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1 Introduction

Investigation of quantum corrections in various field theory models is very important for
understanding nature. For instance, the coincidence of the first few digits in the theoret-
ical and experimental values of the electron anomalous magnetic moment demonstrates
that the surrounding world is described by quantum field theory [1], although the existing
discrepancies (which remain even after taking into account the results of the 5-loop per-
turbative calculation in quantum electrodynamics) are the subjects of various theoretical
and experimental studies [2]. The precise measurements of the muon magnetic moment
and the comparison of the results with the theoretical predictions can shed light on physics
beyond the Standard Model, see, e.g., [3, 4]. The unification of gauge coupling constants
(if any) may be considered as an argument in favour of the realization of supersymmetry
based models of Grand Unification (see, e.g., [5-7]). That is why quantum corrections in
N =1 supersymmetric theories and theories with softly broken supersymmetry are espe-
cially interesting [8]. In particular, it is important to know the g-functions in such theories,
which encode the evolution of the running gauge coupling constants. In the most popular
DR scheme (when a theory is regularized by dimensional reduction [9] and divergences are



removed by modified minimal subtraction [10]) the g-function has been calculated in the
three- [11-14] and four-loop [15] approximations. In the Minimal Supersymmetric Stan-
dard Model (MSSM) the three-loop expressions for the g-functions in the DR scheme have
been found in [16]. However, from the theoretical point of view, the DR scheme is not
the best renormalization prescription. Really, it is known that dimensional reduction is
not mathematically consistent [17] and can break supersymmetry in higher loops [18-20].
Moreover, the renormalization group functions (RGFs) in supersymmetric theories in cer-
tain subtraction schemes satisfy the NSVZ equation [21-24], which relates the g-function
to the anomalous dimension of the matter superfields. The renormalization prescriptions
for which the NSVZ equation is valid are usually called the NSVZ schemes. According
to [12-14], the DR scheme is not an NSVZ scheme. However, although the NSVZ relation
is not satisfied for the DR prescription, it can be restored by a special finite renormal-
ization compatible with a structure of quantum corrections. The MOM scheme is also
not NSVZ [25, 26]. (However, for N = 1 supersymmetric electrodynamics in the on-shell
scheme the NSVZ relation is valid in all orders [27].)

Some all-loop NSVZ schemes can be constructed with the help of the higher covariant
derivative regularization [28, 29] in the supersymmetric formulation [30, 31]. Note that this
regularization includes the insertion of the Pauli-Villars determinants into the generating
functional for removing residual one-loop divergences [32], see [33, 34] for the generalization
to the supersymmetric case. Since this regularization is consistent and formulated in the
dimension D = 4, it is more preferable for supersymmetric theories than dimensional reduc-
tion. (The detailed comparisons of various regularizations can be found in [35, 36].) With
the higher covariant derivative regularization RGFs defined in terms of the bare couplings
(which are scheme-independent for a fixed regularization) satisfy the NSVZ relation. For
usual RGFs (defined in terms of the renormalized couplings) some NSVZ schemes can be
obtained by the HD+MSL prescription, when for a theory regularized by Higher Deriva-
tives divergences are removed by Minimal Subtractions of Logarithms. By other words, the
renormalization constants should include only powers of In A/, where A is the dimensionful
regularization parameter and p is the renormalization point. The proof of these facts for
theories with simple gauge groups has been done in refs. [37-39]. (For the Abelian case it
was constructed earlier in refs. [40, 41].) Similar statements seem to be valid for NSVZ-like
relations describing the renormalization of the gaugino mass [42—44] in theories with softly
broken supersymmetry [45, 46].

Knowing the prescription for constructing an NSVZ scheme we can significantly sim-
plify the calculation of the g-function in higher loops. Really, the NSVZ equation relates
the g-function to the anomalous dimension of the matter superfields in the previous orders.
Therefore, say, for calculating the three-loop B-function it is sufficient to find the anoma-
lous dimension of the matter superfields in the two-loop approximation. However, for this
purpose it is necessary to use a renormalization scheme for which the NSVZ relation is
valid, for instance, the HD+MSL prescription. For theories with simple gauge groups the
three-loop p-function was calculated by this method in [47]. (Note that its part found
earlier by direct calculations of three-loop supergraphs [48, 49] exactly coincided with the
result obtained from the NSVZ equation. This confirms the correctness of the approach



in such an approximation where the scheme dependence becomes essential.) For A" = 1
SQED with Ny flavors, the four-loop pg-function was obtained from the NSVZ equation
in [50]. However, the NSVZ equations are also valid for A/ = 1 supersymmetric theories
with multiple gauge couplings [51]. For MSSM the equations equivalent to the NSVZ rela-
tions have first been written in [52]. The standard form of these equations for MSSM and
for the flipped SU(5) model [53-56] can be found in [57]. There are strong evidences [57]
that they are also satisfied in the HD4+MSL scheme, exactly as for theories with simple
gauge groups. For example, this is true for the NSVZ-like equation which gives the Adler
D-function in /' =1 SQCD [58, 59] (see also [60]), which follows from the NSVZ equations
for the theory with the gauge group SU(N.) x U(1).

Because the NSVZ equations seem to be valid in the HD4+MSL scheme, it is possi-
ble to use them for calculating quantum corrections even in theories with multiple gauge
couplings. Then, making finite renormalizations one can obtain the g-functions for other
renormalization prescriptions [61, 62]. The results for RGFs in various subtraction schemes
can be useful for investigating finiteness [63—72], the possibilities of the existence of fixed
points [73-76], or reduction of couplings [77-81] in various N’ = 1 supersymmetric theories.

In this paper we will construct the three-loop MSSM p-functions for an arbitrary
supersymmetric renormalization prescription. This implies that the theory is quantized in
a manifestly ' = 1 supersymmetric way with the help of N = 1 superspace [82-84] and
instead of renormalizing individual component fields we renormalize superfields as a whole.
Equivalently, the renormalization constants for all components of a superfield appear to
be the same. Evidently, the DR renormalization prescription is supersymmetric. Earlier
in the DR scheme the two-loop MSSM anomalous dimensions of the chiral superfields and
the two-loop MSSM Yukawa S-functions were found in [85]. As we already mentioned,
the three-loop MSSM gauge (-functions in the DR scheme wereobtaned in [16]. As we
will see below, for a certain renormalization prescription the results obtained in this paper
correctly reproduce all these expressions, thus providing an independent confirmation of
the complicated calculations made in [16, 85].

The paper is organized as follows. In section 2 we briefly describe A/ = 1 supersym-
metric theories with multiple gauge couplings and discuss various properties of RGFs in
these theories. In particular, we recall the form of the NSVZ equations in this case and
present an explicit expression for the two-loop anomalous dimension (defined in terms
of the bare couplings) of the chiral superfields for the case of using the higher covariant
derivative regularization. The exact NSVZ s-functions for MSSM are written in section 3.
The two-loop anomalous dimensions for all chiral matter superfields in MSSM regularized
by higher covariant derivatives are obtained in section 4. We present both the anoma-
lous dimensions defined in terms of the bare couplings and the ones defined in terms of
the renormalized couplings for an arbitrary renormalization prescription. In section 5 the
NSVZ equations are used for obtaining the three-loop MSSM S-functions defined in terms
of the bare couplings. After that, we calculate the three-loop S-functions defined in terms
of the renormalized couplings for an arbitrary renormalization prescription (supplementing
the higher covariant derivative regularization). A subtraction scheme in which the results
reproduce the ones in the DR scheme is constructed in section 6. Finally, in section 7 we



describe a class of the NSVZ schemes for MSSM and demonstrate that finite renormal-
izations relating various NSVZ schemes satisfy the general equations derived in [57]. The
results for the two-loop anomalous dimensions of the matter superfields and the three-loop
B-functions defined in terms of the bare couplings are presented in appendices A and B,
respectively. For completeness, the expressions for RGFs in the DR scheme are listed in
appendix C.

