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1 Introduction

1.1 Background

Within the perturbative approach to quantum as well as classical field theory, the evaluation
of multi-loop Feynman integrals is necessary for the determination of scattering amplitudes
and related quantities (see [1] for a recent review). The by-now standard evaluation tech-
niques of Feynman integrals (in momentum-space representation) exploit loop-momentum
shift invariance to establish integration-by-parts (IBP) relations [2, 3] among integrals whose
integrands are built from products of the same set of denominators (and scalar products),
but raised to different powers. IBP identities play a crucial role in the calculation of
multi-loop integrals because they can be used to identify a minimal set of elements, dubbed
master integrals (MIs), that can be used as a basis for the decomposition of multi-loop
amplitudes. At the same time, IBP relations can be exploited to build systems of equations
solved by the MIs: differential equations [4–13], dimensional recurrence relations [14, 15],
and finite difference equations [3, 16] are linear relations emerging from the IBP reduction
of integrals which spring from the action of special (polynomial and differential) operators
on the integrands of the MIs. Solving such equations amounts to the actual determination
of the MIs themselves, as an alternative to direct integration.

The derivation of IBP-decomposition formulas requires the solution of a system of
linear relations, generated by imposing that integrals of a total differential (w.r.t. integration
variables) vanish on the integration boundary [3, 17]. For multi-loop, multi-scale scattering
amplitudes, solving the system of IBP relations may, however, represent a formidable
task. This problem has motivated the development of important techniques based on
reconstruction of rational functions using finite fields [18–21].

Already during the early developments of S-matrix theory, it was recognized that
topology and cohomological methods offer a connection between analytic properties of
Feynman integrals and the geometry of their singularity structure, which emerge from the
varieties associated to their graph polynomials. In more recent studies, intersection numbers
for twisted de Rham cohomology groups [22–33] have been exploited to uncover the vector
space structure of Feynman integrals and to derive novel algorithms for the direct projection
of multi-loop integral onto MIs [34–38] (see also [39–42]). Important developments have
been carried out in [43–49] and example of applications to non-linear relations can be found
in [50, 51]. See [1, 42, 52, 53], for recent reviews.

Within this approach, the number of MIs corresponds naturally to the dimension of the
vector space of Feynman integrals, and can be related to topological quantities such as the
dimension of the cohomology groups, the number of certain critical points [34, 54], Euler
characteristics [37, 55–58], as well as to the dimension of quotient rings of polynomials for
zero dimensional ideals (Shape lemma) [38]. Linear relations (for integrals with shifted
indices), Pfaffian systems of differential equations, finite difference equations, as well as
quadratic relations, such as Riemann twisted period relations, can be derived by means of
intersection numbers for differential (twisted) forms.

The pivotal role that twisted de Rham theory seems to have in controlling the algebra
of Feynman integrals, and more generally of Euler integrals, has been stimulating us to
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elaborate on the isomorphism between cohomology groups, whose elements are differential
forms, and D-modules, whose elements are partial differential operators in a Weyl algebra.

Within momentum-space representation, differential operators acting on multi-loop
integrands and integrals are used to establish IBP relations, system of partial differential
equations (SPDE) for MIs, and Lorentz invariance identities [9]. In the former type of
relations, differentiation is carried out w.r.t. the integration momenta, while for the latter
two ones, w.r.t. the momenta of external particles and masses. Also, within parametric
representations of Feynman integrals, it is possible to study the action of differential
operators acting on multi-fold integrands and integrals, distinguishing between the cases
for which the differentiation is carried out w.r.t. integration or external variables.

In [57, 58], it was shown that linear relations between Feynman integrals having
shifted indices, similar to IBPs, can arise from the action of parametric annihilators of the
integrand, within the Lee-Pomeransky (LP) representation. The algebraic properties of these
special partial differential operators, w.r.t. the integration variables, are derived by studying
the ideals of parametric annihilators within the language of D-modules. Remarkably,
the number of master integrals, known to be finite [59], was found to be identical to
the Euler characteristic of the complement of the hypersurface determined by the LP
polynomial [57, 58].

While the previous study focused on D-module theory for differential operators in the
internal variables, in this work, we investigate the properties of differential operators in the
external variables. In particular, we exploit the properties of GKZ-hypergeometric systems,
introduced by Gel’fand, Kapranov, Zelevinsky [60], also known as A-hypergeometric systems,
to derive Pfaffian equations for the generators of the corresponding D-module. As established
in [61], GKZ systems provide a dictionary between Euler integrals and differential operators,
which was later made fully algorithmic in [62]. Feynman integrals can be considered as
special cases of Euler integrals, therefore the Pfaffian matrices derived in the context of
D-module theory correspond to the matrices of the SPDE satisfied by the MIs [63].

The connection between Feynman integrals and the generalized hypergeometric functions
was first proposed by Regge [64] and it was better understood with the knowledge of the
Feynman integrals satisfying a holonomic differential equation [65], where the singularities
of the differential equation were governed by the Landau singularities. The relation between
Feynman integrals and hypergeometric system were studied in [66–72] (and reference therein).
The isomorphism between the GKZ system and the Feynman integral was established in [63]
and later realized within the LP representation in [73, 74].

Within the proposed approach, many problems, including the derivation of differential
equations, are translated into a ring theoretic computation where we may utilize various
notions of computational ring theory such as Gröbner bases. As Gröbner basis calculations
may be computationally expensive, we propose a different approach based on the Macaulay
matrix, which is of central interest in this work. Usually, relations among integrals are
employed to derive systems of partial differential equations. Instead, in the current work,
we reverse the perspective, and show how Pfaffian matrices, built from Maculay matrices,
can be used to derive linear relations for integrals. Moreover, through the secondary
equation introduced in [33], we exploit the role of Pfaffian matrices for building cohomology
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intersection matrices to be used in the master decomposition formula presented in [34–
37, 39, 43], for the direct integral decomposition.

1.2 Macaulay matrix for GKZ system

GKZ systems can be rewritten into systems of differential equations dubbed Pfaffian systems.
By extension, the same holds true for Feynman integrals. A Pfaffian system for a holonomic
function f in variables z = (z1, . . . , zN ) is of the form

∂iF = Pi · F, F = (s1f, . . . , srf), i = 1, . . . , N , (1.1)

where ∂i := ∂/∂zi, si are differential operators acting on f , and Pi are r × r matrices
with entries being rational functions of z. The Pi are called Pfaffian matrices (or simply
Pfaffians) in this paper. They satisfy the integrability condition

∂jPi + Pi · Pj = ∂iPj + Pj · Pi . (1.2)

Note that a Gröbner basis for the annihilating ideal I of the function f gives a Pfaffian
system. Conversely, a Pfaffian system, for instance obtained by Macaulay matrices, gives a
Gröbner basis for the annihilating ideal: we have ∂ie − Pie ≡ 0 mod I, e := (s1, . . . , sr).
Thus, computing the Macaulay matrix naturally leads to a Gröbner basis, as alternative to
the Buchberger algorithm.

The Macaulay matrix is a generalization of the Sylvester matrix. The method was
regarded as less efficient than the Buchberger algorithm in the ring of polynomials until
J.C.Faugére proposed the algorithm F4 in 1999 [75]. F4 constructs Gröbner bases in the
ring of polynomials by a variation of Macaulay matrix together with symbolic preprocessing
of S-pairs. This algorithm is extremely efficient when combined with linear algebra opti-
mization methods, for which reason the Macaulay matrix method is currently attracting
more attention.1

There are several advantages of utilizing Macaulay matrix in the ring of differential
operators. One is that once we construct a relevant Macaulay matrix, we do not need
expensive computation in a non-commutative ring. Moreover, in applications to GKZ-
hypergeometric systems, standard monomials can be obtained without computing Gröbner
bases in the ring of differential operators [77]. Hence, we may assume that a set of standard
monomials is given before constructing a Macaulay matrix. These advantages were utilized
in [78], where they used a Macaulay matrix to evaluate normalizing constants for a statistical
distribution by the holonomic gradient method. This calculation was not possible with the
original holonomic gradient method which utilizes Gröbner bases in the ring of differential
operators (see e.g. [79]).

In this article, we propose a method for constructing smaller Macaulay matrices in the
ring of differential operators compared to [78]. Using smaller Macaulay matrices, one can
construct larger Gröbner bases or Pfaffian systems. By means of smaller Macaulay matrices,
we provide new methods for computing recurrence relations, which may be called IBP

1Note that there is no unique definition of a Macaulay matrix: by a Macaulay matrix, we usually mean
variations of the matrix used by Macaulay in [76].
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identities for GKZ-hypergeometric systems. In this setting, Feynman integrals are viewed
as Mellin transforms of a certain (graph) polynomial G in Schwinger parameters, where the
coefficients in front of the monomials of G are lifted to independent, indeterminate variables
z = (z1, . . . , zN ) [1, 63, 70, 74, 80–83].

The main results of our investigation can be summarised in three points:

• We obtain Pfaffian systems of partial differential equations for GKZ-hypergeometric
functions, proposing a novel and more efficient algorithm to obtain it from Macaulay
matrices, therefore improving the algorithm of [78].

• We use the Pfaffians generated with the Macaulay matrices to obtain linear (contiguity)
relations for the GKZ systems, using the matrix factorial, within the holonomic
gradient method [84];

• We exploit the rational solution of the secondary equation for intersection matrices,
controlled by the Pfaffians [33], to derive a novel version of the integral decomposition
formula [34–37] based on intersection theory.

Our results apply to Feynman integrals, and, more generally to GKZ-hypergeometric
functions.

Our presentation is organized as follows. In section 2, we review basic notions of the
GKZ hypergeometric systems and their Euler integral representation. In section 3, we
discuss Pfaffian systems of differential equations, which are intimately related to GKZ
systems. We present the Macaulay matrix algorithm, based only on linear algebra, to
compute Pfaffian matrices in section 4. We show its application to examples of differential
equations for Feynman integrals in section 5. In section 6, we show how Pfaffians can be used
to derive linear relations for GKZ systems, similar to IBP identities for Feynman integrals.
Finally, in section 7, we present the integral decomposition via intersection numbers, using
Pfaffians to compute the required intersection matrices.

All algorithms in this paper are implemented in the computer algebra system
Risa/Asir [85], Maple [86] and Mathematica [87] with FiniteFlow [88], while the
calculations involving Feynman integrals are checked with LiteRed [89, 90]. Programs
used in this paper and machine readable data can be obtainable from [91].

2 GKZ hypergeometric systems

In this section, we briefly review some basic properties of the GKZ-hypergeometric systems
to fix our notation. Section 2.1 introduces a particular integral representation related to the
GKZ systems we work with, and section 2.2 covers its relation to the algebraic de Rham
cohomology groups. In section 2.3, we describe how to represent a cohomology class by an
element of Weyl algebra. Finally, in section 2.4, we discuss the homogeneity property of
GKZ systems, which allows us to reduce the number of independent variables.
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2.1 Integral representation of GKZ-hypergeometric system

In this work, we consider Euler integrals of the form

fΓ(z) =
∫

Γ
g(z;x)β0 x−β1

1 · · ·x−βnn

dx
x
,

dx
x

:= dx1
x1
∧ · · · ∧ dxn

xn
. (2.1)

Here Γ is a twisted cycle,2 β = (β0, . . . , βn) ∈ Cn+1 are complex parameters, and g(z;x) is
a Laurent polynomial in x

g(z;x) =
N∑
i=1

zi x
αi . (2.2)

The monomials above are written in multivariate exponent notation: given an integer vector
αi ∈ Zn we set

xαi := x
αi,1
1 · · ·xαi,nn , (2.3)

where αi,j stands for the j-th component of the vector αi. Crucially, in (2.2) we regard
each coefficient zi as an independent variable of fΓ(z).

Let us construct the (n+ 1)×N matrix

A =
(
a1 . . . aN

)
, (2.4)

whose columns ai are built from the monomial exponents αi as ai := (1, αi), with the
assumption that Span{a1, . . . , aN} = Zn+1. Moreover, we introduce the (left) kernel of A,
defined as,

Ker(A) =
{
u = (u1, . . . , uN ) ∈ ZN

∣∣ N∑
j=1

uj aj = 0
}
. (2.5)

Then, by using A and β as input, we build the following set of differential operators:

Ej =
N∑
i=1

aj,i zi
∂

∂zi
− βj , j = 1, . . . , n+ 1 (2.6)

�u =
∏
ui>0

(
∂

∂zi

)ui
−
∏
ui<0

(
∂

∂zi

)−ui
, ∀u ∈ Ker(A) . (2.7)

The function fΓ(z), defined in (2.1), satisfies the system of partial differential equa-
tions (PDE)

Ej fΓ(z) = 0 , (2.8)
�u fΓ(z) = 0 , (2.9)

therefore it is dubbed an A-hypergeometric function [60].
2A twisted cycle is an integration contour with no boundary, along which the branch of the integrand is

specified. For details, see [27, Chapter 3].
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2.2 GKZ D-modules and de Rham cohomology

The operators in (2.6)–(2.7) can be regarded as elements of a Weyl algebra

DN = C[z1, . . . , zN ]〈∂1, . . . , ∂N 〉 , [∂i, ∂j ] = 0 , [∂i, zj ] = δij . (2.10)

In multivariate exponent notation, the elements of DN take the form ∑
k∈K hk(z)∂k for

some finite collection of sets K = {Ki ∈ NN0 }i, where the hk(z) are polynomials in z with
complex coefficients. The symbol ∂i is an alias of ∂

∂zi
.

We introduce the GKZ system as the left DN -module DN/HA(β), where HA(β) is the
left ideal generated by Ej and �u,

HA(β) =
n+1∑
j=1
DN · Ej +

∑
u∈Ker(A)

DN ·�u . (2.11)

Further details on D-modules theory can be found in the appendix B.
Let us list a few important properties of GKZ systems and their relations to de Rham

cohomology groups, which are expressed through the following theorems and propositions.

� First, we recall a theorem on the number of solutions to GKZ systems. Let ∆A de-
note the convex polytope spanned by the columns of A. We say β is non-resonant when
it does not belong to any set of the form spanC{ai | ai ∈ F}+Zn+1 where F is a facet of ∆A.

For example, if we take a 2× 2 matrix

A =
(

1 1
0 1

)
,

the polytope ∆A is a segment, and there are exactly two facets,
respectively indicated by the thick segment and the black dots
in the nearby picture. Each facet defines a linear subspace on
which β is resonant.

�
�
�
�
�
�
�
�
�

(0,0)
s
(1,0)

s
(1,1)

c
c
c
c
c

c
c
c
c
c

c
c
c
c
c

c
c
c
c
c

c
c
c
c
c

Theorem 2.1 ([92]).

1. HA(β) is a holonomic ideal.3

2. When β is non-resonant, the holonomic rank r of HA(β) is given by the volume4

r = n! · vol(∆A) . (2.12)

The holonomic rank equals the number of independent solutions to the system of PDEs (2.6)–
(2.7) at a generic point z ∈ CN . The first statement ensures that the rank is finite, while

3For the definition of a holonomic ideal, see appendix B or p. 31 of [93].
4vol stands for the Lebesgue measure and can be calculated with software such as Polymake [94]. The

holonomic rank is the number of standard monomials of RHA(β) (see appendix B).
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the second statement gives an exact formula for computing it in terms of combinatorial data.

� Next, letting Gm (resp. A) stand for the complex torus (resp. complex Affine line)
equipped with the Zariski topology5 and

X :=
{
(z, x) ∈ AN × (Gm)n

∣∣ g(z;x) 6= 0
}
, Y := AN , (2.13)

we denote by π : X → Y the natural projection from the space of GKZ and integration
variables to the space of GKZ variables only.

