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last item in our agenda.
Keywords: Classical Theories of Gravity, Holography and Hydrodynamics, Space-Time
Symmetries
ArXiv ePrint: 2205.09142

Open Access, c© The Authors.
Article funded by SCOAP3. https://doi.org/10.1007/JHEP09(2022)162

mailto:petkou@auth.gr
mailto:marios.petropoulos@polytechnique.edu
mailto:david.rivera-betancour@polytechnique.edu
mailto:konstantinos.siampos@phys.uoa.gr
https://arxiv.org/abs/2205.09142
https://doi.org/10.1007/JHEP09(2022)162


J
H
E
P
0
9
(
2
0
2
2
)
1
6
2

Contents

1 Introduction 1

2 Relativistic hydrodynamics 5
2.1 Basic concepts and general equations 5
2.2 Fluids in Zermelo coordinates 12
2.3 Fluids in Papapetrou-Randers coordinates 16

3 Galilean fluid dynamics 19
3.1 Newton-Cartan manifolds and general Galilean covariance 19
3.2 Galilean hydrodynamics as a non-relativistic limit 29
3.3 A comment on Galilean conservation versus non-relativistic limit 38
3.4 Massless carriers and Weyl properties 41

4 Carrollian fluid dynamics 48
4.1 Carroll structures and general Carrollian covariance 48
4.2 Carrollian hydrodynamics from relativistic fluids — I 58
4.3 Carrollian hydrodynamics from relativistic fluids — II 65

5 Aristotelian dynamics 68

6 Conclusions 75

A A primer on thermodynamics 78

B Carrollian momenta and hydrodynamic-frame invariance 81

C Free motion 82

D From conservation to potential non-conservation 85
D.1 Galilean law from infinite speed of light 85
D.2 Carrollian law from zero speed of light 86

1 Introduction

Fluid dynamics is 19th century physics par excellence. It has been thoroughly investigated,
expanded and applied in various areas, but continues to raise questions and challenges, which
are sometimes conceptual. In relativistic fluids for example, the issue of hydrodynamic-frame
invariance is rather subtle. It reflects the freedom to choose arbitrarily the velocity of the
fluid, and is rooted in the impossibility to distinguish the mass flow from the energy flow in
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a relativistic system. This invariance was made popular by Landau and Lifshitz in their
formulation of dissipative relativistic hydrodynamics without heat current [1], as opposed
to the first formalism for relativistic fluids due to Eckart [2]. The freedom to set freely
the velocity field has drawbacks recognized long ago, when implemented in the linearized
(or, more generally, truncated) constitutive relations, which accompany the fluid equations
of motion. A comprehensive presentation of the subject can be found in [3–6], where the
main difficulties, namely causality, stability and shock structure, are discussed in length.1
More recent progress has been reported in [9–19], showing that the debate is still ongoing.
It is worth stressing that the above phenomenological descriptions of out-of-equilibrium
phenomena are enshrined by relativistic kinetic theory. In particular, the various quoted
formalisms — Eckart, Landau-Lifshitz or others — arise using the relativistic Boltzmann’s
equation. Further reading on this subject is proposed in [20–23].

Hydrodynamic-frame invariance has also emerged in a slightly more formal context.
The asymptotic isometries of the gravitational field in general relativity2 are related to the
symmetries of a fictitious fluid defined on the conformal boundary.3 When the gravitational
field is asymptotically anti-de Sitter, the boundary is time-like and the dual fluid is
relativistic. A local transformation of the fluid velocity amounts to a diffeomorphism on the
gravitational side. For an asymptotically flat gravitational field, the boundary is null and
the associated fluid is Carrollian [28]. Does the hydrodynamic-frame invariance survive in
that case and does it share the above relationship with the asymptotic isometries? Similarly,
and irrespective of any bearing to gravity, why is hydrodynamic-frame invariance lost in
ordinary Galilean fluids, where the velocity and the mass density are measurable quantities?

The purpose of the present work is to elaborate on properties of Galilean and Car-
rollian fluids, in the spirit and as a follow up of ref. [29]. This includes the discussion of
hydrodynamic-frame invariance, the addition of a conserved current and its associated
chemical potential, the interpretation of Galilean and Carrollian fluid equations as conser-
vation laws stemming out of appropriate diffeomorphism invariances, and the dearth of
conservation properties ensuing isometries.

The emergence of Carrollian physics goes back to the works of Lévy-Leblond [30]
and Sen Gupta [31]. The Carroll group is an ultra-relativistic contraction of Poincaré
group. It is dual to the better-known non-relativistic contraction, the Galilean group.4
Carrollian symmetry has triggered interest in several directions. On the mathematical side,
new geometric structures were discovered dubbed Carrollian manifolds [32–46], following
patterns similar to those leading to the Galilean duals i.e. the Newton-Cartan geometries.
From a more physical perspective, the connection of Carrollian symmetry with asymptotic
isometries of Ricci-flat gravitational backgrounds and in particular its role in the growing
subject of flat holography have attracted outmost attention [47–56].

1Modern textbooks on fluid mechanics are e.g. [7, 8].
2See e.g. the lecture notes [24] for a recent review and further references on this subject.
3This fluid is often referred to as “dual” or “holographic” — see refs. [25–27] for the precise symmetry

interplay and a complete bibliography of fluid/gravity holographic correspondence.
4On a purely semantic vein, the given names “relativistic, ultra-relativistic, non-relativistic” are all

unfortunate, as pointed out with brio by Jean-Marc Lévy-Leblond. Although it is probably too late to give
up the first, one should try to replace the others by Carrollian and Galilean. Incidentally, Niels Obers and
Stefan Vandoren rightfully insist on the ultra-local nature of the Carrollian limit.
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Ordinary, Galilean fluid dynamics is the non-relativistic limit of relativistic hydrodynam-
ics. It was originally circumscribed to three-dimensional Euclidean space with absolute time
i.e. to the strict Newtonian framework with full Galilean isometry. Efforts have been made
to evade this restriction [57–66] and finally reach the general equations describing a non-
relativistic viscous fluid moving on a space endowed with a spatial, time-dependent metric,
and covariant under Galilean diffeomorphisms such as t′ = t′(t) and x′ = x′(t,x) [29, 67].5

The more exotic Carrollian fluids are “flowing” on Carrollian manifolds and their
equations of motion are invariant under Carrollian coordinate transformations, t′ = t′(t,x)
and x′ = x′(x). Although particle motion is forbidden due to the shrinking of the light
cone, and despite the absence of a microscopic analysis based on thermodynamics or kinetic
theory, the dynamics for a continuous medium seems to make formally sense, involving an
“inverse velocity,” energy density, pressure etc. The first instance where Carrollian fluids
were quoted is ref. [70]. There, it was realized that contrary to a forty-year lore, Einstein
dynamics on black-hole horizons and the associated membrane paradigm were not related
to the Navier-Stokes equations, but instead to their Carrollian duals. This observation was
further discussed in [71], and aspects of Carrollian hydrodynamics were analyzed in [72–77].
It is fair to repeat that this sort of fluids lack of microscopic settlement and laboratory
applications. Nevertheless, their dynamical equations emerge in various instances where
null hypersurfaces are at work, and this justifies a thorough investigation.

The hydrodynamic equations for Galilean or Carrollian fluids were obtained in [29] as
limits of the fully covariant relativistic equations on general pseudo-Riemannian manifolds.
For the Galilean case, the suitable form of the metric was Zermelo, whereas Papapetrou-
Randers was better adapted to the Carrollian limit. These metrics are indeed form-invariant
under Galilean or Carrollian diffeomorphisms respectively (see [78] for further properties).
Our study is performed here in the presence of a conserved current, which contributes the
dynamics, and fosters the attainment of the Galilean continuity equation. The infinite
or vanishing velocity limits are accompanied with some assumptions on the behaviour
of the physical quantities such as energy density, heat current or stress tensor, including
important sub-leading terms. We show that the resilience or the failure of the relativistic
hydrodynamic-frame invariance in the non-relativistic or ultra-relativistic limits are closely
tied to those behaviours. In a nutshell our conclusions can be summarized as follows. For the
Carrollian case, the behaviours at vanishing velocity of light are suggested by the experience
acquired with holographic fluids, and turn out to be compatible with hydrodynamic-frame
invariance. This is no longer true in the Galilean limit, where the rules are dictated by
non-relativistic physics and disrupt this invariance, unless one concedes to give up matter
conservation and at the cost of altering the Navier-Stokes equations.

The relativistic hydrodynamic equations, namely the vanishing of the covariant energy-
momentum tensor divergence, translate the invariance of some effective action with respect
to general diffeomorphisms t′ = t′(t,x) and x′ = x′(t,x). Similarly, Galilean or Carrollian
equations can be reached upon imposing the corresponding diffeomorphism invariance on the
effective actions. The energy-momentum tensor is in these cases traded for other generalized

5See also [68, 69] for a discussion on symmetries.

– 3 –



J
H
E
P
0
9
(
2
0
2
2
)
1
6
2

momenta adapted to the local symmetries at hand. Our analysis, performed along the lines
of [79], reveals subtleties and slightly differ in comparison with the large-c or small-c limits
of the relativistic theory. This betrays that when considering these limits, as opposed to
working with action principles directly in Newton-Cartan or Carrollian spacetimes, more
information is stored in the equations, and more constraints emerge due to the larger
original local invariance. Specifically, Galilean mass conservation (continuity equation) is
built in (as shown in [29]) irrespective of extra matter current conservation. This confirms
that the most striving and economical approach for reaching the dynamical equations is
indeed the one based on the limiting procedure, originally used in [29], which can be even
extended at wish for incorporating naturally more degrees of freedom, which would require
more conjugate variables in the Galilean or Carrollian action principles.

In order to deliver a comprehensive picture of the web of dynamics emanating upon
contractions of the plain relativistic group and their associate spacetimes, we briefly venture
out and explore the realm of Aristotelian geometries. Introduced by Penrose in [80],
they became suddenly popular because they do not possess any boost invariance (see
e.g. [74, 76, 81–83]). The absence of boosts6 features that both time and space are absolute
in these geometries. Hence motion and light cone are trivialized, and the notion of fluid
becomes even more questionable than in the Carrollian framework. Nonetheless, dynamics
can be defined from invariance principles — no limit involving the speed of light exists that
would connect Aristotelian spacetimes to relativistic theories — and is worth investigating
as it appears to stand at the intersection of Galilean and Carrollian physics.

When discussing dynamics in general, and fluid dynamics in particular, part of the
duty is to exhibit conserved quantities. These are generally the consequence of symmetries,
but this concept should be scrutinized on a case-by-case basis. In a relativistic theory, any
(conformal) Killing field provides a conserved current upon contraction with a (traceless)
conserved energy-momentum tensor. We prove that this is no longer systematically true for
Galilean or Carrollian hydrodynamics, and for instance, boosts present in flat space are not
spared — this would be circumvented in Aristotelian spacetimes if boosts were available.
Hence Nœtherian currents in Newton-Cartan or Carroll manifolds arise for a restricted
subset of isometries. This is an important spin-off of our study, that compromises former
attempts to describe hydrodynamics in flat Newton-Cartan or Carroll spacetimes on the
ground of Nœtherian conservation laws.

An executive outline of the present work is as follows. We remind the basics on relativis-
tic fluids in the presence of a conserved matter current with emphasis on hydrodynamic-frame
invariance. This analysis is further expanded into two distinct frames, the Zermelo and
Papapetrou-Randers, appropriate for the subsequent investigation about Galilean and Car-
rollian fluids. Galilean fluids are first studied from the conservation perspective mirroring
the Galilean-diffeomorphism invariance of Newton-Cartan spacetimes with emphasis on
the effect of isometries, when present in the background; next as the infinite-c limit of the
relativistic hydrodynamics in Zermelo frame. Hydrodynamic-frame invariance is revisited
and we move next to the Galilean massless case. The current analysis is repeated along

6The associated group is the static group, introduced in [84].
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cognate lines for Carrollian fluid dynamics with a paragraph specifically devoted to the
possible multiplication of degrees of freedom in the zero-c limit. Finally we describe the
case of Aristotelian fluids in a short section before concluding.

The subject of hydrodynamic-frame invariance and Carrollian fluids has been lately in
the spotlight. Some debatable statements have been promoted in the literature, and our
views are not always in line with those of other authors. Wherever necessary, we stress it
and provide the adequate elements to make the comparison clear and avoid confusion. Our
approach is meant to be a constructive criticism, and we intentionally supply a wealth of
technical details, some appended in four sections, to back-up our conclusions, sometimes at
the expense of considerably increased length.

2 Relativistic hydrodynamics

2.1 Basic concepts and general equations

Energy–momentum and matter conservation

Fluid mechanics is the description of irreversible off-equilibrium thermodynamics under the
assumption that the wave lengths of dynamical phenomena are large compared to typical
kinetic scales. It is thus legitimate to assume local thermal equilibrium and use the laws of
thermostatics (recalled in appendix A), although the definitions of temperature, chemical
potential, entropy etc. are possibly questionable, or at least ambiguous.

Without external forces and springs or sinks of matter, the basic requirements are
covariant energy-momentum and matter (rather than mass) macroscopic conservation,
encoded in the following d+ 2 equations:7

∇µTµν = 0, (2.1)
∇µJµ = 0, (2.2)

where we assume the spacetime, of dimension d + 1, be equipped with a metric gµν .
The energy-momentum tensor and the matter current can be decomposed along a vector
congruence uµ playing the role of velocity field normalized as uµuµ = −c2:

Tµν = (ε+ p)u
µuν

c2 + pgµν + τµν + uµqν

c2 + uνqµ

c2 , (2.3)

Jµ = %0u
µ + jµ. (2.4)

The viscous stress tensor τµν and the heat current qµ are purely transverse:

uµqµ = 0, uµτµν = 0, uµTµν = −qν − εuν , ε = 1
c2Tµνu

µuν . (2.5)

They are expressed in terms of ui and their spatial components qi and τij with i = 1, 2, . . . , d.
Similarly is the imperfect particle current from its components ji, since

uµjµ = 0, %0 = − 1
c2u

µJµ. (2.6)

In the above expressions — see also appendix A
7Matter conservation could be multiple, or even absent as e.g. in a gas of photons, although no principle

forbids the existence of conserved currents in fluids made of massless carriers — see appendix A.