2 RGTFs for theories with multiple gauge couplings

A part of the MSSM action which does not contain soft terms is an N' = 1 supersymmetric
Yang-Mills theory with 3 gauge couplings interacting with a certain set of chiral superfields.
In general, a number of the gauge couplings is equal to the number of (simple or U(1))
factors in the gauge group

G=G; xGy x...xG,. (2.1)

The classical action of a renormalizable N' = 1 supersymmetric gauge theory in the massless
limit can be written in the form

s=Y Rei/d‘lm 420 (WA (W,) K + i/d4xd49¢”(62v)ijq§j
K=1
Lk [ 4 2
+(6/\0 d'wd®0 pi0;0, +cc. ), (2.2)

where the subscript K numerates the factors Gk in the product (2.1). The superfield
formalism (see, e.g., [82-84]) used here is very convenient because it makes N = 1 super-
symmetry manifest. It is important that this property remains valid even at the quantum
level.

In our notation the bare gauge and Yukawa couplings are denoted by egx (or apx =
€2 /A7) and AJ* | respectively, and

Vil = Z cox VAK (TAK) I (2.3)
K
is the gauge superfield with the strength W,.

It is convenient to split chiral superfields ¢ into sets ¢, such that each of them either
transforms under certain irreducible representations R,k of the simple subgroups Gg or
has certain charges g.x with respect to Gx = U(1). Then the index i numerating all matter
superfields ¢ can be presented as the set

i={a;i1,12,...,0,} = {a; ia}. (2.4)

Note that the indices i1,42,...,7, are different for different a. The generators of the
gauge group can be written as

(TAK), 7 = 6,° - 8,71 65, [JK—1 (Ta K)iKJK5iK+1JK+1...5MM, (2.5)

1For the MSSM gauge coupling constant corresponding to the U (1) subgroup below we will use a different
definition.



where (T; K ) JK are either the generators of Gk in the representation R,x for simple

subgroups Gk or the charges gax of the superfields ¢; = ¢a;4iy..5, for Gx = U(1). They
satisfy the commutation relations

[T4K, TPK] = i fAKPKOK TOK; T2 TR = i fARBROR T, (2.6)

where fAkBKCK are the structure constants of the subgroup Gg.

The renormalization constants for the matter superfields ¢, are introduced as ¢, =
V4 )abqﬁh r, where the subscript R marks the renormalized superfields. The renormaliza-
tion of each coupling constant ay is described by the corresponding B-function, while the
renormalization of the superfields ¢, is encoded in the corresponding anomalous dimension.
In terms of the bare couplings these RGFs are defined by the equations

dln Z,P
dln A ’

a,A=const

= : ’yab(ao,/\o) = — (27)

) = ;
dlnA a,A=const
where the derivatives are taken with respect to the dimensionful regularization parameter
A at fixed values of the renormalized couplings. According to [41], RGFs defined in terms
of the bare couplings should be distinguished from the standard ones, which are defined in

terms of the renormalized couplings by the equations

~ da ~
Bi(a,\) = 71 K ; ’yab(a,)\) = . (2.8)
L ag, \g=const

ap,A\g=const

In this case the differentiations are made with respect to the renormalization point p at
fixed values of bare couplings.

Note that for a # b the anomalous dimension 7, (a, A) (or vab(ao, Ao)) does not vanish
only if the representations R,x and Ry (or the corresponding charges for U(1) subgroups)
coincide for all K = 1,...,n. Even in this case (corresponding to the existence of some
generations of the superfields) the anomalous dimension matrix can be diagonalized by
a certain rotation in the generation space. However, the standard choice of variables in
MSSM corresponds to the diagonal mass matrix for the charged leptons. In this case the
anomalous dimension matrix is not in general diagonal. That is why below we will write
the anomalous dimension in the matrix form in contrast with ref. [57], where this matrix
was assumed to be diagonalized.

As we mentioned above, there are strong evidences (see, e.g., [57]) that in the case
of using the higher covariant derivative regularization RGFs defined in terms of the bare
couplings satisfy the NSVZ equations

Br (a0, Ao) _ 1
OLgK 2’/T(]. 7C2(GK)OCOK/27T)

303(Gr) = > Tarc (1= (a0, V)| (2.9)

in all orders of the perturbation theory independently of a renormalization prescription.
(Note that RGFs (2.7) depend on a regularization, but do not depend on a renormalization



prescription for a fixed regularization, see [41] for details.) In eq. (2.9) we use the notation

Cy(Gg )oK PK = fAKCK DK fBkCKr Pk, Tk (Rag) 04K PK = (T;KTfK)iKiK;
0iy "o bige_y K1 T (Rax) Sigeyy KH1 .. 85, for a simple G;

Tar = (2.10)
§i1i1 o Oige K1 @ Bipyp KH1 O, for Gx = U(1).

It is very convenient to use eq. (2.9) for calculating the B-functions because it relates
them to the anomalous dimensions of the matter superfields in the previous orders. There-
fore, for obtaining, e.g., the three-loop S-functions it is sufficient to calculate the anomalous
dimensions in the two-loop approximation. However, in this case we have to use the higher
covariant derivative regularization. To introduce it, we should make the following steps.

First, we make the background-quantum splitting of the gauge superfield
e?V = e27(M)e2V | where V is the background gauge superfield, and the function F(V)
is needed because the quantum gauge superfield V is renormalized in a nonlinear way [86—
88]. The explicit form of this function in the lowest nontrivial order can be found in [89, 90].
In particular, in this approximation it contains a term cubic in the gauge superfield with
a new bare parameter yo, which is similar to the gauge parameter &. In general, there are
an infinite number of nonlinear terms and similar parameters in the function F(V). If the
renormalization of these parameters is not taken into account, then standard RGFs cannot
be written as functions of the renormalized couplings (and other parameters) only and will
explicitly depend on InA/p [91]. By other words, the renormalization group equations will
not be satisfied without the nonlinear terms in the function F(V). Next, we modify the
action by adding some terms with higher covariant derivatives,

RN L[ o aAg [(m2v =27yl VoV oz ov Ak
S%Sreg—;lRezl/d xd“0 (W) [(e e R( T6AZ )e e )AdjWa]
L[ oa ap i VEVEN\ oryov] Liijk [ 4 g
+ 4/d 2d*0 [F(— e )e e L i + (GAO /d zd 9¢1¢J¢k+c.c.), (2.11)
where R(z) and F(z) are the regulator functions which rapidly grow at infinity and are
equal to 1 at z = 0. Note that, for simplicity, we use the same regulator functions for
all subgroups Gk in the product (2.1). The covariant derivatives entering eq. (2.11) are

defined by the equations
Vo= Dyg; V=72V De 2Ve 27V), (2.12)

Next, we add the gauge fixing term Sy, the action for the Faddeev-Popov ghosts Sgp,
and the action for the Nielsen-Kallosh ghosts Syi. Finally, it is necessary to insert into
the generating functional the Pauli-Villars determinants which remove residual one-loop
divergences and subdivergences. The resulting expression for the generating functional can
be written as

Z[sources] = / Dy [ Det®s (PV, M) exp {z (Sreg + Syt + Spp + SNk + S + ssources) }
K
(2.13)



The Pauli-Villars superfields ¢1 x, @2k, and ¢3 x with the action S, are introduced for
all K corresponding to simple subgroups of the gauge group G. These superfields lie
in the adjoint representation of the subgroup Gx and are neutral with respect to the
other subgroups. They have the masses M, x = a, kA and cancel one-loop divergences
coming from a loop of gauge and ghost superfields. The Pauli-Villars superfields inside the
determinants Det(PV, Mk ) have the masses Mx = ax A and remove the one-loop divergences
produced by matter superfields. The detailed description of the Pauli-Villars determinants
and expressions for the coefficients cx can be found in [33, 34] for theories with a single
gauge coupling and in [57] for theories with multiple gauge couplings.