Setting O(X) := C[z1, . . . , zN , x
±1
1 , . . . , x±1

n , 1
g ], we define an action of DN on f =

f(z, x) ∈ O(X) by

∂

∂zi
• f = ∂f

∂zi
+ β0

( 1
g(z;x)

∂g(z;x)
∂zi

)
f , (2.14)

∂

∂xi
• f = ∂f

∂xi
+ β0

( 1
g(z;x)

∂g(z;x)
∂xi

)
f − βi

f

xi
. (2.15)

The symbol O(X) gβ0x−β1
1 . . . x−βnn denotes the left DN -module O(X) endowed with this

action. Formally, we have the identities

∂

∂zi

(
gβ0 x−β1

1 . . . x−βnn f
)

= gβ0 x−β1
1 . . . x−βnn

(
∂

∂zi
• f
)
, (2.16)

∂

∂xi

(
gβ0 x−β1

1 . . . x−βnn f
)

= gβ0 x−β1
1 . . . x−βnn

(
∂

∂xi
• f
)
. (2.17)

The direct image D-module
∫
πO(X) gβ0 x−β1

1 . . . x−βnn is defined canonically as in ap-
pendix B.

Theorem 2.2 ([61]). Suppose that β is non-resonant. Then there is a canonical isomor-
phism of left DN -modules

DN/HA(β) '
∫
π
O(X) gβ0 x−β1

1 . . . x−βnn . (2.18)

Let us make this isomorphism explicit [95]. We let

Ωk
X/Y =

⊕
J⊂{1,...,n}, |J |=k

O(X) dxJ (2.19)

represent the space of relative k-forms6 onto which we act with the covariant derivative in
integration variables

∇x = dx + β0
dxg(z;x)
g(z;x) ∧ −

n∑
i=1

βi
dxi
xi
∧ . (2.20)

5As a set, the torus Gm (resp. the complex Affine line A) is equivalent to C∗ := C \ {0} (resp. C).
6X/Y does not denote a quotient space. Rather, it is a symbol for relative differential forms, by which

we mean that we do not consider differential forms dzJ where z ∈ Y .
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We then obtain a chain complex

· · · ∇x−→ Ωk
X/Y

∇x−→ Ωk+1
X/Y

∇x−→ · · · . (2.21)

The k-th relative de Rham cohomology group is defined as follows:

Hk := Ker
(
∇x : Ωk

X/Y −→ Ωk+1
X/Y

) /
Im
(
∇x : Ωk−1

X/Y −→ Ωk
X/Y

)
. (2.22)

It can be shown that the direct image D-module
∫
πO(X) gβ0 x−β1

1 . . . x−βnn is isomorphic
to the n-th relative de Rham cohomology group Hn, for which reason the latter is a left
DN -module by theorem 2.2. In fact, theorem 2.2 can be rephrased as

Proposition 2.3. Suppose that β is non-resonant. Then there is a unique isomorphism of
DN -modules

DN/HA(β) ' Hn (2.23)

such that [1] ∈ DN/HA(β) is sent to
[
dx
x

]
∈ Hn .

A consequence of Proposition 2.3, which will be essential for our application of DN -
module theory to Feynman integrals, is the following: given a cohomology class [ω(z)] ∈ Hn,
there exists a differential operator P ∈ DN , which is unique modulo HA(β), such that

P

[dx
x

]
= [ω(z)] . (2.24)

The partial differential operators ∂i in P act on a cohomology class [ω(z)] ∈ Hn via

∂i • [ω(z)] =
[
∂i ω(z) + β0

xαi

g(z;x)ω(z)
]
. (2.25)

The action (2.25) comes from differentiation under the integral sign:

∂

∂zi

∫
Γ
g(z;x)β0 x−β1

1 · · ·x−βnn ω(z) =
∫

Γ
g(z;x)β0 x−β1

1 · · ·x−βnn ∂i • ω(z) . (2.26)

Since a Feynman integral can be represented by a cohomology class [34], we may equally
well consider the operator P as representing that integral. An algorithm for computing P
was developed in [62] and will be outlined in the following section. Moreover, in the view of
the relation of GKZ-systems and Feynman integrals (to be elaborated on in section 5), we
observe that the finiteness of the rank, established by the first statement of Theorem 2.1,
can be related to the finiteness of the number of master integrals [59]. The formula for
its evaluation, given in the second statement of Theorem 2.1, offers an alternative way of
determining dim(Hn), which is ordinarily computed in terms of Betti numbers, by counting
the number of certain critical points, or by Euler characteristics — all of which are related
to the number of master integrals.
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2.3 Representing integrals inside DN -modules

Let us define the following family of differential forms:

ωq = g(z;x)−q0 xq′ dx
x
, q = (q0, q

′) ∈ Z× Zn. (2.27)

Pairing ωq with a cycle Γ yields the integral

〈ωq〉Γ =
∫

Γ
g(z;x)β0−q0 x

−β1+q′1
1 · · ·x−βn+q′n

n

dx
x
. (2.28)

We observe that differentiating the integral w.r.t. zi shifts the q vector by +ai (defined
after (2.4)):

∂i〈ωq〉Γ = (β0 − q0)〈ωq+ai〉Γ . (2.29)

It is also possible to construct an operator which does the opposite, i.e. shifting q by
−ai. In [96] it was shown that there exists a so-called step-up (or creation) operator Ui and
polynomial bi(β) such that

Ui∂i − bi(β) = 0 mod HA(β) . (2.30)

The operator Ui then acts on the integral (2.28) via

Ui〈ωq〉Γ = bi(β − ai)〈ωq−ai〉Γ . (2.31)

The polynomial bi(β) is called the b-function [96]. Its computation is algorithmic and is
implemented in computer algebra packages such as mt_gkz.rr [62].

Now, assume an integral of the form (2.28) is given for some choice of the integer vector
q. Since the ai’s span Zn+1 by assumption, we may write

q =
N∑
i=1

ri ai . (2.32)

The coefficients ri ∈ Z allow us to balance the shifts by ±ai in the q of 〈ωq〉Γ via equa-
tions (2.29) and (2.31). We may therefore construct the operator

P (q) =
∏
ri<0

U−rii

∏
ri>0

1
B(β)B′(β) ∂

ri , (2.33)

with the property that

P (q)〈ω0〉Γ = 〈ωq〉Γ , ω0 = dx
x
. (2.34)

The two functions B(β) and B′(β) are built from the prefactors on the RHSs of (2.29)
and (2.31), and their explicit expressions can be found in [62]. The operator P (q) will be
used extensively in our applications to Feynman integrals, in which case the vector q will
be related to the propagator powers and space-time dimension of a given integral. Let us
observe that the vector (r1, . . . , rN ) in (2.32) is not unique, because we can shift it by adding
a term like ∑i ciui for some choice of ci ∈ Z, and ui ∈ ZN span Ker(A). This freedom can
be exploited to simplify the expression of the operators P (q) appearing in (2.34), and for
practical purposes, we find it convenient to choose ri > 0 for all i, in order to avoid the
appearance of Ui in (2.34), because it may contain monomials in ∂i of large degree.
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2.4 Homogeneity and integrand rescaling

Under rescaling of the zi variables, Euler integrals scale as

fΓ(ta1z1, . . . , t
aN zN ) = tβ0

0 t
β1
1 · · · t

βn
n fΓ(z) , (2.35)

where we used the multivariate exponent notation from (2.3) on the l.h.s. Indeed, (2.35) is
equivalent to homogeneity equations

EjfΓ = 0 , j = 1, . . . , n+ 1 . (2.36)

This property can be exploited to work on a simpler set of integrals obtained from the
original definition by freezing (n+ 1) out of N variables zi to e.g. 1. The residual functional
dependence is then given by N − (n+ 1) ratios of zi-variables. More details can be found
in appendix A.

Example 2.4. Consider the following Euler integral:

fΓ(z) =
∫

Γ
(z1 + z2x1 + z3x2 + z4x1x2)β0 x−β1

1 x−β2
2

dx
x
, (2.37)

which, according to eq. (2.1), corresponds to a 3× 4 matrix:

A =

 1 1 1 1
0 1 0 1
0 0 1 1

 . (2.38)

The homogeneity property from (2.35) involves three rescaling parameters {t0, t1, t2}:

fΓ(t0 z1, t0t1 z2, t0t2 z3, t0t1t2 z4) = tβ0
0 t

β1
1 t

β2
2 fΓ(z1, z2, z3, z4) . (2.39)

To derive this relation we need to rescale integration variables as x1 7→ x1/t1 and x2 7→ x2/t2.
The homogeneity property allows us to factorize the dependence on z1, z2, and z3 by the
following choice of the rescaling parameters ti:

t0 = 1/z1 , t1 = z1/z2 , t2 = z1/z3 . (2.40)

The original Euler integral from (2.37) then becomes

fΓ(z1, z2, z3, z4) = z−β0+β1+β2
1 z−β1

2 z−β2
3 fΓ(1, 1, 1, w) , w = z1 z4

z2 z3
, (2.41)

and so we have effectively rescaled away (n+ 1) of the zi variables.
Finally, we show the differential equation obeyed by the rescaled Euler integral

fΓ(1, 1, 1, z). The generator (2.7) of the original GKZ system with the A-matrix shown
in (2.38) reads as

�ufΓ =
(
∂1∂4 − ∂2∂3

)
fΓ(z1, z2, z3, z4) = 0 . (2.42)
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Upon substitution of the representation (2.41) on the r.h.s., we can determine what the
two terms in �u map to when changing variables to w:

∂1∂4 −→ −w−1(β0 − β1 − β2 − w ∂w)(w ∂w) , (2.43)
∂2∂3 −→ (β1 + w ∂w)(β2 + w ∂w) . (2.44)

These expressions can also be derived from Proposition A.1. Thus the original equation (2.42)
becomes
[
w(1− w) ∂2

w +
(
1− β0 + β1 + β2 − (1 + β1 + β2)w

)
∂w − β1β2

]
fΓ(1, 1, 1, w) = 0 , (2.45)

which we recognize as the differential equation for the Gauß hypergeometric function.

This concludes our short overview of the basic properties of GKZ systems and Euler
integrals. In the following section, we describe how to obtain a Pfaffian system of first-order
PDEs given a basis of Euler integrals.

3 Pfaffian systems

In this section, we introduce notation related to Pfaffian systems to be used in the rest of
this work. In section 3.1, we recall the passage from a holonomic DN -module to a Pfaffian
system, while in section 3.2 and section 3.3 we present two methods for basis change.

For any positive integer N , we write C(z) = C(z1, . . . , zN ) for the field of rational
functions in variables z1, . . . , zN . Let R := C(z1, . . . , zN ) ⊗C[z1,...,zN ] DN be the rational
Weyl algebra;7 note that R also has the structure of a non-commutative ring. Any element
Q ∈ R can be uniquely written in the so-called normally ordered form with all the partial
derivatives commuted to the right:

Q =
∑
k

qk · ∂k , qk ∈ C(z) . (3.1)

As we review in appendix B, given a Gröbner basis G of a left ideal I in R, we denote
by8 Std the standard monomials w.r.t. G and a term order ≺. For our purposes it is enough
to consider a zero-dimensional left ideal I generated by a finitely many elements:

I := 〈h1, h2, . . . , hd〉 , hi ∈ R . (3.2)

The ideal I is zero-dimensional iff the corresponding set of standard monomials Std is finite
(see [97, §6]).

7The subscript of the tensor product ⊗ denotes the ring over which the product is defined. For example,
it implies the identity: r ⊗ pQ = r p⊗Q, for r ∈ C(z), p ∈ C[z], and Q ∈ DN .

8When considering Std as a basis, we instead write e(Std).
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3.1 From DN -module to DEQ system

We consider a left R-module M which is finite dimensional over C(z). Such a left R-
module arises as an extension R⊗DN M ′ for some other holonomic DN -module M ′. When
{u1, . . . , ur} ⊂M is a C(z)-basis, one can find an r × r matrix Pj(z) with entries in C(z)
such that

∂j(u1, . . . , ur)T = Pj(z) · (u1, . . . , ur)T . (3.3)

We call Pj(z) the Pfaffian matrix in direction zj . Let us now consider the GKZ DN -
module. Namely, we consider a left R-module M = R⊗DN (DN/HA(β)), where HA(β) is as
in (2.11). In view of Proposition 2.3, each ui corresponds to a cohomology class [ωi] ∈ Hn.
Integrating (3.3) over a cycle Γ, we obtain an identity

∂j
(
〈ω1〉Γ, . . . , 〈ωr〉Γ

)T = Pj(z) ·
(
〈ω1〉Γ, . . . , 〈ωr〉Γ

)T
, (3.4)

which is precisely the system of differential equations that the master Euler integrals are
subject to. A standard method of computing the Pfaffian matrix Pj(z) is to use a Gröbner
basis of R ([97, Chapter 6]). Unfortunately, this approach is far from effective. We develop
a different approach based on the Macaulay matrix in section 4.

Our construction of Pfaffian matrices by the Macaulay matrix method, to be given in
section 4, will assume that a set of standard monomials S for GKZ ideal RHA(β) is given.
Note that the set S gives rise to a C(z)-basis of M . Although one usually computes a
Gröbner basis of the ideal RHA(β) to find the set S, we claim that the set S can be found
by computing a Gröbner basis of an ideal in a commutative subring of R. This reduces the
cost of computation in a significant way.

For this purpose, we fix a term order ≺ on the commutative ring C[∂1, . . . , ∂N ]. It
naturally induces a term order ≺ on the ring R because a term order on the ring R is a
total order on the set of monomials ∂k (cf. [97, §6.1]). We denote by in≺(I�) the ideal
of C[∂1, . . . , ∂N ] generated by initial terms of I� = 〈�u〉 by the order ≺, where the box
operators are given in (2.7). Any generator of in≺(I�) can be written as ∂k = ∏N

i=1 ∂
ki
i . Let

us write θi for the Euler operator zi∂i and consider a subring of R generated by θ1, . . . , θN
over C. We will denote this ring by C[θ], which is clearly a commutative ring. By the
correspondence θk ↔ ∂k, we equip a term order ≺ on the ring C[θ] induced from ≺. We
then define the distraction of the element ∂k ([93, p.68]) by

N∏
i=1

θi(θi − 1) · · · (θi − ki + 1) . (3.5)

We consider the ideal I ′ of the ring C[θ] generated by the distractions of the generators of
in≺(I�) and the E1, . . . , En+1 from (2.6). The following theorem is essential whose proof is
based on a technique called Gröbner deformation as we will see in appendix B.

Theorem 3.1. The set of standard monomials of I ′ coincides with that of GKZ ideal
RHA(β) when β is generic. More concretely, if {θa1 , . . . , θar} is a set of standard monomials
of I ′, the set {∂a1 , . . . , ∂ar} is a set of standard monomials of RHA(β).
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The ideal I� is known as toric ideal. Computation of a Gröbner basis of such an ideal is
effective as it is generated by binomials. Thus, the computation of a set of generators of the
ideal I ′ is efficient. Running Buchberger’s algorithm for the commutative ideal I ′, we obtain
a set of standard monomials of GKZ ideal RHA(β) by Theorem 3.1. We emphasize that the
process explained above does not involve any computation in the non-commutative ring R.
Finally, we remark that the process above is implemented as a function cbase_by_euler
in the Risa/Asir package mt_gkz.rr.

Example 3.2. Let us consider a matrix

A =
(

1 1 1 1
0 1 3 4

)
.

Let ≺ be the lexicographic order such that ∂1 � · · · � ∂4. The ideal in≺(I�) is generated by
monomials

∂2∂
2
4 , ∂1∂4, ∂1∂

2
3 , ∂

2
1∂3.

The distractions of them are

θ2θ4(θ4 − 1), θ1θ4, θ1θ3(θ3 − 1), θ1(θ1 − 1)θ3.

