orange curves show the same energy density, but with the x⊥-independent
contribution f2

π ξ̂
2/2τ2 subtracted. For comparison, we also show in dotted black the normal

fluid result (4.8), with τ0 chosen such that the two energy densities agree at x⊥ = 0 for the
earliest plotted time qτ = 0.1.

In both the superfluid and normal fluid cases, the energy density exhibits a single peak
as a function of x⊥, which at early times qτ < 1 is located at x⊥ = 0. For qτ > 1 the peak
is located at qx⊥ =

√
q2τ2 − 1.8 Note that since x⊥ is the radial coordinate orthogonal to

8From the definition of g in equation (4.6), we see that qx⊥ =
√
q2τ2 − 1 corresponds to g = 0.
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Figure 2. Sample logarithmic plots of the energy density of ideal superfluid Gubser flow as a
function of transverse distance x⊥, at different Milne times τ . To make these plots, we have fixed
the parameters of the model and the solution to n = π2/30, k = 1/6, q = fπ, ξ̂ = 1/10, and
τ0 = 1/fπ. The solid blue curves show the energy density (4.17). The dashed orange curves show
the same energy density (4.17), but with the x⊥-independent contribution f2

π ξ̂
2/2τ2 subtracted, in

order to make the x⊥-dependence clearer. The dotted grey curves show the normal fluid result (4.8),
with ε̂0 chosen such that the two results agree at qτ = 0.1 and x⊥ = 0, for comparison.
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the beam axis, the peak at non-zero x⊥ is really a ring of energy density surrounding the
beam axis, that expands outward with a speed asymptotically approaching the speed of
light as τ → ∞. Away from the peak, the superfluid energy density is dominated by the
x⊥-independent contribution to (4.17) proportional to f2

π .
The form of the late-time decay of the energy density depends on the value of x⊥. At

the peak at qx⊥ =
√
q2τ2 − 1, the energy density takes the relatively simple form

ε

(
τ,
√
τ2 − q−2

)
= f2

π ξ̂
2

2τ2 + C

τ4 , (4.18)

where

C = 3n
[

3nΣ̃(0)2/3 − kξ̂2

6nΣ̃(0)1/3

]4

+ kξ̂2

2

[
3nΣ̃(0)2/3 − kξ̂2

6nΣ̃(0)1/3

]2

. (4.19)

Away from this peak, for large τ at fixed x⊥ the energy density decays as9

ε(τ, x⊥) ≈ f2
π ξ̂

2

2τ2 + 8n2

kξ̂2τ04q8τ8
+ 32n2(q2x2

⊥ − 1)
kξ̂2τ4

0 q
10τ10

+O(τ−12). (4.20)

The dominant term in both cases is proportional to f2
π/τ

2 and is independent of x⊥,
consistent with the behaviour plotted in figure 2. We see that first subleading correction
at late times decays more rapidly away from the peak.

Finally, for completeness, we provide the first-few terms in the expansions of the energy
density (4.17) in the extreme limits of g and for fixed τ . For small g the energy density
takes the form

ε = f2
π ξ̂

2

2τ2 + C

τ4−

[
3nΣ̃(0)2/3 − kξ̂2

]2 [
9n2Σ̃(0)4/3 + 3nkξ̂2Σ̃(0)2/3 + k2ξ̂4

]
324n3Σ̃(0)4/3τ4 g2+O(g4). (4.21)

Meanwhile, for large g the energy density behaves as

ε = f2
π ξ̂

2

2τ2 + n2

2kξ̂2q4τ4
0 τ

4
g−4 − n2

kξ̂2q4τ4
0 τ

4
g−6 +O(g−8). (4.22)

4.3 Dissipative corrections

We now consider the effect of dissipative corrections on the superfluid Gubser flow of the
previous subsection. The symmetry arguments fixing the velocities are unchanged from
the ideal case, such that u is given by equation (4.5), and ξ = τ−2ξ̂ ∂w with constant ξ̂.
With this form of ξµ one finds ∇µ

[
f(T )2ξµ

]
= 0, so that the transport ceofficient ζ3 makes

no contribution to the hydrodynamic equations for the flows that we are considering. We
will consider only flows with µ = 0, so the coefficient κ also makes no contribution.10

9Note that the expansion (4.20) diverges in the limit ξ̂ → 0, despite the fact that the full expression for
the energy density in equation (4.17) is finite in this limit. The reason for this noncommutativity of limits
is that the function Σ̃(g) appearing in equation (4.17) tends to zero in the τ → ∞ and ξ̂ → 0 limit, at a
speed that depends on the order of limits.

