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1 Introduction

Current approaches to the calculation of higher-order corrections in perturbative Quantum

Field Theory (QFT) are based on the decomposition of an observable into an independent

set of Feynman integrals, usually called master integrals. While the details of the decom-

position strongly depend on the specific QFT, the master integrals only depend on the

kinematics of the process and the loop order. The computation of these Feynman integrals

is thus an interesting problem in its own right, providing one of the crucial ingredients for

the calculation of higher-order corrections to various physical observables.

Over the last decades, a lot of effort has been put into developing new techniques aimed

at the efficient evaluation of Feynman integrals, both analytical and numerical. This effort

has been focused on developing a better understanding of the classes of functions that

these integrals evaluate to. It can be shown very generically that Feynman integrals eval-

uate to iterated integrals [1], with a non-trivial branch-cut structure that is constrained

by physical considerations [2]. These very generic arguments still leave a large space of
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functions to explore, but it is by now well known that many Feynman integrals evaluate to

iterated integrals with a very specific underlying geometry. The simplest kind of functions

one finds are multiple polylogarithms (MPLs) [3], which, roughly speaking, correspond to

iterated integrals over rational functions. The mathematical properties of MPLs are well

understood. In particular, several computational tools have been developed to work with

this class of functions, both for their analytic manipulation and their numerical evaluation.

It is however known that starting at the two-loop order a new class of iterated integrals

appears, where the integration kernels involve square roots of cubic or quartic polynomials

which define an elliptic curve. If a single elliptic curve is present, the iterated integrals

can be written in terms of elliptic multiple polylogarithms (eMPLs) [4–6]. Despite many

recent developments, our understanding of the analytic structure of eMPLs is not nearly as

mature as in the case of MPLs, and their numerical evaluation is still very challenging. Un-

der certain conditions eMPLs can be expressed in terms of iterated integrals of Eisenstein

series [7, 8], for which more advanced numerical evaluation strategies are known [9]. Com-

puting sets of master integrals involving elliptic curves is at the forefront of the problems

that can currently be tackled.

In this paper we consider the complete set of master integrals appearing in the calcula-

tion of the two-loop amplitudes describing the production or decay of a pseudo-scalar bound

state of a pair of massive fermions of the same flavour, be they quarkonium or leptonium

bound states. For instance, the set of master integrals we consider is sufficient to compute

the next-to-next-to-leading order (NNLO) QCD corrections to the hadro-production of a

pseudo-scalar (cc) bound state (usually called ηc) at the LHC, or the NNLO QED cor-

rections to the decay of an (e+e−) bound state (usually called para-positronium) into two

photons. These processes are of great phenomenological interest. For instance, quarkonium

production offers interesting opportunities to study the interplay between the perturbative

and non-perturbative regimes of QCD [10–14]. The master integrals contributing to the

NNLO corrections to such processes involve both MPLs and eMPLs and, while some of

them were already known in the literature [15–28], the complete set was not yet available

in analytic form.

The purpose of this paper is two-fold: we present both analytic expressions for a com-

plete set of two-loop master integrals contributing to the processes discussed above, and

high-precision numerical evaluations of the integrals which can then be used for phenomeno-

logical studies. Regarding the analytic calculation, we obtain analytic expressions for all

integrals by direct integration of their parametric representation. As already noted, we

find that the integrals can be expressed in terms of MPLs, eMPLs and iterated integrals

of Eisenstein series. The set of elliptic Feynman integrals involves two different elliptic

curves: one elliptic curve belongs to the same family as the sunrise integral [29–36], while

the second is an elliptic curve that appears in certain master integrals for tt production at

hadron colliders [22, 37]. Importantly, these two elliptic curves appear in independent sets

of master integrals. Regarding the numerical evaluation of the master integrals, we present

high-precision numerical results valid to 1000 digits. These numbers are obtained by nu-

merically solving systems of differential equations within two slightly different approaches.

More specifically, the results valid to 1000 digits are obtained with the auxiliary mass flow

– 2 –



J
H
E
P
0
9
(
2
0
2
2
)
1
9
4

method [38–40] as implemented in AMFlow [40], and they are validated with results obtained

with the generalised power series expansion [41, 42] as implemented in diffexp [42]. These

high-precision numerical results allow us to identify relations between the coefficients in

the Laurent expansion of the master integrals in the dimensional regulator ǫ using the

PSLQ algorithm [43]. These relations are important to obtain more compact analytic re-

sults, and it would certainly be interesting to understand how they can be generated more

systematically. Our results can be found in a Mathematica-readable format at ref. [44].

The calculation of the various amplitudes which can be written in terms of the set

of master integrals we consider in this paper will be discussed in detail in a companion

paper [45]. We nevertheless present here analytic results for the two-loop QED corrections

to the decay of true para-positronium, which were first obtained in numerical form more

than 20 years ago in refs. [46, 47], adding to the small but increasing number of physical

quantities involving elliptic integrals which are known in analytic form [48–52].

The paper is structured as follows. In section 2 we discuss the set of master integrals we

will consider in this paper. We present two types of relations beyond integration-by-parts

identities which arise in degenerate kinematic configurations such as the ones corresponding

to the amplitudes we consider. In section 3 we describe the analytic computation of the

master integrals by direct integration, and we characterise the solutions in terms of MPLs,

eMPLs and iterated integrals of Eisenstein series. In section 4 we summarise the main steps

we followed for the numerical evaluation of the master integrals, along with the checks we

did on our results. We also obtain relations between the elliptic master integrals using the

high-precision numerical evaluations. Finally, in section 5 we discuss our results for the

two-loop amplitude for the para-positronium decay to two photons, before we present our

conclusion and outlook in section 6.

2 Master integrals

2.1 Kinematics and conventions

We consider the master integrals required to compute the two-loop perturbative corrections

to the production or decay of a pseudo-scalar bound state of two massive fermions. This

bound state can be a quarkonium bound state, in which case we consider higher-order

QCD corrections, or a leptonium bound state, in which case we consider QED corrections.

For concreteness, the discussion of this section focuses on the production of such a bound

state, but it is clear that it also holds for its decay.

The perturbative corrections to the production of a bound state of massive fermions are

systematically accounted for by considering the corrections to the short-distance process

a(k1)b(k2) → Q(p1)Q(p2) , (2.1)

where Q and Q are fermions of mass mQ and the initial-state particles ab can be two

gluons (gg), two photons (γγ) or a photon and a gluon (γg). We will consider the process

in eq. (2.1) at leading order in an expansion in the relative velocity v of the QQ pair in the

bound-state rest frame. This amounts to equating the heavy-fermion momenta p1 and p2,
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and the kinematics effectively degenerate to those of a three-point process. More explicitly,

assuming k1 and k2 incoming and p1 and p2 outgoing, we have

k2
1 = k2

2 = 0, p2 =
1

2
k1 · k2 = m2

Q where p = p1 = p2 =
1

2
(k1 + k2) . (2.2)

The usual Mandelstam variables associated with four-point kinematics become

s = (k1 + k2)2 = 4m2
Q , t = (k1 − p1)2 = −m2

Q , u = (k1 − p2)2 = −m2
Q . (2.3)

Besides the perturbative corrections we consider here, there are also corrections related to

higher orders in an expansion in v (see, e.g., ref. [53] and references therein). All these

contributions must in general be taken into account for phenomenological predictions for

the production or decay of quarkonium or leptonium bound states, but they fall outside of

the scope of this paper.

We will focus on the calculation of the master integrals that contribute to the two-loop

amplitudes for the process in eq. (2.1). For quarkonium states, this will allow us to compute

the two-loop amplitudes for the production and decay of the colour-singlet pseudo-scalar

state 1S
[1]
0 in both the gg and γγ channels, or the production and decay of the pseudo-

scalar colour-octet state 1S
[8]
0 in the gg and γg channels. For leptonium states, our set

of integrals is sufficient to compute the two-loop QED corrections to para-positronium

decaying into two photons, for which a numerical computation has already been performed

in refs. [46, 47], or the equivalent process for (true) muonium or tauonium. We will return

to the decay of para-positronium in section 5. The calculation of the two-loop corrections

to the production and decay of a pseudo-scalar bound state, both in colour-singlet and

colour-octet, will be described in detail in a companion paper [45].

To determine the set of master integrals (MIs) that contribute to the process in

eq. (2.1), we use standard techniques for the calculation of scattering amplitudes (we refer

the reader to ref. [45] for more details). Let us nevertheless highlight here a consequence of

the degenerate kinematics of eqs. (2.2) and (2.3). For generic four-point kinematics at two

loops there are nine independent scalar products involving at least one loop momentum,

but due to the degenerate kinematics of eqs. (2.2) and (2.3) only seven of them are indepen-

dent. This fact must be taken into account when mapping all integrals into topologies, and

we use the program Apart [54] to implement partial-fraction relations systematically. Once

all integrals have been sorted into topologies, we reduce them to MIs using integration-

by-parts (IBP) relations [55, 56]. We perform the IBP reductions with publicly available

codes such as FIRE [57], LiteRed [58] and Kira [59].

After IBP reduction, we find 76 master integrals that contribute to the two-loop cor-

rections to the process in eq. (2.1). There are 19 four-point integrals (see figure 1), 37

three-point integrals (see figure 2), 10 two-point integrals (see figure 3) and 10 integrals

that factorise into a product of one-loop integrals (see figure 4). The factorised master in-

tegrals are trivial to evaluate, and we will not discuss them further. Several of the genuine

two-loop master integrals have been considered previously in the literature [15–28], often

in kinematic configurations more generic than those of eqs. (2.2) and (2.3).
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Since there are 7 independent scalar products involving at least one loop momentum,

all master integrals can be embedded in topologies involving at most 7 propagators, i.e.,

they can be written as

mI(a1, a2, a3, a4, a5, a6, a7; m2
Q) =

∫

D4−2ǫq1D4−2ǫq2
1

Da1
1 · · · Da7

7

, (2.4)

where the Di denote inverse propagators and the ai take integer values. We refer the reader

to section A for the explicit representation of each master integral in the form of eq. (2.4).