We compute the Gröbner basis of an ideal generated by these distractions and θ1 + θ2 + θ3 +
θ4 − b1 and θ2 + 3θ3 + 4θ4 − b2 with respect to �. The set of the standard monomials is
{θ3, θ

2
4, θ4, 1}. Thus, the set of the standard monomials of GKZ ideal RHA(β) is given by

{∂3, ∂
2
4 , ∂4, 1}.

3.2 Basis change

Assume that we know Pfaffians P (Std)
i in a basis of standard monomials e(Std). In this

section we show how to gauge transform the system into an arbitrary basis e.
Consider an ideal I over a rational Weyl algebra R. Let a basis e = (e1, . . . , er)T ⊂ R/I

be given. In the following, the symbol ◦ denotes multiplication inside of R, i.e. we write
∂i ◦ h when h ∈ R. We introduce ◦ to distinguish composition in the ring from the action
∂iH when, say, H is a matrix with entries in the field C(z).

We seek the Pfaffian matrices Pi ∈ C(z)r×r satisfying the differential equation for the
basis e:

∂i ◦ e = Pi · e . (3.6)

Assume that we know P
(Std)
i ∈ C(z)r×r in

∂i ◦ e(Std) = P
(Std)
i · e(Std) , (3.7)

where e(Std) = {∂α} ⊂ R/I are the standard monomials. If we could find a matrix
G ∈ C(z)r×r relating the two bases,

e = G · e(Std) , (3.8)
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then we could relate the Pfaffian matrices in different bases via a gauge transformation:

Pi =
(
∂iG+G · P (Std)

i

)
·G−1 . (3.9)

Note that G is invertible by assumption, since both e(Std) and e are bases.
By (3.9), our problem is reduced to finding the transformation matrix G. To this end,

we begin by expanding e in terms of e(Std):

e =
∑
k∈K

G
(1)
k ·

(
∂k ◦ e(Std)

)
, K ⊂ NN0 , (3.10)

for some matrix G
(1)
k ∈ C(z)r×r. Here we relied on the fact that any monomial of e is

divisible by an entry of e(Std). Next we transform each ∂k ◦ e(Std) into the form G
(2)
k · e(Std)

via repeated application of (3.7). Let us illustrate the last step with an example.

Example 3.3. Given k = {1, 1, 0, . . . , 0}, we can rewrite ∂k ◦ e(Std) as

∂1 ◦ ∂2 ◦ e(Std) = ∂1 ◦
(
P

(Std)
2 · e(Std)

)
(3.11)

= ∂1P
(Std)
2 · e(Std) + P

(Std)
2 ·

(
∂1 ◦ e(Std)

)
(3.12)

= ∂1P
(Std)
2 · e(Std) + P

(Std)
2 · P (s)

1 · e(Std) . (3.13)

We hence have that G(2)
k = ∂1P

(Std)
2 + P

(Std)
2 · P (Std)

1 .

We conclude that the gauge transformation matrix G decomposes as follows:

G =
∑
k∈K

G
(1)
k ·G

(2)
k , (3.14)

where each G(2)
k is built from the matrix products between Pfaffians and derivatives thereof.

Thus, equations (3.9), (3.14) constitute one way to translate the Pfaffian matrices between
different bases.

3.3 Basis change without derivatives

The matrix G(2)
k appearing in the gauge transformation matrix (3.14) involves derivatives

of Pfaffian matrices. If we were to work over a finite field, there would be no zi variables
with respect to which we could take the derivative. This situation is amended, in the GKZ
case, by the following proposition.

Proposition 3.4. The derivative of a Pfaffian matrix can be computed solely via addition
and matrix multiplication from

(∂iPj)(β) =
(
Pj(β − ai)− Pj(β)

)
Pi(β) . (3.15)

Proof. Let

F (β) := 1
Γ(β0 + 1)

(
s1fΓ(β), . . . , srfΓ(β)

)
(3.16)
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be a solution to a GKZ Pfaffian system given some monomial basis si = ∂ki , ki ∈ NN0 , for
which si∂j = ∂jsi. The following relations hold true:

∂jF (β) = Pj(β)F (β) , (3.17)
∂jF (β) = F (β − aj) . (3.18)

Differentiating (3.17) w.r.t. zi, we get

∂i∂jF =
(
∂iPj

)
F + Pj

(
∂iF

)
(3.19)

=
(
∂iPj

)
F + PjPiF , (3.20)

where we omitted the argument β for clarity. On the other hand, differentiating (3.18)
we get

∂i∂jF (β) = ∂iF (β − aj) (3.21)
= F (β − aj − ai) (3.22)
= Pj(β − ai)Pi(β)F (β) , (3.23)

where we applied the identity Pk(β)F (β) = F (β−ak) twice in the last step. The proposition
follows upon equating (3.20) and (3.23) and isolating

(
∂iPj

)
(β).

Pfaffian systems introduced above are systems of linear partial differential equations
(SPDE), satisfied by the solutions of a given GKZ system. As we will see later on, these
equations are extremely useful in physical applications. Next we present an efficient way to
calculate the Pfaffian systems, essentially via linear algebra.

4 Constructing Pfaffian systems from Macaulay matrices

In this section we describe a method for building the Pfaffian systems defined in eq. (3.3).
The method amounts to first building an auxiliary matrix M called the Macaulay matrix,
and then solving a special system of linear equations. In section 4.1 we derive the Macaulay
matrix (4.5) and the linear system (4.12), (4.13) that it satisfies. In section 4.2 we then
present Algorithm 1 for calculation of Pfaffian systems. In section 4.3 we give several
remarks about the algorithm and its efficiency. We close this section with several examples
in section 4.4, showcasing the steps and runtime statistics of the algorithm in practice.

4.1 From Pfaffian to Macaulay matrix

We present how the Macaulay matrix arises from a Pfaffian system in the basis of standard
monomials. Since we will focus our discussion on the case of GKZ systems later on, based
on the comments at the end of section 3.1 we may safely assume that

a set of standard monomials Std := {∂k} is given,

and that its size equals the holonomic rank |Std| = r, defined in (2.12). We remind that ∂k
denotes a monomial in derivatives, while ∂i denotes a single derivative w.r.t. zi.
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Now, the Pfaffian matrix Pi in the direction zi, defined in (3.3), is specified by the
following relation:

∂i ◦ Stdα =
∑
β

(Pi)αβ · Stdβ in R/I , (4.1)

where ◦ denotes composition in a ring R, α ∈ {1, . . . , |Std|} and I is a general holonomic
ideal for now. Using the expression (3.2) for I, we carry over the relation (4.1) from the
quotient R/I to the whole ring R as

∂i ◦ Stdα =
∑
j

Qαj ◦ hj +
∑
β

(Pi)αβ · Stdβ in R , (4.2)

where each Qαj is an element of R and j ∈ {1, . . . , d} labels the ideal generators hj
from (3.2). Now we bring the operators Qαj into normal ordered form as in (3.1):

Qαj =
∑
k

qαjk · ∂k, ∂k ∈ Der , (4.3)

where qαjk ∈ C(z)|Std|×d×|Der| is a newly introduced rank 3 tensor,9 and we denote by Der
the set of all partial derivatives ∂k appearing on the r.h.s.

Now we are ready to introduce the main player of this section: the Macaulay matrix.
It arises due to the normal ordered form of the first sum in (4.2). Substitution of the Qαj
operators from (4.3) back into (4.2) results in the action of ∂k ∈ Der on the ideal generators
hj , which we bring to normal ordered form as follows:

∂k ◦ hj =
∑
L

MkjL · ∂L, ∂L ∈ Mons . (4.4)

Here we introduced a rank 3 tensorMkjL ∈ C(z)|Der|×d×|Mons| and a set Mons, which collects
the partial derivatives ∂L emerging on the r.h.s. Upon concatenation10 of the first two
indices k and j, the rank 3 tensor MkjL turns into the Macaulay matrix

MRL := M(kj)L ∈ C(z)(|Der|·d)×|Mons| , (4.5)

where the combined index R := (kj) runs over a product of sets R ∈ Der × {1, . . . , d}.
Plugging equations (4.3), (4.4), (4.5) back into the main relation (4.2) for the Pfaffian, we
observe that the first term can be written as a product of matrices:∑

j

Qαj ◦ hj =
∑
RL

qαRMRL · ∂L ≡ (C ·M ·Mons)α , (4.6)

where C ∈ C(z)|Std|×(|Der|·d) stands for the coefficient matrix CαR := qα(jk) of (4.3), and we
regard the set Mons as a column vector.

The set Mons, containing all monomials in ∂i, can be partitioned into two disjoint sets
consisting of standard and, what we call, exterior monomials:

Mons = Ext t Std , Ext := Mons \ Std . (4.7)
9The notation anm ∈ C(z)N×M means that the indices range over the sets: n ∈ {1, . . . , N} and

m ∈ {1, . . . ,M}.
10In Mathematica, this operation can be done with Flatten[#, {{1, 2}, {3}}]&.
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This partition naturally induces a column partition of the Macaulay matrix:

M = (MExt|MStd) , (4.8)

with the two column blocks MExt ∈ C(z)(|Der|·d)×|Ext| and MStd ∈ C(z)(|Der|·d)×|Std|. Simi-
larly, the l.h.s. of (4.2) can be decomposed as11

∂i ◦ Std =: C ′ ·Mons (4.9)
=: C ′Ext · Ext + C ′Std · Std , (4.10)

where we introduced the coefficient matrix C ′ ∈ C(z)|Std|×|Mons| in addition to its column
blocks C ′Ext ∈ C(z)|Std|×|Ext| and C ′Std ∈ C(z)|Std|×|Std|, such that C ′ = (C ′Ext|C ′Std) in
accordance with (4.8).

Finally substituting equations (4.6), (4.8), (4.10) into the main relation (4.2), we arrive
at the following matrix relation:

(C ′Ext − C ·MExt) · Ext + (C ′Std − C ·MStd) · Std = Pi · Std . (4.11)

Due to the linear independence of Ext and Std, this is equivalent to a system

C ′Ext − C ·MExt = 0 ,
C ′Std − C ·MStd = Pi .

(4.12)
(4.13)

This system relates the Macaulay matrix M to the Pfaffian Pi in the direction zi, and is
central to our computational method presented next.

4.2 From Macaulay matrix to Pfaffian

Now we reverse the logic in the derivation above: although we started from (4.2), we would
like to regard it as the goal. We view (4.2) and its matrix version (4.11) as a system of
linear equations for the unknown matrix of coefficients C. Given the Macaulay matrix M ,
the idea is to solve first the system (4.12), and then substitute the solution into (4.13) in
order to obtain the desired Pfaffian matrix Pi.

Let us now turn this idea into a practical algorithm. Say we would like to compute Pi
in direction zi given a zero-dimensional ideal I. First, given a D ∈ Z≥0 we construct the
set of all derivatives whose degree is bounded by D:

DerD := {∂k}|k|≤D . (4.14)

Next, similarly to (4.4), we write MonsD for the set of monomials in derivatives appearing
in the normal ordered form of {∂k ◦ hj}∂k∈DerD, j=1,...,d. We have

{∂k ◦ hj}∂k∈DerD, j=1,...,d = (MD)(kj)L · ∂L (4.15)
≡MD ·MonsD , (4.16)

where we call MD the Macaulay matrix of degree D (compare to (4.5)). We adjust the
maximal degree D and the sets DerD and MonsD until the linear system (4.12) can be
resolved w.r.t. the unknown matrix C. Finally, the desired Pfaffian follows from using C
in (4.13). We summarize this procedure in Algorithm 1.

11Note that C′, C′Ext and C′Std depend on the direction zi, since these matrices are born from the expression
∂i ◦ Std.
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Algorithm 1 : Pfaffian matrix by Macaulay matrix method
Input: Standard monomials Std, generators h1, h2, . . . of a zero-dimensional ideal I ⊂ R,
direction i.
Output: Pfaffian matrix Pi.

1: D := 0;
2: M := M0 = (MExt|MStd);
3: Mons := Mons0;
4: while (∂i ◦ Std cannot be written as C ′ ·Mons) or (C ′Ext = C ·MExt is not solvable

w.r.t. C) do
5: D + +;
6: M ←MD;
7: Mons← MonsD;
8: Solve ∂i ◦ Std = C ′ ·Mons and C ′Ext = C ·MExt;
9: Return Pi := C ′Std − C ·MStd;

Proposition 4.1. Algorithm 1 outputs the Pfaffian matrix Pi in a finite number of steps.

Proof. Since the left ideal I is zero-dimensional, there exists a matrix Pi with entries in
C(z) such that ∂i ◦ Std− Pi · Std ≡ 0 mod I (see e.g. [97, Chap 6]). This means that the
l.h.s. can be expressed in terms of the generators {h1, . . . , hd} inside the ring R, as in (4.2).
Let N0 be the maximal degree of the monomials ∂k ∈ Der from (4.3). Then Algorithm 1
outputs the Pfaffian matrix Pi until the degree parameter D reaches N0.

4.3 Discussion

Some comments about Algorithm 1 are in order.

Other directions. The condition on line 4 can be extended by checking ∂i ◦ Std for
all i = 1, . . . , N to generate a Macaulay matrix MD large enough for calculating Pfaffian
matrices in all directions {Pi}i=1,...,N .

Rank of MExt. The Macaulay matrix MExt produced by the algorithm may not be of
full rank. This makes the matrices MExt,MStd smaller and therefore the whole algorithm
more efficient than the algorithm of [78].

Degree of freedom. The unknown coefficient matrix C, which solves the system (4.12),
can be chosen up to the left nullspace of the Macaulay matrix M . Indeed, suppose that both
C = C(1) and C = C(2) solve the system (4.12). Clearly, we have (C(1) − C(2)) ·MExt = 0.
Uniqueness of the Pfaffian matrix alongside (4.13) imply (C(1) − C(2)) ·MStd = 0 as well.
Therefore, we deduce

(C(1) − C(2)) ·M = 0 , (4.17)

according to the partition (4.8) of the Macaulay matrix.
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Solvability condition. The system (4.12) has a solution when the rows of the C ′1 matrix
lie in the row space of the MExt block of the Macaulay matrix. This can be formulated as a
condition on the rank of the following matrix:

rank

MExt

C ′Ext

 = rank
[
MExt

]
. (4.18)

Probabilistic method. Checking the solvability condition (4.18) can be computationally
demanding. In order to reduce the computation time and memory usage we may employ the
so-called probabilistic method. In the GKZ case, it amounts to setting the all the variables
zi and parameters β (see (2.1)) to numbers in Q or a finite field Fp, which greatly simplifies
the row reduction required for the solvability check.

Smaller Macaulay matrix. Once the condition (4.18) is proved (almost surely, if one
employs the probabilistic method), we further simplify the system (4.12) by selecting a
subset of rows of the Macaulay matrix necessary for solving the system. In practice, we
perform such a selection using the probabilistic method together with a determination of
the left nullspace of the matrix on the l.h.s. of (4.18).

Finite fields. For fixed values of the variables zi and the exponents β, numerical values
of the Pfaffian matrix Pi can be efficiently obtained via the Macaulay matrix method. Note
that one only needs numerical values of Pi to obtain the values of normalizing constants for
a certain class of statistical distributions, see [78]. In our applications, however, we would
like to (re)construct the full rational dependence of Pi on all the variables zi and β. When
it becomes too demanding to solve the system (4.12) analytically, the probabilistic approach
can be used in with tandem with rational function reconstruction over finite fields Fp.
Indeed, using modular arithmetic (over prime numbers) and the Chinese remainder theorem,
the rational entries of Pi ∈ C(z)r×r can be efficiently obtained by means of functional
reconstruction algorithms for multivariate, rational functions, which were developed in the
context of scattering amplitudes in [19]. This algorithm reconstructs analytic expressions
for polynomials and rational functions via repeated numerical evaluation over finite fields
by means of iterative application of Newton’s polynomial representation and Thiele’s
interpolation formula. The reconstruction algorithm is implemented in the public code
FiniteFlow [21], which uses so-called dataflow graphs for building numerical algorithms
over finite fields.