– 5 –



J
H
E
P
0
9
(
2
0
2
2
)
1
6
2

• ε and %0 are the energy and the matter per unit of proper volume, as measured by an
observer moving at velocity uµ (comoving);

• ε and %0 are related and so are Tµν and Jµ;

• p is the local-equilibrium thermodynamic pressure obeying an equation of state of the
form p = p(T, µ0), where T and µ0 are the local temperature and chemical potential;

• the quantities ji, qi and τij capture the physical properties of the out of equilibrium
state, and are usually expressed as expansions in temperature, chemical potential and
velocity derivatives: the constitutive relations in their hydrodynamic expansion.

It is worth recalling that from the perspective of an effective action8 S= 1
c

∫
dd+1x

√
−gL,

the energy-momentum tensor is defined as

Tµν = 2√
−g

δS

δgµν
, (2.7)

whereas for the matter current, a U(1) gauge field with components Bµ is needed:

Jµ = 1√
−g

δS

δBµ
. (2.8)

On the one hand, invariance under diffeomorphisms generated by arbitrary vector fields
ξ = ξµ(t,x)∂µ as

δξgµν = −Lξgµν , (2.9)

where
Lξgµν = ξρ∂ρgµν + gµρ∂νξ

ρ + gνρ∂µξ
ρ = ∇µξν +∇νξµ, (2.10)

implies the conservation equation (2.1). On the other hand, the matter-conservation equa-
tion (2.2) is a consequence of invariance under

δΛBµ = −∂µΛ (2.11)

with Λ = Λ(t,x).
It is important to stress at this early stage that we do not assume any isometry, neither

here, nor in the subsequent limiting geometries. The energy-momentum tensor and the
current should not be confused with any sort of Nœtherian currents, and their conservation
is a direct consequence of local invariances. This should be opposed to other approaches
presented in the quoted literature.

Isometries, conformal isometries and extra conservations

If ξ = ξµ∂µ is a Killing field it obeys

Lξgµν = 0. (2.12)
8As usual 1

c
dd+1x = dt ∧ dx1 ∧ . . . ∧ dxd.
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Hence, due to (2.1), the current defined as

Iµ = ξνTµν (2.13)

is divergence-free
∇µIµ = 0. (2.14)

Using Stokes and Gauss theorems,∫
W
dd+1x

√
−g ∇µIµ =

∮
∂W
∗I, (2.15)

where W is a domain inside M and ∗I is the M-Hodge dual of I = Iµdxµ (ε01...d = 1), we
infer that

QI = 1
c

∫
Σd
∗I (2.16)

is conserved. Here, Σd is an arbitrary space-like hypersurface of M, and “conserved” means
that the value of QI is independent of the choice of Σd.9

When the energy-momentum is trace-free

Tµµ = 0, (2.17)

a conformal isometry suffices for producing a conservation, along the lines described above.
The conformal Killing satisfies

Lξgµν = 2
d+ 1∇ρξ

ρgµν . (2.18)

Entropy current and entropy equation

The variational definitions of the energy-momentum tensor and the matter current as
conjugate momenta to some elementary background fields are elegant and general as we will
see in the forthcoming sections, but not indispensable. The physics of the fluid relies in fact
on the decomposition of these momenta into observable quantities, expressed themselves
as derivative expansions, and this requires more information than the knowledge of local
symmetries. To this, one should add that the entropy current Sµ is yet another physical
object, which has no variational definition of the sort (2.7) or (2.8). It has actually no
microscopic definition such as an expectation value of some observable, but is built order
by order in the derivative expansion,10 requiring among others that its divergence (or,
alternatively for theories which incorporate memory effects, the integrated divergence) be
non-negative. The generic form of the entropy current is

Sµ = 1
T

(puµ − Tµνuν − µ0J
µ) +Rµ = Σµ +Rµ, (2.19)

9If Σd belongs to a family of hypersurfaces defined as τ(t,x) = const., the conservation is expressed as
dQI
dτ = 0. This needs not be so though, and the wording “conservation” is to some extent reductive, as no
reference to time is needed. Care should also be taken with the behaviour of the fields at spatial infinity and
if Σd has itself a boundary.

10The first order is often referred to as classical irreversible thermodynamics, the second extended irreversible
thermodynamics, etc.
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where Σµ is a kind of universal piece of the current, and Rµ depends on the specific
off-equilibrium thermodynamic theory. Using (2.5), (2.6), (A.3) and (A.5), Σµ is recast
as follows:

Σµ = σuµ − µ0
T
jµ + 1

T
qµ = σ

%0
Jµ − w

T%0

(
jµ − %0

w
qµ
)

(2.20)

with σ the entropy, w the relativistic enthalpy (A.3) and µ0 the relativistic chemi-
cal potential.

It is convenient, both for the relativistic dynamics and for its Galilean or Carrollian
limits, to consider the longitudinal and transverse projections of (2.1), possibly combined
with (2.2) and the thermodynamic laws (A.5), (A.6) and (A.8) in order to trade the energy
for the entropy. For the longitudinal projection, we find:11

−uν∇µTµν = u(ε) +
(
w+ τ

d

)
Θ + τµνσµν +∇νqν + aνq

ν

c2 , (2.21)

= T∇νΣν + τ

d
Θ + τµνσµν + Tjν∂ν

µ0
T

+ qν
(
∂νT

T
+ aν
c2

)
, (2.22)

where τ = τµνgµν is the relativistic non-equilibrium pressure and u(f) stands for uµ∂µf .
We have also introduced the following kinematical tensors:12

aµ = uν∇νuµ, Θ = ∇µuµ, (2.23)

σµν = ∇(µuν) + 1
c2u(µaν) −

1
d

Θhµν , (2.24)

ωµν = ∇[µuν] + 1
c2u[µaν], (2.25)

which are the acceleration, the expansion, the shear and the vorticity of the velocity
field, with hµν and Uµν the projectors onto the space transverse and longitudinal to the
velocity field:

hµν = uµuν
c2 + gµν , Uµν = −uµuν

c2 . (2.26)

Relativistic hydrodynamic-frame invariance

The absence of sharp distinction between energy and mass flow in relativistic theories
brings some redundancy in the above fluid data such as qµ and jµ. In his seminal theory of
relativistic fluids [2], Eckart shed this redundancy by making the choice jµ = 0, whereas
Landau and Lifshitz [1] required instead qµ = 0. It is more generally admitted that one has
the freedom to redefine

T (x)→ T ′(x), µ0(x)→ µ′0(x), uµ(x)→ uµ′(x), (2.27)

provided we modify accordingly ε(x), p(x), %0(x), qµ(x), τµν(x) and jµ(x) so that the
energy-momentum tensor, the conserved current and the entropy current remain unaltered.
This is the gauge symmetry, associated with local Lorentz transformations, known as

11This is the generalization of eq. (127,5) in [1] for general gravitational backgrounds and in an arbitrary
hydrodynamic frame.

12Our conventions for (anti-) symmetrization are A(µν) = 1
2 (Aµν +Aνµ) and A[µν] = 1

2 (Aµν −Aνµ).

– 8 –



J
H
E
P
0
9
(
2
0
2
2
)
1
6
2

hydrodynamic-frame invariance. It translates, that the velocity field has no first-principle
definition in relativistic hydrodynamics.13

It should be stressed here that irrespective of the aforementioned local Lorentz freedom,
dealing with out-of-equilibrium phenomena brings its share of indetermination. Once the
global equilibrium is abandoned, thermodynamic functions become local and their very
existence relies on local thermodynamic equilibrium. They are furthermore supposed to be
slow-varying for hydrodynamics to make sense. Nonetheless, even within these assumptions,
for non-perfect fluids, neither p(x), ε(x) and %0(x) appearing in the fluid equations, nor
T (x) and µ0(x) entering the constitutive relations need a priori to be identified with the
corresponding local-equilibrium thermodynamic quantities. We have made that choice here,
and we will not further discuss this side of hydrodynamic-frame invariance, but rather focus
on the kinematical aspects. More information can be found in the already quoted literature,
and in particular in [10–19].

Suppose we perform a local Lorentz transformation on the fluid, i.e. a transformation
on the velocity vector field

u→ u + δu, δu · u = 0. (2.28)

One can transform accordingly the various pieces that appear in the decomposition of
Tµν (2.3) so that δTµν = 0:14

δε = − 2
c2 q

µδuµ, (2.29)

δqν = uν
c2 q

µδuµ − wδuν − τνµδuµ, (2.30)

δ (phµν + τµν) = p

c2 (uµδuν + uνδuµ) + 1
c2 (uµτνρ + uντµρ) δuρ

− 1
c2 (δuµqν + δuνqµ) . (2.31)

Similarly, in the presence of a matter current, one requires δJµ = 0, and using (2.4)
one obtains:

δjµ = −uµδ%0 − %0δuµ. (2.32)

The interplay between the energy-momentum tensor and the matter current is ensured
by the thermodynamic laws and the entropy current. The latter must also be hydrodynamic-
frame-invariant, as are the thermodynamic relations, in particular the Gibbs-Duhem equation

13In fact, the two extreme options embraced by Eckart and Landau-Lifshitz may not be achievable in all
systems. The former demands a time-like conserved current Jµ and selects a velocity field aligned with it.
The latter requires that the energy-momentum tensor has a time-like eigenvector with positive eigenvalue
and alignes the velocity with this eigenvector. In both cases, the defining assumption is reasonable, and the
output unique, leaving no residual hydrodynamic-frame invariance. The equivalence amongst these frames
relies on a deep interplay between the energy-momentum and the conserved current, when it exists. This
interplay reveals in thermodynamics and specifically in the entropy current. However, although equivalent,
the two frames are not equally suited for the non-relativistic limit, as we will see in section 3.2 (see also [8]).

14We cannot disentangle at this stage the transverse components p and τµν , as their separation relies on
thermodynamics (p is the equilibrium pressure, τµν stands for the non-equilibrium stress and its trace is the
non-equilibrium pressure).
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and the equation of state. These requirements provide the tools for computing δσ, δp, δT ,
and δµ0, in terms of the above variations already expressed with the basic data δuµ and δ%0.
We will not delve in analyzing the effects induced on thermodynamic observables by the
local Lorentz transformations (for that see e.g. [10–19, 85]), but will conclude this discussion
with some remarks. At the first place, as already stressed, there is no microscopic definition
of the entropy current. Hydrodynamic-frame invariance serves therefore as a prerequisite
for completing expressions like (2.20), order by order in the derivative expansion. Secondly,
qµ, τµν and jµ are given in the form of constitutive relations, which are asymptotic series,
terminated at finite order. This blurs the fluid-frame invariance, and is at the heart of the
caveats mentioned in the introduction (stability and causality). Privileged hydrodynamic
frames unavoidably emerge, depending on the physical situation under consideration. Last
but not least, even when the previous items are under control (as in two dimensions [25]),
the question of global issues remains, in the lines discussed in refs. [25–27]: like any gauge
symmetry, hydrodynamic-frame invariance suffers from possible global breaking.

A remark on perfect fluids

For a perfect fluid, the heat current, the viscous stress tensor and the transverse part of the
matter current vanish. From an intrinsic view, given an energy-momentum tensor and a
matter current, these requirements are met if the matter current is an eigenvector of the
energy-momentum tensor, and if the transverse part of the energy-momentum tensor with
respect to this eigenvector is proportional to the projector orthogonal to the current. Given
the normalisation of the velocity, here aligned with the current, this provides unambiguously
%0, p and ε (see (2.3), (2.4), (2.5) and (2.6)), and guarantees at the same time the absence
of jν , qν and τµν . The entropy current (2.19) in now given by (2.20) and is proportional to
the velocity. From (2.22) we infer it has zero divergence.

Formally, one could perform local hydrodynamic-frame transformations. However,
following the rules (2.28), (2.29), (2.30), (2.31) and (2.32), no transformation exists, which
preserves the perfect forms of the matter current and of the energy-momentum tensor.
They all generate non-perfect components, which should in this case be considered spurious
because they do not reflect any genuine microscopic interaction.15 In the absence of
dissipative phenomena and heat transport, energy is carried by matter and there is no
ambiguity in defining a physical fluid velocity, in line with the presentation of ref. [1].

Weyl-invariant fluids

A physical system such as a fluid can be invariant under Weyl transformations. Those act
on the background metric and fluid velocity as

ds2 → B−2ds2, uµ → Buµ, (2.33)

and more general tensors are Weyl-covariant if they rescale with some power of B (weight
w) — not to be confused with the relativistic enthalpy w). A Weyl-covariant derivative Dµ

15Although unphysical, this formal freedom is important from a holographic perspective, and was discussed
extensively in [25–27].
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maintains the canonical Weyl transformation of a Weyl-covariant tensor, and calls for a
Weyl connection one-form:16

A = 1
c2

(
a− Θ

d
u
)
. (2.34)

The Weyl covariant derivative is metric-compatible:

Dρgµν = 0, (2.35)

(DµDν −DνDµ) f = wfFµν , (2.36)

where the action on a weight-w scalar f is

Dλf = ∇λf + wAλf, (2.37)

and
Fµν = ∂µAν − ∂νAµ (2.38)

is the Weyl curvature (weight-0). For concreteness, the action of Dλ on a weight-w form vµ
and a weight-w tensor tµν is

Dλvµ = ∇λvµ + (w + 1)Aλvµ +Aµvλ − gµλAρvρ, (2.39)

Dλtµν = ∇λtµν + (w + 2)Aλtµν +Aµtλν +Aνtµλ − gµλAρtρν − gνλAρtµρ. (2.40)

Commuting the Weyl-covariant derivatives acting on vectors, as usual one defines the
Weyl-covariant Riemann tensor

(DµDν −DνDµ) vρ = Rρσµνv
σ + wvρFµν (2.41)

(vρ are the components of a weight-w vector) and the usual subsequent quantities. The
Weyl-covariant Ricci (weight 0) and scalar (weight 2) curvatures read:

Rµν = Rµν + (d− 1)
(
∇νAµ +AµAν − gµνAλAλ

)
+ gµν∇λAλ − Fµν , (2.42)

R = R+ 2d∇λAλ − d(d− 1)AλAλ. (2.43)

The fluid dynamics captured by (2.1) and (2.2) is Weyl-invariant under the necessary
and sufficient condition that the energy-momentum tensor and the matter current are
Weyl-covariant and such that

∇µTµν = DµT
µν , ∇µJµ = DµJ

µ. (2.44)

This demands the conformal weights of Tµν and Jµ be d − 1, and Tµν be traceless. The
required weight for the energy-momentum tensor is the translation of Weyl invariance for
the underlying action, as one infers from eq. (2.7); this Weyl invariance also imposes the

16The explicit form of A is obtained by demanding Dµu
µ = 0 and uλDλuµ = 0. The Weyl connection

is not unique. Any weight-w conformal vector V is associated with a bona fide Weyl connection AV =
1
‖V‖2

( (2−w)ΘV
d+1−w V− aV

)
with ΘV and aV , the expansion and acceleration of V. An example of alternative

Weyl connection will be presented in section 3.4.
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weight observables
d+ 1 ε, p
d qµ, %0

d− 1 τµν , jµ

Table 1. Conformal weights.

absence of trace.17 In the decomposition (2.3) the latter condition reads −ε+ dp+ τµµ = 0,
usually split into the conformal global-equilibrium equation of state plus a condition on the
piece associated with dynamical irreversible phenomena:

ε = dp, τµµ = 0. (2.45)

Furthermore we learn from eq. (2.8) that the gauge field Bµ conjugate to Jµ is weight-zero
to comply with the expected weight for Jµ. We have summarized the weights of the various
physical quantities in the table 1.