We consider the integrals in dimensional regularisation in d = 4 − 2ǫ dimensions, and we

normalise the integration measure as

D4−2ǫqk =
d4−2ǫqk

iπ2−ǫ
eǫγE , (2.5)

where γE = −Γ′(1) is the Euler-Mascheroni constant. We note that, as a consequence of

the degenerate kinematics in eq. (2.3), all master integrals are single-scale integrals whose

explicit dependence on m2
Q can be determined from dimensional analysis. Each integral

can then be written as a Laurent series in ǫ,

mI(m2
Q) = (m2

Q)dim(mI)
∑

k≥−4

ǫkF
(k)
I , (2.6)

where dim(mI) is half of the mass dimension of the integral mI , the F
(k)
I are constants, and

we used the fact that two-loop master integrals have at most quadruple poles in ǫ. The goal

of this paper is to determine these constants for each of the master integrals, up to the order

in ǫ required to compute the two-loop amplitudes for the processes mentioned previously.

2.2 Partial-fraction and triangle relations

As we already noted, out of the 76 master integrals obtained after IBP reduction, several are

available in the literature. To further reduce the number of integrals we need to compute,

we discuss here a set of special identities beyond IBP or symmetry relations. The first

kind of relations follows from partial-fraction relations due to the degenerate kinematics

in eqs. (2.2) and (2.3). The second kind is obtained from a relation between three-point

functions with a special mass configuration. We stress that we have not tried to find all

identities that go beyond IBP relations, and it would undoubtedly be interesting to find

and study such relations in a more systematic way.

2.2.1 Partial-fraction relations

The fact that partial-fraction relations are useful within the framework of quarkonium

physics is well known (see, e.g., refs. [60, 61]). For example, we have already mentioned

that partial-fraction relations play an important role when sorting integrals into topologies.

In addition, there are also partial-fraction relations that relate integrals from different

topologies. We discuss some examples of such relations in this section.

In order to illustrate how partial-fraction relations arise, let us consider the following

one-loop integral,

I =

∫

ddq1
1

D1D2D3D4
, (2.7)
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m1 m2 m3 m4

m5 m6 m7 m8 m9 m10

m11 m12 m13 m14 m15

m16 m17 m18 m19

Figure 1. Four-point non-factorisable two-loop integrals. Thin lines are massless, and thick lines

have mass mQ. A dot on a propagator means that the propagator is squared.

with the propagators

D1 = (q1 − p)2 − m2
Q, D2 = q2

1, D3 = (q1 + p)2 − m2
Q, D4 = (q1 + p + k2)2 − m2

Q .

(2.8)

We then note that D1 + D3 = 2D2, from which it follows that

I = 2

∫

ddq1
1

D1D2
3D4

−
∫

ddq1
1

D2D2
3D4

. (2.9)

Diagrammatically,

k2

k1 p

pD3

D2D4

D1

= 2

k2

k1

D3

2p

D4

D1

−

k2

k1 − p

D3

p
D4

D2

. (2.10)

In summary, this partial-fraction relation relates a four-point function to simpler three-

point functions.

A similar approach can be used to generate relations between two-loop integrals. The

propagators in eq. (2.8) satisfy the relation

1

D1D3
=

1

2

1

D1D2
+

1

2

1

D2D3
, (2.11)
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m20 m21 m22 m23 m24 m25 m26

m27 m28 m29 m30 m31 m32 m33

m34 m35 m36 m37 m38 m39 m40

m41 m42 m43 m44 m45 m46 m47

m48 m49 m50 m51 m52 m53 m54

m55 m56

Figure 2. Three-point non-factorisable two-loop integrals. Thin lines are massless, and thick lines

have mass mQ. A dot on a propagator means that the propagator is squared. The dashed line on

m23 denotes a numerator, see section A for the explicit definition.
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m57 m58 m59 m60 m61 m62

m63 m64 m65 m66

Figure 3. Two-point non-factorisable two-loop integrals. Thin lines are massless, and thick lines

have mass mQ. A dot on a propagator means that the propagator is squared.

m67 m68 m69 m70 m71 m72

m73 m74 m75 m76

Figure 4. Factorisable two-loop integrals. Thin lines are massless, and thick lines have mass mQ.

which can diagrammatically be represented as

4m2

D3D1
=

1

2

m2

m2

D2

D1

+
1

2

m2

m2

D3

D2 ,
(2.12)

where the red and blue dots connect to the rest of the diagram. It is possible to derive

similar partial-fraction relations for other combinations of propagators. We can then use

them to find relations among master integrals from different topologies. Using this type of

identities, we found the following relations:

m6 = m26, m69 = m71, m36 = 2m39 − m16, m40 = m58,

m45 =
2 (3d − 11) m2

Q

(d − 3) (3d − 10)
m53 −

8m4
Q

(d − 3) (3d − 10)
m54 +

(d − 2)2

4 (d − 3) (3d − 10) m4
Q

m76,

m46 = m53 −
4m2

Q

(d − 4)
m54.

(2.13)

The last two relations have been derived by combining partial fraction relations with IBP

relations and therefore involve the dimension d = 4 − 2ǫ and the mass scale mQ. The

question naturally arises whether one could systematically incorporate these partial fraction

– 8 –



J
H
E
P
0
9
(
2
0
2
2
)
1
9
4

relations at intermediate steps in the IBP reduction system to find all possible relations

over the different topologies.

2.2.2 Triangle relations

Another special identity follows from a relation between certain triangle integrals. Consider

a one-loop triangle integral with external legs p1, p2 and k1 = p1 + p2, with k2
1 = 0 and

p2
i 6= 0. We furthermore assume that two of the propagators have the same mass. Explicitly,

we consider

C(m2
1, m2

2) =

∫

ddq1
1

D1
(

m2
1

)

D2
(

m2
1

)

D2
3

(

m2
2

) , (2.14)

with

D1

(

m2
)

= q2
1 − m2,

D2

(

m2
)

= (q1 − k1)2 − m2,

D3

(

m2
)

= (q1 − k1 + p2)2 − m2.

(2.15)

Introducing Feynman parameters and after some manipulations, we find that

C(m2
1, m2

2) =

∫ ∞

0
dx

(1 + x)2ǫ

(

p2
1 − p2

2

)

(1 + ǫ)

[

(

m2
1 (1 + x) + x

(

−p2
1 + m2

2 (1 + x)
))−1−ǫ

(2.16)

−
(

m2
1 (1 + x) + x

(

−p2
2 + m2

2 (1 + x)
))−1−ǫ

]

.

If we change variables according to x = 1/y, we get:

C(m2
1, m2

2) =

∫ ∞

0
dy

(1 + y)2ǫ

(

p2
1 − p2

2

)

(1 + ǫ)

[

(

m2
2 (1 + y) + y

(

−p2
1 + m2

1 (1 + y)
))−1−ǫ

(2.17)

−
(

m2
2 (1 + y) + y

(

−p2
2 + m2

1 (1 + y)
))−1−ǫ

]

.

Comparing eqs. (2.16) and (2.17), we see that C(m2
1, m2

2) = C(m2
2, m2

1) which corresponds

diagrammatically to

k21 = 0

p21 p22

m2

1
m2

1

m2

2

=

k21 = 0

p21 p22

m2

2
m2

2

m2

1

. (2.18)

Since this relation holds for arbitrary p2
1 and p2

2, it can be used to relate multi-loop integrals

having this triangle as a sub-diagram. In particular, it follows that

= . (2.19)

These integrals are related to m10 and m17 by IBP relations (see figure 1), and so we can

use this identity to relate m10 to m17.
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3 Analytic results for the master integrals

In the previous section we have defined our set of master integrals, which is composed of

a total of 76 MIs. Taking into account results available in the literature [15–28] and the

relations discussed in section 2.2, there are 38 master integrals that we have to consider.

This can be for various reasons: some integrals are unknown, some are known in more

general kinematic configurations and the limit cannot be smoothly taken, some have been

computed but are expressed in different classes of functions, and some are known but not to

the required order in the Laurent expansion around ǫ = 0. The integrals we must consider

can be classified as follows: there are 16 four-point integrals, m1−5, m7−15 and m18−19, 18

three-point integrals, m20−25, m28−33, m35, m37−38, m48, m49 and m51, and 4 two-point

integrals, m57, m63−65.

In this section, we review our approach to the analytic computation of the MIs listed

above and discuss some of their analytic properties. Since we are only interested in their

contributions to the NNLO corrections to the processes discussed in section 2 [45], we

only focus on the terms in the Laurent expansion around ǫ = 0 that contribute at this

perturbative order. In particular three MIs actually are absent from the NNLO corrections:

m5, m25 and m38 contribute to the two-loop amplitudes only at O(ǫ). We nevertheless

compute the leading order of m5 and m38 both analytically and numerically, while for m25

we only present numerical results for its leading order.1

We recall that for each master integral mI , our goal is to compute the numbers F
(k)
I in

eq. (2.6). These numbers are special functions evaluated at specific numerical values. We

will encounter three types of special functions, which are all particular instances of iterated

integrals [1]:2

1. Multiple polylogarithms (MPLs) [3], which are iteratively defined by

G(a1, · · · , an; x) =

∫ x

0

dt

t − a1
G(a2, · · · , an; t) , (3.1)

with G(; x) = 1.