10If one were to consider a flow with µ 6= 0, transforming with weight αµ = 1 as required by dimensional
analysis, one would find ∆µν∇ν

(
µ
T

)
= 0 for the fluid velocity in equation (4.5). As a result, κ again drops

out of the hydrodynamic equations.
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As argued in section 3.2, of the three remaining transport coefficients {η, ζ1, ζ2} we
expect the shear viscosity η to be most important for dissipation at small relative superfluid
velocity. Moreover we expect that the shear viscosity will be dominated by the normal
fluid contribution, such that it may be approximated by η ≈ η̄T 3 for some dimensionless
constant η̄. Making this approximation, and neglecting the contributions of ζ1,2 to the
hydrodynamic equations, we find that the only independent hydrodynamic equation is

(1 + g2)
[
12nT̂ (g)2 + kξ̂2

]
T̂ ′(g) + 2g

[
4nT̂ (g)2 + kξ̂2

]
T̂ (g) + 4η̄g2

3
√

1 + g2T (g)2 = 0 . (4.23)

We are not able to solve equation (4.23) analytically, however it is straightforward to
solve numerically. To do so, we first solve the equation perturbatively for large values of
g, finding

T̂ (g) = n

q2τ2
0 ξ̂

2k

1
g2 +

n
(
2η̄n− 3k2ξ̂4q2τ2

0

)
3q4τ4

0 k
3ξ̂6

1
g4 + . . . , (4.24)

where τ0 is an integration constant, chosen such that the leading term in this expansion
matches the leading term in the large-g expansion of the ideal solution (4.15). We then use
this expansion to set boundary conditions at some large value of g, and then numerically
integrate to smaller values of g. The resulting solution for T = T̂ (g)/τ can then be
substituted into equation (2.7) to obtain the energy density.

For example, in figure 3 we show the result of this numerical procedure for a sample
value of the dimensionless shear viscosity η̄ = 1, together with the inviscid solutions shown
in figure 2. The rest of the parameters in the model were set to the same values as in the
latter figure, namely n = π2/30, k = 1/6, q = fπ, ξ̂ = 1/10. For the η̄ = 0 curves we used
τ0 = 1/fπ, while for the η̄ = 1 curves we tuned τ0 ≈ 74/fπ, such that the value of the
energy density at the local maximum (as a function of x⊥) matches the η̄ = 0 result at late
times. From the figure, we see that non-zero shear viscosity tends to lead to reduced energy
density at early times, and much more rapid decay of the energy density at large x⊥. These
two effects are related by the conformal symmetry: from the form of g in equation (4.6)
we see that both small τ and large x⊥ correspond to large positive g.

As for Bjorken flow, we find that the superfluid component regularises the pathology
pointed out in ref. [7]. When ξ̂ = 0, equation (4.23) may be solved to obtain [7]

T̂ (g) = T̂0(g) ≡ qε
1/4
0

(1 + g2)1/3 + η̄g

3n (1 + g2)1/2

[
1−

(
1 + g2

)1/6
2F1

(1
2 ,

1
6; 3

2;−g2
)]

, (4.25)

with integration constant ε0, leading to the energy density (4.10). This solution for T̂ (g)
becomes negative at large positive g, corresponding to small τ or large x⊥, signalling a
breakdown of hydrodynamics in these regimes since the viscous contribution outweighs the
ideal fluid result. No such behaviour is visible in the superfluid energy density plotted in
figure 3, where a change in the sign of T̂ would lead to a zero in the subtracted energy
density (the dot-dot-dashed purple curve in the figure).