For theories with a single gauge coupling constant regularized by higher covariant
derivatives the two-loop anomalous dimension of the matter superfields defined in terms of
the bare couplings has been calculated in [47]. The result is given by the expression

7d1nZij
dln A

(%] 1 1 * ymn 1
= ——C(R) + 5 Xm0 ™" + 55 [C(R)?].7 — 53 O

’-Y'Lj (Oéo, >\0) = T

a,A=const

j A 04(2) j A [e70 N jmn 1

xC(R); <1n ag+1+ 5) + 55 T(R)C(R); (lna +1+ 5) — e N N C(R) (1~ B
m 1 * jab y cde

+A4) + %)‘Simn)‘f) lC(R)ln(l - A+DB) - @AOiac)\% b>‘0bde>‘0d + O<048, ag A3, a0, /\8),

(2.14)

where C(R);7 = (TATA)7, tr(TATB) = 64PT(R), and T(Adj) = Cy. The parameters A and
B are related to the regulator functions R(z) and F(x) by the equations

o0 oo

d 1 d 1
0 0

and the parameters a and a, are the (above introduced) ratios of the Pauli-Villars masses
to the regularization parameter A,

S
Il

~|=

) 2%

M‘P
- (2.16)

The expression (2.14) can be generalized to the case of theories with multiple gauge
couplings. First, we rewrite the Yukawa part of the action (2.2) in terms of the super-
fields ¢a,

1

ij 1 iagike
GAojk/d4xd29¢id)j¢k DI /d4$d29¢a;ia¢b;jb¢c;kc- (2.17)

abc

Next, it is necessary to reanalyse contributions of various supergraphs to the two-loop
anomalous dimension. Namely, we should take into account that the expression for a
supergraph can contain various gauge coupling constants and specify the gauge group



factors. The result obtained after this can be presented in the form

(67 Qo
vab<ao,xo>=—;%omamb a2 (020" + D = 5 CRa) O R ) 6

723%;(02 G1)O(Rare) (I +1+ 5 ) 8.1 +Z%K0RaK ZTcK(lnaK

A
14 ) 5,P Z ‘;‘Ofg (AXo)aPC(Rarxc ) (1 — B + A) + Z 20K (ACx M) P(1— A+ B)
~ e (A NeAalh), P + O(af, ad A3, and, AS), (2.18)

where we use the notations

(Ta BT, IK = O(Rax) 8, 7K (2.19)
(/\SAO)ab 5iajb = Z /\Ek) tameng Aébmcnd; (220)
cd
(ACKA0)," 00 =D A iumeng C(Rar ) A" (2.21)
cd
N A0IA0) P 0™ = 3 A ket A PENG meng AT (2.22)
cdefg

Note that for a # b in egs. (2.20)—(2.22) the indices i, and j, can coincide only if the super-
fields ¢, and ¢}, have the same quantum numbers. (Certainly, in MSSM this corresponds
to the same superfields of different generations.)

Below we will use eq. (2.18) as a starting point for calculating the two-loop anomalous
dimensions of the MSSM chiral matter superfields.

3 The exact B-functions in MSSM

MSSM (see, e.g., [92]) is a softly broken N = 1 supersymmetric theory with the gauge
group
G = SU@3) x SU(2) x U(1)y (3.1)

and chiral matter superfields listed in table 1, where we also present their quantum numbers
with respect to the gauge group. The chiral superfields include three generations of quarks
and leptons, Higgs fields, and their superpartners as components. (Note that we consider
a model without right neutrinos.) The chiral superfields in our notation are denoted by
capital letters, and the subscripts 1,2,3 numerate generations.

Because the gauge group (3.1) is a product of three factors, the theory contains three
gauge coupling constants

e3 ] 3 ] 5 €3

e Qg = ap =< —. (3.2)

as = in 3 4

Note that it is reasonable to include the factor 5/3 into the definition of a; because in this
case the gauge coupling unification condition takes the most convenient form a; = as = as.



superfield || Q1,Q2,Q3 | Uy, Us,Us | Dy, Do, D3 | L1, Ly, L3 | Ey, Es, E3 H, Hy
SU(3) 3 3 3 1 1 1 1
SU(2) 2 1 1 2 1 2 2
U(l)y -1/6 2/3 -1/3 1/2 -1 —~1/2 1/2

Table 1. Chiral matter superfields and their quantum numbers (representations for SU(3) and
SU(2), and the hypercharge Y for U(1)) in MSSM.

A part of the MSSM action

AS = %/d‘*z d?0W + c.c. (3.3)

contains the superpotential
~ ~\Ga 01 Hul ~ ~\@ 01 Hdl
W = (Y UD U, Y( UD
( OU)U( )1<_1 0) (Hu2> A OD)”( )1(_1 0) <Hd2>

X Do+ (Yor),, (1\7 E)I <_01 (1)> (ZZ;) Ej+ po(Hu Hy2) (_01 (1)> (ZZ:) . (3.4)

Note that in this expression we presented the superfields which include left quarks and
leptons as

(3.5)

respectively, and wrote the superfields H, and H; (in the fundamental representation of
SU(2)) as the two-component columns. Also in eq. (3.4) You, Yop, and Yo are the (dimen-
sionless) Yukawa matrices with the indices I and J, which numerate generations and take
values from 1 to 3. The parameter uo has the dimension of mass.

According to [51, 52, 93] it is possible to construct the exact NSVZ expressions for the
S-functions for all couplings, which can be written in the form [57]

Bs(ao, Yo) 1 1 1 .
02 2r(l=3ags2m) | HY(W(O‘O’YO) + 570(a0, Yo) + 27D(QO’YO)> o (36)
Pa(c0,Yo) 1 _ 3 1 1
a(2)2 B 27(1 — aga/7) ! +tr(2yQ(a0,Y0) + QWL(QO’YO)) + QVHu(a()’YO)
1
+ §7Hd (a03 YE)):| ) (37)

B1 (v, Yo) 3 1 1 4 1 1
prae o) _ 2 2 t(f o)+ = Yo) + - Yo) 4+ = %
o2, 5 on +tr 67@(040 0) + 37U(Oéo 0) + 3'YD(040 0) + Q'YL(O‘O 0)