2. Elliptic multiple polylogarithms (eMPLs) [4–6]:

Γ̃

(

n1 · · · nk

z1 · · · zk
; z, τ

)

=

∫ z

0
dz′ g(n1)(z′ − z1, τ) Γ̃

(

n2 · · · nk

z2 · · · zk
; z′, τ

)

, (3.2)

with Γ̃ (; z, τ) = 1, and with the integration kernels g(n)(z, τ) defined by the

Eisenstein-Kronecker series

F (z, τ, α) =
1

α

∑

n≥0

g(n)(z, τ)αn =
θ′

1(0, τ)θ1(z + α, τ)

θ1(z, τ)θ1(α, τ)
, (3.3)

where θ1 is a Jacobi theta function, and θ′
1 is its derivative with respect to the first

argument. The arguments zi, z and τ are complex numbers, with Im τ > 0.

1We note that the leading order of these integrals is of weight/length four, so they could in principle

contribute to other two-loop amplitudes.
2Note that in all cases some of these integrals may be divergent and require regularisation.
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3. Iterated integrals of Eisenstein series [7, 8]:

I(f1, · · · , fk; τ) =

∫ τ

i∞

dτ ′

2πi
f1(τ ′)I(f2, · · · , fk; τ ′) , (3.4)

with I(; τ) = 1 and the fi are Eisenstein series of weight ki for some subgroup

Γ ⊂ SL(2,Z). They are special cases of modular forms of weight ki, i.e., holomorphic

functions on the upper half-plane such that

fi

(

aτ + b

cτ + d

)

= (cτ + d)ki fi(τ) , ∀
(

a b
c d

)

∈ Γ ⊆ SL(2,Z) . (3.5)

Presenting a detailed account of these functions and their properties would go beyond the

scope of this paper, and we refer instead to the relevant literature (cf., e.g., refs. [6, 9, 62–65]

and references therein, for a discussion in a physics context).

Note that a given integral may be expressible in terms of more than one of these classes

of iterated integrals. Depending on the representation chosen, the results can be more or

less easy to manipulate and evaluate. Indeed, the understanding of these different types

of iterated integrals is currently not on the same footing. For example, we know how to

systematically simplify expressions involving MPLs and how to numerically evaluate them

very efficiently (see, e.g., refs. [62, 66–71], and references therein). This is however not (yet)

the case for eMPLs and iterated integrals of Eisenstein series. While first public codes for

the numerical evaluation of eMPLs exist [72], these codes are not nearly as efficient as in the

MPL case. In some cases, it is possible to write eMPLs as iterated integrals of Eisenstein

series [63], and in this representation the numerical evaluation is much more efficient [9, 31],

allowing us to reach a precision comparable to what can be achieved for MPLs.

3.1 Direct integration

We have evaluated all the MIs for which no results were available in the literature via direct

integration. Our starting point is the parametric representation of the scalar Feynman

integrals in terms of Feynman parameters:

I = N

∫ ∞

0
dx1 · · ·

∫ ∞

0
dxn δ (1 − Σ0)

n
∏

i=1

xai−1
i

Ua− 3
2

d

Fa−d
, (3.6)

where N is some normalisation factor, d = 4 − 2ǫ, Σ0 =
∑n

i=1 xi, and U and F are the

usual Symanzik polynomials. The representation in eq. (3.6) can be integrated order by

order in ǫ using direct integration.3 We distinguish the two cases:

• MPL case: we are able to perform all the integrations in eq. (3.6) in terms of

MPLs, and consequently the integral can be expressed in terms of MPLs evaluated

at algebraic arguments;

3The integrals might have singularities in ǫ that forbid us to trivially integrate eq. (3.6) order by order

in ǫ. For those cases, it is simple to choose a different master integral belonging to a quasi-finite basis,

where poles in ǫ appear as prefactors (cf., e.g., refs. [73, 74]). We thus assume that we can always expand

eq. (3.6) under the integration sign and all integrations are well defined.
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• eMPL case: we are not able to perform all the integrations in eq. (3.6) in terms

of MPLs, because the integrand depends on the square root of a polynomial of the

fourth order, which describes an elliptic curve. In this case we exploit the strategy

outlined in refs. [37, 75] to obtain an analytic expression in terms of eMPLs. (We

refer to ref. [6] for how to relate iterated integrals involving square roots of quartic

polynomials to the eMPLs in eq. (3.2)).

The MPL case is vastly discussed in the literature [67, 76–80]. In a nutshell, one starts

from the Feynman-parameter representation in eq. (3.6) and notices that the Feynman-

parameter integrals are projective integrals. This observation leads to what is usually

known as the Cheng-Wu theorem in physics [81], which states that the integral is invariant

under some transformations of the argument of the delta function, such as:

Σ0 → Σ =
n

∑

i=1

cixi for any ci ≥ 0 . (3.7)

Using the freedom afforded by this transformation, together with different integration or-

derings, one then looks for a way to integrate over all Feynman parameters so that each

integration can be written in terms of MPLs. This can be done using public codes such as

HyperInt [67], PolyLogTools [65] or MPL [80].

For the MIs which do not admit a representation in terms of MPLs, we use the strategy

introduced in refs. [37, 75]. More precisely, we proceed exactly as in the MPL case, but,

due to the appearance of a square root defining an elliptic curve, we cannot perform all

integrations in terms of MPLs. Instead, we find a transformation as in eq. (3.7) and an

integration ordering such that we can perform all but the last integration in terms of MPLs.

The last integration will depend on the final Feynman parameter x and the square root

of a polynomial of degree 4 in x (denoted by y) describing the underlying elliptic curve.

Schematically, the last integration will be of the form:
∫

dx R(x, y) JMPL(x, y), (3.8)

where R(x, y) is a rational function in x and y, and JMPL(x, y) is a linear combination of

MPLs with numerical coefficients, where we note that the square root y can also appear

in the arguments of the MPLs. The next step is to rewrite the MPLs that appear in the

last integration as eMPLs. This can be done systematically as described in ref. [37], by

iteratively differentiating the MPLs and integrating them back in terms of eMPLs. For

our MIs, these rather straightforward steps are complicated by the appearance of spurious

square roots at either the second to last or the last integration. By spurious roots, we mean

roots which are not related to the square root defining the elliptic curve. In the remaining

part of this subsection we discuss how we overcame this issue (we note that spurious roots

can also appear in the calculation of integrals involving only MPLs, and they can be dealt

with in the same way; we focus here on the elliptic case since we found it to be by far the

most challenging one).

Let us first discuss the MIs for which spurious square roots appear in the second to

last integration. This was the case for m3, m5, m7, m13, and m14, for which we could not
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find a transformation of the type of eq. (3.7) and an integration ordering that allowed us to

rewrite all but the last Feynman-parameter integration in terms of MPLs. In this scenario,

the next-to-last integration is of the form:

∫

dx1

∫

dx2 S(x1, x2) IMPL(x1, x2), (3.9)

where S is a rational function in x1, x2 and the spurious square roots, and IMPL(x1, x2)

is a linear combination of MPLs whose arguments are rational functions in x1, x2 and the

spurious square roots. If there is a single spurious square root, there is a simple solution:

we find a change of variables that rationalises the spurious root, for example with the

approaches described in refs. [82–84], and then proceed with the integration over the new

variables with the general strategy outlined above.4 This was sufficient for MIs m5, m7,

m13, and m14. Integral m3 proved to be more challenging. With the most convenient

choice of transformation of the type of eq. (3.7) and most convenient integration order

that we could find, we ended up with multiple spurious square roots appearing inside the

same term. We found different terms involving different pairs of spurious roots, each still

depending on two integration variables. In principle, one could attempt to rationalise all

these square roots simultaneously, but this typically leads to very complicated changes of

variables, which generate long expressions that are difficult to manipulate. Instead, we

found that the expression could be simplified by inserting

1 =

∫ ∞

−∞
dx̃ δ(1 − Σ̃) , (3.10)

where Σ̃ is linear in the Feynman parameters and in x̃, into eq. (3.6):

I = N

∫ ∞

0
dx1 · · ·

∫ ∞

0
dxn δ (1 − Σ)

∫ ∞

−∞
dx̃ δ

(

1 − Σ̃
)

n
∏

i=1

xai−1
i

Ua− 3
2

d

Fa−d
. (3.11)

We then found that there was a choice of integration ordering that allows us to perform all

but the last integral in terms of MPLs (more precisely, there were still spurious square roots,

but all of them could be rationalised), bringing us into the general strategy discussed above.