2.2 Fluids in Zermelo coordinates

Zermelo frame

In a pseudo-Riemannian manifold M of d + 1 dimensions, one can always assume the
Arnowitt-Deser-Misner form of the metric

ds2 = −Ω2c2dt2 + aij
(
dxi − widt

) (
dxj − wjdt

)
(2.46)

with aij , wi and Ω functions of x = (ct,x) = {xµ, µ = 0, 1, . . . , d} and x stands for
{x1, . . . , xd}. These coordinates are well-suited for the implementation of the Galilean
limit [29]. Indeed, Galilean diffeomorphisms

t′ = t′(t), x′ = x′(t,x) (2.47)

have Jacobian
J(t) = ∂t′

∂t
, ji(t,x) = ∂xi′

∂t
, J ij(t,x) = ∂xi′

∂xj
, (2.48)

and the transformation of the metric components is nicely reduced:

a′ij = aklJ
−1k
i J
−1l
j , w′k = 1

J

(
Jki w

i + jk
)
, Ω′ = Ω

J
. (2.49)

This fits with the Newton-Cartan structure emerging at infinite c.
We call Zermelo metrics (see [78]) the restricted class of (2.46) for which Ω depends on

t only. This class is stable under Galilean diffeomorphisms because J in (2.49) does not
depend on spatial coordinates. The corresponding Newton-Cartan geometries reached in the

17We recall that δS =
∫
dd+1x

√
−g
(

1
2T

µνδgµν + JµδBµ
)
. Hence for an infinitesimal Weyl rescaling (i.e.

B close to the identity), δBS = −
∫
dd+1x

√
−g ln BT µ

µ .
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Galilean limit are torsion-free (see [42]) and they feature an absolute, invariant Newtonian
time

∫
dtΩ(t) =

∫
dt′Ω′(t′).

The above reduction with respect to the Galilean diffeomorphisms (2.48), can be
completed as follows. Any tensor component with an upper time index transforms as a
Galilean density, and thus is a scalar upon multiplication by Ω. Similarly the components
with lower spatial indices transform as Galilean tensors. As an example, the transformation
of the d+ 1 vector components uµ under a Galilean diffeomorphism leads to18

u′0 = Ju0, u′i = ukJ
−1k
i . (2.50)

A relativistic fluid moving in (2.46) is described by the components of its velocity u,
normalized as ‖u‖2 = −c2:

uµ = dxµ
dτ ⇒ u0 = γc, ui = γvi, (2.51)

where the Lorentz factor γ is, in the Zermelo frame19

γ = dt
dτ = 1

Ω
√

1−
(v−w
cΩ
)2 . (2.52)

Under a Galilean diffeomorphism (2.48), the transformation of uµ (see footnote 18) induces
the expected transformation on vi:

v′k = 1
J

(
Jki v

i + jk
)
. (2.53)

Orthogonality conditions (2.5) and (2.6) imply that the fundamental data for the
non-perfect matter current, the heat current and the stress tensor are ji, qj and τkl. Other
components are e.g.

j0 =
(
vi−wi

)
ji

cΩ2 , q0 =
(
vi−wi

)
qi

cΩ2 , τ00 =

(
vk−wk

)(
vl−wl

)
τkl

c2Ω4 , τ0
j =

(
vk−wk

)
τkj

cΩ2 ,

(2.54)
which transform as tensors under Galilean diffeomorphisms.

Hydrodynamic-frame transformations and invariants

The fluid velocity is parameterized in (2.51) with d components vi. We can thus formulate
the relativistic hydrodynamic-frame transformations in terms of arbitrary δvi(x). In the
Zermelo frame, we obtain:

δγ = γ3

c2 δv
i (vi − wi) , (2.55)

hence
δu = γδvi

(
∂i + γ2

c2 (vi − wi)
(
∂t + vk∂k

))
. (2.56)

18When the indices are inverted, the transformations are of the connection type: u′i = J iku
k + J iu0,

u′0 = 1
J

(
u0 − ujJ−1j

kJ
k
)
. For those, the tensorial structure is restored at the infinite-c limit, where indices

are lowered and raised with aij and its inverse.
19Expressions as v2 stand for aijvivj , not to be confused with ‖u‖2 = gµνu

µuν .
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Using eqs. (2.29), (2.30) and (2.31) together with (2.54) and (2.56) we find:20

δε = −2 γ
c2 δv

iqi, (2.57)

δqi = γδvk
(
γ

c2 (vi − wi) qk − whki − τki
)
, (2.58)

δ (phij + τij) = γ2

c2 δv
k ((vi − wi) (τjk + phjk) + (vj − wj) (τik + phik))

− γ

c2 δv
k (qihjk + qjhik) , (2.59)

where (see (2.26))

hik = aik + γ2

c2 (vi − wi) (vk − wk) . (2.60)

When a matter current is available, the above is completed with (2.32), which gives

δ%0 = − γ
c2 δv

iji (2.61)

and
δji = δvk

(
γ2

c2 jk (vi − wi)− γ%0hki

)
. (2.62)

The transformations at hand translate the invariance of the energy-momentum tensor
and current components. The latter define therefore invariants, which are simply the energy
density, the heat current, the stress tensor, the matter density and the matter non-perfect
current in a privileged frame, that we will call “at rest” or “proper,”21 borrowing the
standard expressions of special relativity:

T 00 = εr
Ω2 , T 0

i = 1
cΩqri, Tij = praij + τrij (2.63)

with trace
T µ
µ = −εr + dpr + aijτrij , (2.64)

and
J0 = c

Ω%0r, Ji = jri. (2.65)

We find explicitly

εr = εγ2Ω2 + 2
c2 γqi

(
vi − wi

)
+ (phij + τij)

(
vi − wi

) (
vj − wj

)
c2Ω2 , (2.66)

qri = εγ2Ω (vi − wi) + γΩqj
(
δji +

(
vj − wj

)
(vi − wi)

c2Ω2

)

+ (phij + τij)
vj − wj

Ω , (2.67)

praij + τrij = εγ2

c2 (vi − wi) (vj − wj) + γ

c2 (qi (vj − wj) + qj (vi − wi))

+ phij + τij , (2.68)
20Notice that qµδuµ = γδviqi.
21We call this frame “fiducial” in section 3.2 and show it is associated with an observer at velocity uZ = et̂

given in (3.3).
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and

%0r = %0Ωγ + ji
vi − wi

c2Ω , (2.69)

jri = ji + %0γ
(
vi − wi

)
. (2.70)

It should be stressed that the above quantities are hydrodynamic-frame invariant but
also covariant under Galilean diffeomorphisms. This latter property will be useful when
considering the Galilean limit.

Killings and conserved currents

Consider a Killing field on M satisfying (2.12)

ξ = ξt∂t + ξi∂i = ξ t̂et̂ + ξ ı̂eı̂, (2.71)

where we have introduced a somewhat more convenient frame and coframe

et̂ = 1
Ω
(
∂t + wj∂j

)
, eı̂ = ∂i, θt̂ = Ωdt, θı̂ = dxi − widt, (2.72)

so that the metric (2.46) reads:

ds2 = −c2
(
θt̂
)2

+ aijθ
ı̂θ̂. (2.73)

Hence
ξ t̂ = ξtΩ, ξ ı̂ = ξi − ξtwi, ξt̂ = −c2ξ t̂, ξı̂ = aijξ

̂ = ξi. (2.74)

With these data, the components of the conserved current (2.13) are22

I0 = c

Ω ι0r, Ii = iri, (2.75)

where

ι0r = 1
c2 ξ

ı̂qri − ξ t̂εr, (2.76)

iri = ξ ̂ (praij + τrij)− ξ t̂qri. (2.77)

The associated conserved charge is obtained using (2.16):

QI =
∫

Σd

√
a ι0r

(
dx1 − w1dt

)
∧ . . . ∧

(
dxd − wddt

)
−
∫

Σd

√
a

d∑
i=1

(
dx1 − w1dt

)
∧ . . . ∧ aijirjΩdt ∧ . . . ∧

(
dxd − wddt

)
, (2.78)

where aijirjΩdt is the ith factor in the exterior product of the last term.
22We use the standard decomposition Iµ = ι0u

µ + iµ with uµiµ = 0 and ι0 = −uµIµ, and introduce ι0r as
a proper or fiducial density, following the footsteps of the energy-momentum tensor and the matter current,
eqs. (2.63) and (2.65).
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2.3 Fluids in Papapetrou-Randers coordinates

Papapetrou–Randers frame

An alternative frame for a d+ 1-dimensional pseudo-Riemannian manifold M is defined as

ds2 = −c2
(
Ωdt− bidxi

)2
+ aijdxidxj , (2.79)

where all functions are x-dependent — again x ≡ (x0 = ct,x). It is known as Papapetrou-
Randers, and this form is stable under Carrollian diffeomorphisms

t′ = t′(t,x) and x′ = x′(x) (2.80)

with Jacobian
J(t,x) = ∂t′

∂t
, ji(t,x) = ∂t′

∂xi
, J ij(x) = ∂xi′

∂xj
. (2.81)

Under Carrollian diffeomorphisms, Ω and the metric transform as in (2.49) i.e.

Ω′ = Ω
J
, a′ij = J ikJ

j
l a

kl, (2.82)

while bi obeys a connection transformation

b′k =
(
bi + Ω

J
ji

)
J−1i

k. (2.83)

The Papapetrou-Randers frame realizes a reduction with respect to the Carrollian
diffeomorphisms (2.80). Any tensor component with a lower time index transforms as a
Carrollian density and provides a scalar upon division by Ω; the components with upper
spatial indices transform as Carrollian tensors. The d+ 1 vector components uµ transform
under a Carrollian diffeomorphism as

u′0 = u0
J
, u′i = ukJ ik. (2.84)

One can again express the components of a velocity field normalized to −c2 as u0 = γc

and ui = γvi. It is furthermore convenient to parameterize vi as

vi = c2Ωβi
1 + c2βjbj

⇔ βi = vi

c2Ω
(
1− vjbj

Ω

) , (2.85)

because of future use in the Carrollian limit, and due to the simple Carrollian transformation
property this definition leads to23

βi′ = J ijβ
j . (2.86)

Now the Lorentz factor reads:
γ = 1 + c2βββ · bbb

Ω
√

1− c2βββ2 . (2.87)

In Papapetrou-Randers frame (2.79), the fundamental hydrodynamic variables are
naturally chosen as ji, qj and τkl. Using the transversality conditions (2.5) we find:

j0 = −cΩβiji, q0 = −cΩβiqi, τ00 = c2Ω2βkβlτ
kl, τ i0 = −cΩβkτ ik. (2.88)

These are all Carrollian tensors (or densities).
23This is easily proven by observing that βi + bi = −Ωui

cu0
. We define as usual bi = aijbj , βi = aijβ

j ,
vi = aijv

j , bbb2 = bib
i, βββ2 = βiβ

i and bbb · βββ = biβ
i.
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Hydrodynamic-frame transformations and invariants

Following the same pattern as for the Zermelo frame, we investigate the hydrodynamic-frame
transformations, i.e. local Lorentz transformations captured here in the d components δβi(x).
We obtain

δu0 = cδγ, δui = c2 hikδβk√
1− c2βββ2 (2.89)

with
δγ = c2γδβi

(
bi

1 + c2βββ · bbb
+ βi

1− c2βββ2

)
, (2.90)

and
hik = aik + c2βiβk

1− c2βββ2 . (2.91)

Using the general transformation rules (2.29), (2.30) and (2.31) together with (2.88)
and (2.89) we find (w is the relativistic enthalpy (A.3)):24

δε = −2 qiδβi√
1− c2βββ2 , (2.92)

δqi = c2δβk√
1− c2βββ2

(
qkβi√

1− c2βββ2 − whki − τki
)
, (2.93)

δ
(
phij + τ ij

)
= c2δβk

1− c2βββ2

(
βi
(
phjk + τ jk

)
+ βj

(
phik + τ ik

))
− δβk√

1− c2βββ2

(
qihjk + qjhik

)
. (2.94)

Similarly, using eq. (2.32), we obtain:

δ%0 = − jiδβi√
1− c2βββ2 , (2.95)

and
δji = c2δβk√

1− c2βββ2

(
jkβi√

1− c2βββ2 − %0h
ki

)
. (2.96)

The energy-momentum tensor is by definition invariant under hydrodynamic-frame
transformations. This invariant can be nicely tamed in three canonical objects, which are
the energy density εr, the heat current qir and the stress tensor τ ijr , in the fluid proper
hydrodynamic frame:25

T00 = εrΩ2, T i
0 = −Ω

c
qir, T ij = pra

ij + τ ijr (2.97)

with trace
T µ
µ = −εr + dpr + aijτ

ij
r , (2.98)

24Notice in passing qµδuµ = c2 qiδβi√
1−c2βββ2

.
25In section 4.2 this frame is referred to as “fiducial” and is associated with an observer moving at velocity

uPR given in (4.72).
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and
J0 = −cΩ%0r, J i = jir. (2.99)

It is easy to relate these invariants to the fluid data in an arbitrary frame encoded in βi.
We find

εr = ε

1− c2βββ2 + 2βiqi√
1− c2βββ2 + c2βiβj

(
phij + τ ij

)
, (2.100)

qir = c2εβi

1− c2βββ2 + qj√
1− c2βββ2

(
δij + c2βiβj

)
+ c2βj

(
phij + τ ij

)
, (2.101)

pra
ij + τ ijr = c2εβiβj

1− c2βββ2 + βiqj + βjqi√
1− c2βββ2 + phij + τ ij , (2.102)

and similarly

%0r = %0√
1− c2βββ2 + βij

i, (2.103)

jir = ji + c2%0β
i√

1− c2βββ2 . (2.104)

Killings and conserved currents

Consider a Killing field of the generic form (2.71), satisfying (2.12) on M in Papapetrou-
Randers coordinates, where the convenient frame and coframe are now26

et̂ = 1
Ω∂t, eı̂ = ∂i + bi

Ω∂t, θt̂ = Ωdt− bidxi, θı̂ = dxi, (2.105)

so that the metric (2.79) becomes (2.73). The Killing components are

ξ t̂ = ξtΩ− ξibi, ξ ı̂ = ξi, ξt̂ = −c2ξ t̂, ξı̂ = aijξ
̂ = ξi + ξt̂bi, (2.106)

and those of the conserved current (2.13), following the familiar decomposition procedure
in a proper frame:

I0 = −cΩι0r, I i = iir, (2.107)

where

ι0r = 1
c2 ξı̂q

i
r − ξ t̂εr, (2.108)

iir = ξ̂
(
pra

ij + τ ijr

)
− ξ t̂qir. (2.109)

Using (2.16), one can express the conserved charge in the Papapetrou-Randers frame
as follows:

QI =
∫

Σd

√
a ι0rdx1∧ . . .∧dxd−

∫
Σd

√
a

d∑
i=1

dx1∧ . . .∧ iir
(
Ωdt− bjdxj

)
∧ . . .∧dxd, (2.110)

where in the exterior product of the second term, iir
(
Ωdt− bjdxj

)
is the ith factor.