Tests. Once we reconstruct the Pfaffian matrices from their numerical values over the
finite fields, we check correctness as follows. Recall that Pfaffian equations (4.1) can be
regarded as a Gröbner basis in R (see the discussion below eq. (1.2)). Therefore, if the
solution rank of the left ideal (3.2) is known to be r, the correct r × r Pfaffian matrices
should satisfy the integrability condition (1.2), and should also reduce the generators hi of
the ideal (3.2) to 0 via the Pfaffian equations (4.1).
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Further improvements. Let us comment on potential ways to improve the efficiency of
the Algorithm 1. By virtue of (4.16), to generate the Macaulay matrix of degree D we are
instructed to act with DerD, the set of all derivatives of degree ≤ D (see (4.14)), on the
generators of ideal. The set DerD might be larger than necessary, so one way to improve
the Algorithm 1 is to find a smaller set of derivatives needed for the construction of the
Macaulay matrices. Another important direction of study is the prediction of singularities
for the Pfaffian matrix in question, since such knowledge would greatly simplify the solution
of (4.12) using rational reconstruction.

4.4 Examples

Example 4.2. Let us apply the Macaulay matrix method to compute the Pfaffian system
for the Appell function F1(α, β, β′, γ; z1, z2).

Setup. Consider the following integral representation:

Γ(β) Γ(β′) Γ(γ − β − β′)
Γ(γ) F1(α, β, β′, γ; z1, z2)

=
∫

∆2
(1− x1 − x2)γ−β−β′−1(1− z1x1 − z2x2)−α xβ1x

β′

2
dx1 dx2
x1x2

(4.19)

= Γ(1− γ + α+ β + β′)
Γ(1− γ + β + β′)Γ(α)

∫
(0,+∞)×∆2

g(z;x)γ−α−β−β′−1 xα0x
β
1x

β′

2
dx0 dx1 dx2
x0x1x2

, (4.20)

where12

g(z;x) = 1− x1 − x2 − x0(1− z1x1 − z2x2) , (4.21)

and ∆2 is the two-dimensional simplex ∆2 := {(x1, x2) ∈ R2 | x1, x2, 1− x1 − x2 ≥ 0}. The
ideal of the corresponding GKZ system is generated by three independent differential oper-
ators I = 〈h1, h2, h3〉. However, to compute the Pfaffian matrices with generic parameters
{α, β, β′, γ} and {z1, z2}, it is enough to consider only the following pair:

h1 = p2 ∂1∂2 + p3 ∂
2
2 + p4 ∂1 + p5 ∂2 + p6 ,

h2 = q2 ∂1∂2 + q4 ∂1 + q5 ∂2 ,
(4.22)

where the abbreviated coefficients are

p2 = z1(1− z2) , p3 = z2(1− z2) , p4 = −β′z1 ,

p5 = γ − z2(α+ β′ + 1) , p6 = −αβ′ , (4.23)
q2 = z1 − z2 , q4 = −β′ , q5 = β .

Basis. The GKZ system in question has rank 3. The column vector of standard monomials
reads

Std =

 ∂1
∂2
1

 . (4.24)

12Although this polynomial is not written in the standard form (2.2), it can be shown that F1 does indeed
satisfy a GKZ system.
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Macaulay matrix. For brevity, let us only consider the Pfaffian matrix P1 in the direction
z1. According to (4.1), our task is to express

∂1 ◦ Std =

 ∂2
1

∂1∂2
∂1

 (4.25)

as a linear combination of Std over the rational function field Q(α, β, β′, γ)(z1, z2).
Following the steps of Algorithm 1, we build the Macaulay matrix of degree D (4.16)

as follows. First we act with Der = {1, ∂1, ∂2}, the list of all possible derivatives of degree
D ≤ 1, on the two generators {h1, h2} from (4.22) Then we bring the ensuing expressions
into normally ordered form (see (3.1)) and rearrange the result into a matrix. The rows
of the matrix are labeled by the list of operators {h1, ∂1h1, ∂2h2, h2, ∂1h2, ∂2h2}, while the
columns correspond to the monomials Mons appearing in the normally ordered form of
these operators. Explicitly, we get the Macaulay matrix of degree13 D = 1

∂2∂
2
1 ∂2

2∂1 ∂3
2 ∂2

1 ∂2∂1 ∂2
2 ∂1 ∂2 1



h1 0 0 0 0 p2 p3 p4 p5 p6
∂1h1 p2 p3 0 p4 p5 +p2,1 p3,1 p6 +p4,1 p5,1 p6,1
∂2h1 0 p2 p3 0 p4 +p2,1 p5 +p3,2 p4,2 p6 +p5,2 p6,2
h2 0 0 0 0 q2 0 q4 q5 0
∂1h2 q2 0 0 q4 q5 +q2,1 0 q4,1 q5,1 0
∂2h2 0 q2 0 0 q4 +q2,2 q5 q4,2 q5,2 0

, (4.26)

where pi,j = ∂zjpi and qi,j = ∂zjqi. As dictated by (4.8), we decompose the Macaulay
matrix into two blocks: the second block MStd has columns labeled by Std, and the first
one MExt by the rest of the derivatives

Ext = Mons \ Std =
(
∂2∂

2
1 , ∂

2
2∂1, ∂

3
2 , ∂

2
1 , ∂2∂1, ∂

2
2
)T
. (4.27)

Explicitly, we obtain the blocks

MExt =



0 0 0 0 z−2 z1 z2z
−
2

z−2 z1 z2z
−
2 0 −β′z1 (−β′−α−2)z2 +γ+1 0

0 z−2 z1 z2z
−
2 0 −β′z1 +z−2 (−β′−α−3)z2 +γ+1

0 0 0 0 z1−z2 0
z1−z2 0 0 −β′ β+1 0

0 z1−z2 0 0 −β′−1 β


,

(4.28)
13Had we used all three generators of the ideal, it would have been enough to consider the degree D = 0

Macaulay matrix. However, the shortened setup (4.22) considered here provides a better showcase for the
steps of Algorithm 1.
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where z−2 := 1− z2, and

MStd =



−β′z1 (−β′ − α− 1)z2 + γ −αβ′

(−α− 1)β′ 0 0
0 (−α− 1)(β′ + 1) 0
−β′ β 0

0 0 0
0 0 0


. (4.29)

Pfaffian matrix. We now turn to the linear system (4.12), (4.13). The coefficient matrices
C ′Ext and C ′Std, defined in (4.10), are obtained by expressing (4.25) in terms of the sets (4.24)
and (4.27):

∂1◦Std =

 ∂2
1

∂1∂2
∂1

=

 0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 0





∂2∂
2
1

∂2
2∂1
∂3

2
∂2

1
∂2∂1
∂2

2


+

 0 0 0
0 0 0
1 0 0


 ∂1
∂2
1

≡C ′Ext ·Ext+C ′Std ·Std .

(4.30)
Let C = (cij | 1 ≤ i ≤ 3, 1 ≤ j ≤ 6) be a matrix of unknowns. We require that C satisfies
the system (4.2). In this case,

C ·



h1
∂1h1
∂2h1
h2
∂1h2
∂2h2


+ P1 · Std = ∂1 ◦ Std . (4.31)

Upon collecting terms proportional to Ext, we arrive at the system (4.12) to be solved
with respect to C. By the rank condition (4.18), we note that the degree D = 1 Macaulay
matrix (4.26) does indeed lead to a solution. Once C is determined, (4.13) yields the
Pfaffian matrix

P1 =


(−(α+β−β′+1)z1+γ−β′)z2+(α+β+1)z2

1−γz1
(1−z1)z1(z1−z2)

−βz2
2+βz2

(1−z1)z1(z1−z2)
βα

(1−z1)z1
β′

z1−z2
−β
z1−z2 0

1 0 0

 . (4.32)

�

Example 4.3. Consider the matrix

A5 =



1 1 1 1 1 1 1 1 1 1 1
1 0 0 0 0 1 1 1 0 0 0
0 1 0 0 0 0 0 0 1 1 0
0 0 1 0 0 1 0 0 0 0 1
0 0 0 1 0 0 1 0 1 0 0
0 0 0 0 1 0 0 1 0 1 1


.
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The solution rank of this GKZ system is r = 13, and a standard basis obtained via the
method of [77] reads:

Std = (∂9∂
2
11, ∂

2
9 , ∂

2
10, ∂8∂11, ∂9∂11, ∂10∂11, ∂

2
11, ∂7, ∂8, ∂9, ∂10, ∂11, 1)T .

The Macaulay matrix MExt of degree D = 2 is a 189 × 113 matrix of rank 113 (over
Z/65537Z). The Macaulay matrix is obtained in 0.558 sec.14 It took 0.603 sec to obtain
the numerical Pfaffian matrix in the direction z6 for fixed numerical values of all z variables
and β parameters. �

Example 4.4. Consider the matrix

A6 =



1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 0 0 0 0 0 1 1 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 1 1 1 0 0 0
0 0 1 0 0 0 1 0 0 0 0 0 1 1 0
0 0 0 1 0 0 0 1 0 1 0 0 0 0 1
0 0 0 0 1 0 0 0 1 0 1 0 1 0 0
0 0 0 0 0 1 0 0 0 0 0 1 0 1 1


,

whose solution rank is r = 33. Our choice of standard basis is

Std =
(
∂3

15, ∂
3
5 , ∂5∂6∂11, ∂

2
6∂11, ∂3∂

2
6 , ∂4∂

2
6 , ∂

3
6 , ∂11∂15, ∂14∂15, ∂

2
15, ∂

2
4 ,

∂5∂11, ∂2∂5, ∂3∂5, ∂4∂5, ∂
2
5 , ∂6∂11, ∂2∂6, ∂6∂14, ∂3∂6, ∂6∂15,

∂4∂6, ∂5∂6, ∂
2
6 , ∂11, ∂2, ∂14, ∂3, ∂15, ∂4, ∂5, ∂6, 1

)T
.

Using the homogeneity propery discussed in section 2.4, we may fix the following variables:
z1 = z7 = z8 = z9 = z10 = z12 = z13 = 1. The block MExt of the Macaulay matrix of degree
D = 2 turns out to be a sparse 945× 958 matrix, whose rank is 534 by the probabilistic
method. Therefore, there are many rows that are not needed for solving the system (4.12).
Again, using the probabilistic method over the finite field Z/65537Z, we determine a
maximal set of independent rows of the matrix MExt. We find that a 534 × 958 matrix
NExt is enough to solve a smaller version of the system (4.12), namely C ′Ext = C ·NExt. As
was mentioned in the Smaller Macaulay Matrix paragraph of section 4.3, we can further
reduce this new system as follows: since there are exactly 27 independent row vectors in
C ′Ext, we may choose only a subset of the row vectors in NExt, whose span includes the
independent row vectors of C ′Ext.

The Macaulay matrix is then obtained in 15.549 sec. It took 0.66 sec to calculate the
Pfaffian matrix in the z6 direction for fixed numerical values of variables z and parameters
β. We leave the problem of full functional reconstruction of the Pfaffian matrices of this
example for future work.

�
14Our implementation is in the Risa/Asir system and the language C. It is executed on a machine with

an Intel Core i7-10700K processor of 3.8GHz and 16Gb of RAM. We do not use multicore functionality. All
timings are taken on this machine unless specified otherwise.
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We have proposed an efficient Macaulay matrix method to construct Pfaffian systems.
It can be applied to relatively large systems which are not feasible by Gröbner basis methods
in the ring of differential operators. The latter methods are usually feasible for systems of
up to, approximately, rank 10.

5 Macaulay matrix method and generalized Feynman integrals

The relation between Feynman integrals and GKZ-hypergeometric functions has been
studied in [63, 68, 83, 98, 99]. Here, we show applications of GKZ systems combined with
Macaulay matrices to Feynman integrals.

Let 0 < ε, δ � 1, d0 ∈ 2 · N, L ∈ N and ν := (ν1, . . . , νn) ∈ Zn. Moreover, fix the
exponents of the Euler integral (2.1) to

β = (ε,−εδ, . . . ,−εδ)− (d0/2, ν1, . . . , νn) . (5.1)

We define a generalized Feynman integral as

I(d0, ν; z) := c(d0, ν)fΓ(β) , (5.2)

where

fΓ(β) :=
∫

Γ
G(z;x)ε−d0/2 xν1+εδ

1 · · · xνn+εδ
n

dx
x
, (5.3)

c(d0, ν) := Γ(d0/2−ε)
Γ
(
(L+1)(d0/2−ε)−|ν|−nεδ

)∏n
i=1 Γ(νi+εδ)

, |ν| := ν1 + . . .+νn . (5.4)

The polynomial G takes the form

G(z;x) =
N∑
i=1

zi x
αi , αi ∈ Nn0 , (5.5)

and we set ai := (1, αi) ∈ Nn+1
0 as usual. The introduction of the δ parameter in (5.1)

follows from the analytic regularization of [100, 101]
Using the notation of equations (2.27) and (2.28), we can equally well define the

generalized Feynman integral as a pairing between a twisted cycle Γ and a twisted form

ωd0/2, ν := c(d0, ν)× G(z;x)−d0/2xν
dx
x
. (5.6)

In particular, we have

I(d0, ν; z) = 〈ωd0/2, ν〉Γ . (5.7)

The generalized Feynman integral reduces to the Lee-Pomeransky (LP) representa-
tion [54] of an L-loop integral in d = d0 − 2ε dimensions, with propagator powers νi when:

Γ = (0,+∞)n , δ → 0 , (5.8)
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and

zi ∈ N ∨ zi ∈ kinematic variables (m2
i , p

2
i , pi · pj) , (5.9)

where mi and pi stand for masses and external momenta, so that the polynomial G becomes
the LP polynomial built from Symanzik (or graph) polynomials U ,F , as G = U + F .15

Let us observe that within the LP polynomial G(z;x), each zi may not necessarily be
independent from each other. This is different from the polynomial g(z;x) appearing in
the Euler integral fΓ(z), for which each zi is considered independent. Their independence
ensures a non-degenerate correspondence between the monomials in xi variables and the
partial differential operators in the zi variables — a crucial property to establish the
isomorphism between twisted de Rham cohomology group and D-modules. This observation
implies that Feynman integrals are restrictions of GKZ integrals, obtained from the latter
by choosing suitable values of the variables zi [70, 74, 80–83]. We note that the zi limits
in (5.9) are generically not smooth at the level of the Pfaffian system for a GFI. In a
forthcoming publication [105], we show that it is nevertheless possible to construct the
Pfaffian system with all zi variables identified with their proper kinematic counterparts.

5.1 Massless one-loop diagrams

Let us consider a massless one-loop diagram G with n external legs and n internal edges.
We use the symbol pi for each external momentum and xi for the Schwinger parameter of
the i-th edge. The first and the second Symanzik polynomials read

UG = x1 + · · ·+ xn , (5.10)
FG =

∑
1≤i<j≤n

(i,j) 6=(1,2),...,(n−1,n),(1,n)

σij xixj , (5.11)

where we set σij := −(pi+ · · ·+pj−1)2. Since the Lee-Pomeransky polynomial G = UG+FG
consists of

(n
2
)
terms, it gives rise to an (n+ 1)×

(n
2
)
A-matrix. In view of the discussion of

section 2.4, the number of reduced variables is(
n

2

)
− n− 1 = n(n− 3)

2 , (5.12)

which coincides with the number of independent Mandelstam variables sij (as was also
noted in [70]). In sum, we conclude that the master integrals for G are precisely subject to
the GKZ system of PDEs.