To be more explicit, let us look more closely at the case of m3. Its Feynman parameter

representation is

m3 = −e2ǫγE Γ(3 + 2ǫ)

∫ ∞

0

7
∏

i=1

dxi δ (1 − Σ3) U1+3ǫF−3−2ǫ, (3.12)

4To be more precise, this is done at the level of each individual term in the expression. Multiple spurious

roots may be present in different terms. In this case, one can rationalise each spurious root separately, and

one must carefully match the integration boundaries.
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where the Symanzik polynomials are:

U = x1x3 + x2x3 + x1x4 + x2x4 + x3x4 + x1x5 + x2x5 + x4x5 + x1x6 + x2x6 + x4x6

+x3x7 + x4x7 + x5x7 + x6x7,

F = x2
1 (x3 + x4 + x5 + x6) + x2

2 (x3 + x4 + x5 + x6) + x1

[

2x3x4 + x2
4 + 4x4x5 + x2

5

+2(x3 + x4 + x5)x6 + x2
6 + 2x2(x3 + x4 + x5 + x6)

]

+ x4 [(x5 + x6)(x4 + x5 + x6)

+x3(x4 + 2x6)] +
[

2x3(x4 + x6) + (x4 + x5 + x6)2
]

x7 + x2

[

x2
4 + 2x3(x4 + x6 + x7)

+2x4(x5 + 2x6 + x7) + (x5 + x6)(x5 + x6 + 2x7)] . (3.13)

We first note that by choosing Σ = x1 + x2 + x4 we found the most compact intermediate

expressions. In the most convenient integration order that we could identify, we encounter

the following spurious square roots

y1 =
√

1 + 4x2
4 − 8x3

4 + 4x4
4 + 8x4x5 − 8x2

4x5 ,

y2 =
√

1 − 4x4 + 4x2
4 − 8x4x5 + 8x2

4x5 ,

y3 =
√

x2
4 − 2x3

4 + x4
4 − 2x3

4x5 + x2
5 − 2x4x2

5 + x2
4x2

5 ,

(3.14)

where some of the spurious square roots appear simultaneously in the same terms. However,

we found that by rewriting m3 as

m3 = −e2ǫγE Γ(3 + 2ǫ)

∫ ∞

0

7
∏

i=1

dxi δ (1 − Σ)

∫ ∞

−∞
dx̃ δ (x5 − x6 + x̃) U1+3ǫF−3−2ǫ , (3.15)

with Σ as given above, and choosing the integration order

(x2, x5, x3, x7, x1, x6, x̃, x4) , (3.16)

we obtain an expression with two spurious square roots in the integration variables, which

do not appear simultaneously within the same term. As such, we can proceed and ratio-

nalise the square roots in each term separately, and perform the next-to-last integration in

terms of MPLs.5

Let us now discuss how we deal with spurious square roots in the last integration

step, which is a much more common occurrence. These spurious roots are generated when

factorising the denominators in the second-to-last integration. In most cases, we find only

spurious square roots involving a quadratic polynomial which can always be rationalised.

However, for some integrals we encountered different spurious roots involving quartic or

quintic polynomials, sometimes appearing in the arguments of the MPLs. This was for

instance the case for m3, where we encountered more than 20 different spurious roots. In

order to deal with these roots, we devised an algorithm that allows us to eliminate all

spurious roots systematically. The key idea is that it is not necessary to bring individual

terms into a form that can be integrated in terms of MPLs or eMPLs, but only the entire

integrand. Our algorithm is iterative in the transcendental weight and proceeds as follows:

5For the integrals m5, m7, m13, and m14, we find that the strategy of introducing a second delta function

allows us to avoid any spurious square roots. This provides an alternative to the procedure described

previously.
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1. We first consider all terms of transcendental weight one. We then group them ac-

cording to the x-dependence in their prefactor, where x denotes the last integration

variable. Let us call g1,i one of these combinations of MPLs of weight one with the

x-dependent prefactor removed. We compute the derivative d
dxg1,i and construct the

dlog-kernels. At this stage, all spurious roots in d
dxg1,i must disappear, otherwise

they would not be spurious. We then integrate d
dxg1,i back in x and fix the boundary

condition either analytically or with PSLQ. We repeat this procedure for all other

weight one terms g1,j .

2. We next consider all terms of transcendental weight two. The first step is again to

group them according to the x-dependence of their prefactor. When computing the

derivative of one such term, d
dxg2,i, we now have MPLs of weight one which might

still involve spurious roots. These are dealt with as in the previous step. Next, we

construct the dlog-kernels for the weight two contributions, and again all spurious

roots disappear. We then integrate d
dxg2,i back in x and the boundary condition is

fixed as at weight one. We repeat this procedure for all other weight two terms g2,j .

3. We proceed with the same steps for weight three and then weight four, where each

time the procedure requires dealing with all the lower weight terms that are generated

when taking derivatives.

The crucial idea behind this algorithm is that, while individual terms may have spurious

roots, the combination of terms that have the same weight and share the same integration

kernel cannot, otherwise the square roots would not be spurious. Once all spurious roots

have been removed, we can perform the last integral in terms of eMPLs for all integrals

where spurious square roots appeared.

Following the steps described in this subsection we obtain fully analytic results for

all the master integrals that we are interested in. We also obtained expressions for the

integrals that had already been considered previously in the literature [15–28], and we

provide results for the complete set of master integrals that contribute to the amplitudes

mentioned in section 2. The analytic results for the MIs can be very lengthy, so we make

them available in Mathematica-readable form at ref. [44]. The file analytics.m contains

a replacement list of the form

mI →
∑

ǫkF
(k)
I , (3.17)

with the F
(k)
I as defined in eq. (2.6) where we set m2

Q = 1, since the dependence on the

single scale m2
Q can always be reinstated by dimensional analysis. In the case where the

F
(k)
I can be written as MPLs, the corresponding expressions are explicitly inserted. In

the elliptic case, where the expressions are particularly lengthy, we do not explicitly insert

them into the expressions for the master integrals. Instead, as discussed in section 4.2

below, we used the PSLQ algorithm to find relations between the different elliptic F
(k)
I , and

the right-hand side of eq. (3.17) incorporates these relations. An independent set6 of F
(k)
I

is given in analytic form in the files /elliptics/F*.m of ref. [44].

6This statement should be understood in light of what is described in section 4.2: the set is independent

up to relations that are undetected by PSLQ with the numerical precision at which we evaluated the integrals.
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3.2 Analytic results for the master integrals

The 54 master integrals

m1, m2,m4, m6, m8−10, m16, m17, m19, m20, m26−30,

m34−47, m50−56, m58−63, m66−76

(3.18)

can be expressed entirely in terms of MPLs up to weight four evaluated at algebraic ar-

guments. As already mentioned, the algebraic properties and the numerical evaluation of

MPLs are well understood. In particular, using the public implementation in GiNaC [69] we

obtained high-precision evaluations of these MIs to hundreds of digits. We then used the

PSLQ algorithm [43] to fit our results to a basis of transcendental numbers. We observe that

all of the MIs in eq. (3.18), except m8, m38, m50 and m51, only involve MPLs evaluated at

sixth roots of unity. This space of transcendental numbers has dimension 88, and a basis

is known [85, 86]. This observation allows us to obtain very compact expressions for these

integrals. The four remaining master integrals, m8, m38, m50 and m51, involve fourth roots

of unity or algebraic numbers of the form a + b
√

2, where a and b are rational numbers. In

this cases it is possible to construct a (conjectural) basis for these transcendental numbers

using the results from section 2.5 of ref. [87].

The remaining 22 MIs not in eq. (3.18) cannot be expressed in terms of MPLs alone,

but they involve eMPLs.7 eMPLs depend on an elliptic curve, which is defined either by

the square root of a quartic polynomial or, equivalently, by a value of τ as in eq. (3.2). We

find two different elliptic curves in our computation, defined by:

τ (a) = i
K

(

1
2 − 1

2
√

5

)

K
(

1
2 + 1

2
√

5

) = i 0.805192 . . . ,

τ (b) = i
K

(

7
2 − 3

√
5

2

)

K
(

3
√

5
2 − 5

2

) = i 0.680035 . . . ,

(3.19)

where K(λ) denotes the complete elliptic integral of the first kind:

K(λ) =

∫ 1

0

dt
√

(1 − t2)(1 − λt2)
. (3.20)

More specifically, every master integral depends on (at most) one elliptic curve, and the

only MIs that depend on the elliptic curve defined by τ (b) are m24 and m25. At this

point we have to address an important question: while every τ in the complex upper half-

plane defines an elliptic curve, the same elliptic curve may arise from different values of

τ . It is therefore natural to ask if the two elliptic curves defined by eq. (3.19) are indeed

different (i.e., non-isomorphic) elliptic curves. This can easily be checked by computing

the j-invariant of the elliptic curve,8

j(τ) =
1

q
+ 744 + 196884 q + 21493760 q2 + 864299970 q3 + O(q4) , q = e2πiτ , (3.21)

7We note, however, that MPLs do appear in these expressions. This is to be expected, since ordinary

MPLs are a subset of eMPLs, cf., e.g., ref. [6].
8The j-invariant can be evaluated in Mathematica using j(τ) = 1728 KleinInvariantJ[τ].
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and the two elliptic curves defined by τ1 and τ2 are the same if and only if j(τ1) = j(τ2).

We find:

j(τ (a)) =
16384

5
and j(τ (b)) =

55296

5
. (3.22)

This shows that our two elliptic curves are indeed distinct. They are in fact particular

members of the families of elliptic curves associated to the sunrise integral, m64, [29–36]

and the two-loop non-planar three-point function m24 considered in refs. [22, 37].

The arguments zi of the eMPLs defined in eq. (3.2) which appear in our computation

have the form

zi =
mi

12
+

ni

12
τ (x) + ξi , x = a, b (3.23)

where mi and ni are integers and the ξi are irrational numbers that are not rational multi-

ples of τ (x). Instead, they can be expressed in terms of the complete and incomplete elliptic

integrals of the first kind evaluated at special arguments. The complete elliptic integral of

the first kind was already defined in eq. (3.20), while its incomplete version is defined by

F(φ|λ) =

∫ φ

0

dθ√
1 − λ sin2 θ

. (3.24)

All the ξi can be written as rational linear combination of the z̃i listed in appendix B.