1 1
+ “YE(Oéo,Yo)> + 5 VHy (a0, Yo) + QVHd(OKO,YO):| ; (3.8)
where the traces are taken over the indices numerating generations. These NSVZ equations
are written for RGFs defined in terms of the bare couplings. There are strong evidences
that with the higher covariant derivative regularization they are valid for an arbitrary
renormalization prescription. (Actually, both sides of these equations do not depend on a



superfield || Q1,Qa,Qs | Uy,Us,Us | Dy, Do, Dy | Ly, Lo, L3 | Ey,Ey, E5 || H, Hy
SU(3) 1 1/2 1/2 0 0 0 0
SU(2) 3/2 0 0 1/2 0 1/2 1/2
U(l)y 1/6 4/3 1/3 1/2 1 1/2 1/2

Table 2. T,k for various MSSM superfields. The superfields are numerated by the subscript a,
and K = SU(3), SU(2), U(1).

superfield Q1,Q2,Q3 Uy,Us,Us Dy, D5, Ds Lqi,Lo, L3
A*A % (VoY +YoYh)" Y Yy YiYp % (veYi)"
superfield E,Es, E3 H, Hy
A Y Ye ;tr (Y vw) %tr (BYSYp + Vi YE)

Table 3. Values of (A\*\),P for various MSSM superfields. The nondiagonal elements of this matrix
can be nontrivial only if a and b correspond to the same superfields of different generations.

renormalization prescription for a fixed version of the higher covariant derivative regular-
ization.) The detailed description of the higher covariant derivative regularization used in
this paper for MSSM can be found in [57].

4 Two-loop anomalous dimensions for various MSSM chiral superfields

From eq. (2.18) it is possible to construct two-loop anomalous dimensions for all chiral
superfields in MSSM. The bare Yukawa couplings A% can be expressed in terms of the
matrices You, Yop, and Yog. The constants Co(Gk) and C(Rak) can be found using the
equations

Co(SU(N)) = N;
N2 -1

C(fund. SU(N)) = 5N Cav(r) = G3- (4.1)

Values of the constants Ty and (A*)\),P are listed in tables 2 and 3, respectively. (Certainly,
for calculating (Ang)ab one should replace Y by Y;.) In our notation M7T denotes the
transpose of a matrix M (with respect to the indices numerating generations).

The expressions for all anomalous dimensions of the MSSM matter superfields defined
in terms of the bare couplings constructed with the help of eq. (2.18) are rather large. That
is why we present them in appendix A. Note that we do not diagonalize them by special
rotations in the generation space, so that for the quark and lepton superfields they are
given by nondiagonal 3 x 3 matrices.

However, standard RGFs are defined in terms of the renormalized couplings. To obtain
these RGFs, we should first integrate the renormalization group equations (2.7) and find
the renormalization constants for the gauge couplings and for the chiral matter superfields.
The renormalization constants constructed in this way should be substituted into eq. (2.8).
Note that they depend on some finite constants which specify a renormalization prescription

~10 -



in the considered approximation. In particular, in the lowest approximations the relations
between the bare and renormalized gauge coupling constants can be written in the form

1 1 1 A 11 A A A
7:7+73<1H*+b13>_ a1(1n7+b231>_%(11174_{)232)_@(1117
o3 Q3 27 I ’ 20m " ’ 47 I ’ T I

+b2733> + r;tr(Y;YU) (mﬁ n bgvsU) + ﬁtr(YgYD) (mﬁ n me)] +0(a?,aY?, YY),
(4.2)

1 1 1 A 9a1 A 250&2 A 6(13 A
=t (mZ e 1—b>— (l—b (1f
Qo2 O + 2m [ ( . I * 1’2> 207 ( no, e 4 . W + 2’22) T i

1
n —2tr(YE+YE)

+b2723) - 2t (Y+YU) (m% n bzw) n @tr(YgYD) (m% n me) =

A
X (1n o me)] +0(a?,aY2, YY), (4.3)
11 1 3 A 1990 /. A 9as /- A 2205
%mwﬂﬁ{”(lnu“’hl) o (10 Fbean) = 2 () + bana) = =0

x (m% +bos ) + %tr(YJYU) (m% +bou) + I77T21;1r(YD+YD) (ln% +bop) +

3
82

A
xtr(YgYE> (hl ﬁ + b271E):| + 0(012, ()(}/27 Y4), (44)

Similarly, the renormalization constants for the chiral matter superfields are given by the

expressions
(Zo)T = 1+ﬁ(1n% +ng) +%<lné +gQ2) +%(lné +gQ3)
= 2YUY+(1n% +gau) < ZYDW(ln% +g0p) +0(a? a2 Y1), (4.5)
o= 22 )+ (02 )
—4—Y+YU(ln— - ) (@2, aY2, Y4, (4.6)
o=+ 22 (D )+ 2202 )
4— Y+YD(1n 24 gDD) (a2,aY?, YY) (4.7)
(Z)" =1+ ;)gl(lnz +gL1) + 347T(ln2 +ng)
812 Y, Yg(lnﬁ +g1) + 0%, ay?, YY), (4.8)
Ty — 35(1112 + gEl) - ﬁ YgYE(ln% +gEE) £ 0(a?,aY?, YY) (4.9)
Zy, = 3 (mﬁ + i ) +%(1n%+91{u2)
8i tr( +YU) (m Z ¥ gnau ) +0(a?,aY2, YY), (4.10)
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3o A 3o A

—o3 tr(YgYD) (1n% T ngD) - S?tr(YgYE) (ln% n ngE) +0(a2,aY? Y.
(4.11)

Note that the coefficients of powers of InA/u in the (one- and two-loop) terms written
explicitly in egs. (4.2)—(4.4) and in the (one-loop) terms written explicitly in (4.5)—(4.11)
are scheme independent [94], see also [57] for the detailed discussion. Certainly, it is
important that the considered finite renormalizations relating various subtraction schemes
are compatible with the structure of quantum corrections [95]. (Otherwise, the two-loop
contribution to the gauge S-functions would depend on the renormalization scheme [96] for
theories with multiple gauge couplings.)

As a rule, due to the nonrenormalization of superpotential [97], the renormalization
of the Yukawa couplings in A/ = 1 supersymmetric theories is chosen according to the
prescription

You = (Zu,) "2 ((Z9)™) ™" Yo (Zu) ™% (4.12)
Yop = (ZHd)—l/Q ((ZQ)T)_1/2 YD(ZD)_1/2§ (413)
Yor = (Zu,) " ((Z0)")"* Y(Zp) /. (4.14)

However, this prescription is not unique, because it is also possible to make finite renor-
malizations of the Yukawa couplings. Such renormalizations are very important, e.g., for
constructing finite A" = 1 supersymmetric theories, see [67, 68, 71]. That is why here we
will use more general equations than eq. (4.12)—(4.14), namely,

3 +
1672 tr (YU YU)

13 A 3 A 4 A
You = |1— al(ln*JF]Ul)*ﬂ(ln*+]U2>*£<ln*+]U3)+
607 W 4 7 3T I

X (hl% +jUtU) + 161 QYDY'~_(1né +JUD> 163 2YUY"_(IHé -l-jUU)]YU

+ O(aQY, aY?, Y‘)); (4.15)
= [ ) 22 (02 1) 20 i)+ ()

x (m% +thD) — Qtr(YJrYE)(ln% +thE) — 2YDW(lné +;DD) + #YU

x YU+(1né +jDU)}YD+O<a2Y, aY3,Y5); (4.16)
Yoi = {1 _ g%(m% +gE1) _ %(m% +jE2) + Fi;tr(ygyp) (m% +jEtD)

+ m%tr(YEYE) (hlﬁ + e ) + YEY+(1n A +JEE):| Vi +0(a?Y,av? ¥?). (417)

1672

- 12 —



If the finite constants j satisfy the equations

) 1 8 . 1 1 . 1 1

Jur = gegma + gegQrt pu Ju2 = 59m2 T 59020 Jus = 5908 T 59U

. _ . 1 2

Juto = gr,U; jup = 9aD; juv = 39qu + Zgvus  (4.18)
.9 4L 1 n 2 .1 n I .1 n 1 ]

JD1 = 149Hd1 14 gQ1 7ng, Jp2 = 29Hd2 29@27 JD3 = 29@3 29D3,

. , . 2 ,

JDtD = gH,D; JDtE = JH,E; Jpp = 39@D + 39pD; DU = 9QU; (4.19)
o1 n 1 4 2 .1 n I ) B )

JE1 = 69Hd1 6gL1 39E17 JE2 = 59Hg2 T 5912 JED = 9HyD;

. . 1 2

JEtE = JH4E; JEE = gngE‘ + ggEE7 (4.20)

then we obtain the prescription (4.12)—(4.14). However, below we will not in general assume
that these relations are satisfied.