We can solve equation (4.23) perturbatively in the relative superfluid velocity to find
the leading order superfluid correction to viscous Gubser flow at small ξ̂ in integral form.
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Figure 3. Sample logarithmic plots of the energy density of ideal and viscous superfluid Gubser
flow as a function of transverse distance x⊥, at different Milne times τ . The solid blue and dashed
orange curves show the same data as in figure 2. The dot-dashed black curve shows the numerical
result for the energy density at η̄ = 1, with τ0 ≈ 74/fπ and otherwise the same values of parameters
as the ideal fluid results. The dot-dot-dashed purple curve shows the η̄ = 1 result, but with the
x⊥-independent contribution f2

π ξ̂
2/2τ2 subtracted, in order to make the x⊥-dependence clearer.
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Concretely, we make the expansion T̂ (g) = T̂0(g) + ξ̂2T̂1(g) + O(ξ̂4), where T̂0(g) is the
normal fluid solution (4.25). Substituting the expansion into the hydrodynamic equa-
tion (4.23), at O(ξ̂2) we find a first-order equation for T̂1(g), with solution

T̂1(g) = k

12(1 + g2)1/3

∫ g

0
dg̃

g̃
[
4η̄g̃(1 + g̃2)1/6F (g̃)− 3η̄g̃ − 12nqε1/4

0
(
1 + g̃2)1/6]

(1 + g̃2)1/6
[
η̄g̃ − η̄g̃ (1 + g̃2)1/6 F (g̃) + 3nqε1/4

0 (1 + g̃2)1/6
]2 .

(4.26)
where F (g) ≡ 2F1

(
1
2 ,

1
6 ; 3

2 ;−g2
)
, and we have chosen the boundary condition T̂1(0) = 0

(any other boundary condition amounts to a redefinition of the integration constant ε0).

5 Comments on introducing a pion mass

In QCD, chiral symmetry is only approximate, giving a small mass m to the pion ϕ. To
what extent do the massless flows found in sections 3 and 4 provide good approximations
to the true flows for small non-zero m?

A necessary condition for the validity of the approximation is that the kinetic term
in the pion Lagrangian dominates the mass term, (∂ϕ)2 � m2ϕ2, when evaluated on
the m = 0 solution. All of our massless solutions have ϕ = ξ̂w, and so this condition is
equivalent tom2w2τ2 � 1, where the factor of τ2 arises from gww = τ−2 in the metric (3.2).
For given values of m and w, this implies an upper bound on τ , beyond which we cannot
trust the massless-pion approximation.

This is dangerous, since we would typically only trust hydrodynamics at late times
where we expect gradients to become small. For instance, when the pion is the real pion
of QCD with m ≈ 1.4 fm−1 in natural units, we expect the massless-pion approximation
to hold for

τ2 � (1 fm/c)2

w2 , (5.1)

where we have restored a factor of the speed of light c. Since 1 fm/c is of the order of the
time scale for hydrodynamisation in heavy-ion collisions [6], one cannot hope to accurately
describe the regions with |w| ∼ O(1) by settingm = 0. Instead, we expect that the massless
pion approximation will only be accurate for sufficiently small values of the rapidity w.

We will now estimate the size of massive corrections to superfluid Bjorken flow in more
detail. Throughout this section we consider only ideal hydroydnamics, for simplicity. A
small pion mass modifies the conservation equation of the U(1) current to

∇µJµ = f2m2 sinϕ, (5.2)

while the conservation of Tµν and the Josephson condition are unchanged.11 Using the
constitutive relations written in equation (2.2) with ρ = χµ and ξλ = ∂λϕ − µuλ the
conservation equation becomes

∇λ
[
f2∂λϕ+ (f2 − χ)uλuα∂αϕ

]
= f2m2 sinϕ, (5.3)

where we have used the Josephson condition to replace µ with −uα∂αϕ.
11In this section we consider only ideal hydrodynamics. Were we to include dissipative corrections, then

the Josephson relation would gain a phase relaxation term proportional to m2ζ3 [11, 45]. See also ref. [46]
for a more general discussion of pseudo-Goldstone modes.
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The dependence of f2 and χ on the local temperature couples this equation to the
conservation equation for the stress tensor. We have not been able to find explicit solutions
to the resulting set of coupled equations for the hydrodynamic variables, so for simplicity
we will approximate the susceptibilities by their zero temperature value f2 ≈ χ ≈ f2

π . The
conservation law (5.3) then becomes simply the sine-Gordon equation

�ϕ = m2 sinϕ (5.4)

This approximation is not very interesting from the point of view of hydrodynamics, since
we have essentially decoupled the pions from the hydrodynamic flow. However, it is hope-
fully good enough to estimate the size of massive corrections to our solutions.