If all arguments of an eMPL have the form aτ + b, with a, b ∈ Q (i.e., whenever ξi = 0

in eq. (3.23)), the eMPL can be expressed in terms of iterated integrals of Eisenstein series,

defined in eq. (3.4), in an algorithmic fashion [63]. Writing integrals in terms of iterated

integrals of Eisenstein series presents the advantage that we know a basis for this type of

iterated integrals and also efficient techniques for their numerical evaluation. We identified

seven MIs for which their analytic expressions involve iterated Eisenstein series for two

distinct subgroups Γ ⊆ SL(2,Z): m15, m23, m48, m49, m64 and m65 involve Eisenstein

series of the congruence subgroup Γ1(6),9 while m24 and m25 involves Eisenstein series of

the congruence subgroup Γ1(4), with

Γ1(N) =
{(

a b
c d

)

∈ SL(2,Z) : a, d = 1 mod N and c = 0 mod N
}

. (3.25)

To summarise, we can classify the 76 MIs into four categories, depending on the classes

of transcendental numbers that appear in the analytic results:

• 50 MIs can be expressed in terms of MPLs evaluated at sixth roots of unity,

• 4 MIs can be expressed in terms of MPLs evaluated at fourth roots of unity and

arguments of the form a + b
√

2, a, b ∈ Q,

• 20 MIs can be expressed in terms of eMPLs associated to the elliptic curve defined

by τ (a), and iterated integrals of Eisenstein series for Γ1(6).

9The MIs m64 and m65 correspond to the two master integrals for the equal-mass sunrise, for which

a representation in terms of iterated integrals of Eisenstein series for Γ1(6) is known in the literature,

cf. refs. [63, 64]. In this paper we explicitly compute them up to the order ǫ2 in dimensional regularisation.
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• 2 MI can be expressed in terms of eMPLs associated to the elliptic curve defined by

τ (b), and iterated integrals of Eisenstein series for the congruence subgroup Γ1(4). We

note once more that we only provide numerical results for m25 since it is not strictly

speaking needed for the processes we are concerned with. Nevertheless, given that it

is coupled to m24, we know that it can be written in terms of the same set of functions.

4 Numerical results for the master integrals

In the previous section we discussed how we could obtain fully analytic results for the master

integrals and we briefly reviewed the class of special functions that appear in the answer. We

also noted that the numerical evaluation of MIs integrating to MPLs was a solved problem,

and even used high-precision evaluations to write them in bases of transcendental numbers.

For the numerical evaluation of eMPLs and iterated integrals of Eisenstein series,

we follow the strategy presented in refs. [9, 88, 89]. In a nutshell, the integration ker-

nels g(n)(z, τ) and fj(τ) in eqs. (3.2) and (3.4) are expanded in a so-called q-expansion (a

Fourier expansion with q = e2πiτ ). This series is truncated at a finite order, which, together

with the convergence properties of the series representation, determines the precision of

the numerical evaluation. The coefficients of this series expansion are MPLs, which can be

numerically evaluated with standard tools. In the case of iterated integrals of Eisenstein se-

ries, it is known how to transform the integrals into a representation where the q-expansion

converges very rapidly, and we can evaluate the integrals to hundreds of digits in an accept-

able amount of time. For eMPLs, however, the convergence is in general very slow which

in practice means we can only get a very small number of digits. For all integrals that

involve eMPLs we obtained numerical results valid to O(10) digits. We have validated all

our results by comparing them to completely independent numerical evaluations obtained

with pySecDec [90], with which one can achieve a similar level of precision.

While the efficiency of the numerical evaluation of eMPLs will surely improve in the

future, alternative approaches can already be used to obtain high-precision numerical eval-

uations for MIs involving eMPLs. These evaluations can then be used in phenomenological

applications. In this section we explain how we bypassed the evaluation of eMPLs to obtain

numerical results for all master integrals with a precision of 1000 digits. This precision is

more than sufficient for any phenomenological application, and also allows us to use the

PSLQ algorithm to simplify and find relations between the various F
(k)
I , as will be discussed

in section 4.2. We discuss two independent calculations, which have in common the fact

that they are based on numerically solving systems of differential equations.

4.1 High-precision numerical results from differential equations

To obtain high-precision numerical evaluations for the elliptic MIs that involve eMPLs,

we construct systems of differential equations for them [15, 91–93], which are then solved

numerically. These calculations are performed with two alternative approaches. In the

first one, we build the differential equations and provide the required boundary condi-

tions ourselves. The system is then solved in terms of generalised power series [41, 42]

using diffexp [42]. In the second approach, we use AMFlow [40], which automatises the
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(a) (b) (c)

Figure 5. Diagrams defining the topologies for the differential equations used in the numerical

evaluation of the integrals involving eMPLs. The thick dashed line has mass λ2, while the solid

thick lines have mass m2
Q. Thin lines are massless.

construction and solution of the system of differential equations [38–40]. The integrals in-

volving eMPLs can be collected in four topologies (topologies 3, 4, 5 and 6 in the notation

of section A). In topology 6, however, the only elliptic integrals are m5, which only con-

tributes at order ǫ to the two-loop amplitudes of ref. [45], and m15, which can be written

in terms of iterated integrals of Eisenstein series, and can thus be evaluated efficiently to

hundreds of digits from its analytic representation. We have thus only evaluated the elliptic

integrals of topology 6 with AMFlow, since the evaluation with diffexp is only used as a

check in the other topologies.

Let us briefly discuss the calculation with diffexp, since AMFlow implements similar

steps in an automated way. In a nutshell, if ~I is a basis of master integrals for a given

topology, we compute the system of differential equations

∂xi

~I = M(~x; ǫ)~I , (4.1)

where ~x denotes all the kinematic variables on which the integrals ~I depend. We then

numerically solve this differential equation order by order in ǫ. We note, however, that we

cannot straightforwardly apply the differential-equation approach to the master integrals in

figures 1, 2, 3 and 4. Indeed, as noted in eq. (2.6), they depend on a single variable and as

such they satisfy a trivial differential equation. Instead, we will consider two-scale versions

of the master integrals and evaluate them at the point corresponding to the kinematics of

eq. (2.3). We are assisted in this task by the fact that a generalisation of topologies 3 and 4

was considered in refs. [21, 23] and a generalisation of topology 5 in ref. [22], precisely from

the perspective of their differential equations. For each topology we setup the calculation

in the following way:

• For topology 3: we consider the topology defined by the diagram in figure 5a,

evaluated at λ2 = 0. Our basis is similar to the one chosen in refs. [21, 23].10 For

completeness, all the information required to completely define the basis we chose

can be found in the folder /diffexp/ of ref. [44].

10We thank the authors of refs. [21, 23] for discussions in identifying and correcting some typos in their

publications.
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• For topology 4: we consider the topology defined by the diagram in figure 5b,

evaluated at λ2 = 0. The same comments as for topology 3 apply. The complete

information to define our basis can be found in the folder /diffexp/ of ref. [44].

• For topology 5: we consider the topology defined by the diagram in figure 5c,

evaluated at λ2 = 4m2
Q. The basis we choose is that of ref. [22], up to some trivial

normalisation factors. The complete information to define our basis can be found in

the folder /diffexp/ of ref. [44].

Constructing the differential equations for these three sets of master integrals is straight-

forward with standard approaches [15]. In all cases, our bases are such that the differential

equation matrices M(~x; ǫ) in eq. (4.1) are polynomials in ǫ (with our choice of bases, they

are polynomials of degree 2). In the sub-sectors that only couple integrals which evaluate

to MPLs, the differential equation is in canonical (dlog) form, that is, the corresponding

entries of M(~x; ǫ) consist of dlog-forms and are proportional to ǫ. To solve the differential

equations we use the initial conditions given in refs. [21–23] within diffexp. This allows us

to numerically solve the three systems of differential equations to hundreds of digits at the

relevant kinematic points (if the integrals are logarithmically divergent at this point, we

instead compute a generalised series expansion). We then use IBP relations to relate the

bases chosen to solve the differential equations to the master integrals in figures 1, 2, 3 and 4.

Up to some differences in the way the boundary conditions are determined, the eval-

uation within AMFlow is based on the same procedure. The different steps are automated

so that one can simply require the evaluation of the integral at a phase-space point. Using

AMFlow, we were able to evaluate the integrals to very high precision (O(1500) digits), but to

be conservative we keep only the first 1000 digits. We found that we could achieve a higher

precision with AMFlow than with diffexp, so we quote the former as our final results. While

the difference is irrelevant for phenomenological studies, the highest precision of the AMFlow

evaluations were useful in identifying extra relations between different integrals using PSLQ.

We find complete agreement between the numerical evaluations within the two ap-

proaches, and also with the pySecDec evaluations. Furthermore, in this process we also

reevaluate master integrals that do not involve eMPLs, which we find to completely agree

with the high-precision numerical evaluation of their analytic expressions. Our results,

correct to 1000 digits, can be found in the file numerics.m at ref. [44].

4.2 Relations among elliptic master integrals

The fact that the algebraic properties and the numerical evaluation of MPLs is well un-

derstood allowed us to use the PSLQ algorithm to express the MIs that evaluate to MPLs

in a basis of MPLs with specific arguments. This results in rather compact analytic repre-

sentations for those MIs. This is in contrast to the case of MIs that involve eMPLs and/or

iterated integrals of Eisenstein series where, as already noted in section 3.1, analytic expres-

sions can be extremely long. Indeed, it is currently very complicated to simplify expressions

involving eMPLs, because not much is known about how to manipulate such functions.