RGFs defined in terms of the renormalized couplings depend on the finite constants
specifying a renormalization prescription. The first scheme-dependent terms in the 3-
functions and in the anomalous dimensions of the matter superfields come from the three-
and two-loop approximations, respectively. In this section we present expressions for the
two-loop anomalous dimensions for all MSSM matter superfields defined in terms of the
renormalized couplings. They were constructed from the anomalous dimensions defined in
terms of the bare coupling by integrating the second equation in (2.7) and substituting the
results into the second equation in (2.8). The result is written as

T aq 3as  4dag 1( + +)
—_ ot 2% — _(vyY T +YpY,
) 60r  dr 3% T gmz\‘Utu TIpIp )+

a0 20103 1la A
2 —(1 1 —b )
40 15 et gy (et Lt o g0 b

1 [ a? 902 n 1603
272 | 3600 16 9

304%
4

( —6lnay o

A A 1
+7lnas +1+ 5 + 902 —b172) —4a§(31na%3 —2Inas +1+ 5 + 903 —b173>:| + F

3a 4o
(B A+ 29qu — 2JU1) + (B A+2gqu — 2]U2> + 73(3

o 13
X Yy Y [51 + 601

ar Tog 3as

_A+29QU_2jU3)] 83YDYDLO+60(B A+29QD—23D1)+—<B A

. 4o . .
+29gp — 2]D2) + ?3 (B —A+2ggp — 2]D3>} - {(YUYJ)Q (1 +39qu — 3JUU)

1
(8m2)2
. 1 .
+ (YpYH)? (1 + 399D — 3.7DD) + 3 (YDYEYUYJ + YUYJYDYB_> (QQD +9qu — jup

N3 N3
—jou ) + Yo (VoY) (1+ 2000 — 2w ) + YoV tr(YoY ) (1+ 2900

1
~2jpin) + YDV tr(YEYg) (1+ 2000 - 2thE)] +0(a* a?Y?%, v, v°); (4.21)
- 4do; 4o 1 [160? 1602 320y03 4402
V)= """+ _ 2 - Y+Y 1 3 1 (1
ol Y) =5 = 5oty Ut o [ 225 9 15 a5 M@

A A 1
+ 145 + g —bl,l) —404%(3111(1%3 —2lnag + 1+ 5 +gus — bl,g)} + s Yo

[ Otl 30&2 130[1
X

. 3042 8013
202 B—A+2g00 —2 ) 202 (B A+ 2900 — 27 )
10 + 5 =+ 30 ( +29vv — 2jur ) + + 29vv — 2Ju2 ) +

2 3
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x (B — A+ 2900 — 2jU3>] — [(Y;YU)2 (1 + 6900 — 6jUU> + 3V Yy tr(YUY;)

1
(8m2)2
X (1 + QQUU - 2jUtU) + YJYDYB_YU (1 + 2gUU - 2.7UD):| + O<a3, 042}/27 OéY4, Y6), (422)

- oq 4oz 1 n 1 a% 16a§ 8aias 1104% (
V)y=-——L 28 vy, 4| oL 1 1

(e Y) =g — gt e Yot oG st g Ty Ty (et

a;

A A )
++9D1—b1,1)—4a§(31naip’3—21na3+1+2+gD3_b1}3)} +7,YE{Y [10

2 {73

3o 8
+ S + 30 (B A+ 2gpp — 23D1> a2 (B A+2gpp — 2]D2) 33

. 1 .
+2pp — zmgﬂ - Gy [(Y;{YD)Z (1 +69pp — 6]DD> YYD tr(YDYg) (1 20D

3as  Tag

(BA

_ 2thD) FYEYD tr(YEYg) (1 +2pp — 2thE) FYEYyY YD (1 +29pp — 2jDU)]

+ O(a3, a?Y? aY?, Y6); (4.23)
~ 3a;  3as 1 [9a? 902 9ajas 9902
Yy = 24 22 YEVi 4+ s | ool 4 202 (1
TelenY) 20m  dr | 8a? 8 gaz P'E g [400 16 40 100 \ M

A 3a3
+1+§+9L1 —b171) -&-TQ(—ﬁlna%g—&—?lnag—i-l—i—

3aq 901 3o .
| fu - 22 (B— A+ 2905 - 2p2) | -
[10 + 20 (B A+291E 2JE1) + 1 (B + 291 — 2jE2 }

A +

5+9L2 —51,2)} o 3YEY
1

(872)2

. 3 . 1
X [(YEY§)2 (1 +39LE — 3]EE) + §YEYE+ tY(YEYD> (1 +29LE — 2jEtD) + §YEYE

x tr(YgYE) (1 N P 2jEtE)} + 0(a3,a2y2,ay4,y6>; (4.24)
- 301 1 " 1 9a A
FYE(O[7Y):7§+EYEYE+272 25 1+11(1Ha1+1+2+9E1*b11>
1 3a; | 3az | 9o 3oz
Y, 202 (B A+ 29m5 — 2j ) —(B A42
+8 3 E|: 10 5 10 +29pE — 2)E1 ) + 5 + 29EE

. 1 . .
- 2,7E2):| T B2 [(YEYE)2 (1 + 69rE — 6]EE) + 3V Yp tr (YSYD) (1 +29pE — 2.7EtD)

YV tr(ygyE) (1 +20pp — 2jEtE)] + O<a37 a?Y?,av?, YG); (4.25)
31 3aps i 1 {9a3 9a2 9o an 9904%
I N AT (1

Va0 Y) = =500 = 4r T3 r( U) {400 16 40 "o\ M

A 302 A
+ 1+ 5 + 9H,1 —b1,1) + TQ(—Glna%g +7lnas +1+ 5 + gHy2 —51,2)}

].30(1

. 9o
20 <B — A+ 29HuU — 2]U1) Ja2 (B A+ 29HuU

81 tr(YUY+) [ =+ dag + ot
_ sz2) + dasg (B A+ 2,0 — 2jU3)} _ (877%)2 [‘;’ tr(YDYgYUYJ) (1 + 25,0
- 2jUD> + gtr((YUYJ)Q) (1 + 29m,U — 2jUU) +9 [tr (YJYU)} i (gHuU - jUtU>:|

+ O(a3, a?Y? aY?, Y6); (4.26)
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_ 30, 3 1
Tiglon V) = =552 = 222 4 tr(3YE YD + Vi V) +