26Later on eı̂ will be alternatively displayed as ∂̂i.
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3 Galilean fluid dynamics

3.1 Newton-Cartan manifolds and general Galilean covariance

Newton–Cartan in a nutshell

The natural geometric framework for describing non-relativistic fluids is torsionless Newton-
Cartan — see e.g. [37–44] for a comprehensive presentation and further reading suggestions.
Newton-Cartan manifolds are members of a wide web including Bargmann spaces or
Leibnizian structures (see [34, 39, 40]). We will here consider a manifold M = R × S

equipped with coordinates (t,x) and a degenerate cometric27

∂2
a = aij ∂i∂j , i, j . . . ∈ {1, . . . , d}, (3.1)

as well as a clock form
θt̂ = Ωdt. (3.2)

The dual vector of the latter, referred to as a field of observers, is

et̂ = 1
Ω
(
∂t + wj∂j

)
. (3.3)

Here, aij and wi are general functions of (t,x) whereas Ω = Ω(t). This last feature makes
the clock form θt̂ in (3.2) exact and this qualifies for the torsionless nature of the Newton-
Cartan manifold. As pointed out in section 2.2, this guarantees the existence of an absolute
time

∫
dtΩ(t) =

∫
dt′Ω′(t′), invariant under Galilean diffeomorphisms (2.47) — the only

allowed now. For completeness, one should emphasize that even in general, torsionfull
Newton-Cartan spacetimes the time interval is invariant but depends on the location x of
the clock:

∫
dtΩ(t,x). One still — abusively — call it absolute as a way to stress that the

differences are due to the location of the clock and not directly to its motion, if any. Motion
affects directly the measurements of spatial distances.

The submanifold S plays the role of d-dimensional Newtonian space, endowed with a
positive-definite metric, inverse of aij

d`2 = aij(t,x)dxidxj , (3.4)

and observed from a frame with respect to which the locally inertial frame has velocity
w = wi∂i (see footnote 39). A moving particle or a fluid cell will have velocity v = vi∂i with
vi = dxi

dt . Under Galilean diffeomorphisms (2.47) with Jacobian (2.48), the transformation
rules are as in (2.49), (2.53), and

∂′t = 1
J

(
∂t − jkJ−1i

k∂i
)
, (3.5)

∂′j = J−1i
j∂i. (3.6)

The clock form and the field of observers remain invariant:

θt̂′ = θt̂, e′
t̂

= et̂. (3.7)
27We systematically omit the tensor product symbol ⊗ in the metric and in the cometric.
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Galilean tensors carry only spatial indices i, j, . . . ∈ {1, . . . , d}, which are lowered and
raised with aij and aij . They transform covariantly under Galilean diffeomorphisms (2.47)
with Jacobian J ji and J−1i

j defined in (2.48).28 Tensors depend generically on time t and
space x. Connections can be defined on the geometries at hand, which lead to space
and time derivatives, covariant with respect to Galilean diffeomorphisms. These are not
uniquely defined (see the literature quoted above) as are torsion-free and metric-compatible
connections in Riemannian geometries. We will here make the specific choice, which naturally
emerges when the present geometry is reached as an infinite-c limit of a pseudo-Riemannian
manifold in the Zermelo frame (2.46) (see appendix A.1 of ref. [29]). This choice makes a
sharp separation between space materialized in S and time. Our spatial connection is

γijk = ail

2 (∂jalk + ∂kalj − ∂lajk) . (3.8)

The associated covariant derivative is spelled ∇̂i, as opposed to ∇i, the spatial component
of the Levi-Civita covariant derivative ∇µ defined on the ascendent pseudo-Riemannian
spacetime.29 This connection is torsionless

t̂kij = 2γk[ij] = 0, (3.9)

and metric-compatible
∇̂iajk = 0. (3.10)

Its Riemann, Ricci and scalar curvature tensors are defined as usual d-dimensional Levi-
Civita curvature tensors would be on S, except that they are t-dependent:[

∇̂k, ∇̂l
]
V i =

(
∂kγ

i
lj − ∂lγikj + γikmγ

m
lj − γilmγmkj

)
V j = r̂ijklV

j . (3.11)

It is worth stressing that Galilean tensors can be constructed from an object which is
not a vector but rather transforming like a connection,

A′k = 1
J

(
Jki A

i + jk
)
. (3.12)

Indeed 1
Ω∇̂

(kAl) − 1
2Ω∂ta

kl = − 1
2Ω

(
LAa

kl + ∂ta
kl
)

(3.13)

(LA is the Lie derivative along A = Ai∂i) and

1
Ω∇̂(kAl) + 1

2Ω∂takl = 1
2Ω (LAakl + ∂takl) (3.14)

have tensorial transformation rules, and their trace is a scalar.30 We can apply this to w or
v (see (2.49) and (2.53)) and define

γ̂wij = 1
Ω

(
∇̂(iwj) + 1

2∂taij
)
, γ̂vij = 1

Ω

(
∇̂(ivj) + 1

2∂taij
)
, (3.15)

28For a vector e.g. the transformation is V ′k = Jki V
i.

29In [29] the hat was not used in the Galilean covariant derivative, and this might have caused confusion.
30Observe that neither 1

Ω∂t nor
1
ΩLA acting on Galilean tensors give separately tensors because of (3.5)

and Ai transforming as (3.12).
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where the upper indices refer to the vectors w and v, corresponding to the geometry and
fluid respectively. The former is purely geometrical (and emerges in the large-c expansion of
the relativistic-spacetime Levi-Civita connection in Zermelo frame31); the latter is associated
with a fluid of velocity vi. They coincide for a fluid at rest in the locally inertial frame, i.e.
for vi = wi. From these tensors, one defines their traceless relatives and the traces: the
geometric Galilean shear

ξwij = 1
Ω

(
∇̂(iwj) + 1

2∂taij
)
− 1
d
aijθ

w, (3.16)

and the geometric Galilean expansion

θw = 1
Ω
(
∂t ln

√
a + ∇̂iwi

)
, (3.17)

as well as the fluid Galilean shear

ξvij = 1
Ω

(
∇̂(ivj) + 1

2∂taij
)
− 1
d
aijθ

v, (3.18)

and the fluid Galilean expansion

θv = 1
Ω
(
∂t ln

√
a + ∇̂ivi

)
. (3.19)

One similarly defines a time, metric-compatible covariant derivative (again emerging
in the Galilean expansion of the spacetime Levi-Civita covariant derivative in the time
direction of a Zermelo frame). For a scalar function Φ it is simply

1
Ω
D̂Φ
dt = et̂(Φ) = 1

Ω∂tΦ + wj

Ω ∂jΦ, (3.20)

whereas for vectors one finds

1
Ω
D̂V i

dt = 1
Ω∂tV

i + wj

Ω ∂jV
i − V j∂j

wi

Ω + γ̂wijV
j

= 1
Ω
(
∂tV

i + LwV
i
)

+ γ̂wijV
j . (3.21)

More generally, the Leibniz rule leads to

1
Ω
D̂Ki...

j...

dt = 1
Ω
(
∂tK

i...
j... + LwK

i...
j...

)
+ γ̂wikK

k...
j... + · · · − γ̂wkjKi...

k... − · · · , (3.22)

and as a consequence
1
Ω
D̂aij
dt = 1

Ω
D̂aij
dt = 0. (3.23)

31As a general comment, valid both in the present section on Galilean dynamics as well as in the
next on Carrollian, the c-dependence of our relativistic metrics is always explicit and in line with the
Galilean (or Carrollian) reduction. Hence, every term in the power expansions is Galilean-covariant (or
Carrollian-covariant).
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In the presence of a fluid one can also introduce the more physical material derivative

d
dt = ∂t + vi∇̂i, (3.24)

which produces a scalar density (or a scalar upon division by Ω) when acting on a scalar
function. When acting on arbitrary tensors, it should be supplemented with appropriate
w and/or v terms in order to maintain the tensorial transformation properties. Several
options exist and we here quote the most physical (see [29]):32

1
Ω
DV i

dt = 1
Ω
dV i

dt −
1
ΩV

j∇̂jwi,
1
Ω
DVi
dt = 1

Ω
dVi
dt + 1

ΩVj∇̂iw
j , (3.25)

resulting in genuine tensors under Galilean diffeomorphisms. As opposed to (3.22), this
time-covariant derivative is not metric compatible:

1
Ω
Daij
dt = 2γ̂wij . (3.26)

Space and time Galilean covariant derivatives do not commute. They define a Galilean
tensor, rooted in the Riemann tensor of the ascendent relativistic spacetime at finite velocity
of light. We find [

1
Ω

D̂
dt , ∇̂i

]
Φ = −γ̂wki∂kΦ, (3.27)

[
1
Ω

D̂
dt , ∇̂i

]
V j = −γ̂wki∇̂kV j + r̂jikV

k, (3.28)

and similarly for higher-rank Galilean tensors, where

r̂jik = 1
Ω
(
∂tγ

j
ik + ∇̂i∇̂kwj − ∇̂iγ̂wjk + wlr̂jkli

)
. (3.29)

Galilean diffeomorphisms and conservation equations

Without referring specifically to a fluid, one may consider an effective action describing
the dynamics of a system defined on the geometry M = R× S discussed previously. This
effective action is thus a functional of aij , Ω and wi: S =

∫
dt ddx

√
aΩL. The standard

relativistic energy-momentum tensor (2.7) is now traded for the following Galilean momenta,
namely the energy-stress tensor, the momentum and the energy density:

Πij = − 2√
aΩ

δS

δaij
, (3.30)

Pi = − 1√
aΩ

δS

δw
i

Ω
, (3.31)

Π = − 1√
aΩ

(
Ω δS
δΩ −

wi

Ω
δS

δw
i

Ω

)
, (3.32)

32For a detailed and general presentation of Galilean affine connections see [39, 40].
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which can likewise be combined as δS
δΩ = −

√
a
(
Π + wi

Ω Pi
)
. These momenta are summarized

in the following variation — at least for the gravitational sector:

δS = −
∫

dtΩ
∫

ddx
√
a

(
1
2Πijδa

ij + Piδ
wi

Ω +
(

Π + wi

Ω Pi

)
δ ln Ω

)
. (3.33)

The above momenta obey conservation equations as a consequence of the assumed
invariance of the action under Galilean diffeomorphisms, which simultaneously guarantees
their Galilean-covariant transformation rules. Galilean diffeomorphisms (2.47) are generated
by vector fields on M whose time component depends only on t:

ξ = ξt∂t + ξi∂i = ξ t̂et̂ + ξ ı̂∂i (3.34)

(this is the same expression as (2.71)), where ξ t̂(t) = ξt(t)Ω(t) is a Galilean scalar, and
ξ ı̂(t,x) = ξi − ξtwi are the components of a Galilean vector. The variation under diffeomor-
phisms is implemented through the Lie derivative (the minus sign is conventional):

− δξaij = Lξa
ij = −2

(
∇̂(iξ ̂) + γ̂wijξ t̂ + 1

Ωw
(iaj)k∂kξ

t̂
)
, (3.35)

where the last term drops for Galilean diffeomorphisms. Furthermore

Lξet̂ = − 1
Ω
(
∂tξ

t̂ + Lwξ
t̂
)
et̂ −

1
Ω
(
∂tξ

ı̂ + Lwξ
ı̂
)
∂i, (3.36)

from which, using (3.3), we infer

− δξΩ = LξΩ = ∂tξ
t̂ + Lwξ

t̂, δξw
i = −Lξwi = ∂tξ

ı̂ + Lwξ
ı̂. (3.37)

Notice also the action on the clock form:

Lξθ
t̂ = 1

Ω
(
∂tξ

t̂ + Lwξ
t̂
)
θt̂ = 1

Ω
D̂ξ t̂
dt θ

t̂ = µθt̂, (3.38)

where we introduced

µ(t,x) = 1
Ω
D̂ξ t̂
dt (3.39)

not to be confused with the chemical potential introduced in thermodynamics.
We can now determine the variation of the action under Galilean diffeomorphisms:

δξS =
∫

dtddx
√
aΩ

{
−ξ t̂

[
1
Ω
D̂Π
dt + θwΠ + Πij γ̂

wij

]

+ ξ ı̂
[

1
Ω
D̂Pi
dt + θwPi + Pj γ̂

wj
i + ∇̂jΠij

]}

+
∫

dtddx
{
∂t
(√

a
(
Πξ t̂ − Pjξ ̂

))
+ ∂i

(√
a wi

(
Πξ t̂ − Pjξ ̂

)
−
√
aΩΠi

jξ
̂
)}

. (3.40)
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Requiring that δξS vanishes and ignoring the boundary terms (last two lines in eq. (3.40)),
we reach two equations. The momentum equation is the simplest because ξ ̂ being functions
of both t and x, their factor must vanish:(

1
Ω

D̂
dt + θw

)
Pi + Pj γ̂

wj
i + ∇̂jΠij = 0. (3.41)

The energy equation is more subtle because ξ t̂ depends on t only. As a consequence it is
enough to require that its factor be the Galilean divergence of a vector:(

1
Ω

D̂
dt + θw

)
Π + Πij γ̂

wij = −∇̂iΠi, (3.42)

where Πi is undetermined a priori. Indeed,
√
aΩξ t̂∇̂iΠi = ∂i

(√
aΩξ t̂Πi

)
, which leads to a

boundary term and vanishes inside the integral. One can interpret Πi as the energy current
(also energy flux).