In order to simplify our analytic expressions, we were nevertheless able to find relations

between the coefficients in the Laurent expansion of certain elliptic master integrals. We
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were motivated by the fact that the poles of the two-loop amplitudes for quarkonium or

leptonium production or decay considered in ref. [45] are free of elliptic contributions.11

Using the PSLQ algorithm we found the following relations:

F
(0)
7 =

1

12
F

(0)
15 − 1

4
F

(0)
31 +

247

768
ζ4 − 1

4
ζ2 log2 2 +

7

24
ζ3 log 2

− 3

16
Re

[

G
(

0, 0, e−iπ/3, −1; 1
)]

− 9

64
Re

[

G
(

0, 0, e−2iπ/3, 1; 1
)]

,

F
(0)
11 = 2F

(0)
18 − 5F

(0)
57 − 25

2
ζ3 + 3ζ2 + 3ζ2 log 2 ,

F
(1)
11 = 2F

(1)
12 − 28

25
F

(0)
15 + 12F

(0)
18 − 284

25
F

(0)
31 − 112

5
F

(0)
57 − 19

5
F

(1)
57 + 18ζ2

+
2391

800
ζ4 + 18ζ2 log (2) +

24

25
ζ2 log2 2 − 75ζ3 − 77
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ζ3 log 2

− 2187

50
Re

[

G
(

0, 0, e−iπ/3, −1; 1
)]

− 6561

200
Re

[

G
(
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)]

,

F
(0)
12 = F
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5
F

(0)
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3
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ζ2 log(2) +

3

2
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(0)
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2
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F

(0)
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+
3
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[
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(
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9

20
Re

[

G
(
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F
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[
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(
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3
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[
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(
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F
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32 = −F

(0)
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6912
ζ4 +

5

36
πCl2

(

π

3
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24
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1
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πIm

[
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0, 1, e−2iπ/3; 1
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+
1
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πIm

[
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(

0, e−iπ/3, −1; 1
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Re

[

G
(

0, 0, e−iπ/3, −1; 1
)]

− 309
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Re

[

G
(
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− Re
[

G
(
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Re

[

G
(

e−iπ/3, 1, −1; 1
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log 2 ,

11This is a consequence of the fact that the pole-structure of the two-loop amplitudes is determined by

one-loop amplitudes [94], which do not involve elliptic integrals.
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(0)
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73
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F
(1)
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25
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(0)
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25
F
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F

(0)
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57 − F
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64 + 2F
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61
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+

13
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1719

800
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7
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,

where ζn denotes the Riemann zeta function evaluated at n (in particular, ζ2 = π2/6 and

ζ4 = π4/90) and Cl2(x) denotes the Clausen function, Cl2 (x) = Im
[

Li2(eix)
]

. It would be

very interesting to find a systematic way to derive such identities, and some might follow

from the type of relations discussed in section 2.2. In practice, using these relations we

are able to write some of the lengthiest elliptic integrals in terms of much more compact

expressions.

5 Analytic results for the para-positronium decay up to NNLO

As mentioned in section 2, the master integrals we have discussed in this paper allow us to

compute the NNLO contributions to the production and decay of several quarkonium and
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leptonium pseudo-scalar bound states. While we leave a more extensive discussion of such

calculations to a separate publication [45], we finish this paper by discussing the NNLO

corrections to the para-positronium (e+e−) decay to two photons, presenting for the first

time complete analytic results for this contribution.

The para-positronium state is a pseudo-scalar particle with spectroscopic notation

0+− (JP C).12 The most precise experimental measurement for its decay width includes

the decay to any even number of photons, giving [95]

Γexp.
p-Ps decay = (7990.9 ± 1.7) (µs)−1 . (5.1)

The leading-order of the decay to four photons is of the same order in perturbation theory

as the NNLO corrections to the decay to two photons. We write

Γp-Ps decay = Γp-Ps→γγ + Γp-Ps→4γ , (5.2)

where the leading-order contribution to Γp-Ps→4γ has been computed analytically in ref. [96],

Γp-Ps→4γ =
me α5

em

2

(

αem

π

)2
(

112

5
− 3π2

2
+

3

10
ζ3 +

π4

24
+

697

15
π2 log 2 − 152

5
π2 log 3

)

.

(5.3)

The NNLO corrections to Γp-Ps→γγ were first computed in purely numerical form more

than 20 years ago [46, 47] (see also ref. [97]), and in this section we present them for the

first time in analytic form.

We can express the decay of the para-positronium to two photons up to NNLO accuracy

in QED as [46, 97, 98],

Γp-Ps→γγ =
me α5

em

2

[

1 +

(

αem

π

)

(

π2

4
− 5

)

− 2α2
em log αem − 3α3

em

2π
log2 αem (5.4)

+
α3

em

π
log αem

(

533

90
+ 10 log 2 − π2

2

)

+

(

αem

π

)2

(K2 + K2,soft) + O
(

α3
em

)

]

,

where αem is the electromagnetic fine structure constant and me is the electron mass. The

terms of the form αn
em logk αem and K2,soft are corrections related to the leptonium bound

state [98–101]. These and the LO and NLO corrections were already known in analytic

form in the literature. We note that K2 and K2,soft are independently divergent (each has

a so-called Coulomb singularity) but their sum is finite. The master integrals that we have

computed in this paper allow us to obtain for the first time the analytic results for the

two-loop contribution K2.

We follow the presentation of refs. [46, 47] and express the two-loop virtual amplitudes

contributing to K2 in terms of three different types of terms: (a) regular diagrams without

fermion loops as shown in figure 6a, (b) contributions with fermion loops in diagrams of type

light-by-light scattering as in figure 6b and (c) contributions with vacuum polarisations as

in figure 6c. These different contributions have ultraviolet poles which can be removed by

12The vector particle case would be the ortho-positronium with notation 1−−.
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(a) (b) (c)

Figure 6. Two-loop diagrams for the decay of para-positronium into two photons with (a) regular

corrections, (b) light-by-light contributions and (c) vacuum polarisation corrections.

renormalisation. After this process, a single pole remains which is related to a Coulomb

singularity (see, e.g., ref. [46]). We then write:

A(2−loop)
ren. = A(2−loop)

reg ren. + B(2−loop)
lbl ren. + B(2−loop)

vac ren. + A(2−loop)
Coul. , (5.5)

where A(2−loop)
ren. denotes the two-loop amplitude obtained after subtracting the ultraviolet

poles, which can be done contribution by contribution in the decomposition of figure 6, and

A(2−loop)
Coul. = −π2

4ǫ
. (5.6)

The analytic expressions for the remaining terms in eq. (5.5) are:

A(2−loop)
reg, ren. =
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ζ3 log2−F
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(0)
31 +

59

15
F
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36
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37

36
F

(0)
65 , (5.7)

B(2−loop)
lbl =

[

−631

24
+

7

12
π2 +

2

3
log2+

113

60
π2 log2+

2

3
π2 log

(

−1+
√

2
)

− 4

3
log3

(

−1+
√

2
)

−2Li3
(

3−2
√

2
)

− 647

120
ζ3

]

+ iπ

[

−1

3
+

1

4
π2 −2log2

(

−1+
√

2
)

]

−6F
(0)
14 +

2

3
F

(0)
24 +

2

5
F

(0)
57 +

7

3
F

(0)
64 −3F

(0)
65 , (5.8)

B(2−loop)
vac, ren. = −15061

1440
− 107

2160
π2 − 1

60
π2 log2+

8

15
ζ3 +

1

5
F

(0)
57 +

217

180
F

(0)
64 − 19

9
F

(0)
65 , (5.9)

where we have kept the elliptic contributions in the symbolic form F
(k)
I , whose analytic

representation can be found at ref. [44]. We note that the two-loop amplitude exhibits
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functions of maximal weight four (for MPLs) and maximal length four (for elliptic func-

tions), which is in full agreement with the conjectural property that scattering amplitudes

at n-loops should exhibit functions of maximal weight/length 2n. Using our high-precision

numerical evaluations, these different contributions evaluate to

A(2−loop)
reg, ren. = −21.10789796731067145661 . . . , (5.10)

B(2−loop)
lbl = 0.64696557211233073992 . . . + i 2.07357555846158085167 . . . , (5.11)

B(2−loop)
vac, ren. = 0.22367201327357266787 . . . , (5.12)

where the numbers are truncated to 20 digits after the decimal.

The NNLO contribution K2 in eq. (5.4) can then be decomposed as

K2 =
1

4
K2

1 + K2,reg + K2,lbl + K2,vac + K2,Coul. , (5.13)

where K1 = π2

4 − 5 is the NLO contribution, and the remaining terms are twice the real

part of eqs. (5.10), (5.11), (5.12) and (5.6) respectively. The soft contribution takes the

form [46],

K2,soft =
107π2

24
− K2,Coul.. (5.14)

Therefore, combining all these expressions, we obtain the high-precision numerical result

K2 + K2,soft = 5.1309798210659600230 . . . , (5.15)

where, as before, all number are truncated to 20 digits after the decimal. We note that

the finite part of K2 is dominated by the (negative) contribution of K2,reg. The finite

piece of K2,soft has a similarly sized positive contribution, leading to a NNLO perturbative

correction of O(1).

Since the precision of our numerical evaluation of K2 depends on the numerical eval-

uation of our master integrals, which are correct up to over 1000-digits accuracy, they do

not contribute to the theory error associated with the NNLO decay width. The theory

error is determined by the precision to which the QED coupling αem and the electron mass

me are known. We use for the coupling

αem = (7.2973525693 ± 0.0000000011) × 10−3, (5.16)

and for the electron mass

me = (0.5109989500 ± 0.00000000015) MeV, (5.17)

where the errors are correlated with r = −0.99998 [102, 103]. The propagation of these

correlated errors to the decay width can be determined with:

∆Γ =

√

(∆me)2
(

∂Γ

∂me

)2

+ (∆αem)2
(

∂Γ

∂αem

)2

+ 2r ∆me∆αem
∂Γ

∂αem

∂Γ

∂me
. (5.18)

– 25 –



J
H
E
P
0
9
(
2
0
2
2
)
1
9
4

We find that the decay width of para-Positronium to two photons is given by

Γtheory, LO
p-Ps→γγ = (8032.502933 ± 0.000004) (µs)−1 , (5.19)

Γtheory, NLO
p-Ps→γγ = (7989.458752 ± 0.000004) (µs)−1 , (5.20)

Γtheory, NNLO
p-Ps→γγ = (7989.606333 ± 0.000004) (µs)−1 , (5.21)

where for comparison we also quote the LO and NLO results. After a sizeable change

in going from LO to NLO, we find that the NNLO result is very close to the NLO. Our

results agree with those of refs. [46, 97], but we find that the authors of ref. [97] have

slightly underestimated their error. Combining our results with those for the decay into

four photons quoted in eq. (5.3), we obtain

Γtheory, NNLO
p-Ps decay = (7989.618221 ± 0.000004) (µs)−1 , (5.22)

which is in full agreement with the experimental measurement quoted in eq. (5.1).