1 [9a3 923 9
200 4w 8n2

272|200 T 16 T a0M ™

9902 A 3a3 A
+ 100 (lnal—&—l—l—g—i—g[{dl—bl,l)+T(—6lna¢72—|—7lna2+1+5+ng2—bLg)
1 + 30&1 90[1 . 30[2 .
+ e (veYy) [10 + 5o (B A+ 2905 — 2m) + 2 (B — A+ 2gn, - QJEQ)]
+itr(y Y+) ~ M 4a +E(B—A+2 _9j )+%(B—A+2
g DYp 10 37T ) 9H4D JD1 1 9H4D

— 2jD2> + 4asz (B — A+2gu,p — 2jD3>] - @ Btr((YEYg)Q) (1 + 29,8 — 2jEE)

3 , 9 ,
+ 5tr(YD}/gYUYU*) (1 + 29,0 — 2]DU) + 5ur((YDYgF) (1 + 291, — 2]DD)

2
+9 [tr (YEYD)} (ngD - thD) +3tr (YB_YD) tr (YEYE> (ngD + 9H,E — JDtE — jEtD)

+ [er(vivs) | (gmar = e | + O(a%, 0¥ 2,0y v°). (4.27)

In the HD+MSL scheme all finite constants b, g, and j vanish by construction [41, 98,
99], and these RGFs coincide with the ones defined in terms of the bare couplings (given
by egs. (A.1)—(A.7)) after the formal replacement of the arguments a — g, Y — Yj.

5 Three-loop MSSM p-functions from the NSVZ equations

In the case of using the higher covariant derivative regularization the three-loop 3-functions
defined in terms of the bare couplings for MSSM can be found with the help of the NSVZ
equations (3.6)—(3.8), in which we should substitute the two-loop expressions (A.1)—(A.7)
for the anomalous dimensions of all chiral matter superfields. The result is presented
in appendix B. Next, it is necessary to find RGFs defined in terms of the renormalized
couplings. For this purpose we integrate the renormalization group equations (2.7) and find
the dependence of all ap on « and Y. Solving the resulting equations for the renormalized
gauge couplings and substituting them into eq. (2.8) we obtain the standard gauge (-

functions
Bs(a,Y) 1 1oy 9ay Tas 1 1 [13702
ECAS VAP Pt S —t(zyw 2y+Y) —
a2 o 20  dn  2n | sn2 S\ EYDED ) H o g Ton
2703 o2  3ajay  llajaz  3agaz 36303 A 903
% - - 1 142 4 byg —b ) e’
%6 te T a0 60 1 100 (n“1+ tg to2s 0
A A 7
X (— 6111&%2 + 7111(12 + 1 + 5 + b2732 - b172) — 2404%(3111&%3 — 2lna3 + 1 + 5 + Eb2733
7 1 3041 3042 13041 . 30&2
~ Ly ) ¢ (YW)— 202 3 (B—A Uy 517 — 2 ) 202
T } +87r3 |\ Yu Yy 20 + 1 + dag + 30 + 202 3U Jutl | + 5
x(B—A+2b —9j >+&£(B—A+2b — 9 ) +itr(yy+) o1 | 3
2,3U Ju2 3 2,3U JU3 83 DYp 20 1
7 . 3 . 8
+ 3a3 + %(B*A+26273D 72][)1) + %(B*A#’szgD 72]1)2) —+ %(B*A
, 1 [3 o , 3 o
+ 2y s3p — 2jD3)] - G [ 5tr((YUYU ) ) (1 + dby sy — 4;UU) T 5tr((YDYD) ) (1
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+dbysp — 4jDD) + 3(tr(YUYU+))2 (1 + 2o 3 — 2jUtU) + 3(tr(YDYD+))2 (1 +2bs3p

— 2thD) + tr(YEYE*) tr(YDYg) (1 + 2b273D - QthE> + tr (YDYBFYUYJ) (1 + 2b2,3U

+ 2ba3p — 2jup — 2jDU>:| } +0(a®, a®Y? aY*, YO); (5.1)
Ba(a,Y) 1 901 2500 6o N 1
ECAC LD D T, —t<3YY 371V, Y+Y> —
a2 27 20m  dr @ e T\ SYp it ie) o
2302 13702 5 9aias  ajas 29702 A
X l: 100 — 16 8043 — 10 5 — 3asag + 100 (111(11 + 1+ 5 + b2,21 — b171)
21a A 25 A
—|—T(7lna2—6lna¢2—|—1—|— 2+21b222 1b172)—18@%(31na%3—21na3+1—|—§
Y by —b ) +itr(yy+) 20 30y +2 +13a1(B—A+2b _9j )+9ﬂ
2,23 1,3 83 Uty 5 (&%) ag 20 2,2U JU1 4

1
X (B — A+ 2byay — 2jU2) + das (B — A+ 2byay — 2jU3)] + ﬁtr(YDY,j) [ o5+ 303

+2a3+%(BfA+2b2,2D f2jD1) 9y (B A+ 2b, 2Df23D2) (B A+ 2221
- 2jD3>:| + 8%tr(i@i/g) [ 310(“)1 tag+ 92—01 (B—A+2b205 - 2;,;1) (B A+t 2bsap
)] 200 ) (2~ ) 23 ) 1+ i

12 . 5 12 . 9 .
— E]DD) + 1 tr((YEYE)Q) (1 + €b2,2E - E]EE) + 1 (tr(YUYJ)) (1 + 4bs oy — 4JUtU)

+ %(tr(YDYg))2 (1 +dbyop — 4thD) + %(tr(YEYg))Q (1 4 dbyop — 4jEtE) + ;tr(YEYg>

12

. . 3
x tr (YDY5> (1 + 2b22p + 2b2 28 — 2jEtD — 2.7DtE) + §tl“ (YDYEYUYJ) (1 + 2b2 2 + 2b2.2p
—2jUD _2jDU):|} +O(a37a2y27ay47yﬁ); (52)

Bi(a,Y) 1 3 19901 92 2203 1 <13 N (. N
plan ) 2.2 ] Y Yy + =YS YD +3Y]Y)
ol 27 5 + 3UU+3DD+EE>

1 [5131a2 2702  88a2 2301« 1370 ¢ 218902
[ 1 2 5, 1002 4 103 I 1

A
Qog + (1na1+1+§+b2,11

3600 16 9 40 45 100

2
902 A A
— bl,l) + %(7111@2 — 61na¢,2 + 1+ 5 +b2’12 — bl,g) — 220&3(3111(1%3 —2Ilnas + 1+ 5

1 169« . 13
+ b2’13 — blyg):| + @131‘(3/[]}/;) |:20l2 + 2(13 + 1801 (B — A + 2b2,1U — Qle) + 1 2 (B
52 49
— A+ 2b2,1U — 2jU2) + a3 <B — A+ 21)271[] — 2jU3):| tI‘ (YDY+) |:2 + 2ai3 + 180([)1

Tog

) 28«
X (B—A+2b2,1D _2.7D1) +T<B A+2b21p _2.7D2) e

(B —A+2by1p — 2jD3):|

1 3a 27«
+ S?tr(YEYg) [2 4 2o

2 20

_ @ [15 ((YU}/+))( %,MU_ @m) +%H<(YDY5)2)( N sbm zstD>

9o
(B —A+2by15 — 2jE1) + Tg (B — A+ 2bs 1 — 2jE2):|

4 15 11

26 . 14

Jjup + —=b21p

19 19

9 _ 19 2
+ 10 ((VeYi)?) (1 + 4b2ae — 4jsp) + Ftr(YDYgYUY;) (1+ b
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14 17 2, 52 52 5 2, 928 28

_ 5 —tYY+)(1 2 by — 22§ ) f(t YY+>(1 Lhop — =2
1QJDU) + 1 ( r(YoYy) + 17021 17]UtU + 1 r(YpYy ) + 50210 ~ &
, 5 L0212 12 25 . . 14

X thD) + 1 (tr(YEYE )) (1 + ng,IE - g]EtE) + gtr(YEYE ) tl"(YDYD ) (1 + %bz,w
14 . 54 54

~ opdpir + %bzyw — 25],;“3)] } +0(a?,a?Y? ay* V"), (5.3)

The three-loop contributions to these S-functions depend on the finite constants which
fix a renormalization prescription in the one- and two-loop approximations. As we al-
ready mentioned, the one- and two-loop contributions are scheme-independent in agreement
with [94].