Gauge invariance and matter conservation

Besides Galilean covariance, the action might also be invariant under a local U(1) symmetry,
parameterized by Λ(t,x) and acting on the components of a gauge field B = B(t,x)dt +
Bi(t,x)dxi as

δΛBi = −∂iΛ, δΛB = −∂tΛ. (3.43)

The conjugate momenta are now the matter density and the matter current:

% = − 1√
a

δS

δB
, (3.44)

N i = 1
Ω
√
a

(
wi
δS

δB
− δS

δBi

)
(3.45)

with δS
δBi

= −
√
a
(
ΩN i + %wi

)
, and

δS = −
∫

dtddx
√
a
(
%δB +

(
ΩN i + %wi

)
δBi

)
(3.46)

for the matter sector. The gauge variation of the action reads:

δΛS =
∫

dtddx
√
a
(
%∂tΛ +

(
ΩN i + %wi

)
∂iΛ

)
= −

∫
dtddx

√
aΩΛ

(
1
Ω
D̂%
dt + θw%+ ∇̂iN i

)

+
∫

dtddx
{
∂t
(√
aΛ%

)
+ ∂i

(√
aΛ

(
ΩN i + %wi

))}
. (3.47)

Invariance of S leads to the Galilean continuity equation:(
1
Ω

D̂
dt + θw

)
%+ ∇̂iN i = 0. (3.48)

– 24 –



J
H
E
P
0
9
(
2
0
2
2
)
1
6
2

The continuity equation can be alternatively presented in an integral form, using Stokes
and Gauss theorems:33∫

W
dtddxΩ

√
a

((
1
Ω

D̂
dt + θw

)
%+ ∇̂iN i

)
=

∮
∂W

√
a %
(
dx1 − w1dt

)
∧ . . . ∧

(
dxd − wddt

)
−
∮
∂W

√
a

d∑
i=1

(
dx1 − w1dt

)
∧ . . . ∧N iθt̂ ∧ . . . ∧

(
dxd − wddt

)
, (3.49)

where W ⊂M = R× S and N iθt̂ is the ith factor in the exterior product of the last term
(θt̂ is the clock form given in (3.2)). From this we obtain a conserved charge — under
the usual assumptions for the behaviour of the fields — expressed as an integral over an
arbitrary hypersurface Σd of M = R× S. It coincides with the relativistic Zermelo result
captured e.g. in (2.78).

Although not compulsory, it is convenient to chose Σd ≡ S i.e. a constant-t hypersurface.
We then find

QN =
∫
S
ddx
√
a %, (3.50)

which fits the usual definition of charge in Galilean physics. In this case, the conservation of
QN is often phrased as independence with respect to ordinary time t, although it is actually
a stronger statement, even in Newton-Cartan spacetimes, where there is a privileged time
direction (for the relativistic case, see the comment in footnote 9). Time-independence
appears explicitly if one trades S in the integral (3.50) with V ⊂ S. Assuming for simplicity
that the boundary ∂V of that domain does not depend on t and using (3.48), the time
evolution of the matter/charge content of V is

1
Ω

d
dt

∫
V
ddx
√
a % = −

∫
V
ddx ∂i

(
√
a

(
N i + %

wi

Ω

))
= −

∫
∂V
?

(
N + %

w
Ω

)
, (3.51)

where ? stands for the d-dimensional S-Hodge dual based on
√
a and on the antisymmetric

symbol εi1...id with ε1...d = 1. If the integral is performed over the entire S it vanishes
(assuming a reasonable asymptotic behaviour), and QN in (3.50) is conserved.

Equation (3.48) and its variables are a priori independent of the energy-momentum equa-
tions (3.41), (3.42) and their variables. As we will see, thermodynamics sets a relationship
among the momentum Pi and the current Ni.

Isometries, conservation and non-conservation laws

In (pseudo-)Riemannian geometry, isometries are diffeomorphisms generated by vectors
leaving the metric invariant, i.e. requiring (2.12).34 Newton-Cartan spacetimes may also have

33Stokes theorem is valid irrespective of the metric. Gauss’ requires a dual exterior derivative d†, which
can be introduced consistently despite the cometric being degenerate. We will not elaborate on this matter
here. For the Carrollian case, this was discussed for d = 1 in ref. [26].

34For historical reasons, some authors use the name “Killing fields” for generators of isometries in a
(pseudo-)Riemannian manifold exclusively. We take the freedom here to call every isometry generator a
Killing field, be it for weak or strong, Newton-Cartan or Carrollian manifolds.
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isometries. Due to the degenerate cometric, however, their definition and the determination
of the Killing fields are more subtle. This subject has been abundantly discussed in the
literature. We will summarize the features important for our purpose regarding the Galilean
fluid dynamics.

The Killing fields are of the Galilean type (3.34) and are required to obey

Lξa
ij = 0, Lξθ

t̂ = 0, (3.52)

since the fundamental geometric data are the cometric (3.1) and the clock form (3.2). Using
expressions (3.35) and (3.38) for Galilean diffeomorphisms (ξ t̂ is only t-dependent), we
obtain the Galilean Killing equations:

∇̂(iξ ̂) + γ̂wijξ t̂ = 0, 1
Ω
D̂ξ t̂
dt = 0. (3.53)

These equations generally admit an infinite number of solutions. The reason is that they
refer to the weak definition of Newton-Cartan spacetimes [36] in terms of the cometric and
the clock form, and express exclusively the invariance of these data. A strong definition
exists and requires additionally a symmetric affine connection, which is metric-compatible
and parallel-transports the clock form.35 Isometries are thus restricted to comply with
the strong definition, and leave the affine connection invariant. This reduces the set of
generators to a finite number [87].

Notice also that the fundamental geometric piece of data for a Newton-Cartan spacetime
is genuinely the clock form θt̂ rather than the field of observers et̂. The latter is not required
to have a vanishing Lie derivative along Killing vectors, and using (3.36) and (3.53) we
indeed find

Lξet̂ = − 1
Ω
(
∂tξ

ı̂ + Lwξ
ı̂
)
∂i, (3.54)

for a generic Killing field ξ.
Consider as an example the Newton-Cartan manifold with aij = δij , Ω = 1 and wi

constant. This is our familiar R× E3 spacetime, which is flat for the connection introduced
earlier. Equations (3.53) possess an infinite number of solutions:

ξ =
(
Ω j
i (t)xi + Zj(t)

)
∂j + T∂t (3.55)

with T a constant and Ωij = Ω k
i δkj antisymmetric. Imposing the invariance of the affine

connection, one recovers [87] the (d+2)(d+1)/2-dimensional Galilean algebra gal(d+ 1) with
contant Ωij generating the so(d) rotations, Zj(t) = V jt+Xj for the Galilean boosts and
spatial translations, and T for the time translations. We find in particular that

Lξet̂ = −
(
V i + wkΩ i

k

)
∂i 6= 0, (3.56)

showing among others that the boosts produce a displacement in the field of observers. This
is expected because wi describes the constant velocity of the original inertial frame, which

35It turns out that the connection we have introduced in this section obeys these properties.
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is shifted during a Galilean boost, and nicely illustrates why it would have been unnatural
to impose the invariance of et̂ under the action of an isometry.

Assuming the existence of an isometry, we can now address the conservation law
that would take the Galilean form (3.48) with a Galilean scalar κ and a Galilean vector
Ki determined from the Killing components ξ t̂ and ξ ı̂, and from the Galilean momenta,
i.e. the energy density Π, the momentum Pi and the energy-stress tensor Πij defined in
eqs. (3.30), (3.31), (3.32), as well as the energy flux Πi, and satisfying the conservation
equations (3.41) and (3.42). The Galilean scalar

K=
(

1
Ω

D̂
dt + θw

)
κ+ ∇̂iKi (3.57)

would then vanish on-shell. The components of the Galilean current κ and Ki are read off
in the boundary terms of δξS given in (3.40) and set on-shell:36

κ = ξ ı̂Pi − ξ t̂Π, (3.58)

Ki = ξ ̂Πij − ξ t̂Πi. (3.59)

Using the conservation equations (3.41) and (3.42) we obtain the following result:

K= −Π
Ω
D̂ξ t̂
dt + Pi

Ω
(
∂tξ

ı̂ + Lwξ
ı̂
)

+ Πij

(
∇̂iξ ̂ + γ̂wijξ t̂

)
(3.60)

= Pi
Ω
(
∂tξ

ı̂ + Lwξ
ı̂
)
. (3.61)

We have used the Killing equations (3.53) to reach (3.61) from (3.60), which shows that
in Newton-Cartan spacetimes, a Killing field fails to systematically support an on-shell
conservation law for Galilean dynamics. This could have been anticipated, actually. Indeed,
Pi is conjugate to wi/Ω (see (3.31)) and wi transforms under diffeomorphisms according
to (3.37), even when this diffeomorphism is generated by a Killing vector field. This is
precisely what eq. (3.61) conveys. Still, a conservation law exists for those Killing fields,
which happen to satisfy Lξet̂ ≡ [ξ, et̂] = 0 — using Jacobi identity, one checks that the
commutator of two such Killings leaves also et̂ invariant. As we mentioned earlier, ordinary
Galilean boosts in R × E3 do not, eq. (3.56). In other instances with multiple degrees of
freedom arising from a Laurent expansion in powers of c2 (see section 3.3), several currents
coexist in the presence of a Killing, and some can be conserved due to the accidental — as
opposed to a priori demanded — absence of a Pi-like component.

The above result sounds iconoclastic, in view of the robustness and generality of
Nœther’s theorems. In ref. [42], for instance, the existence of an isometry-related conserved
current in torsional Newton-Cartan spacetimes has not been demonstrated, not even
questioned — it was just assumed to be true. However, it is not ipso facto, for the simple
reason that isometries are less restraining in Newton-Cartan spacetimes, so that only a

36They are in fact inherited from the relativistic-current components i.e. as a large-c expansion of (2.76)
and (2.77), and the precise computation is performed at the end of section 3.3, eq. (3.129).
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restricted class of Galilean Killing fields might indeed be eligible for conservation laws —
boosts in flat spacetime aren’t.

One may naturally contemplate that ξ being a Killing field, the right-hand side
of eq. (3.61) is associated with a boundary term. If this happens, the boundary term
contributes the current components κ and Ki, leading to an effective κ′ and Ki′, truly
conserved. However, this does not seem to be the rule, not even in flat space, where
K= Pi

(
V i + wkΩ i

k

)
, obtained using eqs. (3.55) and (3.56).37

The same conclusion will be reached for Carrollian spacetimes in section 4.1, and
further discussed from the large-c perspective in the upcoming paragraphs, as well as in
appendix D.

Weyl invariance, conformal isometries, conservation and non-conservation laws

Fluids involving massless excitations have observables with remarkable scaling properties.
We can introduce Weyl transformations acting as follows on the fundamental geometric
data of a Newton-Cartan geometry:

aij → B2aij , Ω→ 1
B

Ω, wi → wi, wi →
1
B2wi. (3.62)

Since Ω is a function of t only, the second of (3.62) imposes B = B(t). Weyl-invariance
requirement of an effective action S leads to following weights for the Galilean momenta
in (3.30), (3.31), (3.32): the energy-stress tensor Πij has weight d− 1, the momentum Pi,
d, and the energy density Π, d+ 1. The energy flux Πi introduced in (3.42) has also weight
d. Furthermore, using (3.33) with δBS = 0 implies that

Π i
i = Π. (3.63)

On the matter sector, the gauge fields B and Bi are weight-zero, whereas % is weight-d and
Ni, d− 1.

Weyl covariance can be implemented with the appropriate Galilean-Weyl covariant
derivatives for both time and space. These will be introduced latter in section 3.4, our
aim being here to foster on the case of conformal Killing fields and their possible role in
supporting conservation laws within Weyl-invariant Galilean dynamics.

Following [34, 36] a conformal isometry is generated by a vector field ξ satisfying

Lξa
ij = λaij , (3.64)

where
λ(t,x) = 2

d

(
∇̂iξ ı̂ + θwξ t̂

)
. (3.65)

37For the conservation to occur in flat space, Pi should be a potential flow (also called irrotational, see [1]
section 9) i.e. obey Pi =

(
∂t + wj∂j

)
φi + ∂iφ for some set of functions φ(t,x) and φi(t,x) — scalar and

vector potentials. Then K =
(
∂t + wj∂j

)
φiW

i + ∂iφW
i with W i = V i + wkΩ i

k and the conservation
works out ((3.57) vanishes) with current components κ− φiW i and Ki − φW i. Notice that in contrast to
the present framework, the conservation is generally valid for free-particle motion on Newton-Cartan flat
spacetimes, as in that case the momentum is a total derivative (typically ẋi). Appendix C summarizes this
instance and provides the necessary details for making the statement sound.
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This set of partial differential equations is not sufficient for defining conformal Killing vectors
— again a consequence of the cometric degeneration. Besides, imposing a requirement similar
to (3.64) on the clock form θt̂ does not help since according to (3.38), the Lie derivative
of θt̂ is already proportional to θt̂ with factor (3.39). What is rather natural is to tune µ
versus λ so that the scaling of the metric be twice that of the clock form:38

2µ+ λ = 0. (3.66)

This is a consistent Weyl-covariant condition, leading to a reasonable set of conformal Killing
fields. Using the strong versus the weak definition of Newton-Cartan structures further
reduces the freedom for conformal isometries, and opens the Pandora box for investigating
conformal Galilean algebras in flat Newton-Cartan spacetimes: cga(d+1) and their multiple
variations. Discussing these in detail is beyond our scope and ample information can be
found in the quoted references.

Assuming Weyl invariance i.e. (3.63), and the presence of a conformal Killing field,
the conservation equations (3.41) and (3.42) can be exploited for computing K defined
in (3.57), (3.58) and (3.59):

K= −Π
(
λ

2 + µ

)
+ Pi

Ω
(
∂tξ

ı̂ + Lwξ
ı̂
)
. (3.67)

The extra condition (3.66) defining the conformal Killing vectors of Newton-Cartan space-
times emerges naturally in the quest of conserved Galilean currents and gives K =
Pi
Ω

(
∂tξ

ı̂ + Lwξ
ı̂
)
6= 0. As for the ordinary Killings, a conformal Killing vector does not

guarantee a conservation law for Weyl-invariant Galilean dynamics.