6 Conclusions

In this paper we have computed the complete set of two-loop master integrals contributing

to the NNLO corrections to the production or decay of a pseudo-scalar bound state of two

massive fermions of the same flavour. We have presented both analytic results as well as

high precision numerical evaluations. The analytic results involve both MPLs and eMPLs

(and iterated integrals of Eisenstein series). The presence of elliptic integrals presented

the main challenge to the evaluation of this set of integrals. The high-precision numerical

evaluations are comparatively simple to obtain with modern tools such as diffexp [42] and

AMFlow [40]. Besides being important for phenomenological studies, these high-precision

numerical evaluations also allowed us to considerably simplify the analytic expressions

using the PSLQ algorithm. All our results can be obtained from the repository at ref. [44].

As an example of the type of processes these integrals can be used for, we recomputed

the two-loop corrections to the decay of para-positronium into two photons [46, 47, 97],

presenting both analytic results and high-precision numerical evaluations.

Computing Feynman integrals involving elliptic functions is still a very challenging

task. Moreover, once analytic expressions are obtained, it is not yet known how to simplify

them or even how to efficiently evaluate them. We expect this situation to improve substan-

tially in the coming years as more and more processes involving elliptic functions are com-

puted, and the analytic results we obtained in this paper will be very useful in this process.

For instance, understanding how to systematically find the relations in section 4.2 will be of

great importance: in our calculation, it allowed us to rewrite the lengthiest elliptic integrals

in terms of simpler ones. We also expect that there will be important developments in the

numerical evaluation of eMPLs, and reproducing the high-precision numerical evaluations

of the master integrals from their analytic representation will provide an important test.

The set of master integrals we have computed will open the door to new NNLO predic-

tions for processes involving bound states of heavy fermions. Besides the para-positronium
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decay to two photons discussed in this paper, for which experimental precision is expected

to increase at future experiments, see e.g. [104, 105], and the equivalent process for (true)

para-muonium and (true) para-tauonium, our results also allow us to study the production

and decay of quarkonium states at an unprecedented level of precision. An interesting

prospect is to use charmonium production to study the gluon parton distribution func-

tion of the proton, as these are rather unconstrained at scales close to the mass of the

charm quark. Furthermore, it is interesting to study the convergence of the perturbative

expansion as the strong coupling αs is not so small at these scales, see refs. [106, 107] and

references therein. We will discuss several of these processes in a companion paper [45].

Regarding the evaluation of two-loop master integrals for processes with quarkonium

or leptonium states, the next steps are clear. The set of integrals we considered here

correspond to very simple kinematics, only depending on the mass of the heavy fermion.

Adding an extra particle in the final state would lead to richer kinematic configurations

and allow us to study other processes, for instance, hadro-production or photo-production

of vector bound states with spectroscopic notation 3S1, commonly called J/ψ (cc) and Υ

(bb). Due to the Landau-Yang theorem, the LO of these production processes involves an

additional gluon in the final state making it effectively a 2-to-2 process (gg → J/ψ + g).

Similarly, we could study the pT -distribution of ηQ at NNLO accuracy by computing the

two-loop corrections to the process gg → ηQ + g. Tackling such calculations will pose

many challenges. In particular, the numerical evaluation will be much more involved as

the integrals will depend on several variables. As such, a single high-precision evaluation

of master integrals will no longer be sufficient.
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A Master integrals

In this appendix we give the definition of the 76 MIs studied in the present paper in terms

of 12 different sets of denominators, which we list below:

• Set t1:

Dt1 =

{

q2
1, (q1 − k1)2 , q2

2, (q2 + k2)2 , (q1 + q2 − k1)2 ,

(

q2 − k1

2
+

k2

2

)2

− m2
Q,

(

q1 − k1

2
− k2

2

)2

− m2
Q

}

, (A.1)

• Set t2:

Dt2 =

{

q2
1, (q1 − k1)2 , q2

2, (q2 + k2)2 , (q1 + q2 − k1)2 ,

(

q1 − k1

2
− k2

2

)2

− m2
Q,

(

q1 + q2 − k1

2
+

k2

2

)2

− m2
Q

}

, (A.2)

• Set t3:

Dt3 =

{

q2
1 −m2

Q,(q1 −k1)2 −m2
Q, q2

2,(q1 +q2 −k1)2 −m2
Q,

(

q2 − k1

2
− k2

2

)2

−m2
Q,

(

q2 − k1

2
+

k2

2

)2

−m2
Q,

(

q1 − k1

2
− k2

2

)2
}

; (A.3)

• Set t4:

Dt4 =

{

q2
1 − m2

Q, (q1 + k1)2 − m2
Q, q2

2 − m2
Q, (q1 + q2)2 ,

(

q2 − k1

2
− k2

2

)2

,

(

q1 + q2 +
k1

2
− k2

2

)2

− m2
Q, (q1 + k2)2

}

; (A.4)

• Set t5:

Dt5 =
{

q2
1 − m2

Q, (q1 + k1)2 − m2
Q, (q1 + q2)2 , (q1 + q2 + k1 + k2)2 , q2

2 − m2
Q,

(q2 + k2)2 − m2
Q, (q1 + k2)2

}

; (A.5)

• Set t6:

Dt6 =
{

q2
1 − m2

Q, (q1 + k1)2 − m2
Q, (q1 + q2 + k1 + k2)2 , q2

2 − m2
Q, (q2 + k2)2 − m2

Q,
(

q1 + q2 +
k1

2
+

k2

2

)2

− m2
Q, (q1 + k2)2

}

; (A.6)
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• Set t7:

Dt7 =
{

q2
1,(q1+k1)2 ,q2

2 −m2
Q,(q2+k2)2−m2

Q,(q1+q2)2−m2
Q,(q1+q2+k1+k2)2−m2

Q,

(q1+k2)2
}

; (A.7)

• Set t8:

Dt8 =

{

q2
1,

(

q1 − k1

2
− k2

2

)2

− m2
Q,

(

q1 − k1

2
+

k2

2

)2

− m2
Q, q2

2, (q1 + q2 − k1)2 ,

(

q2 − k1

2
− k2

2

)2

− m2
Q, (q1 + q2)2

}

; (A.8)

• Set t9:

Dt9 =
{

q2
1 − m2

Q, (q1 − k1)2 − m2
Q, (q1 + k2)2 − m2

Q, q2
2, (q2 − k1 − k2)2 ,

(q1 + q2 − k1)2 − m2
Q, (q1 + q2)2

}

; (A.9)

• Set t10:

Dt10 =

{

q2
1,(q1 −k1)2 ,(q1 +k2)2 ,

(

q2 − k1

2
− k2

2

)2

, q2
2 −m2

Q,(q1 −q2 +k2)2 −m2
Q,

(q1 +q2)2
}

; (A.10)

• Set t11:

Dt11 =
{

q2
1, (q1 − k1)2 , (q1 + k2)2 , q2

2, (q2 − k1 − k2)2 , (q1 + q2 − k1)2 , (q1 + q2)2
}

;

(A.11)

• Set t12:

Dt12 =

{

q2
1, (q1 − k1)2, q2

2, (q1 + q2 − k1)2,

(

q2 − k1

2
− k2

2

)2

− m2
Q,

(

q2 − k1

2
+

k2

2

)2

− m2
Q,

(

q1 − k1

2
− k2

2

)2

− m2
Q

}

. (A.12)
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In terms of the previous 12 sets, the four-point non-factorisable two-loop integrals in

figure 1 can be written as:

m1 = mI(t1)
(1, 1, 1, 1, 1, 1, 1; m2

Q), m2 = mI(t2)
(1, 1, 1, 1, 1, 1, 1; m2

Q),

m3 = mI(t3)
(1, 1, 1, 1, 1, 1, 1; m2

Q), m4 = mI(t12)
(1, 1, 1, 1, 1, 1, 1; m2

Q),

m5 = mI(t6)
(1, 1, 1, 1, 1, 1, 0; m2

Q), m6 = mI(t8)
(0, 1, 1, 1, 1, 1, 1; m2

Q),

m7 = mI(t3)
(1, 1, 0, 1, 1, 1, 1; m2

Q), m8 = mI(t8)
(1, 1, 1, 1, 1, 1, 0; m2

Q),

m9 = mI(t2)
(1, 0, 1, 0, 1, 1, 1; m2

Q), m10 = mI(t2)
(1, 1, 1, 1, 0, 0, 1; m2

Q),

m11 = mI(t3)
(1, 0, 1, 1, 1, 0, 1; m2

Q), m12 = mI(t3)
(1, 0, 1, 2, 1, 0, 1; m2

Q),

m13 = mI(t3)
(1, 1, 0, 1, 1, 1, 0; m2

Q), m14 = mI(t3)
(2, 1, 0, 1, 1, 1, 0; m2

Q),

m15 = mI(t6)
(1, 0, 1, 1, 1, 1, 0; m2

Q), m16 = mI(t8)
(0, 1, 1, 1, 0, 1, 1; m2

Q),

m17 = mI(t8)
(0, 1, 1, 1, 1, 0, 1; m2

Q), m18 = mI(t3)
(1, 0, 1, 1, 1, 1, 0; m2

Q),

m19 = mI(t8)
(1, 1, 1, 1, 1, 0, 0; m2

Q). (A.13)