In the HD+MSL scheme all finite constants are equal to 0, and RGFs defined in terms
of the bare and renormalized couplings coincide up to a formal renaming of the arguments.
In particular, this implies that the HD+MSL scheme is NSVZ.

6 DR scheme

As a correctness test, we can verify that for certain values of the finite constants (satisfying
eqs. (4.18)—(4.20)) the expressions (4.21)—(4.27) for the two-loop anomalous dimensions and
the expressions (5.1)—(5.3) for the three-loop B-functions reproduce the known results in the
DR scheme [16]. For completeness, in our notation they are presented in appendix C and
are given by egs. (C.1)-(C.7) and (C.8)—(C.10). Note that this test is not trivial because
NSVZ equations usually lead to some scheme independent consequences [25, 26] which
should be satisfied for all renormalization prescriptions. In particular, for MSSM from
egs. (4.21)—(4.27) and egs. (5.1)—(5.3) we see that the terms in the two-loop anomalous
dimensions and in the three-loop g-functions proportional to ajas, ajas, and asaz are
scheme independent and should be the same for all renormalization prescriptions.

According to [47], the renormalization prescription giving the DR scheme for N =1
supersymmetric theories with a single gauge coupling constant (regularized by higher co-
variant derivatives) is given by the equations

é - aio = —2371_02(11’12 —&—lnag,) + %T(R)(ln% —|—1na) — %(CQ)Q(IH% + i +lna¢)
+ 5= Ca tr CO(R) (mt + i +lna) + o-tr (C(R)?) (m% - % = ?)
s R, N (102 = 1= B 5 O, x%), (6.1)
Iz = 20(R)? <1“2 -5 Z;szjmnvmn(lnt 5 D) + 0NN,

(6.2)

where r denotes the dimension of the (simple) gauge group. Also in the DR scheme the
equations (4.12)—(4.14) are certainly satisfied. This implies that the constants j can be
obtained from egs. (4.18)-(4.20).
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The generalization of the relations (6.1) and (6.2) to the case of multiple gauge cou-
plings can be written as

on ook *%02(6711()(111; Jrlna%K) + o ;TaK(lnu +1naK)
_4471_2 (CQ(GK)) (hlﬁ + 1 + lnagp,K> + HCQ(GK) %:TaK<th =+ E + lnaK>
! A1 Ay 1 . A 1 B
Fgr o u T ORar) (I = = §) = g R T (i ~ - 3)
+0(a?, aX?, \*); (6.3)
b — 4K b é_l_é _L * b &_E_E
s ; O Harc)n (hlu 2 2) " T\ N (lnu 3 3)
+0(a?, aX?, \h). (6.4)

Substituting Thx and (A*A),P from tables 2 and 3, respectively, and comparing the results
with eqs. (4.2)—(4.11) we obtain the values of the finite constants

Ga1 = ga2:ga3:_%_§§ gabz—%—gg (6.5)
bi1 = Inas; bio=Tlnas — 61lnays; bis =—2lnas+ 3na,gs, (6.6)
ba11 = b2,12 = b2,13 = b221 = b2.23 = b2 31 = b2 32 = —i - g;
boos = %(f 6lna,.s + 7111(12) - % 7 %;
ba33 = —%(311161%3 — 21na3) — % — ;—2;
ba1a = b22a = b2 32 = *i - g, (6.7)

where a,b = Q,U,D,L,E,H,,H,. (Certainly, a and b can take only such values for that
the corresponding g and b are present in eqs. (4.2)—(4.4) or (4.5)—(4.11).) According to
eqs. (4.18)—(4.20) and (6.5) the values of the constants j in the DR scheme are

. . . 1 A . 1 B
Ja1:]a2:]a3:_§_§§ Jab:—§—5§

. . . . . 1 B

Juw = jptp = jptE = JEtD = JEtE = —5 — 5 (6.8)

Substituting egs. (6.5)—(6.8) into the two-loop anomalous dimensions (4.21)—(4.27) we
obtain the expressions (C.1)—(C.7), which coincide with the result in the DR scheme, see,
g., [16]. Similarly, substituting these values into the three-loop B-functions (5.1)—(5.3) we
reproduce the DR result (C.8)—(C.10) obtained in [16]. Certainly, comparing the results it
is necessary to take into account the difference in notation, namely,

9 93 g3
ar =L ap =22 ag =2 Yy =Yy Yp=Yy  Yg=Y
47 4 47
Bi(e,Y) = 2 81(g,Y); Bo(a,Y) = 22 85(g,); By(a,Y) = L 5y(9,7);
27 2 27
Jo(a,Y) =279(9, )", Fu(o,Y) =2v(g,Y); Ap(e,Y) = 2%(g,Y);
(e, Y) =2v.(9, V)" Fe(a,Y) = 27:(9,Y); Vi (0, Y) = 291, (9,Y);
ﬁHd(Ck,Y) = 27H1 (gaY) (69)
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7 A class of the NSVZ schemes for MSSM

Certainly, for RGFs defined in terms of the renormalized couplings the NSVZ equations

Bs(aY) _ L 5 Ly L5 :
ol 27(1 — 3as/2m) {3 - tr(yQ(mY) + §7U(a’ Y)+ i’yD(% Y))} (1)
52(%)/) _ 1 3. 1. 1.
=g | (e ) e ) + F ey
+ ey (72)
ﬂl(zéy) - _% : % { —11 +tr(é§Q(a,Y) + %%(a,Y) + é%(ouY) + %%(a,y)

1_

#6(0Y)) + (0. ) + 5y Y) (73)

2
are not satisfied for general renormalization prescriptions. However, comparing the anoma-

lous dimensions (4.21)—(4.27) and the gauge S-functions (5.1)—(5.3) we see that the NSVZ
equations for them are valid if the finite constants satisfy the equations

1
ba 11 = 308 (ng +128gy1 + 8gp1 + 27911 + 21691 + 99m,1 + 9ng1);
1 1
ba12 = 5 (9@2 + 3912 + gHu2 T ng2>; by 13 = 11 (ng + 8gus + 29D3);
1 1
bao1 = 5 (ng + 3911 + gH,1 + ngl); b 22 = %0 (279Q2 + 9912 + 39H,2 + 39H 2 + 8b1,2>;
1
b2,23 = 9Q3; ba 31 = I (ng + 8gu1 + 29D1>; b2 30 = gg2;
1 1
ba 33 = 7 (89Q3 +49us +49p3 — 9b1,3>; bo 1y = % (QQU + 16guy + 99HuU>;
1 1
b21p = 7 (QQD +4gpp + 99HdD)§ bo1E = 5 (QLE +49gE + ngE)§
1 1 1
b oy = 3 (gQU + gHuU>; baop = 3 (gQD + ngD); baop = 3 (QLE + ngE);
1 1
ba sy = 3 (QQU + gUU>; baap = 3 (QQD + gDD)- (7.4)