We will solve equation (5.4) perturbatively at small m by expanding the pion field as

ϕ(τ, w) = ξ̂w +m2ϕ1(τ, w) +O(m4), (5.5)

where ξ̂w is the m = 0 solution found in sections 3 and 4, and ϕ1 is the leading-order
correction at non-zero m. Substituting this expansion into equation (5.4) and discarding
terms O(m4) and higher, one finds

− τ∂τ (τ∂τϕ1) + ∂2
wϕ1 = τ2 sin(ξ̂w). (5.6)

The general solution to this sourced wave equation is

ϕ1(τ, w) = W+(τew) +W−(τe−w)− τ2

4 + ξ̂2
sin(ξ̂w), (5.7)

where W±(τ±w) are left- and right-moving waves along the beam axis.12 Note that the
non-linear dependence of ϕ1 on w indicates that boost-invariance is broken by non-zero m2.

The relative size of the O(m0) and O(m2) contributions to ϕ depends on the explicit
form of the functionsW±. We will motivate a particular form of these functions by demand-
ing that the contribution of the pion to the stress tensor is approximately boost-invariant
near w = 0. Concretely, substituting the expansion (5.5) into the sine-Gordon stress tensor
Tµν = f2

π

[
∂µϕ∂νϕ− 1

2g
µν(∂ϕ)2 +m2gµν cosϕ

]
, we find the non-zero components

T ττ = f2
π ξ̂

2

2τ2 + f2
πm

2
[
ξ̂∂wϕ1
τ2 − cos(ξ̂w)

]
+O(m4),

T τw = −f
2
πm

2ξ̂∂τϕ1
τ2 +O(m4), (5.8)

Tww = f2
π ξ̂

2

2τ4 + f2
π

τ2

[
ξ̂∂wϕ1
τ2 + cos(ξ̂w)

]
+O(m4),

and T x⊥x⊥ = x2
⊥T

θθ = −T ττ . If we impose approximate boost invariance near w = 0 by
setting ∂wTµν |w=0 = 0, this yields the conditions ∂τ∂wϕ1|w=0 = ∂2

wϕ1|w=0 = 0. Substi-
tuting the solution (5.7) into these conditions yields two second-order ordinary differential

12Moving to the cylindrical coordinate system (3.1) by setting τ =
√
t2 − z2 and w = 1

2 log
(
t+z
t−z

)
, one

finds τe±w = t± z.
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equations for W±, which may be solved to obtain

ϕ1(τ, w) = c log τ + τ2

4 + ξ̂2

[
sin(ξ̂w)− ξ̂

2 sinh(2w)
]
, (5.9)

where c is an integration constant.13

We now demand that ϕ is regular as τ → 0, fixing the integration constant c = 0.
Equivalently, one could demand regularity of the τ -component of the superfluid velocity
∝ ∂µϕ (rather than the relative superfluid velocity ∆µν∂νϕ). Then, expanding ϕ1(τ, w)
for small w one finds m2ϕ1(τ, w) ≈ −ξ̂m2τ2w3/6. The massless-pion approximation will
be self-consistent only if this is much smaller in magnitude than the m = 0 solution
ϕ0 = ξ̂w, and so we recover the estimatem2τ2w2 � 1 made at the beginning of this section.
We emphasise that this conclusion depends strongly on the functions W±, however. For
instance, if one were to choose boundary conditions that set W± = 0, and also assume that
ξ̂ � 1, then to leading order at small ξ̂ one finds instead |m2ϕ1/ϕ0| ∼ m2τ2. Further, one
might object to the boundary condition that we used to set c = 0 on the grounds that in
practice one does not expect hydrodynamics to apply to the system at very early times.
Non-zero c may provide a further limitation on the regime of validity of the massless pion
approximation. Keeping these caveats in mind, we at least see that there do exist boundary
conditions for which the massless pion approximation is reasonable over a moderate range
of the coordinates τ and w.

6 Discussion

In this work we have presented a number of boost-invariant solutions to the equations of
motion of superfluid hydrodynamics, for a superfluid with a simple, yet physically moti-
vated equation of state (2.4). In the superfluid generalisation of Bjorken flow presented in
section 3, we found that the superfluid component of the flow leads to subleading terms
in the energy density at late times beginning at O(τ−2), the same order in the late-time
expansion as viscous effects appear.

In section 4, by applying Gubser’s conformal symmetry based approach [7], we found
flows expanding transverse to the boost direction. The superfluid component of the flow
provides a contribution to the energy density that is independent of the transverse direction
and dominates at late times, plus additional subleading corrections to the flow at large
transverse direction. The former contribution is rather physically unsatisfying, and in
future work it would be pleasing to find a modification of the flow in which the superfluid
contribution to the energy density is also expanding.