Similarly, the three-point integrals in figure 2 admit the expressions:

m20 = mI(t2)
(0, 1, 1, 1, 1, 1, 1; m2

Q), m21 = mI(t3)
(0, 1, 1, 1, 1, 1, 1; m2

Q),

m22 = mI(t4)
(1, 1, 1, 1, 1, 1, 0; m2

Q), m23 = mI(t4)
(1, 1, 1, 1, 1, 1, −1; m2

Q),

m24 = mI(t5)
(1, 1, 1, 1, 1, 1, 0; m2

Q), m25 = mI(t5)
(2, 1, 1, 1, 1, 1, 0; m2

Q),

m26 = mI(t7)
(1, 1, 1, 1, 1, 1, 0; m2

Q), m27 = mI(t11)
(1, 0, 1, 1, 1, 1, 1; m2

Q),

m28 = mI(t1)
(1, 0, 0, 1, 1, 1, 1; m2

Q), m29 = mI(t1)
(0, 1, 0, 1, 1, 1, 1; m2

Q),

m30 = mI(t1)
(0, 2, 0, 1, 1, 1, 1; m2

Q), m31 = mI(t3)
(0, 1, 0, 1, 1, 1, 1; m2

Q),

m32 = mI(t4)
(1, 0, 1, 1, 1, 1, 0; m2

Q), m33 = mI(t4)
(2, 0, 1, 1, 1, 1, 0; m2

Q),

m34 = mI(t4)
(1, 1, 0, 1, 1, 1, 0; m2

Q), m35 = mI(t4)
(1, 1, 0, 1, 1, 2, 0; m2

Q),

m36 = mI(t4)
(1, 1, 1, 1, 1, 0, 0; m2

Q), m37 = mI(t5)
(1, 1, 0, 1, 1, 1, 0; m2

Q),

m38 = mI(t5)
(0, 1, 1, 1, 1, 1, 0; m2

Q), m39 = mI(t7)
(0, 1, 1, 1, 1, 1, 0; m2

Q),

m40 = mI(t10)
(0, 1, 1, 1, 1, 1, 0; m2

Q), m41 = mI(t1)
(0, 1, 0, 1, 1, 0, 1; m2

Q),

m42 = mI(t2)
(0, 1, 1, 0, 0, 1, 1; m2

Q), m43 = mI(t2)
(0, 1, 2, 0, 0, 1, 1; m2

Q),

m44 = mI(t2)
(0, 2, 1, 0, 0, 1, 1; m2

Q), m45 = mI(t2)
(0, 0, 1, 0, 1, 1, 1; m2

Q),

m46 = mI(t2)
(0, 0, 2, 0, 1, 1, 1; m2

Q), m47 = mI(t3)
(0, 1, 0, 1, 1, 0, 1; m2

Q),

m48 = mI(t3)
(1, 0, 0, 1, 1, 0, 1; m2

Q), m49 = mI(t3)
(0, 1, 0, 1, 1, 1, 0; m2

Q),

m50 = mI(t5)
(0, 1, 1, 1, 1, 0, 0; m2

Q), m51 = mI(t5)
(0, 2, 1, 1, 1, 0, 0; m2

Q),

m52 = mI(t5)
(0, 1, 1, 0, 1, 1, 0; m2

Q), m53 = mI(t7)
(0, 0, 2, 0, 1, 1, 1; m2

Q),

m54 = mI(t7)
(0, 0, 3, 0, 1, 1, 1; m2

Q), m55 = mI(t10)
(0, 1, 1, 1, 0, 1, 0; m2

Q),

m56 = mI(t11)
(0, 0, 1, 1, 1, 0, 1; m2

Q), (A.14)
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and the two-point integrals in figure 3:

m57 = mI(t3)
(0, 1, 1, 1, 0, 1, 1; m2

Q), m58 = mI(t9)
(0, 1, 1, 1, 1, 1, 0; m2

Q),

m59 = mI(t1)
(0, 0, 1, 0, 1, 0, 1; m2

Q), m60 = mI(t1)
(0, 0, 2, 0, 1, 0, 1; m2

Q),

m61 = mI(t1)
(0, 0, 0, 1, 1, 0, 1; m2

Q), m62 = mI(t1)
(1, 0, 0, 1, 1, 0, 0; m2

Q),

m63 = mI(t3)
(0, 1, 0, 1, 1, 0, 0; m2

Q), m64 = mI(t3)
(0, 1, 0, 1, 0, 1, 0; m2

Q),

m65 = mI(t3)
(0, 2, 0, 1, 0, 1, 0; m2

Q), m66 = mI(t5)
(0, 1, 1, 0, 0, 1, 0; m2

Q). (A.15)

Finally, the two-loop factorisable integral in figure 4 are written as:

m67 = mI(t3)
(1, 1, 1, 0, 1, 1, 1; m2

Q), m68 = mI(t3)
(0, 1, 1, 0, 1, 1, 1; m2

Q),

m69 = mI(t3)
(0, 0, 1, 1, 1, 1, 0; m2

Q), m70 = mI(t9)
(1, 1, 1, 1, 1, 0, 0; m2

Q),

m71 = mI(t9)
(1, 1, 1, 0, 0, 1, 0; m2

Q), m72 = mI(t1)
(0, 1, 1, 0, 0, 1, 1; m2

Q),

m73 = mI(t1)
(0, 0, 1, 0, 0, 1, 1; m2

Q), m74 = mI(t5)
(0, 0, 1, 1, 0, 1, 0; m2

Q),

m75 = mI(t11)
(0, 1, 1, 1, 1, 0, 0; m2

Q), m76 = mI(t1)
(0, 0, 0, 0, 0, 1, 1; m2

Q). (A.16)

B Arguments of the eMPLs

In this appendix we present the analytic expressions for the arguments of the eMPLs as

defined in eq. (3.23). We find that we need six different values of z̃i for the eMPLs associated

to the elliptic curve τ (a), and just one, which we denote z̃b, for the eMPLs described by τ (b).

Furthermore, we checked using PSLQ that there is no rational linear combination of the form

6
∑

i=1

ci z̃i = c7 + c8 τ (a) , ci ∈ Q . (B.1)

The numbers z̃i are special values of the elliptic integral:

A(a)(x) =
4
√

5

2 K (λa)

∫ x

(1−
√

1+2i)/2

dt√
4t4 − 8t3 + 4t2 + 1

, (B.2)

with

λa =
1

2
+

1

2
√

5
. (B.3)
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We then have13

z̃1 = Im A

(

1

2
+

i

2

)

=
i

4
− i

F(φ1|λa)

2 K(λa)
= 0.3486 . . . ,

z̃2 = Im A

(

1

2
− 1

2
i

√

5

3

)

=
i

4
− i

F(φ2|λa)

2 K(λa)
= 0.0204 . . . ,

z̃3 = Re A (−i) = −τ (a)

4
+

F(φ3|λa) + F(φ4|λa)

4 K(λa)
= 0.1904 . . . ,

z̃4 = Im A (−i) = − iτ (a)

4
− i

F(φ3|λa) − F(φ4|λa)

4 K(λa)
= −0.0615 . . . ,

z̃5 = Re A(2) = −τ (a)

4
+

F(φ5|λa)

2 K(λa)
= 0.6280 . . . ,

z̃6 = Re A

(

3

2

)

= −τ (a)

4
+

F(φ6|λa)

2 K(λa)
= 0.5625 . . . ,

(B.4)

where F(φ|m) was defined in eq. (3.24) and we set φi = sin−1 αi, with

α1 =

√

√

√

√

√

2

√

(2+i)+
√

−5+10i√
5+1

i +
√

1 − 2i
,

α2 =

√

√

√

√

√

2

√

30
(

(−1 − i) +
√

−3 + 6i
)

(6 + 3i) + 3i
√

5 +
√

15 + 30i +
√

15 − 30i
,

α3 =
23/4 4

√

(5 + 5i) − 5
√

1 + 2i
√

(1 + 2i)3/2 + (−1 + 2i) −
√

5 +
√

5 + 10i
,

α4 =

√

√

√

√

(

(−1 + 2i) +
√

1 + 2i
)

√

2−4i√
5+1

(−1 + 2i) +
√

1 − 2i
,

α5 =

√

√

√

√

(

3 +
√

1 + 2i
)

√

2−4i√
5+1

3 +
√

1 − 2i
,

α6 =

√

√

√

√

(

2 +
√

1 + 2i
)

√

2−4i√
5+1

2 +
√

1 − 2i
.

(B.5)

Similarly, the number z̃b is defined by the elliptic integral:

A(b) =
1 +

√
5

4 K (λb)

∫ (1+
√

2)

(1−
√

5)

dt√
t4 − 4t3 + 8t

, (B.6)

with

λb =
1

2

(

3
√

5 − 5
)

. (B.7)

13We note that when evaluating the quantities z̃a with Mathematica using its native implementation of

the incomplete elliptic integral of the first kind, EllipticF, we obtained different numerical values than

those obtained from the numerical evaluation of eq. (B.2) with NIntegrate. We take the NIntegrate value

as the correct one.
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We therefore have

z̃b = A(b) − 1

2
= (3 +

√
5)

F (φb| − 5 − λb) − K(−5 − λb)

4K(λb)
= i 0.1853 . . . , (B.8)

where in this case φb is defined as φb = sin−1 αb, with

αb =

√

4
√

2 +
√

5 + 3

2
√

5
. (B.9)
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