(Note that the values of the constants j are not restricted.) These equations can be
compared with the general result obtained in [57]. Really, according to [57], two different
NSVZ schemes are related by the finite renormalization

A A
ro_ . r_ . NSV _
oy = aly(a, N); N = N(a, \); Za(a,)\,ln —M) za(a,)\)Za(a,)\,lnM> (7.5)

which satisfies the equation
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where By are some constants. Eq. (7.6) generalizes similar results for theories with simple
gauge groups derived in [100-102]. For MSSM from eq. (7.6) we obtain the constraints

1 1 3 ao 1 1

L —1—3——1;(1 +-1 slnzp) =By (7.7

o a3+27rna3 r( In(zg)” + 5z +gzp 53 (7.7)
1 1 1 ap 1 /3 1 1 1
——— -2 = (D n(zg)” + 51 T)——(fl szm,) =B (7.
ah oz moan 2 r{ghn(ze)” + 5 nlzr) or \g M EHu T 5 Ay 2 (78)

4 1 1
- 1n(zQ)T + 3 Inzy + 3 Inzp + 3 ln(zL)T +1Inzg

1 3

21 5
The finite renormalizations (7.5) which relate the HD+MSL scheme to the scheme defined
by eqs. (4.2)—(4.11) are written in the form

1 1
( Inzp, + §lnsz) =B;. (7.9)

11 1] 11a, 909 Tas
S 3 - My FAS PR 1Y
o a2 | 13 7 o 0281 T 22 T 502

1 1 7

4 tT(Y YU)b23U+4 str (YEYD)ngD +0(a?,aY?, Y,
1 1 L 9o 2509 6ous 3
o T an| Ttz gl baos — —2baz + <y tr (Vi Y0 )b
o/2 o o | 1,2 — 20m 2,21 — I 2,22 - 2,23 + 872 (Y, Yy | b2 2v

3
+72t1' (Yng) baop +

) ‘
- —Qtr(YE*YE)bQ,zE +0(a?,aY?, YY),

8

+24:7 2tr(YgYD)bm + 832‘51"(YE+YE>b271E} +0(a? a2 YY), (7.10)
T o 3a 4o 2 y4
(@) =1+ Gt t T2 02 + o 3 903 ~ g QYUYUgQU o QYDYDQQD +0(a®, aY?, Y?);
2w =1+ f?lgm + 43% gus — @ Y Yoy gy + O(a?,aY?,Y?);
zp =1+ 10;1 gp1 + 43a gp3 — % Y3 Ypgpp +O(a?,aY? Y,
(z0)" =1+ golng + 340@ L2 — 8 — YeY goe +0(a?, aY?, Y?);
zg = 1+ %gm 4 — Y YE geE + O(a aYy? Y4)
2, = 1+ ;)OlgHul + 340; JHyu2 — %U"(YJYU)QHuU +0(a?,aY?Y?);
2y = 1+;%ngd1+%ggd2—;?tr(YEYD)ngD—S%tr(YgYE)ngE+O(a2,ozYQ,Y4).

(7.11)

(Here the couplings and renormalization constants without primes correspond to the
HD+MSL scheme.) Substituting the expressions (7.10) and (7.11) into egs. (7.7)—(7.9)
we obtain the relations (7.4) together with the equations

33 1 3
By = — : By = — : By = —— . 12
1 107rb1’1’ 2 27rb1’2’ 3 27rb1,3 (7.12)

Thus, eq. (7.6) has been verified by a nontrivial explicit calculation in such an approxima-
tion where the scheme dependence becomes essential.
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8 Conclusion

In this paper we found the two-loop anomalous dimensions for all MSSM chiral matter
superfields in the case of using the higher covariant derivative regularization and for an
arbitrary renormalization prescription which supplements it. For this purpose we general-
ized the expression (2.14) obtained in [47] to theories with multiple gauge couplings and
constructed the anomalous dimensions defined in terms of the bare couplings in the partic-
ular case of MSSM. They were considered as a starting point for calculating the anomalous
dimensions standardly defined in terms of the renormalized couplings, which depend on
some finite constants determining a subtraction scheme in the lowest approximation. Note
that we use the manifestly N/ = 1 supersymmetric formulation of the theory in terms of
N = 1 superfields and do not break supersymmetry introducing these finite constants. This
implies that we consider a general renormalization prescription compatible with it.

It is known [39] that in A = 1 supersymmetric theories regularized by higher covariant
derivatives RGFs defined in terms of the bare couplings satisfy the NSVZ equation in all
orders independently of a renormalization prescription, at least, for theories with a single
gauge coupling constant. (For a fixed regularization these RGFs simply do not depend on
a renormalization prescription [41].) It is highly likely [57] that a similar statement is also
valid for ' = 1 supersymmetric theories with multiple gauge couplings. Therefore, it is
possible to calculate the g-functions in a certain approximation starting from the anoma-
lous dimensions in the previous orders. In particular, in this paper the NSVZ equations
for theories with multiple gauge couplings [52, 57] were applied for calculating the three-
loop MSSM g-functions. Certainly, these equations should be applied for RGFs defined in
terms of the bare couplings, because the standard RGFs satisfy them only for some special
renormalization prescriptions, e.g., in the HD+MSL scheme [41, 98, 99]. Again, starting
from the three-loop S-functions defined in terms of the bare couplings we obtained the
(scheme-dependent) A-functions defined in terms of the renormalized couplings for an arbi-
trary supersymmetric renormalization prescription which is obtained if the renormalization
constants for all components of each superfield coincide.

As a test of the calculation correctness, we checked that for a certain choice of a
subtraction scheme the results (for both the two-loop anomalous dimensions and the three-
loop fB-functions) coincide with the ones obtained earlier in [16] in the DR scheme. Note
that this test is not trivial due to the existence of some scheme dependent consequences of
the NSVZ equations [25, 26]. Therefore, in this paper we also independently confirm the
results of refs. [16, 85] for RGFs obtained in the DR scheme.

Moreover, we described the class of the NSVZ schemes for MSSM and demonstrated
that the finite renormalizations relating different NSVZ schemes satisfy the equations (7.6)
derived in [57]. Certainly the DR scheme does not enter this class according to [12, 13].
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A Two-loop anomalous dimensions of the matter superfields defined in
terms of the bare couplings

In this appendix we collect the two-loop anomalous dimensions of all MSSM chiral su-
perfields defined in terms of the bare couplings in the case of using the higher covariant
derivative regularization. They were obtained with the help of eq. (2.18) and are given by

the expressions
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B Three-loop MSSM [-functions defined in terms of the bare couplings

Below we present the three-loop expressions for three MSSM gauge S-functions defined in
terms of the bare couplings. They are written for the case of using the higher covariant
derivative regularization and were obtained from the NSVZ equations (3.6)—(3.8) in which
we had substituted the two-loop expressions for the anomalous dimensions (A.1)-(A.7).
The result has the form
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C RGPFs for MSSM in the DR scheme
For completeness, in this appendix we present the expressions for MSSM RGFs in the DR

scheme. Namely, the two-loop anomalous dimensions of the chiral matter superfields in
our notation are written as
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The DR expressions for the three-loop MSSM j-functions (first obtained in [16]) in

this notation take the form
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