3.2 Galilean hydrodynamics as a non-relativistic limit

Philosophy and large-c behaviour

Equations (3.41), (3.42) and (3.48) summarize the conservation properties of Galilean
dynamics on a general, curved and time-dependent space S, spatial section of a torsionless
Newton-Cartan spacetime R×S. They are general-Galilean-covariant and are a consequence
of this invariance, as much as the relativistic equations (2.1) and (2.2) reflect general
Riemannian covariance.

Fluid dynamics is more. Its description requires expressing the momenta in terms of
the velocity field v, the heat current Q, the stress tensor ΣΣΣ, together with local-equilibrium
thermodynamic variables such as e, p, h, %, µ, T and s, obeying further thermodynamic
laws (see appendix A), and ultimately entering the constitutive relations. A systematic
approach to this programme is based on the large-c expansion of relativistic hydrodynamics
in Zermelo frame, which is the natural pseudo-Riemannian ascendent of the present Galilean
framework. This method was applied successfully in [29], where the Eckart frame was

38More generally, one considers 2µ+ zλ = 0, where z is the dynamical exponent i.e. minus the conformal
weight of Ω. Here, due to the close relationship of our Newton-Cartan spacetimes with relativistic ascendents,
the weight of Ω is inherited from the latter and z = 1. One also defines the level N = 2/z, which appears in
the conformal algebras emerging in flat Newton-Cartan spacetimes.
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implicitly assumed on the relativistic side, subsequently ignoring the role of the current
and the chemical potential. We will generalize it here in order to address the issue of the
non-relativistic hydrodynamic-frame invariance, which relies intimately on the behaviour of
the various observables.

The dependence with respect to the velocity of light is explicit in the relativistic
geometric data (see the metric (2.46)). This is our choice for making the bridge with
Newton-Cartan straightforward. As a consequence, the behaviour of kinematical observables
is also known — see (2.23), (2.24), (2.25), (2.51) and (2.52). We find in particular

u0 = c

Ω + O (1/c) , ui = vi − wi
Ω + O (1/c2) , (3.68)

and

σij = ξvij + O (1/c2) , (3.69)
Θ = θv + O (1/c2) , (3.70)

ωij = 1
Ω
(
∂[i(v − w)j]

)
+ O (1/c2) . (3.71)

The non-relativistic limit of thermodynamic variables is standard and is recalled in
appendix A. The precise relation of the Galilean density % to the proper density %0 deserves
however a comment. Indeed, the density measured by an observer is the projection of the
current (2.4) onto the observer’s velocity. For instance, an observer at rest with respect to
the fluid, i.e. running with velocity u, finds

%0 = − 1
c2Jµu

µ. (3.72)

The density % is the one measured by a fiducial observer of Zermelo frame. Since % is the
“non-relativistic density,” this fiducial observer should have some “absolute” status. In
Minkowski spacetime we would have simply taken the inertial observer at rest in the inertial
frame at hand. In Zermelo it is natural to consider an observer with velocity uZ ≡ et̂ as
given in (3.3) because

uµZ∇µu
ν
Z = 0, (3.73)

and thus this observer indeed defines a locally inertial frame.39 Hence we obtain

% = − 1
c2Jµu

µ
Z = Ω

c
J0 = Ωγ%0 + ji

vi − wi

c2Ω , (3.74)

which naturally coincides with the hydrodynamic-frame invariant %0r introduced in (2.69).
This expression agrees with ref. [29] only in the Eckart frame, i.e. when ji = 0.

The behaviour of %0 in terms of % at large c depends on the behaviour of ji and this
brings us to the heart of the discussion of the non-relativistic limit in hydrodynamics:

39This is precisely why it was stated earlier that a frame with velocity w = wi∂i was inertial in the
Newton-Cartan geometry (3.3), (3.4). Notice that the property (3.73) holds because Ω is a function of time
only, which is the emanation of the torsionless nature of the limiting Newton-Cartan structure, and enables
to define in turn an absolute Newtonian time in this Galilean limit. This framework, where no isometry is
assumed, is the closest we can go to the standard classical Newtonian physics on R×Ed with clock form dt.
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how do the stress tensor τij, the heat current qi and the non-perfect current ji behave at
large c? There is no absolute answer to these questions, it depends on the microscopic
properties of the system (the interactions in particular). These properties are encapsulated
in the transport coefficients appearing in the constitutive relations for τij , qi and ji as
derivative expansions. For instance, at first-derivative order τ(1)ij = −2ησij − ζhijΘ,
q(1)i = −κh ν

i

(
∂νT + T

c2 aν
)
and j(1)i = −h ν

i σTT∂ν
µ0
T with a typical relationship among

the transport coefficients: κ = σTw2

T%2
0

(see e.g. ref. [10], where σT is referred to as the
charge conductivity). Under the reasonable assumption that η, ζ and κ (the shear and
bulk viscosities, and the heat conductivity) are of dominant order 1, σT is of order 1/c4

(due to w2). Since µ0 is of order c2 (rest-mass contribution in (A.4)) we conclude that τij
and qi are of order 1, whereas ji is of order 1/c2. For reasons that will become clear in the
discussion on hydrodynamic-frame invariance, we would like to be slightly more general at
this stage, and assume the following behaviour:

τij = −Σij + O (1/c2) , (3.75)

ql = c2rl + kl + O (1/c2) , (3.76)

jl = nl + ml

c2 + O (1/c4) . (3.77)

Following the above discussion, rl and nl are expected to vanish for ordinary non-relativistic
fluids. Their presence will disclose some interesting properties though.

Before we proceed with the Galilean fluid equations a comment should be made.
Considering several distinct orders in the expansion of the relativistic data amounts to allow
for a multiplication of the degrees of freedom in the Galilean limit (see the end of section 3.3).
This is accompanied with further dynamical (or possibly constraint) equations. Sometimes,
these degrees of freedom and their dynamics can emerge separately, by performing an
appropriate c2 rescaling in the relativistic data before taking the limit. This is how the
electric versus magnetic options occur, as e.g. in refs. [34, 101].

Inserting the expression (3.77) in (3.74), we find:40

%0 = %− 1
c2

(
%

2

(v−w
Ω

)2
+ n · (v−w)

Ω

)
+ O (1/c4) . (3.78)

The latter can in turn be used inside (A.2) leading to

ε = c2%+ %

(
e− 1

2

(v−w
Ω

)2
)
− n · (v−w)

Ω + O (1/c2) , (3.79)

where the first term is the rest energy, the second is the internal energy corrected by the
kinetic energy with respect to the local inertial frame, and the third is a contribution
originating from the leading term in the matter current (3.77). We already foresee that
this amounts to the presence of a spring or a sink that create or consume matter, and this

40Although lim
c→∞

Ωγ = 1, we must keep terms of order 1/c2 because of the rest mass contributions.
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will be confirmed when reaching the conservation equation. This situation is usually not
considered except when discussing diffusion or similar phenomena (see for instance [86],
chapter VI).

A last comment concerns the role of (A.2), or its large-c emanation (3.79). This
equation of thermodynamic nature, makes the bridge between energy-momentum and
matter conservations. As we will see soon, it establishes a relationship amongst Pi and Ni

respectively defined in (3.32) and (3.45) as the fluid momentum and the matter current.
Notice that if several charges and associated conserved currents are present, only one

will have a privileged relationship with the energy-momentum, being therefore affiliated
with mass conservation — and entering the thermodynamic relation (A.2), as mentioned in
appendix A.

Galilean momenta

The Galilean momenta defined earlier in (3.30), (3.31), (3.32), (3.44) and (3.45) will now
appear in the large-c expansion of the relativistic energy-momentum and current compo-
nents (2.63) and (2.65) in Zermelo frame, as explicit expressions in terms of the various
hydrodynamic and thermodynamic observables. This includes the energy current Πi intro-
duced in eq. (3.42) — and not a priori defined as a variation of the effective action with
respect to some conjugate variable. As we have already emphasized, the thermodynamic
laws set relationships amongst the energy-momentum and the matter.

Using eqs. (2.66), (2.67), (2.68), (2.69), (2.70) and (3.74), we obtain:

%0r = %, (3.80)

jri = Ni + 1
c2 pi + O (1/c4) , (3.81)

where we introduced the leading and subleading matter currents

N i = %
vi − wi

Ω + ni, (3.82)

pi = mi −
n · (v−w) (vi − wi)

Ω2 . (3.83)

The subleading terms must be kept because they are multiplied in the expansions by the
rest-mass term and contribute the equations. Anticipating the next steps, we set

P i = %
vi − wi

Ω + ri. (3.84)

We recognize in Pi (defined generically in (3.31) — indices raised with aij) a slight extension
of the usual fluid momentum, while the matter current N i (introduced in (3.45)) is related
to the former as

N i = P i + ni − ri. (3.85)

The more standard equality N i = P i occurs when ni = ri.
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Similarly we find for the energy-momentum

εr = c2%+ Π + O (1/c2) , (3.86)

qri = c2Pi + Πi + pi + O (1/c2) , (3.87)

praij + τrij = Πij + O (1/c2) (3.88)

with41

Πij = %
(vi − wi) (vj − wj)

Ω2 + paij − Σij + 2
(v(i − w(i)rj)

Ω , (3.89)

Π = %

(
e+ 1

2

(v−w
Ω

)2
)

+ (2r− n) · (v−w)
Ω , (3.90)

Πi = %
vi − wi

Ω

(
h+ 1

2

(v−w
Ω

)2
)
− vj − wj

Ω Σ i
j

+ ri
2

(v−w
Ω

)2
+ r · (v−w) (vi − wi)

Ω2 + ki −mi, (3.91)

the explicit expressions for (3.30) and (3.32). Observe that we have split the order-1
contribution in (3.87) as Πi + pi. This is not arbitrary because pi, defined in (3.83), occurs
also as subleading term in the matter current (3.81), and these will annihilate in the final
equations, which will turn exactly as (3.41), (3.42) and (3.48). We recover in the above
formulas the fluid energy-stress tensor, energy density and energy current, as defined in
ref. [1] §§ 15 and 49, generalized though in a covariant fashion for arbitrary torsionless
Newton-Cartan geometries. They all receive exotic contributions from the ni and ri, absent
in standard Galilean fluids. The combination

Ql = kl −ml, (3.92)

inside the energy current, appears as the Galilean heat current. It receives contributions
from both the relativistic heat current qi and the relativistic non-perfect matter current
ji (see (3.76) and (3.77)). This is exactly how it should: in Landau-Lifshitz frame qi = 0
and the Galilean heat current originates exclusively from the relativistic non-perfect matter
current, whereas in Eckart frame where ji = 0 it is the other way around. A more complete
discussion on hydrodynamic frames will be brought off in a short while. As anticipated
in footnote 13, we can however notice that for fluids without conserved current, although
sensible, the Landau-Lifshitz hydrodynamic frame is not suited for the Galilean limit — it
leads to Qi = 0 and Eckart frame is always preferred [8].

41The energy current Πi defined in (3.91) differs slightly from the expression (3.44) of [29], even at
vanishing r. In that reference, neither were the momenta defined as variations of an effective action, nor was
the hydrodynamic-frame invariance a guide.

– 33 –



J
H
E
P
0
9
(
2
0
2
2
)
1
6
2

Hydrodynamic equations

The fluid equations (2.1) and (2.2) translate the vanishing of

cΩ∇µTµ0 = c2
(
C+ ∇̂i

(
ri − ni

))
+ ∇̂ipi + E+ O

( 1
c2

)
, (3.93)

∇µTµi = Mi + O
( 1
c2

)
, (3.94)

∇µJµ = C+ 1
c2 ∇̂ip

i + O
( 1
c4

)
, (3.95)

with

E= 1
Ω
D̂Π
dt + θwΠ + Πij γ̂

wij + ∇̂iΠi, (3.96)

Mi = 1
Ω
D̂Pi
dt + θwPi + Pj γ̂

wj
i + ∇̂jΠij , (3.97)

C= 1
Ω
D̂%
dt + θw%+ ∇̂iN i. (3.98)

Two fluid equations emerge from (3.93) because of the presence of order-1 and order-c2

terms that should both be zero in the infinite-c limit. The latter should be taken after we
combine (3.95) with (3.94) as

cΩ∇µTµ0 = c2∇̂i
(
ri − ni

)
+ E+ O (1/c2) , (3.99)

leading to
∇̂i
(
ri − ni

)
= 0, (3.100)

and
E= 0, (3.101)

which is the fluid energy equation. Using (3.85), eq. (3.100) is recast as

∇̂i
(
N i − P i

)
= 0, (3.102)

which is a constraint equation for the divergences of the matter current and the fluid
momentum. Finally, (3.94) provides the fluid momentum equation

Mi = 0, (3.103)

whereas (3.95) exhibits the continuity equation, which thanks to (3.102) also reads:42

C= 0, (3.104)

possibly recast in several forms

C= 1
Ω
D̂%
dt + θw%+ ∇̂iP i = 1

Ω
d%
dt + θv%+ ∇̂iri = 1

Ω
d%
dt + θv%+ ∇̂ini = 0. (3.105)

42This is the typical equation describing phenomena, where several fluid components are present but are
not separately conserved. Examples are diffusion or superfluid dynamics (e.g. [86], chapters VI and XVI,
eqs. (58,3) or (139,3)).
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We can now summarize our findings. The Galilean fluid equations on a general back-
ground are by essence fully covariant under Galilean diffeomorphisms (alternative views
about this statement are available in ref. [29]) and extend the standard hydrodynamic equa-
tions on flat Euclidean space with absolute time. The momentum equation (3.103) coincides
with (3.41), whereas the energy equation (3.101) is (3.42). Similarly, the continuity equa-
tion (3.105) is identified with (3.48), provided the matter current and the fluid momentum
have equal divergence (3.102). This requirement is subsequent to the relationship (3.79),
which finally relates the energy-momentum equations with the matter equation.

Strictly speaking, eq. (3.105) is not a conservation law. Integrated inside a static
domain V, the density % varies in time, not only because of the expansion or the contraction
of V (term %θv), but also due to the flux of n through ∂V. Using (3.51) we find:

1
Ω

d
dt

∫
V
ddx
√
a %+

∫
∂V
%
?v
Ω = −

∫
∂V
?n. (3.106)

Allegedly, n appears as the flux of matter brought about by a sink or a spring. Furthermore,
eq. (3.100) transcribes that matter loss or gain goes along with heat loss or gain. In usual
Galilean hydrodynamics ri is required to vanish, which then forbids such spring or of
matter. At the same time, in those cases ni = 0, and the fluid momentum and matter
current are identical: Pi = Ni. The systems under investigation here are more general and
possess a remarkable property, which is broken in ordinary non-relativistic fluids: Galilean
hydrodynamic frame invariance.