Moreover, the discussion above can be easily extended to the cases when external
masses m2

k = p2
k are non-zero but treated as independent variables. For example, in the case

of the one-mass n-gon diagram, all external masses are zero but one, say p2
k 6= 0, therefore

a new term −p2
kxkxk+1 is added to the second Symanzik polynomial (5.11). The number of

reduced variables, in this case, reads n(n−3)
2 + 1 which is equal to {σij} ∪ {p2

k}.
15The limit δ → 0 of a generalized Feynman integral may yield to ill-defined expressions of the form

dxix
νi−1
i

Γ(νi)
, when ∃ νi ∈ Z≤0. In these cases, we adopt the replacement dxix

νi−1
i

Γ(νi)
→ ∂−νii (δD(xi)), with δD(•)

being the Dirac delta function, as proposed in [102–104].
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5.2 Example: One-loop box

In the following two sections, we illustrate the Macaulay matrix method for obtaining
Pfaffian systems for Feynman integrals. We have chosen examples where the number of
GKZ variables correspond to number of independent kinematic variables. The general case
will be investigated in [105].

Setup. Let us first derive the Pfaffian system for the one-loop massless
box diagram. This example was studied in Lee-Pomeransky representation
using twisted cohomology in [43]. The kinematics are

4∑
i=1

pi = 0 , p2
1 = · · · = p2

4 = 0 , s = 2p1 · p2 , t = 2p2 · p3 . (5.13)

The inverse propagators in momentum space are given by16

D1 = −`2 , D2 = −(`− p1)2 , D3 = −(`− p1 − p2)2 , D4 = −(`− p1 − p2 − p3)2 . (5.14)

The corresponding generalized Feynman integral reads

I(d0, ν; z) = c(d0, ν)(−s)d0/2−ε−|ν|−4εδ
∫

Γ
G(z;x)ε−d0/2xν1+εδ

1 · · ·xν4+εδ
4

dx
x
, (5.15)

where

G(z;x) =
4∑
i=1

zixi + z5x1x3 + z6x2x4 , with A4 =


1 1 1 1 1 1
1 0 0 0 1 0
0 1 0 0 0 1
0 0 1 0 1 0
0 0 0 1 0 1

 . (5.16)

The s-dependent prefactor in (5.15) comes from rescaling integration variables as xi →
xi/(−s). Within the LP-representation, the coefficients zi in (5.16) take the explicit form

z1 = · · · = z5 = 1 , z6 = t

s
=: z , (5.17)

leaving just one external kinematic variable z. This counting is compatible with the number
of GKZ variables after using the homogeneity property discussed in section 2.4. Indeed, out
of the N = 6 variables zi appearing in the generalized Feynman integral, n+ 1 = 4 + 1 = 5
of them can be rescaled, thereby yielding z1 = · · · = z5 = 1 and z6 = z.

Basis. Following [11], we choose the canonical basis

e = (−s)ε
(
z(−s)I(4, 0, 1, 0, 2), (−s)I(4, 1, 0, 2, 0), εz(−s)2I(4, 1, 1, 1, 1)

)
(5.18)

corresponding to the cohomology basis (see (5.6))

e(dR) = Λ ·
(

x4
x1x3G(z;x)2 dx , x3

x2x4G(z;x)2 dx , 1
G(z;x)2 dx

)
, (5.19)

16Here `2 = `20 − `21 − · · · − `2d.
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where Λ is a diagonal matrix containing prefactors:

Λ11 = (−s)−4εδzΓ(2− ε)
Γ(1− 2ε− 4εδ)Γ(εδ)2Γ(1 + εδ)Γ(2 + εδ) , (5.20a)

Λ22 = (−s)−4εδΓ(2− ε)
Γ(1− 2ε− 4εδ)Γ(εδ)2Γ(1 + εδ)Γ(2 + εδ) , (5.20b)

Λ33 = ε(−s)−4εδzΓ(2− ε)
Γ(−2ε− 4εδ)Γ(1 + εδ)4 . (5.20c)

Applying the correspondence in (2.34) (or rather (A.10), which employs homogeneity) to
the basis e(dR), we obtain the D-module basis

e(D) = Λ ·
(
δε− 1

(ε− 1)ε∂ −
z

(ε− 1)ε∂
2 ,

(1− 3δ)(4δ − 1)ε
ε− 1 + z(7δε− 2ε− 1)

(ε− 1)ε ∂ − z2

(ε− 1)ε∂
2 , (5.21)

4δε− ε− 1
(ε− 1)ε ∂ − z

(ε− 1)ε∂
2
)
,

where ∂ := ∂z.

Macaulay and Pfaffian matrices. Using the Macaulay matrix method, we construct
the Pfaffian system in the basis of standard monomials,

∂ ◦

∂
2

∂

1

 =

∂
3

∂2

∂

 = P (Std) ·

∂
2

∂

1

 . (5.22)

Afterwards, we perform a gauge transformation to the basis e(D), so that P can be read off
the equation ∂ ◦ e(D) = P · e(D).

The Macaulay data for the system (5.22) is found to be

MExt =
(
z2(z + 1)

)
, (5.23a)

MT
Std =

 z
(
(6δ + 2)ε+ z(6δε+ ε+ 3) + 3

)
(3δε+ ε+ 1)2 + z

(
(9δ + 2)ε2δ + 6δε+ ε+ 1

)
(4δ + 1)ε3δ2

 , (5.23b)

C ′ =

1 0 0 0
0 1 0 0
0 0 1 0

 , C ′Ext =
(
1 0 0

)
, C ′Std =

0 0 0
1 0 0
0 1 0

 , (5.23c)

Mons = Ext t Std = {∂3} t {∂2, ∂, 1} . (5.23d)

Setting C =
(
c11 c12 c13

)
and solving C ′Ext = C ·MExt, we obtain

C =
(

1
z2(z+1) 0 0

)
. (5.24)
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The Pfaffian matrix is then

P (Std) = C ′Std − C ·MStd (5.25)

=

P
(Std)
11 P

(Std)
12 P

(Std)
13

1 0 0
0 1 0

 , (5.26)

where

P
(Std)
11 = −

ε
(
(z + 1)6δ + z + 2

)
+ 3(z + 1)

z(z + 1) , (5.27a)

P
(Std)
12 = −

(3δε+ ε+ 1)2 + z
(
(9δ + 2)ε2δ + 6δε+ ε+ 1

)
z2(z + 1) , (5.27b)

P
(Std)
13 = −(4δ + 1)ε3δ2

z2(z + 1) . (5.27c)

Finally, according to the algorithm of section 3.2, it is possible to build a suitable gauge
transformation matrix G such that

P = (∂G+G · P (Std)) ·G−1 (5.28)

= ε

 −1
z 0 0

0 0 0
− 2
z(z+1)

2
z+1 −

1
z(z+1)

 , (5.29)

where the limit δ → 0 has been taken. The matrix (5.29) is canonical and in agreement
with LiteRed. �

5.3 Example: One-loop pentagon
Setup. We consider a one-loop massless pentagon integral with one
massive leg. The kinematics are

5∑
i=1

pi = 0 , p2
1 = · · · = p2

4 = 0 , p2
5 := p2 , sij := 2pi · pj . (5.30)

Note that the identity (p1 + p2 + p3 + p4)2 = (−p5)2 = p2 imposes a relation on the
Mandelstam variables sij . The propagators are given by

D1 = −`2 , D2 = −(`− p1)2 , D3 = −(`− p1 − p2)2 , (5.31)
D4 = −(`− p1 − p2 − p3)2 , D5 = −(`− p1 − p2 − p3 − p4)2 .

We can write the generalized Feynman integral as

I(d0, ν; z) = c(d0, ν) (−s12)d0/2−ε−|ν|−5εδ
∫ ∞

0
G(z;x)ε−d0/2 xν1+εδ

1 · · ·xν5+εδ
5

dx
x
, (5.32)

with

G(z;x) =
5∑
i=1

zixi + z6x1x3 + z7x1x4 + z8x1x5 + z9x2x4 + z10x2x5 + z11x3x5 , (5.33)

and the corresponding A matrix A5 is given in Example 4.3.
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The s12-dependent prefactor in (5.32) comes from rescaling integration variables by
xi → xi/(−s12). In the Lee-Pomeransky representation, the monomial coefficients are given
by

z1 = . . . = z6 = 1 ,
z7 = 1 + y2 + y4 ,

z8 = y1 ,

z9 = y4 ,

z10 = −1 + y1 − y2 − y3 ,

z11 = −1 + y1 − y2 − y3 − y4 − y5 ,

(5.34)

where the yi are ratios of kinematic variables:

y1 = p2

s12
, y2 = s13

s12
, y3 = s14

s12
, y4 = s23

s12
, y5 = s24

s12
. (5.35)

The Lee-Pomeransky polynomial hence contains 5 monomial coefficients different from unity.
Similar to the previous example, we can obtain equally many non-unity GKZ variables
via homogeneity. In particular, we start with N = 11 generic variables zi, after which we
rescale n + 1 = 5 + 1 = 6 GKZ variables as z1 = . . . z6 = 1, leaving us with 5 variables
z7, . . . , z11.

Basis. Solving an IBP system numerically, we can swiftly identify a set of master integrals.
Simplifying notation to I(d0, ν), we choose

e1 = (−s12)εI(2, 0, 0, 1, 0, 1) e2 = (−s12)εI(2, 0, 1, 0, 0, 1)
e3 = (−s12)εI(2, 0, 1, 0, 1, 0) e4 = (−s12)εI(2, 1, 0, 0, 0, 1)
e5 = (−s12)εI(2, 1, 0, 0, 1, 0) e6 = (−s12)εI(2, 1, 0, 1, 0, 0)
e7 = ε(−s12)εI(4, 1, 0, 1, 0, 1) e8 = ε(−s12)ε+1I(4, 0, 1, 1, 1, 1) (5.36)
e9 = ε(2ε− 1)(−s12)εI(6, 1, 0, 1, 1, 1) e10 = ε(−s12)ε+1I(4, 1, 1, 0, 1, 1)
e11 = ε(−s12)ε+1I(4, 1, 1, 1, 0, 1) e12 = ε(−s12)ε+1I(4, 1, 1, 1, 1, 0)
e13 = ε2(−s12)ε+1I(6, 1, 1, 1, 1, 1) .

The dimensions d0 are chosen so as to have non-negative r-vectors, as per the ending
remark of section 2.3. Using (2.34) (or formula (A.10) employing homogeneity), we find
the D-module basis corresponding to e. We write e(D) = Λ · e′(D) for a diagonal matrix Λij
containing prefactors,

Λii := c
(
d

(i)
0 , ν(i)) (−s12)d

(i)
0 /2−ε−|ν(i)|−5εδ × Λ′i , (5.37)
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where (d(i)
0 , ν(i)) refers to the indices of the i-th integral in (5.36) and17

Λ′1 = (−s12)ε 1
ε
, Λ′2 = (−s12)ε 1

ε
,

Λ′3 = (−s12)ε 1
ε
, Λ′4 = (−s12)ε 1

ε
,

Λ′5 = (−s12)ε 1
ε
, Λ′6 = (−s12)ε−1

ε
,

Λ′7 = ε(−s12)ε 1
(ε−1)ε , Λ′8 = ε(−s12)ε+1 1

(ε−1)ε ,

Λ′9 = ε(2ε−1)(−s12)ε −1
(ε−2)(ε−1)ε , Λ′10 = ε(−s12)ε+1 1

(ε−1)ε ,

Λ′11 = ε(−s12)ε+1 −1
(ε−1)ε , Λ′12 = ε(−s12)ε+1 −1

(ε−1)ε ,

Λ′13 = ε2(−s12)ε+1 −1
(ε−2)(ε−1)ε .

(5.38)

Moreover,

e
′(D)
1 = ∂11 , e

′(D)
2 = ∂10 , e

′(D)
3 = ∂9 , e

′(D)
4 = ∂8 , e

′(D)
5 = ∂7

e
′(D)
6 = ε(5δ+1)+z7∂7 +z8∂8 +z9∂9 +z10∂10 +z11∂11

e
′(D)
7 = (4δε+ε+1)∂11 +z11∂

2
11 +z9∂9∂11 +z10∂10∂11

e
′(D)
8 = ∂9∂11 (5.39)

e
′(D)
9 = δε (4δε+1)∂11 +δz11ε∂

2
11 +z7 (4δε+ε+1)∂7∂11 +z9 (5δε+ε+2)∂9∂11 +δz10ε∂10∂11

+z7z11∂7∂
2
11 +z9z11∂9∂

2
11 +z2

9∂
2
9∂11 +z7z9∂7∂9∂11 +z7z10∂7∂10∂11 +z9z10∂9∂10∂11

e
′(D)
10 = ∂7∂10

e
′(D)
11 = (5δε+ε+1)∂10 +z10∂

2
10 +z7∂7∂10 +z8∂8∂10 +z9∂9∂10 +z11∂11∂10

e
′(D)
12 = (5δε+ε+1)∂9 +z9∂

2
9 +z7∂7∂9 +z8∂8∂9 +z10∂10∂9 +z11∂11∂9

e
′(D)
13 = (4δε+ε+2)∂11∂9 +z9∂11∂

2
9 +z10∂10∂11∂9 +z11∂

2
11∂9 .

Macaulay and Pfaffian matrices. The Macaulay matrixMExt has dimensions 189×113,
so in this case there are 113 exterior monomials Ext. The basis of 13 standard monomials
is given by

e(Std) =
(
∂9∂

2
11, ∂

2
9 , ∂

2
10, ∂8∂11, ∂9∂11, ∂10∂11, ∂

2
11, ∂7, ∂8, ∂9, ∂10, ∂11, 1

)T (5.40)

We identify 133 independent rows of MExt by row reducing it numerically. We therefore
construct an unknown matrix C of dimensions 13×113 which must satisfy C ′Ext,i−C ·NExt =

17The numerators in Λ′i come from (5.36), while the denominators arise due to taking derivatives of Gε

when constructing P such that P 〈ω0〉 = 〈ωq〉, in the notation of (2.34).
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0, where NExt contains the 133 independent rows of MExt. This linear system can be solved
in reasonable time on a laptop using FiniteFlow [88]. The Pfaffian matrix in direction i
then follows from C ′Std,i − C ·NStd = P

(Std)
i , where NStd is built from MStd by taking the

same rows as in NExt.
Using the basis change algorithm outlined in section 3.2, we perform a gauge transfor-

mation to relate P (Std) to P (e)
i , written in the basis e. At this stage, we may safely take the

limit δ → 0. We have verified that the resulting Pfaffian matrices are in agreement with
LiteRed [89, 90]. �

A similar analysis can be extended to diagrams with either more legs or more loops.
For the purposes of this first work on this subject, we limited the application to one-loop
integrals up to six external legs. In fact, Example 4.4 refers to the one-loop massless
hexagon. Application to higher-loop cases will be discussed in future works.

6 Linear relations for generalized Feynman integrals

Let e = (I1, . . . , Ir) be a basis of master integrals, where each Ii is a generalized Feynman
integral of the form (5.2), i.e depending on generic variables zi. The vector e will be regarded
as the column vector in the sequel; when the distinction between row and column vectors is
clear from context, we will omit the transpose symbol •T .

Denote by e′ = (I ′1, . . . , I ′r′) a set of integrals in the same family as e. In both e and e′,
we replace the integrand factors xν+εδ by xν1+εδ1

1 · · ·xνn+εδn
n for a set of new parameters δi.

Theorem 6.1.