To find solutions to the hydrodynamic equations, we have treated the spontaneously
broken symmetry giving rise to the superfluid as exact, so that the resulting Goldstone
bosons are massless. In QCD chiral symmetry is only approximate, and thus the pions

13There is only one integration constant in equation (5.9) because we have set boundary conditions to
eliminate a term which is independent of τ and linear in w — since such a term can be trivially removed
by a redefinition of the O(m0) integration constant ξ̂ — and a constant term independent of both τ and w
that may be removed by the shift symmetry present when m = 0.
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have non-zero masses, with important consequences for transport. In section 5 we esti-
mated the size of massive corrections to the above flows, concluding that the massless-pion
approximation should hold for the region of the flow at small spatial rapidities w � 1. A
more complete treatment of our flows would include the pion masses throughout. How-
ever, one would need to take into account the complication that a non-zero pion mass is
incompatible with boost invariance.

There are many other possible directions for further work. For instance, one could
study second-order dissipative effects, or perturbatively study anisotropy in the transverse
plane (as would be introduced by non-zero impact parameter in a heavy-ion collision) using
the methods of ref. [47].

Throughout this work we have considered only superfluids arising from the spontaneous
breaking of a U(1) symmetry. As discussed in section 1, our solutions apply also to non-
abelian superfluids, with our U(1) being a subgroup of the full non-abelian symmetry.14 A
natural question is whether a non-abelian superfluid permits more general boost-invariant
flows with multiple pions excited.

One might attempt to generalise superfluid Bjorken flow along the lines of ref. [37],
in which a complex time translation was applied to the Bjorken stress tensor, resulting in
a complexified stress tensor TµνC . Since the hydrodynamic equations are invariant under
time translations and linear in the conserved currents, Tµν ≡ ReTµνC remains an exact
solution. For an appropriately chosen translation, the new stress tensor is approximately
that of Bjorken at small rapidities, while providing a better fit to data at large rapidities.
Applying the aforementioned procedure to the stress tensor of superfluid Bjorken flow
would lead to a conserved Tµν , however, it seems unlikely that this would be the stress
tensor of a superfluid: since the superfluid stress tensor in equation (2.2) is non-linear in ξµ,
the relative superfluid velocity that would be read off from this new Tµν would probably
not be expressible as ξµ = ∆µν∂νϕ for some scalar ϕ.

First-order hydrodynamics suffers from acausal behaviour, in the form of superluminal
propagating modes. Such modes are not a problem of principle, since they have small
wavelengths and thus fall outside the regime of applicability of hydrodynamics. However,
in practice they can cause numerical instabilities. To tame such instabilities it is common
to introduce some sort of ultraviolet regulator. For example, in the Müller-Israel-Stewart
approach one treats the dissipative part of the stress tensor as an independent set of
hydrodynamic degrees of freedom that relax to the shear tensor −ησµν , at a characteristic
rate which acts as the regulator [49, 50]. It may be worthwhile to study the effect on our
flows of such a modification of hydrodynamics, for example using the approach of ref. [21].
This would also be of relevance for the study of hydrodynamic attractors; for a recent
review, see ref. [51].

Finally, as mentioned in section 1, possibly the largest barrier to the physical interpre-
tation of our results is the restriction to temperatures much smaller than fπ, clashing with
the chemical and kinetic freezeouts that occur at low temperatures in heavy-ion collisions.

14Here we assume that the pion susceptibility f2 is diagonal in the broken symmetry group indices. A
case with non-diagonal f2 was studied in ref. [48].
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It is thus desirable to extend our treatment to larger temperatures by adding new terms to
the equation of state (2.4). Such terms would further break conformal symmetry, so we do
not expect it to be possible to repeat the analysis of section 4. It should be straightforward
to extend the translationally-invariant case discussed in section 3, although solving the
resulting equations may require numerics. An additional complication is that sufficiently
close to Tc one must also take into account fluctuations of the order parameter, taking one
to the regime studied in ref. [21].

We hope that the solutions presented in this work, and perhaps some of the general-
isations that we have suggested, provide helpful intuition for superfluid effects in highly
relativistic hydrodynamic flows, and that they may be a useful tool for benchmarking future
numerical codes.
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