The fate of hydrodynamic-frame invariance

The relativistic fluid equations are invariant under arbitrary unimodular transforma-
tions of the velocity field u, captured in43 vk → vk + δvk(t,x), provided they are ac-
companied with the transformations of all other dynamical quantities, as described in
eqs. (2.57), (2.58), (2.59), (2.61) and (2.62). Does this survive in the Galilean limit?

The intuitive answer to this question is no. The velocity field is a physical and observable
quantity and only variations by constant values in directions associated with isometries
of the underlying Galilean spacetime, if any, might leave the equations invariant. The
fluid density % is also physical and has furthermore a microscopic definition in terms of an
observable expectation value. It is hard to imagine how one could maintain the continuity
equation invariant without altering the density. Although this might still be considered as
an abstract field redefinition,44 it would be at the expense of giving up the physical meaning
of the various quantities at hand.

The above intuitive answer seems to contradict the mathematical structure of the
equations describing the dynamics. Indeed, on the one hand the operators entering equa-
tions (3.96), (3.97) and (3.98) are velocity-independent; on the other hand, the momenta %,

43The infinitesimal local Lorentz transformations are parameterized with Lorentz boost and rotation
generators, V i(t,x) and Ωij(t,x) — antisymmetric, as follows: δvi = V i−V j (vj−wj)(vi−wi)

c2Ω2 + Ωij (vj − wj).
In the Galilean limit the general local velocity transformation is thus δvi = V i + Ωij (vj − wj) — Galilean
boosts and rotations.

44This point of view, slightly different from ours, is adopted to some extent in [63, 64]. We acknowledge a
rich exchange with P. Kovtun on that matter.
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Ni, Pi, Π, Πi and Πij , appear as coefficients in the expansion of the hydrodynamic-frame-
invariant relativistic momenta (3.80), (3.81), (3.86), (3.87) and (3.88). It is however too
naive to infer that the Galilean momenta are automatically invariant. They are obtained
assuming a behaviour of the stress, and of the heat and matter currents with respect to
c2 (eqs. (3.75), (3.76), (3.77), (3.78), (3.79)), and this behaviour may or may not be stable
under velocity transformations.

The precise answer calls for a thorough examination of the transformations (2.57), (2.58),
(2.59), (2.61) and (2.62) in the infinite-c limit, and of their effect on the non-relativistic
quantities introduced through (3.75), (3.76), (3.77), (3.78) and (3.79). We find the following
transformations under the action of general local Galilean boosts and rotations:45

aijδp− δΣij = − 2
Ωr(iδvj), (3.107)

δri = − %Ωδvi, (3.108)

δki = δvi
Ω

(v−w) · n
Ω + δvj

Ω

(
vi − wi

Ω rj − %
(vi − wi)(vj − wj)

Ω2 − %haij + Σij

)
,

(3.109)

δQi = δvj

Ω

(
(rj − nj)

vi − wi
Ω − %haij + Σij

)
, (3.110)

%δe = (ni − 2ri)
δvi

Ω , (3.111)

δ% = 0, (3.112)

δni = − %Ωδvi, (3.113)

δmi = δvj

Ω

(
nj − %

vj − wj
Ω

)
vi − wi

Ω + δvi
Ω

(v−w) · n
Ω , (3.114)

and thus
δ
(
ni − ri

)
= 0 . (3.115)

In turn, this action translates into the invariance of the fundamental momenta, i.e. the fluid
energy density, the fluid energy current, the fluid energy-stress tensor, the fluid momentum,
the matter density and the matter current:

δΠ = 0, δΠi = 0, δΠij = 0, δP i = 0, δ% = 0, δN i = 0. (3.116)

These imply that the Galilean fluid equations are invariant under an arbitrary local redefi-
nition of the fluid velocity field vi(t,x).

This result is important but should be reckoned with great care. On the one hand,
the non-relativistic density % is not sensitive to the velocity field v (in contrast with the
relativistic result (2.61)). On the other hand, the standard momentum %v

i−wi
Ω does depend

on the velocity. The actual momentum emerging here, P i displayed in eq. (3.84), is therefore
invariant thanks to ni. Hence, the non-conservation of matter discussed previously saves

45Notice the following useful formulas: δθv = 1
Ω ∇̂iδv

i and δξvij = 1
Ω

(
∇̂(iδvj) − 1

d
aij∇̂kδvk

)
, whereas

δθw = δξwij = 0.
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hydrodynamic-frame invariance. Put differently, this invariance is disabled upon demanding
a genuine conservation i.e. ni = 0: truly conserved, ordinary non-relativistic fluids are
not hydrodynamic-frame-invariant. For these fluids the behaviours of the relativistic heat
and matter currents are ql = kl + O (1/c2) and jl = ml

c2 + O (1/c4). Following our earlier
discussion these behaviours are physical, but are at the same time unstable under velocity
transformations.46

Although negative, our last conclusion makes clear the origin of the physically expected
breaking of velocity invariance in non-relativistic fluids obeying an authentic conservation
equation. In this respect, it is worth quoting a substantial literature on trials to explore
the symmetries of Navier-Stokes equations (i.e. first-derivative truncated Galilean fluid
equations) in their compressible or incompressible form. A nice overview is given in [69],
from which it comes out that most of these extra symmetries are probably accidental,
and bound to the specific truncation or system (compressible/incompressible), rather than
emanating from the original relativistic hydrodynamic-frame invariance.

Heat and entropy equations

As we have emphasized in section 2.1, the investigation of hydrodynamic-frame transforma-
tions should be completed with the analysis of the entropy current, which is also invariant
in the relativistic theory. We will not pursue this endeavour any further, which provides
ultimately the transformations δs, δp, δT , and δµ. Instead, we will combine the above
results in order to reach the non-relativistic entropy equation.

As a first step we can perform the usual combination E− vi−wi
Ω Mi, which leads to the

heat equation. It takes the following form:

1
Ω

d
dt

(
e%+ (v−w) · (r− n)

Ω

)
+
(
h%+ (v−w) · (r− n)

Ω − Σ
d

)
θv − ξvijΣij

+ ∇̂i
(
Qi − vi − wi

Ω
(v−w) · (r− n)

Ω

)
+ ri

Ω
D
dt
vi − wi

Ω − 1
2

(v−w
Ω

)2
∇̂jrj = 0.

(3.117)

This equation can be alternatively established within the relativistic framework, by consider-
ing −uν∇µTµν as in (2.21), and its subsequent Galilean limit. Notice that due to the explicit
appearance of the velocity field (uν or vi), the equation at hand is hydrodynamic-frame
invariant only on-shell.

46The requirements ri = 0 or ni = 0 are not compatible with the transformations (3.108) or (3.113).
Observe however that a choice, stable under hydrodynamic-frame transformations, is ni = ri, thanks
to (3.115). With this, P i = N i and we are the closest possible to ordinary non-relativistic fluids, without
genuine conservation though.
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Assuming the thermodynamic properties47 of section A and using in particular eq. (A.15)
together with the continuity equation (3.105), eq. (3.117) is recast as follows:

%T

Ω
ds
dt + 1

Ω
d
dt

((v−w) · (r− n)
Ω

)
=

(Σ
d
− (v−w) · (r− n)

Ω

)
θv + ξvijΣij

− ∇̂i

(
Qi − vi − wi

Ω
(v−w) · (r− n)

Ω − ri
(
h+ 1

2

(v−w
Ω

)2
))

− ri
(

1
Ω

D
dt
vi − wi

Ω + ∇̂i
(
h+ 1

2

(v−w
Ω

)2
))

, (3.118)

which can also be reached from the relativistic equation (2.22) in the infinite-c limit. This
equation is intricate and can be somehow simplified by setting n = r, which does not spoil
the Galilean hydrodynamic-frame invariance (again realized on-shell):

%T

Ω
ds
dt = Σ

d
θv + ξvijΣij − ∇̂i

(
Qi − ri

(
h+ 1

2

(v−w
Ω

)2
))

− ri
(

1
Ω

D
dt
vi − wi

Ω + ∇̂i
(
h+ 1

2

(v−w
Ω

)2
))

. (3.119)

The latter resembles the entropy equations found when studying diffusion phenomena or
dissipative processes in superfluids (see eqs. (58,6) and (140,4) in [86]). The combination
h + 1

2
(v−w

Ω
)2 materializes a sort of effective chemical potential for the current r. For

vanishing r, (3.119) is the standard non-relativistic entropy equation in arbitrary Galilean
backgrounds. We will not pursue this discussion any longer.

3.3 A comment on Galilean conservation versus non-relativistic limit

The hidden local U(1)

We have so far pursued two distinct approaches. The first (section 3.1) relies on the
requirement of Galilean general covariance for a system defined on a (torsionless) Newton-
Cartan spacetime — possibly but not necessarily — obtained as an infinite-c limit of a
pseudo-Riemannian geometry in Zermelo frame. The second (section 3.2) amounts to
taking the c→∞ limit after the general-covariance conservation has been imposed on the
relativistic system.

It is legitimate to wonder whether the two approaches are equivalent, in other words,
whether the conservation requirement and the c→∞ limit commute.

In order to present a clean answer to this question, we must consider the simplest
possible situation. Aiming at this, we focus on the energy and momentum only (no matter)
and make no reference to their expressions in terms of fluid variables such as density,
thermodynamic quantities, velocity etc. Starting with a Newton-Cartan set up, we define

47This might turn naive due to the extra underlying degrees of freedom carried by the effective cre-
ation/destruction currents n and r. Investigating this issue in not in our agenda here.
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the energy-stress Πij , the momentum Pi and the energy density Π as in (3.30), (3.31)
and (3.32). General Galilean covariance translates into two equations, (3.41) and (3.42),
which reveal a novel, a priori undetermined vector Πi, interpreted as the energy current.

Alternatively, one may work in a relativistic spacetime equipped with Zermelo coordi-
nates, and a full-fledged and conserved energy-momentum tensor Tµν with the following
large-c expansion: 

Ω2T 00 = εr = Π + O (1/c2)

cΩT 0
i = qri = c2Pi + Πi + O (1/c2)

Tij = praij + τrij = Πij + O (1/c2) .

(3.120)

This determines the energy current Πi as a subleading term with respect to the momentum
Pi in the expansion of the relativistic heat current. Furthermore, the expansion of the
relativistic equations is nowcΩ∇µT

µ0 = c2∇̂jP j + E+ O (1/c2) = 0

∇µTµi = Mi + O (1/c2) = 0.
(3.121)

with E and Mi given in eqs. (3.96) and (3.97). We recover, as in the first way, the Galilean
conservation equations (3.41) and (3.42), supplemented now by an extra constraint on the
current Pi:

∇̂jP j = 0. (3.122)

The punch line of the current discussion is that taking the c→∞ limit followed by the
general-covariance requirement is less restrictive than following the pattern in the reverse
order. With this latter order, not only the energy current is provided explicitly but the fluid
current obeys an extra constraint equation. The reason for this is simple. When the infinite-c
limit is the last step, the system secretly remembers the full diffeomorphism invariance
present at the first step, which contracts during the limit into the Galilean covariance
accompanied with a central extension [88]. This extra hidden local U(1) invariance accounts
for the supplementary equation (3.122). When the Galilean diffeomorphism invariance is
the second step, the x-independence of ξt leaves Πi undetermined, and no further equation
is found.

All this shows how the full — as opposed to (3.122) — continuity equation (3.105)

1
Ω
D̂%
dt + θw%+ ∇̂iP i = 0, (3.123)

can emerge provided εr contains an extra c2% term, without introducing a relativistic
conserved current with a local U(1) symmetry, as in [29].48 When such an explicit U(1)
current is present, as in sections 3.1 and 3.2, it is promptly identified with the hidden one
through (3.102), originating in the deep relationship between energy and mass, eq. (A.2).

48With this method, however, the relativistic hydrodynamic frame is locked to Eckart’s since the Galilean
heat current Qi in (3.92) receives only the contribution ki.
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More general abstract equations

The large-c behaviours (3.80), (3.81), (3.86), (3.87) and (3.88) (or a simpler version of the
latter without % (3.120)) are motivated by the physics standing behind these momenta,
captured in the behaviours of transport coefficients and materialized in (3.75), (3.76)
and (3.77). As an echo to the comments made when setting the latter, one could be more
abstract and consider order-c2 terms in the stress tensor τij as we have already introduced in
the heat and matter currents, and possibly further powers in those (rl and nl were already
beyond normalcy, but introduced as a mean of restoring hydrodynamic-frame invariance —
or demonstrating its breaking in genuine non-relativistic fluids). The net effect of this sort
of options is to bring the energy-momentum tensor in the form

Ω2T 00 = εr = c2%+ Π + O (1/c2)

cΩT 0
i = qri = c4P̃i + c2Pi + Πi + O (1/c2)

Tij = praij + τrij = c2Π̃ij + Πij + O (1/c2) ,

(3.124)

and produce at infinite c a genuine hierarchy of equations, which are replicas of those we
have already met: 

(
1
Ω

D̂
dt + θw

)
Π + Πij γ̂

wij + ∇̂iΠi = 0(
1
Ω

D̂
dt + θw

)
%+ Π̃ij γ̂

wij + ∇̂iP i = 0

∇̂jP̃ j = 0(
1
Ω

D̂
dt + θw

)
Pi + Pj γ̂

wj
i + ∇̂jΠij = 0(

1
Ω

D̂
dt + θw

)
P̃i + P̃j γ̂

wj
i + ∇̂jΠ̃ij = 0.

(3.125)

This sort of situation is the archetype of multiplication of degrees of freedom, mentioned
earlier. It comes naturally thanks to the existence of a parameter c, which makes it possible
to organize a Laurent expansion. It is more artificial to interpret this system as conservation
equations portraying local symmetries, because this would require introducing further
variables, conjugate to the new momenta, such as ãij , w̃i, Ω̃ etc. We will not elaborate
on that, but keep the structure in mind for comparison with the forthcoming analysis
of section 4.3 about Carrollian fluids. For the latter, no physical intuition can possibly
serve a as guide — basic thermodynamics is even missing. Only a blind 1/c2 expansion
applies, as suggested by the only known application field of Carrollian fluids, which is flat
holography [25–28]. Then the hierarchy obtained is dual to (3.125), and this plainly justifies
our present excursion from standard, physical non-relativistic fluids.