1. There exists a matrix U ∈ Qr′×r(z) such that

e′ = U · e . (6.1)

2. Let L(e′) = (`1I ′1, . . . , `r′I ′r′), where the `i are differential operators w.r.t. z with
rational function coefficients. There exists a matrix V ∈ Qr′×r(z) such that

L(e′) = V · e . (6.2)

Moreover, there are construction algorithms for U and V .

Remark 6.2. This theorem can be regarded as an analogue of IBP relations for generalized
Feynman integrals. Recall the rank r for generalized Feynman integrals is possibly larger
than for conventional Feynman integrals. However, once we set the GKZ variables zi equal
to their physically relevant values in e.g. e′ = U · e, some of the master integrals in e might
vanish or become equal, in which case we arrive at a conventional IBP relation.

Although the theorem can be proved by a method analogous to Algorithm 1 of [62], here
we present a different approach based on Pfaffian matrices and the matrix factorial [84]. We
begin by constructing recurrence relations in the general framework of GKZ hypergeometic
systems, after which we specialize to the case of generalized Feynman integrals.
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6.1 Recurrence relations for GKZ systems

For convenience, in this section we will work with a rescaled version of the Euler inte-
gral (2.1):

fΓ(z)→ f(β) := 1
Γ(β0 + 1)

∫
Γ
g(z; s)β0x−β1

1 · · ·x−βnn

dx
x
, (6.3)

where β is assumed to be non-resonant. We have the relation ∂if(β) = f(β − ai) with this
rescaling. Since z and Γ will stay fixed in what follows, we only emphasize the dependence
on β in f(β). The integrals in e and e′ are constant multiples of f(β) with

β = (ε,−δ1ε, . . . ,−δnε)− (d0/2, ν) . (6.4)

Let s = {s1, . . . , sr} be a basis of DN/HA(β) consisting of monomials in ∂i. The vector
F (β) =

(
s1f(β), . . . , srf(β)

)
is then a solution to a Pfaffian system. Now, because ∂isj =

sj∂i and ∂if(β) = f(β − ai) we have that

∂iF (β) = Pi(β)F (β) = F (β − ai) . (6.5)

In other words, Pi(β) yields a difference equation for F (β). Moreover, since β is non-resonant,
the matrix Pi(β + ai) is invertible, in which case we also have

Qi(β)F (β) = F (β + ai) , Qi(β) := Pi(β + ai)−1 . (6.6)

To make the analogy clear between equations (6.5) and (6.6), let us introduce the operator
∂−1
i acting as

∂−1
i F (β) = Qi(β)F (β) = F (β + ai) . (6.7)

We define the falling matrix factorial as

[Pi(β)]j := Pi(β − (j − 1)ai) · · ·Pi(β − ai)Pi(β) , j > 0 , (6.8)

and the rising matrix factorial as(
Qi(β)

)
j

:= Qi(β + (j − 1)ai) · · ·Qi(β + ai)Qi(β) , j > 0 . (6.9)

These matrix products can be swiftly computed using rational reconstruction over finite
fields.

When the subscript j is replaced by an integer vector κ ∈ NN0 , we extend the definition
of matrix factorials18 to:

[P (β)]κ :=
N∏
i=1

Pi
β − N∑

j=i+1
κjaj


κ

, (6.10)

(
Q(β)

)
κ

:=
N∏
i=1

Qi
β − N∑

j=i+1
κjaj


κ

. (6.11)

18When i = N in the product we use the convention
∑N

j=N+1 κjaj = 0.
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Lemma 6.3. For κ ∈ NN0 we have the recurrence relations

F

(
β −

N∑
i=1

κiai

)
= [Pi(β)]κ F (β) = ∂κF (β) , (6.12)

F

(
β +

N∑
i=1

κiai

)
=
(
Qi(β)

)
κ
F (β) = ∂−κF (β) . (6.13)

Proof. By induction, let us derive that

∂ji F (β) = F (β − jai) = [Pi(β)]j F (β) . (6.14)

The case j = 1 is shown in equation (6.5). Suppose that (6.14) holds for j − 1. Then we
have

∂i
(
∂j−1
i F (β)

)
= ∂iF (β − (j − 1)ai) (6.14) (6.15a)

= Pi(β − (j − 1)ai)F (β − (j − 1)ai) (Pfaffian equation) (6.15b)
= Pi(β − (j − 1)ai) [Pi(β)]j−1 F (β) (6.14) (6.15c)
= [Pi(β)]j F (β) (6.10) . (6.15d)

Applying (6.14) to each (κ)j , we obtain the relation (6.12) for the falling matrix factorial.
The case of the rising matrix factorial (6.13) is proved in a similar fashion.

Remark 6.4. Comparing F
(
(β − ai)− aj

)
= Pi(β − aj)Pj(β)F (β) to F

(
(β − aj)− ai

)
=

Pj(β − ai)Pi(β)F (β) , we note that the commutation relation Pi(β − aj)Pj(β) = Pj(β −
ai)Pi(β) holds. The explicit matrix factorial representation of (6.12) is hence not unique.
The same statement holds for (6.13).

Observing that
(
F (β)

)
i

= sif(β), we can write F (β) as

F (β) =
(
f(β −A · k1), . . . , f(β −A · kr)

)
, (6.16)

where the vectors ki ∈ NN0 are fixed according to si = ∂ki . Suppose that we want to obtain
a recurrence relation for f(β−A ·k0) given some choice of k0 ∈ Zn. Notice that f(β−A ·k0)
is the first element of F (β −A · (k0 − k1)). We propose to obtain the recurrence relation
by Algorithm 2, whose correctness follows from Lemma 6.3. Note that the algorithm does
not perform differentiation with respect to zi, meaning that it can still produce recurrence
relations when the zi are fixed to numbers in the Pfaffian matrices.

6.2 Recurrence relations for generalized Feynman integrals

We can employ Algorithm 2 to find relations among generalized Feynman integrals by
specializing β to (6.4). The matrices Qi = P−1

i exist for this generic choice of ε and δi’s. In
certain cases, we can even take a limit δi → 0 to obtain conventional IBP relations as we
observe in the example below.
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Algorithm 2 : Recurrence relation by Macaulay matrix
Input: Vector k0 ∈ ZN , indeterminate vector β, monomial basis s = {s1, . . . , sr}
where si = ∂ki , ki ∈ NN0 .

Output: Recurrence relation f(β −A · k0) = ∑r
i=1 ui(β)f(β −A · ki), ui ∈ Q(β)

1: Construct Pi(β), i = 1, . . . , r, w.r.t. basis s by calling Algorithm 1
2: Decompose k0 − k1 = κ+ − κ− =: κ where κ± ∈ NN0 .
3: Compute the matrix factorial

[
P (β −∑κj<0 κj aj)

]
κ+

(
Q(β)

)
κ−
F (β)

4: Output the first element of step 3.

6.3 Example: One-loop bubble
Setup. We use Algorithm 2 to obtain a linear relation for the one-
loop bubble integral with one massive propagator (see also Example 1.1
of [74]), whose denominators are defined as

D1 = −`2 +m2 , D2 = −(`+ p)2 . (6.17)
From the Lee-Pomeransky representation we read off

G(z;x) = z1x1 + z2x2 + z3x1x2 + z4x
2
1 , z = (1, 1,m2 − p2,m2) , (6.18)

and

A =

1 1 1 1
1 0 1 2
0 1 1 0

 . (6.19)

We pick master integrals e =
(
I(4, 1, 1), I(4, 2, 0)

)
and wish to decompose e′ =

(
I(4, 1, 2)

)
.

For this diagram, the choice δ1 = δ2 := δ is allowed.
In order to apply Algorithm 2, we require ki corresponding to a relevant set of standard

monomials. We use auxiliary vectors k′i and α such that ki correspond to master integrals
e. Their definitions are given by (6.28) and (6.29) in the proof of Theorem 6.1.

Step 0: Input. The master integrals correspond to the choice

k′1 = (1, 1, 0, 0) s.t A · k′1 = (2, 1, 1) , (6.20)
k′2 = (2, 0, 0, 0) s.t A · k′2 = (2, 2, 0) . (6.21)

Given that these k′i only have positive entries, we have α = (0, 0, 0, 0) using (6.29). Then
the A · α terms drop, and we have

k0 = (0, 1, 1, 0) s.t A · k0 = (2, 1, 2) , (6.22)
β = β′ with β′ = (ε,−εδ,−εδ) , (6.23)

using notation defined in (6.30). The vector k0 represents the integral we want to reduce,
I(4, 1, 2).
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Steps 1 and 2. Calling Algorithm 1, we obtain Pfaffian matrices Pi, i = 1, . . . , 4.
Moreover, we decompose

k0 − k1 = (−1, 0, 1, 0) (6.24a)
= (0, 0, 1, 0)− (1, 0, 0, 0) (6.24b)
= κ+ − κ− := κ . (6.24c)

Note that k1 = k′1 + α = k′1 in this case.

Step 3. Next, we are instructed to compute the matrix factorial corresponding to the
operator ∂+1

3 ∂−1
1 , where the ∂3 stems from κ+ and the ∂1 stems from κ−. Explicitly, we

calculate

P3(β + a1)Q1(β) . (6.25)

Step 4: Output. The recurrence relations follow from the 1st element of the matrix
factorial above, apart from an adjustment of Γ-prefactors. This adjustment is due to the
constants c and c(i) in equations (6.32) and (6.33c).

Given all of the above, Algorithm 2 produces the result

I(4, 1, 2) =
(−1)

(
(4εδ2 + (6ε− 2)δ + 2ε− 1)p2 + (5εδ2 + (6ε− 1)δ + 2ε− 1)m2)

(δ + 1)(εδ + 1)(p2 −m2)2 I(4, 1, 1)

+ (−1)m2(3δ + 2)
(δ + 1)(p2 −m2)2 I(4, 2, 0) (6.26)

= (1− 2ε)(p2 +m2)
(p2 −m2)2 I(4, 1, 1)− 2m2

(p2 −m2)2 I(4, 2, 0) as δ → 0 ,

in agreement with LiteRed. �

Critical case. We observe that our method may not give linear relations for some A and
non-generic choices of ε and δi’s. Put δ1 = . . . = δn := δ and take

A2 =

1 1 1 1
0 1 1 2
0 1 0 0

 . (6.27)

Define the linear form b(β) := β2 − β3, where βj denotes the j-th component of β. We have
b(a1) = b(a2) = 0, b(a3) = 1, b(a4) = 2. Then b(β) is a primitive supporting function of the
facet {a1, a2} of the convex polytope ∆A. It is known that the supporting function gives a
denominator of ∂−1

i modulo HA(β), i = 3, 4 [96]. In fact, we have(
− 2z3z4∂4− 4z1z4∂3 + (−2β1 +β2 +β3)z3

)
∂3 ≡ (−1)(β2−β3)(2β1−β2−β3) modHA(β) ,

and(
− 2z3z4∂3 − z2

3∂1 + (−2β2 + 2β3 + 2)z4
)
∂4 ≡ (−1)(β2 − β3)(β2 − β3 − 1) modHA(β) .
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Note that ∂3 and ∂4 stand for Pi. We have b
(
(ε,−εδ,−εδ)

)
= 0, for which reason Qi,

i = 3, 4 acquires a 0 in the denominator. Since Qi acts similarly to ∂−1
i , the recurrence

relations involving Qi do not exist. Moreover, b(β) = 0 has the effect of breaking several
isomphism theorems for D-modules (see, e.g., [96], [93, §4.5] and [106] for recent references
on isomorphism theorems of GKZ systems). �

We close this section with proving Theorem 6.1.

Proof. (Theorem 6.1.) We begin by noting that the matrices Qi exist since Pi are invertible
for generic parameters δi.

Without loss of generality, suppose that r′ = 1. Then e′ = (I ′1) is given by an integral
I ′1 = I(d0, ν) in the notation of section 5. We week to reduce I ′1 in terms of master integrals
e = (I1, . . . , Ir), where we use the notation Ii = I(d(i)

0 , ν(i)).
Take vectors k′i ∈ ZN such that

A · k′i =
(
d

(i)
0 /2, ν(i)) . (6.28)

We decompose k′i into a sum of positive and negative parts: k′i = κ+
i − κ

−
i for κ±i ∈ NN0 .

Then we may define the vector

α =
(

max
1≤ i≤ r′

κ−i,1 , . . . , max
1≤ i≤ r′

κ−i,N

)
, (6.29)

where κ−i,j is the j-th component of κ−i . Put19 ki = k′i + α ∈ NN0 and take k0 ∈ ZN such
that A · k0 = A · α + (d0/2, ν). We apply Algorithm 2 using input k0, β = β′ + A · α for
β′ = (ε,−εδ1, . . . ,−εδn) and si = ∂ki . The output of the algorithm takes the form

f(β −A · k0) =
r′∑
i=1

ui(β)f(β −A · ki) , ui ∈ Q(β) . (6.30)

Let us inspect the expressions for f on both sides of (6.30). On the l.h.s.,

f(β −A · k0) = f
(
β′ − (d0/2, ν)

)
(6.31)

= I(d0, ν)
/
c . (6.32)

So we obtain the generalized Feynman integral I ′1 apart from constant prefactors c = c(d0, ν)
defined in (5.4). On the r.h.s.,

f (β −A · ki) = f
(
β −

(
d

(i)
0 /2, ν(i))−A · α) (6.33a)

= f
(
β′ −

(
d

(i)
0 /2, ν(i))) (6.33b)

= I
(
d

(i)
0 , ν(i)) / c(i) . (6.33c)

In other words, we obtain Ii apart from Γ-prefactors c(i) = c(i)(d(i)
0 , ν(i)). The coefficients

ui(β) multiplied by Γ-prefactors give the matrix U . Thus, we conclude Statement 1. of
Theorem 6.1.

Statement 2. can be proven by noting that ∂i induces the parameter shift and applying
Statement 1.

19α is constructed in order to have a common shift for all k′i such that their entries become non-negative.
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7 Decomposition via cohomology intersection numbers

Relations between Feynman integrals, equivalent to IBP identities, and, more generally,
identities for Euler-Mellin integrals, equivalent to contiguity relations, can be derived by
means of intersection theory for twisted de Rham cohomologies [34, 35, 37, 38]. According
to the mentioned algorithm, the decomposition of any given integrals in terms of an
independent basis of MIs can be obtained from the projection of the twisted differential
form appearing in the integrand of the integral to decompose into a basis of differential
forms that generate a de Rham twisted cohomology group, via intersection numbers.

For the case of generalized Feynman integrals (5.7), the covariant derivative (2.20)
reads

∇x = dx + ε
dxG
G
∧+ ε δ

n∑
i=1

dxi
xi
∧, (7.1)

and we denote the associated n-th de Rham cohomology group as Hn (see also (2.22)). We
can also introduce a dual covariant derivative ∇∨x = ∇x

∣∣
ε→−ε and let Hn∨ be the n-th (dual)

de Rham cohomology group associated to it. The cohomology intersection number

〈•, •〉ch : Hn ×Hn∨ → C(z), (7.2)

is a natural pairing between the elements of the two groups.
Let {ei}ri=1 be a basis for Hn and {hi}ri=1 a basis for Hn∨; the decomposition of any

twisted form ϕ ∈ Hn in terms of {ei}ri=1 can be obtained via chomology intersection numbers
according to the master decomposition formula [34, 35, 37, 38],

ϕ =
r∑
i=1

ci ei , with ci :=
r∑
j=1
〈ϕ, hj〉ch

(
I−1
ch

)
ji
, and (Ich)ij := 〈ei, hj〉ch . (7.3)

This formula implies the decomposition of (generalized) Feynman integrals in terms of
master integrals, upon the identification in (5.7).

Looking at (7.3) we infer that two distinct sets of intersection numbers are required,
namely {〈ϕ, hi〉ch}ri=1 and {(Ich)ij}ri,j=1. Therefore, in order to apply the decomposition
formula (7.3), it is required the determination of the matrix Ich and of the vector 〈ϕ, hi〉ch.

According to the algorithm proposed in [62], given a basis {ei}ri=1 for Hn ({hi}ri=1 for
Hn∨) and {Pi}Ni=1 the associated set of Pfaffian matrices (resp {P∨i }Ni=1), the cohomology
intersection matrix (Ich)ij = 〈ei, hj〉ch can be obtained as a rational solution of the so called
secondary equation,

∂iIch = Pi · Ich + Ich ·
(
P∨i
)T
, i = 1, . . . , N ; (7.4)

which is a (system of partial) differential equation(s) for the cohomology intersection matrix
Ich, controlled by the Pfaffian matrices {Pi}Ni=1 and its dual {P∨i }Ni=1. In particular, any
non-zero rational solution of the secondary equation I is related to Ich as

Ich = κ0 I (7.5)
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up to a constant κ0, corresponding to a boundary value, to be independently provided, see
theorem 2.1 of [33].

Remarkably, also the vector 〈ϕ, hi〉ch can be obtained by a second application of the
same algorithm to a suitably chosen set of differential forms. For this purpose, it is sufficient
to build the auxiliary basis,20 {eaux

i }ri=1 := {ei}r−1
i=1

⋃
{ϕ}, as well as the auxiliary dual

basis {haux
i }ri=1 := {hi}ri=1, and the corresponding Pfaffian matrices, say {P aux

i }Ni=1 and
{P∨ aux

i }Ni=1, where, owing to the dual bases choice, P∨ aux
i ≡ P∨i , ∀i | 1 ≤ i ≤ N . Then, the

cohomology intersection matrix for the auxiliary bases, Iaux
ch , whose elements are defined

as (Iaux
ch )ij = 〈eaux

i , haux
j 〉 = 〈eaux

i , hj〉, can be obtained as rational solution of this matrix
differential equation,

∂iI
aux
ch = P aux

i · Iaux
ch + Iaux

ch ·
(
P∨ aux
i

)T
= P aux

i · Iaux
ch + Iaux

ch ·
(
P∨i
)T
, i = 1, . . . , N .

(7.6)

The wanted vector of intersection numbers 〈ϕ, hj〉ch, can be read off the rth-row of Iaux
ch ,

because
(Iaux
ch )rj = 〈ϕ, haux

j 〉ch = 〈ϕ, hj〉ch, j = 1, . . . , r. (7.7)
Actually the solution of the auxiliary secondary equation,

Iaux
ch = κaux

0 Iaux (7.8)

also requires the independent knowledge of the constant κaux
0 .

The proposed twofold procedure, yields the determination of all the cohomology
intersection numbers needed in (7.3), up to the knowledge of the ratio of two boundary
constants κaux

0 /κ0.
Let us observe that the master decomposition formula (7.3) requires the knowledge of

the inverse matrix I−1
ch . By using the secondary equation (7.4), one can show that I−1

ch can
be directly determined as rational solution of the following matrix differential equation,

∂i(I−1
ch ) = −(P∨i )T · (I−1

ch )− (I−1
ch ) · Pi. (7.9)

Determination of coefficients. Let us apply the master decomposition (7.3) to a vector
formed by r differential forms e1, e2, . . . , er−1, ϕ, reading as,

e1
...

er−1
ϕ

 = Iaux
ch · I−1

ch


e1
...

er−1
er

 . (7.10)

By construction, the product Iaux
ch · I

−1
ch has the following form,

Iaux
ch · I−1

ch =


0

Ir−1
...
0

c1 · · · cr−1 cr

 , (7.11)

20The set {ei}r−1
i=1
⋃
{ϕ} fails to be a basis when ϕ = 0. In the following discussion, we implicitly assume

that the cohomology class ϕ is not zero and the set {ei}r−1
i=1
⋃
{ϕ} is a basis. This can be achieved when ϕ

is represented by a monomial differential form ωd0/2,ν .
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where Ir−1 is the identity matrix in the (r − 1)× (r − 1) space, and the entries of the last
row are the coefficients of the decomposition (7.3). On the other side, owing to the solution
of the secondary equations, one has,

Iaux
ch · I−1

ch = κaux
0
κ0

Iaux · I−1 . (7.12)

This relation among matrices can be exploited to fix the value of the ratio κaux
0 /κ0. In fact,

any of the elements on the diagonal, say (Iaux
ch · I

−1
ch )kk, for any k ∈ {1, . . . , r − 1}, amounts

to 1, therefore,
κaux

0
κ0

(Iaux · I−1)kk = 1 , (7.13)

yielding the relation
κ0
κaux

0
= (Iaux · I−1)kk , (7.14)

namely fixing the ratio of the boundary constants from one of the elements of the product
of two known matrices. Finally, (7.10) becomes,

e1
...

er−1
ϕ

 = 1
(Iaux · I−1)kk

IauxI−1


e1
...

er−1
er

 , (7.15)

hence the coefficients of decomposition of the differential form ϕ in (7.3) reads as,

ϕ =
r∑
i=1

ci ei , with ci = 1
(Iaux · I−1)kk

(Iaux · I−1)ri , (7.16)

for any chosen k ∈ {1, . . . , r − 1}. This result bypasses the determination of the complete
cohomology intersection matrices, Ich and Iaux

ch , and relies only on the knowledge of the
Pfaffian matrices, P and P aux, which control the secondary equations. The determination
of their rational solutions, I and Iaux, can be efficiently combined with the rational function
reconstruction over finite fields, earlier discussed.

Let us remark that, if needed, the individual expressions of the normalization constants
κ0, and κaux

0 can be determined by means of [107, Theorem 8.1].

7.1 Example: One-loop box

We reconsider the example of section 5.2; we aim to decompose:

ε(−s)ε (−s)3zI(4, 2, 1, 1, 1; z), (7.17)

in terms of the basis given by (5.18). The associated differential forms are:

ϕ = ε(−s)−4εδ z Γ(2− ε)
Γ(−1−2ε−4εδ) Γ(1 + εδ)3 Γ(2 + δε)

x1
G(z;x)2 dx , (7.18)

and,
(e1, e2, e3) = (5.19) , (7.19)
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while we explicitly choose the basis of dual forms as:

(h1, h2, h3) = (e1, e2, e3)
∣∣
ε→−ε = (5.19)

∣∣
ε→−ε . (7.20)

The Pfaffian matrix associated to (5.18) reads:

P =


− ε(δ2(12z+11)+7δ(z+1)+z+1)

(3δ+1)z(z+1) − δ2ε
(3δ+1)(z+1)

δ2ε(δ(z+2)+1)
2(3δ+1)z(z+1)(δε+1)

δ2ε
(3δ+1)z(z+1) − δ2ε

(3δ+1)(z+1) − δ2ε(δ+2δz+z)
2(3δ+1)z(z+1)(δε+1)

−2(2δ+1)ε(δε+1)
(3δ+1)z(z+1)

2(2δ+1)ε(δε+1)
(3δ+1)(z+1) −

ε(δ2(5z+7)+δ(2z+5)+1)
(3δ+1)z(z+1)

 , (7.21)

while its dual is:
P∨ = P

∣∣
ε→−ε. (7.22)

A rational solution of (7.4) obtained via [108] is

I =


− (2δ+1)(4δ+1)

δ δ −2(δε− 1)
δ − (2δ+1)(4δ+1)

δ −2(δε− 1)
2(δε+ 1) 2(δε+ 1) −4(10δ2+6δ+1)(δε−1)(δε+1)

δ3

 . (7.23)

The auxiliary basis reads:

(eaux
1 , eaux

2 , eaux
3 ) = (e1, e2, ϕ) . (7.24)

The expression for P aux is too lengthy to be reported here. By solving (7.6), we obtain
Iaux. The entries of its last row read:

(Iaux)31 =2(3δε+ε+1)((4δ+2)ε+1)
((

6δ2+5δ+1
)
ε+δz(2δε+ε+1)

)
δz(2δε+ε+1)2 , (7.25a)

(Iaux)32 =2((4δ+2)ε+1)
(
2
(
6δ2+5δ+1

)
ε2+(5δ+2)ε+1

)
(2δε+ε+1)2 , (7.25b)

(Iaux)33 =− 4(δε−1)((4δ+2)ε+1)
δ3z(2δε+ε+1)2

(
δ
(
6δ2+5δ+1

)
ε(3δε+ε+1)+z

(
66δ4ε2+δ3ε(91ε+50)

+δ2
(
47ε2+50ε+10

)
+δ
(
11ε2+17ε+6

)
+(ε+1)2

))
. (7.25c)

For the example under consideration, we find:
κ0
κaux

0
= 1. (7.26)

All the cohomology intersection numbers needed for the decomposition formula (7.3) are
therefore computed:

〈ϕ, hj〉ch = (Iaux
ch )3j , j = 1, . . . , 3 ; (7.27a)

〈ei, hj〉ch = (Ich)ij , i, j = 1, . . . , 3 , (7.27b)

and, in the δ → 0 limit, the resulting decomposition in terms of master forms reads,

ϕ = −2ε(2ε+ 1)
z(ε+ 1) · e1 + 0 · e2 + (2ε+ 1) · e3 , (7.28)

– 40 –



J
H
E
P
0
9
(
2
0
2
2
)
1
8
7

which is in agreement with the IBP decomposition obtained with LiteRed. To conclude, let
us also observe that, the individual normalization constants κ0 = κ0(δ, ε), can be determined
by means of [107, Theorem 8.1], as

κ0 = sin4(δεπ) sin (2(2δ + 1)επ)
ε22δ(2δ + 1)2(ε2δ2 − 1)π4 sin(πε) , (7.29)

which, combined with (7.23), gives the cohomology intersection matrix Ich. �

8 Conclusion

In this work, we presented a simplified algorithm for the determination of Pfaffian matrices
from Macaulay matrix, making use of the theory of D-modules for Gel’fand-Kapranov-
Zelevinsky systems.

Then, we introduced two algorithms for the derivation of linear relations for GKZ-
hypergeometric integrals making use of Pfaffians: i) the first one uses the properties of the
matrix factorial, within the holonomic gradient method; ii) the second one uses the direct
integral decomposition via cohomology intersection numbers and the rational solution of
the secondary equation for cohomology intersection matrices. In the latter case, we derived
a novel variant of the master formula for the projection of differential forms onto a set of
independent forms.

Our investigation exploited the isomorphism between de Rham twisted cohomology
groups, whose elements are differential forms, and D-modules, whose elements are partial
differential operators in a Weyl algebra. Our results can be applied to GKZ-hypergeometric
functions as well as to Feynman integrals, which can be considered restrictions of the former
class of functions. Within our analyses the number of master integrals, corresponding to
the dimension of the de Rham cohomology group, is related to the rank of the GKZ system,
computed by polyhedra combinatorics in terms of volumes of polytopes. We showcased a
few applications to simple mathematical functions and one-loop integrals.

Within the standard approaches, linear relations among integrals, such as contiguity
relation for GKZ-hypergeometric functions and integration-by-parts identities for Feynman
integrals, are employed to derive systems of partial differential equations for a chosen set
of independent function. Instead, in the current work, we reversed the perspective, and
showed how Pfaffian matrices for system of partial differential equations, built from Maculay
matrices, can be used to derive linear relations for integrals.

We hope that our study could offer a novel, more complete view on integral relations
which emerge from the application of differential operators acting both on internal and
external variables, and could provide additional insights to the investigation of de Rham
twisted co-homology theory in computational (quantum) field theory.
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A Further details on the homogeneity property

Here we provide additional details and formulas for section 2.4. We begin by introducing
simplified matrix notation to reduce the number of indices in the formulas below.

Firstly, we give a generalization of the multivariate exponent from (2.3). Given an
(n+ 1)×N matrix A := (a1, . . . , aN ) and a list of variables t := (t1, . . . , tn+1), we construct
the following list of exponentials:21

tA := (ta1 , . . . , taN ) . (A.1)

This matrix exponentiation obeys the rule (tA)B = tAB.
Secondly, we define an item-wise product of two lists having the same lengths. Given

two lists t and s of lengths n, we define22

s× t := (s1t1, . . . , sntn) . (A.2)

Using the formulas above, we compactly rewrite the homogeneity property (2.35) of
Euler integrals as follows:

fΓ(tA × z) = tβfΓ(z) . (A.3)

Now we pick a set

σ ⊂ {1, . . . , N}, η := {1, . . . , N} \ σ , (A.4)

where σ is of size |σ| = n + 1, and η is its complement. Denote by Aσ the submatrix
of matrix A constructed from the columns labeled by σ. Given a vector v, we likewise
construct vσ. Using this notation, we can separate the following matrix product into two
terms:

Av = Aσvσ +Aηvη . (A.5)

We shall require σ to be chosen such that the Aσ submatrix is invertible, i.e. det(Aσ) 6= 0.
21In Mathematica this can be achieved by Inner[Power, t, A, Times].
22Using Mathematica syntax, we can write Inner[Times, s, t, List].
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Now observe that for the special choice of the rescaling parameters t = z−A
−1
σ

σ in (A.3),
we obtain the following factorized representation of a given Euler integral:

fΓ(z) = z−A
−1
σ β

σ fΓ
(
z−A

−1
σ A

σ × z
)
. (A.6)

The key feature of the r.h.s. is that all arguments labeled by σ are set to 1:

{
z−A

−1
σ A

σ × z
}
j

=

1 j ∈ σ .

z
−A−1

σ aj
σ zj j ∈ η .

(A.7)

This encourages us to define the rescaled variables

w := z−A
−1
σ Aη

σ × zη , (A.8)

as well as the rescaled Euler integral

gΓ(w) := zA
−1
σ β

σ fΓ(z) . (A.9)

With this notation we are now ready to formulate the main proposition of this section.

Proposition A.1. A generic partial derivative operator ∂vz := ∂v1
z1 ∂

v2
z2 · · · ∂

vN
zN

acts on the
Euler integral (A.6) as follows:

∂vzfΓ(z) = z−A
−1
σ (β+Av)

σ (−1)|vσ |
(
w−vη

(
A−1
σ β +A−1

σ Aηθw
)
vσ

[
θw
]
vη
gΓ(w)

)∣∣∣
w=(A.8)

,

(A.10)

where |vσ| :=
∑
i∈σ vi.

Proof. Let us start with a few useful formulas. The splitting of the vector v into vσ and vη
implies the corresponding factorization of the differential operator:

∂vz = ∂vσzσ ∂
vη
zη . (A.11)

This operator can also be expressed in terms of the lowering factorial of an Euler operator
like so:

∂vz = z−v
[
θz
]
v
. (A.12)

Finally, the raising and lowering factorials23 are related as follows:(
a
)
b

= (−1)|b|
[
−a
]
b
. (A.13)

Using these formulas, it follows that the action of ∂vηzη on the Euler integral (A.9) is

∂vηzη fΓ(z) = z−A
−1
σ β

σ ∂vηzη gΓ
(
z−A

−1
σ Aη

σ × zη
)

= z−A
−1
σ (β+Aηvη)

σ

{
∂vηw gΓ(w)

}
, (A.14)

23Recall the definitions (a)b := a(a+ 1) . . . (a+ b− 1) and [a]b := a(a− 1) . . . (a− b+ 1). In vector case,
these definitions are applied component-wise: (u)v := (u1)v1 . . . (uN )uN .
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where the curly brackets indicate the substitution w = (A.8), once the expression inside of
them was evaluated. Proceeding with the action of the σ-part of ∂vz , we have

∂vσzσ ∂
vη
zη fΓ(z) = z−vσσ

[
θzσ
]
vσ
∂vηzη fΓ(z) (A.15)

= z−vσσ z−A
−1
σ (β+Aηvη)

σ

[
−A−1

σ (β +Aηvη) + θzσ
]
vσ

{
∂vηw gΓ(w)

}
(A.16)

= z−A
−1
σ (β+Av)

σ

{[
−A−1

σ (β +Aηvη)−A−1
σ Aηθw

]
vσ
w−vη

[
θw
]
vη
gΓ(w)

}
(A.17)

= z−A
−1
σ (β+Av)

σ

{
w−vη

[
−A−1

σ (β +Aηθw)
]
vσ

[
θw
]
vη
gΓ(w)

}
(A.18)

= z−A
−1
σ (β+Av)

σ (−1)|vσ |
{
w−vη

(
A−1
σ (β +Aηθw)

)
vσ

[
θw
]
vη
gΓ(w)

}
, (A.19)

where Aηθw is a column vector, obtained from matrix multiplication of Aη and a column
vector θw.

Let us close this discussion with one application of Proposition A.1, namely the action
of a generic partial derivative operator on the cohomology class [dx/x]:

∂vz •
[
dx

x

] ∣∣∣
zi=1, i∈σ

= (−1)|v|
(
w−vη

(
A−1
σ (β +Aηθw)

)
vσ

[
θw
]
vη
•
[
dx

x

]) ∣∣∣
w=zη

. (A.20)

B Holonomic D-modules in a nutshell

In this appendix, we summarize basics of the theory of holonomic systems utilized in our
study of Feynman integrals. We cite introductory textbooks rather than the original papers
or comprehensive textbooks.

B.1 Holonomic ideals

Let D be the Weyl algebra with polynomial coefficients:

D := C〈z1, . . . , zN , ∂1, . . . , ∂N 〉 = C[z1, . . . , zN ]〈∂1, . . . , ∂N 〉 (B.1)

where the commutators are [zi, zj ] = 0, [∂i, ∂j ] = 1, and [∂i, zj ] = δij . When we need to
specify the number of variables, we also denote this algebra by DN . Any element L ∈ D
can be written in the normally ordered form

L =
∑

(p,q)∈E
cp,qz

p∂q , zp = zp1
1 · · · z

pN
N , ∂q = ∂q11 · · · ∂

qN
N , cp,q ∈ C (B.2)

via the commutator relations. The principal symbol in(0,1)(L) of L is defined as the sum of
the highest order differential operators in L:

in(0,1)(L) =
∑

(p,q)∈E, |q| is max
cp,qz

pξq ∈ C[z, ξ] (B.3)

where |q| := q1 + · · ·+ qN , and the commutative variable ξ denotes the derivative ∂ when a
given expression is written in the normally ordered form. We see that the principal symbol
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is the sum of the highest weight terms with respect to the weight 0 for z and the weight
1 = (1, . . . , 1) for ∂.

Let I be a left ideal in D. The left D-module D/I is called holonomic when the
dimension of the ideal of principal symbols

in(0,1)(I) = C{in(0,1)(L) |L ∈ I} (B.4)

equals N (see also [93, Th 1.4.12, p.32]). In this case, the left ideal I is called a holonomic
ideal. For general D-modules, the definition of a holonomic D-module requires the notion of
filtration, which lies out of the scope of this short review. We refer the interested reader
to [97, §6.7, §6.8] and references therein for further details.

Example B.1. Take N = 2 and let I be a left ideal generated by z1 and ∂2. The ideal
of principal symbols is then generated by z1 and ξ2. The dimension of the zero set of
z1 = ξ2 = 0 in C4 is 2, and so we conclude that D/I is holonomic.

B.2 Standard monomials

Let R be the rational Weyl algebra

R := C(z1, . . . , zN )⊗C[z1,...,zN ] D = C(z1, . . . , zN )〈∂1, . . . , ∂N 〉 . (B.5)

When I is a holonomic ideal in D, the left ideal RI of R is a zero-dimensional ideal. In
other words, the dimension of R/(RI) as a vector space over the rational function field
C(z1, . . . , zN ) is finite. Similar to the polynomial case (B.2), any element L of the rational
Weyl algebra R can be brought into the normally ordered form

L =
∑
q∈E

cq(z)∂q , cq(z) ∈ C(z1, . . . , zN ) . (B.6)

Let ≺ be a term order among the monomials in ∂i’s. The largest monomial ∂q in L
(stripped of its rational function coefficient) is called the initial monomial in≺(L) of L.
Monomials in derivatives naturally form the polynomial ring C[∂1, . . . , ∂N ]. A finite subset
G of R is called a Gröbner basis of RI with respect to ≺ when the initial monomial ideal

in≺(RI) = C{in≺(L) |L ∈ RI} ⊂ C[∂1, . . . , ∂N ] (B.7)

is generated by in≺(L), L ∈ G. A monomial ∂α is called a standard monomial with respect to
G when ∂α does not belong to the initial monomial ideal (in≺(RI) in our case). Within the
theory of Gröbner basis in R, the zero-dimensionality of RI is equivalent to the finitness of
the set of standard monomials. In the following, an element ∂α of in≺(RI) ⊂ C[∂1, . . . , ∂N ]
is also denoted by ξα to emphasize that it is an element of the polynomial ring. Let us now
give a few examples of standard monomials for different ideals.

Example B.2. When N = 2 and I = 〈z1, ∂2〉 ⊂ D, we have RI = 〈1〉 because 1
z1
z1 = 1.

Then the set of standard monomials is empty.
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Example B.3. Put

L1 = (z1z2 − 1) ∂1 + β0z2 (B.8)
L2 = z2(z1z2 − 1) ∂2 + (−β1 + β0)z1z2 + β1 , (B.9)

where β0 and β1 are complex numbers. These two operators
annhilate the function (1 − z1z2)−β0zβ1

2 . By a Gröbner basis
computation in the Weyl algebra D, we find that the ideal of
principal symbols is generated by the two elements ξ1 − z2

2ξ2
and z1ξ1 − z2ξ2. Since it defines a 2-dimensional variety in C4,
we conclude that the module D/〈L1, L2〉 is holonomic. The set
{L1, L2} is a Gröbner basis in R with any term order ≺ and the
initial ideal is generated by ξ1 and ξ2. The set of standard mono-
mials is simply {ξ0

1ξ
0
2} ≡ {1}, corresponding to the point (0, 0)

in the figure to the right, where the axes represent powers of ξ1, ξ2.

-

6

(0,0)
u

(1,0)
e(0,1)

ee
e

e
e

e
e
e

Theorem B.4. (see e.g. [97, §6.9]) Let I be a holonomic ideal in D. Then RD is a
zero-dimensional ideal in R. Conversely, let J be a zero-dimensional ideal in R. Then
D ∩ J is a holonomic ideal.

Note that the second construction D ∩ J from J is a highly non-trivial. Algorithms
realising such a construction are called Weyl closure algorithms.

We close this subsection with a note on the relation between Pfaffian equations and
Gröbner bases. Let G be a reduced Gröbner basis of a zero dimensional ideal RI in the
rational Weyl algebra R. Since it is zero-dimensional, the set of the standard monomials
is a finite set. We denote it by {s1, . . . , sr}. Computing the normal form of ∂isj by the
Gröbner basis, we obtain

∂isj =
r∑

k=1
P kijsk modRG

The matrix Pi = (P kij)j,k is the Pfaffian matrix for the operator ∂i.
Conversely, assume that we are given a basis S = {s1, . . . , sr} of R/RI as a vector

space over C(z1, . . . , zN ). Here the si’s are monomials. Let Pi be the Pfaffian matrix
for ∂i. Then we have ∂isj = ∑r

k=1(Pi)jksk modulo RI. We assume that there exists a
term order ≺ such that s ≺ t for all monomials s ∈ S and t ∈ Sc where Sc is the set
of the monomials which do not belong to S. If such an order exists, it can be found by
solving a system of linear inequalities [93, §2.1]. See also a note below. Then the set
G = {gij := ∂isj −

∑r
k=1(Pi)jksk | ∂isj 6∈ S} is a Gröbner basis with repect to the term

order ≺, and the set S is the set of the standard monomials for the Gröbner basis. Let us
prove it. Since u � 1 for any monomial u, we have ut � t for any monomial t. Therefore,
we have ut ∈ Sc for t ∈ Sc and any monomial u by the condition of the order. It implies
that a Gröbner basis of the monomial ideal 〈Sc〉 is {∂isj | ∂isj 6∈ S}, and S is the set of
standard monomials for that basis. It follows from the condition on the order that we
have in≺(gij) = ∂isj 6∈ S and in≺(G) ⊂ in≺(RI). Since dimC[∂1, . . . , ∂N ]/in≺(G) = r by
in≺(G) = 〈Sc〉, in≺(G) = in≺(RI) holds. Thus, G is a Gröbner basis for the order ≺.
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Note that it is necessary to pose the condition on the order and the basis S. For
example, consider N = 1 and M = R/R(∂1 − z1). S = {∂1} is a vector space basis
of M over C(z1) and the Pfaffian system with respect to S is ∂1 − (z1 + 1/z1), because
∂1(∂1 − z1) = ∂2

1 − z1∂1 − 1 and 1
z1
∂1 − 1 belong to the ideal R(∂1 − z1). However, the

reduced Göbner basis of the ideal for any term order is {∂1 − z1}. In fact, the condition
∂1 ≺ 1 does not hold for any term order.

Finally, we explain a procedure to check if there exists a term order ≺ such that s ≺ t
for all monomials s ∈ S and t ∈ Sc. Let w ∈ RN≥0 be a weight vector. We solve a system of
linear inequlities with respect to w

w · α ≤ w · β for all s = ∂α ∈ S and t = ∂β ∈ S′

where S′ is the set of the minimal generators of the monoid Sc. If the solution space is an
N -dimensional cone, then take w from the interior of the cone and define the order by ≺w,
where we may take any tie breaker ≺. Here, we mean ∂a ≺w ∂b if and only if w · a < w · b
or (w · a = w · b and ∂a ≺ ∂b). If the cone is empty, there does not exist such an order.
When the cone has dimension less than N , take w(1) ∈ RN≥0 from the relative interior of the
cone and also take the set P of (α, β)’s such that w(1) · α = w(1) · β. We solve a system of
linear inequalities

w · α ≤ w · β for all (α, β) ∈ P .

Take w(2) ∈ RN≥0 from the relative interior of the solution cone. If this w(2) satisfies
w(2) · α = w(2) · β for all (α, β) ∈ P , there exists no term order we want. If not, take
≺w(2) as a tie breaker. We repeat this procedure. Since any term order can be expressed
by a matrix of weight vectors [109], we can check if there exists a term order s ≺ t for all
monomials s ∈ S and t ∈ Sc and we can construct it if it exists.

B.3 Proof of theorem 3.1

In this subsection, we prove Theorem 3.1. We follow the notation of section 3.1. Let J be
an ideal of C[θ]. It naturally lifts to a left ideal of R generated by the elements of J which
we will denote by RJ . Recall that a term order ≺ on the ring C[θ] naturally corresponds
to an order among monomials ∂k by the correspondence θk ↔ ∂k. Thus, ≺ induces a term
order on the ring R.

Lemma B.5. The set of ≺-standard monomials of the ideal J coincides with that of RJ
through the correspondence θk ↔ ∂k.

Proof. Let us recall an identity

zki ∂
k
i = θi(θi − 1) · · · (θi − k + 1) (B.10)

for any k ∈ N. For any k = (k1, . . . , kN ) ∈ NN , we set

[θ]k :=
N∏
i=1

θi(θi − 1) · · · (θi − ki + 1). (B.11)
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We claim that a ≺-Gröbner basis G ⊂ J of J is again a ≺-Gröbner basis of RJ . Let us
take P,Q ∈ G and write them as

P = aθk + · · · , Q = bθ` + · · · (B.12)

where a, b ∈ C and underlines indicate the leading terms. Regarding P and Q as elements
of the ring R, we obtain an expansion

P = azk∂k + · · · , Q = bz`∂` + · · · . (B.13)

We set ci = max(ki, `i) and c = (c1, . . . , cN ). The S-pair of P and Q in the ring R (cf. [97,
§6.1]) is

bz`∂c−kP − azk∂c−`Q = zk+`−c(b[θ]c−kP − a[θ]c−`Q). (B.14)

The second factor clearly belongs to the ideal J and the S-pair of P and Q is reduced to
zero by G in the ring R. This shows that G is a ≺-Gröbner basis of RJ . Thus, the set of
leading monomials of J is identical to that of RJ through the correspondence θk ↔ ∂k.
This proves the lemma.

The following theorem is known as Gröbner deformation.

Theorem B.6 (a simplified version of Theorem 3.1.3 of [93]). For any parameter β generic
enough, one has an identity

in≺(RHA(β)) = R〈E1, . . . , En+1, in≺(I�)〉. (B.15)

Now, let us prove Theorem 3.1. Since zk is invertible in the ring R, Theorem B.6 shows
that in≺(RHA(β)) is identical to the ideal RI ′. Clearly, the right-hand side is a lift of an
ideal I ′ in C[θ]. By Lemma B.5, we can conclude that the set of standard monomials of I ′
is identical to that of in≺(RHA(β)) through the correspondence θk ↔ ∂k.

B.4 Integration and restriction

Now we discuss two important properties of the holonomic D-modules: the so-called
integration and restriction constructions.

Let DM+N be the ring of differential operators in M +N variables:

C〈x1, . . . , xM , z1, . . . , zN , ∂x1 , . . . , ∂xM , ∂z1 , . . . , ∂zN 〉,

and I be a left holonomic ideal of DM+N . We denote C〈x1, . . . , xM , ∂x1 , . . . , ∂xM 〉 by DM
and C〈z1, . . . , zN , ∂z1 , . . . , ∂zN 〉 by DN .

The integration of the DM+N -module L = DM+N/I for the x variables is defined by

DM+N∑M
i=1 ∂xiDM+N

⊗DM+N L = DM+N

I +∑M
i=1 ∂xiDM+N

, (B.16)

which is a left DN -module (see [93, §5.5] or [97, §6.10] for related algorithms and examples).
The integration of a D-module is an algebraic counterpart of the integration in calculus
(for example, see [93, Th 5.5.1, p.227]). It also gives a different approach to the twisted
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cohomology theory (see, e.g., [93, Th 5.5.11, p.233]). The integration module of L is
sometimes denoted with an integral sign: ∫

π
L, (B.17)

where π denotes the natural projection from the (z, x)-space to the z-space.
The restriction of the D-module L to a linear subspace z1 = c1, . . . , zN = cN , for some

constant ci ∈ C, is defined by

DM+N∑n
j=1(zj − cj)DM+N

⊗DM+N L = DM+N
I +∑n

j=1(zj − cj)DM+N
. (B.18)

It is an algebraic counterpart of the restriction of solutions of differential equations to the
linear subspace (see [93, Prop. 5.2.14, p.207]).

Theorem B.7. (see e.g. [97, Th 6.10.8, p.303].) If L is a holonomic DM+N -module, then
the integration and the restriction defined above are holonomic DN -modules.

Finally, let us note that the integration and the restriction constructions commute:

Dn∑n
j=1(zj − cj)Dn

⊗DN

(
DM+N∑M

i=1 ∂xiDM+N
⊗DM+N L

)
(B.19)

= DM∑M
i=1 ∂xiDM

⊗DM

(
DM+N∑n

j=1(zj − cj)DM+N
⊗DM+N L

)
(B.20)

= DM+N

I +∑n
j=1(zj − cj)DM+N +∑M

i=1 ∂xiDM+N
. (B.21)

Restrictions of generalized Feynman integrals will be discussed in the forthcomming pa-
per [105].
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