Multiplication of degrees of freedom occurs also in the matter sector. On could indeed
abstractly assume that some matter current behaves like

Ω
c
I0 = ι0r = c2κ̃+ κ+O (1/c2) , Ik = irk = c4 ˜̃Kk + c2K̃k +Kk +O (1/c2) . (3.126)

Using these expansions in the relativistic divergence of the matter current Jµ in Zermelo
background we find:

∇µIµ = c4 ˜̃K+ c2K̃+ K+ O (1/c2) (3.127)
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with 
˜̃K= ∇̂j ˜̃Kj

K̃=
(

1
Ω

D̂
dt + θw

)
κ̃+ ∇̂jK̃j

K=
(

1
Ω

D̂
dt + θw

)
κ+ ∇̂jKj ,

(3.128)

which must vanish if ∇µIµ = 0.
As an aside application of the latter results, we can insert the behaviour (3.124) inside

the components (2.76) and (2.77) of a relativistic conserved current resulting from the
combination of the energy-momentum tensor with a Killing field. We find thus

κ = ξ ı̂Pi − ξ t̂Π

κ̃ = ξ ı̂P̃i − ξ t̂%

Ki = ξ ̂Πij − ξ t̂Πi

K̃i = ξ ̂Π̃ij − ξ t̂Pi
˜̃Ki = −ξ t̂P̃i,

(3.129)

where κ and Ki are precisely as anticipated in (3.58) and (3.59). On-shell i.e. assum-
ing (3.125), and using (3.53) we find for (3.128)

˜̃K= 0

K̃= P̃i
Ω

(
∂tξ

ı̂ + Lwξ
ı̂
)

K= Pi
Ω

(
∂tξ

ı̂ + Lwξ
ı̂
)
,

(3.130)

in agreement with the result (3.61) for the last two. The first vanishes, and this shows that
even though the existence of a Killing field does not guarantee the conservation of a Galilean
current, such a conservation can occur if the appropriate vector vanishes. Ordinary Galilean
fluids as those studied in section 3.2 have P̃i = Π̃ij = 0 in (3.124) so that ˜̃Kj = 0. Hence
two currents survive, one with K 6= 0 (non-conserved) and another, which is conserved
(K̃= 0) but already known. Indeed, it is the very same that appears inside the ordinary
continuity equation, and no extra conservation arises as a consequence of isometries.

One might be legitimately skeptical about the validity of the above conclusion on
non-conservation: how can the bona fide law ∇µIµ = 0 of a relativistic current Iµ = ξνT

µν

based on a Killing field ξ of a pseudo-Riemannian spacetime, break down suddenly in the
infinite-c limit? The answer is captured by the very definition of a Galilean Killing, which
ultimately leaves non-vanishing terms in the divergence. The precise way this comes about
is exposed in appendix D.1.

3.4 Massless carriers and Weyl properties

Generic hydrodynamic equations

Although massless particles are ultra-relativistic, a macroscopic collection of them forming a
fluid can be compatible with Galilean symmetries. The latter appear as a phenomenological
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emanation and are agnostic on their microscopic origin. Such a system can also have a
conserved current and a chemical potential, which are not related to mass, but to some
charge. Some examples of this sort are mentioned in appendix A (see ref. [89]) together
with their basic thermodynamic properties.

The difference with respect to the previous section (section 3.2) is the Galilean limit.
Here, instead of (3.78), we can simply consider

%0 = %+ O (1/c2) , ε = %e+ O (1/c2) , (3.131)

where e is the energy per charge unit and % is the charge volume density — as opposed
to proper volume — and ε = %e the non-relativistic energy density (see also appendix A).
Again, our goal is to find the fundamental variables as well as the dynamical equations,
and probe the behaviour of the latter under Galilean hydrodynamic-frame transformations.

Why do we expect this sort of system be potentially Galilean hydrodynamic-frame
invariant? A gas of photons, perhaps under some isotropy and homogeneity requirement
regarding interactions, gives no handle for measuring a global velocity. In other words,
we do not expect vi to enter the hydrodynamic equations. This reasoning is not a proof,
but a guideline to pursue here. For that, we will adopt again the behaviours (3.75), (3.76)
and (3.77) for the stress tensor, the heat and the charge currents, even though we are
aware that on physics grounds ri and ni are bound to vanish. For the charge current, the
subleading term ml turns out to be irrelevant here because of the absence of rest mass.

Equations (2.66), (2.67), (2.68), (2.69) and (2.70), now give:

%0r = %, jri = Ni + O (1/c2) (3.132)

with Galilean charge current

N i = %
vi − wi

Ω + ni. (3.133)

From the energy-momentum tensor one obtains

εr = Π + O (1/c2) , (3.134)
qri = c2Pi + Πi + O (1/c2) , (3.135)

praij + τrij = Πij + O (1/c2) , (3.136)

which coincides with (3.120), where

Πij = paij − Σij + 2
(v(i − w(i)rj)

Ω , (3.137)

P i = ri, (3.138)

Π = ε+ 2r · (v−w)
Ω , (3.139)

Πi = ((ε+ p)aij − Σij)
vj − wj

Ω + ri
2

(v−w
Ω

)2
+ r · (v−w) (vi − wi)

Ω2 + ki, (3.140)

are the explicit expressions for (3.30), (3.31) and (3.32), as well as for the energy current
Πi, which will appear in the energy equation (3.42). The Galilean heat current receives now
a single contribution as

Ql = kl. (3.141)
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For the fluid under consideration, the structure of the conservation equations is as
follows (actually as in (3.121) because the energy-momentum (3.134), (3.135), (3.136) is as
in (3.120)):

cΩ∇µTµ0 = c2∇̂jrj + E+ O (1/c2) , (3.142)

∇µTµi = Mi + O (1/c2) , (3.143)

∇µJµ = C+ O (1/c2) , (3.144)

with E, Mi and C as in (3.96), (3.97), (3.98). At infinite c the hydrodynamic equations are
again (3.101), (3.103), (3.104), and we recover eqs. (3.41), (3.42) and (3.48), as expected,
plus the extra equation (same as (3.122))

∇̂jrj = 0, (3.145)

which is absent when the unphysical vector rj originating from the c2 term of the relativistic
heat current vanishes. The difference with respect to the massive case studied in the
previous section dwells in the expression of the momenta (energy-stress tensor, fluid current,
fluid energy density and fluid energy current — the charge current is the same as the matter
current before).

We can now combine the above results in order to reach the heat and next the entropy
equations. Equivalently these are obtained as infinite-c limits of eqs. (2.21) and (2.22). We
find for the former

E− vi − wi
Ω Mi = 1

Ω
d
dt

(
ε+ (v−w) · r

Ω

)
+
(
ε+ p+ (v−w) · r

Ω − Σ
d

)
θv − ξvijΣij

+ ∇̂i
(
Qi − vi − wi

Ω
(v−w) · r

Ω

)
+ ri

Ω
D
dt
vi − wi

Ω = 0. (3.146)

For the entropy equations there are two options. If no conserved charge current exists, the
equation (3.104) is immaterial, the chemical potential vanishes and (A.19) gives dε = Tdσ,
which can be substituted in (3.146). This happens e.g. for a gas of photons. If a conserved
charge current is available then ε can be traded for %e, ε + p for %h, σ for %s, and
using (A.18), (A.19) and (3.104) one obtains

1
Ω
d%e
dt = %T

Ω
ds
dt − %hθ

v − h∇̂ini, (3.147)

which can be inserted back in (3.146):

%T

Ω
ds
dt + 1

Ω
d
dt

((v−w) · r
Ω

)
+
((v−w) · r

Ω − Σ
d

)
θv − ξvijΣij − h∇̂ini

+ ∇̂i
(
Qi − vi − wi

Ω
(v−w) · r

Ω

)
+ ri

Ω
D
dt
vi − wi

Ω = 0. (3.148)

Given the above Galilean hydrodynamical equations, one may reconsider their behaviour
under velocity local transformations. The absence of rest mass for the carriers modifies

– 43 –



J
H
E
P
0
9
(
2
0
2
2
)
1
6
2

the scalings with respect to the speed of light, and possibly the invariance properties.
Bringing together the transformations (2.57), (2.58), (2.59), (2.61) and (2.62), and the
scalings (3.75), (3.76), (3.77) and (3.131), we find in the infinite-c limit that δ% and δni are
still as in (3.112) and (3.113), while

aijδp− δΣij = − 2
Ωr(iδvj), (3.149)

δri = 0, (3.150)
δki = δQi

= δvj

Ω

(
vi − wi

Ω rj − %haij + Σij

)
, (3.151)

δε = %δe

= −2ri
δvi

Ω . (3.152)

These transformations ensure the invariance of the Galilean momenta as in eqs. (3.116),
which thus implies that for fluids consisting of massless particles, the Galilean fluid equations
established above are invariant under arbitrary hydrodynamic frame transformations.49

One should stress that, thanks to (3.150), the hydrodynamic-frame invariance holds
even when ri = 0, which is the physically interesting situation, following our previous
discussion on the behaviour of the relativistic heat current. The momentum equation
obtained from (3.97) greatly simplifies in this case:

Mi = ∂ip−∇jΣ j
i = 0. (3.153)

Nonetheless, due to (3.113), hydrodynamic-frame invariance does not resist when ni is
required to vanish in the charge current, which is necessary for the continuity equa-
tion (3.98), (3.104) to be a genuine conservation. This caveat, which opposes again
hydrodynamic-frame invariance to conservation, is evaded precisely for fluids without con-
served charge, as are photon gases, which are therefore truly hydrodynamic-frame-invariant
in the Galilean regime with entropy equation (for the physical situation where ri = 0)

T

Ω
dσ
dt +

(
ε+ p− Σ

d

)
θv − ξvijΣij + ∇̂iQi = 0. (3.154)

Weyl invariance

Galilean groups can accommodate conformal extensions. The subject has generated an
abundant literature, part of which is already quoted here [33, 34, 38, 52, 53] — more can
be found in those references. The analysis of conformal symmetry in non-relativistic fluid
dynamics has been in the agenda of many groups. No real guiding principle has been followed
though, the search has been usually blind and the output often looks accidental.50 From
the fluid perspective on non-isometric and non-conformal-isometric backgrounds, conformal

49Equations (3.146) and (3.148) are hydrodynamic-frame-invariant only on-shell.
50Reference [69] makes better contact with the relativistic fluid equations, and provides a nice and critical

overview of the field.
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symmetry is rather meant to be Weyl symmetry, which is expected to portray the dynamics
when no massive excitations are present. This instance was touched upon in section 3.1,
when presenting the basic features of Newton-Cartan geometry, and will be considered in
the present section from the perspective of the large-c limit in Zermelo backgrounds.

The fundamental quantities of the Zermelo geometry (2.46) behave as follows under a
Weyl transformation:

aij →
1
B2aij , wi → wi, wi →

1
B2wi, Ω→ 1

B
Ω , (3.155)

and since Ω depends on time only, the last of (3.155) imposes B = B(t). The veloc-
ity components uµ have weight 1. This gathers the following for the ordinary spatial
fluid velocity:

vi → vi, vi →
1
B2 vi. (3.156)

With this at hand, one can wonder what is the Galilean Weyl-covariant derivative,
acting on Galilean Weyl-covariant tensors. From a purely mathematical perspective taming
the connections on Newton-Cartan (or Carrollian) geometries is a thriving subject (see
e.g. [38–40]). We will here answer modestly this question by examining the infinite-c
limit of the connection (2.34) and the corresponding Weyl-covariant derivative used in the
relativistic case. As we will also witness later in the Carrollian side, this splits into time
and space Weyl derivatives, associated with time and space Weyl connections, inherited
from the limit of A given in (2.34). Owing to the fact that

lim
c→∞

ΩcA0 = −θ
v

d
, lim

c→∞
Ai = 0, (3.157)

there is no spatial Weyl connection in the Galilean limit. The ordinary Galilean spatial
covariant derivative ∇̂i used here as the usual d-dimensional metric-compatible and torsion-
less covariant derivative with connection coefficients (3.8) (possibly time-dependent since
generally aij = aij(t,x)) is thus Weyl-covariant on its own right. This is not a surprise
since a Weyl rescaling with B(t) leaves the Christoffel symbols (3.8) unaltered.

The Galilean time covariant derivative D
dt given in (3.25) is not Weyl-covariant, though.

It can be promoted to a Weyl-covariant Galilean time derivative Dt thanks to θv, which
transforms indeed as a connection:

θv → Bθv − d

Ω∂tB. (3.158)

Consequently, if Sij...kl... are the components of a weight-w Galilean tensor, then

1
ΩDtS

ij...
kl... =

( 1
Ω

D
dt + w

d
θv
)
Sij...kl... (3.159)

are the components of Galilean tensor with weight w + 1. Observe that the components of
the Galilean shear given in (3.18) is of weight −1:

ξvij →
1
B
ξvij . (3.160)
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The Weyl transformation (3.158) holds equally for θw defined in (3.17), and so does in
fact (3.160) for ξwij defined in (3.16). One can therefore introduce an alternative Galilean
Weyl-covariant time derivative, defined in purely geometrical terms:51

1
ΩD̂tΦ =

(
1
Ω

D̂
dt + w

d
θw
)

Φ, (3.161)

1
ΩD̂tVi =

(
1
Ω

D̂
dt + w + 1

d
θw
)
Vi, (3.162)

for weight-w Galilean scalars or forms, extendable by the Leibniz rule. For convenience,
both Dt and D̂t will be used in the following and should not be confused.

Equipped with the above tools and imposing Weyl invariance (3.63), the fundamental
equations (3.41), (3.42) and (3.48) are recast as follows:52

1
ΩD̂tPi + Pjξ

wj
i + ∇̂jΠij = 0, (3.163)

1
ΩD̂tΠ + Πijξ

wij + ∇̂iΠi = 0, (3.164)
1
ΩD̂t%+ ∇̂iN i = 0. (3.165)

They are Weyl-covariant of weights d+ 1, d+ 2 and d+ 1.
When dealing with Galilean fluids, the Galilean momenta %, Ni, Pi, Π, Πi and Πij

emerge in the large-c expansion of %r0, jri, εr, qri and praij + τrij (see eqs. (3.132), (3.134),
(3.135), (3.136)). The weights inherited in this limiting procedure (the relativistic weights
are available in table 1) are in agreement with those previously defined through the effective-
action definition of the momenta. These momenta are expressed in terms of the Galilean
velocity vi together with the usual list of variables emanating from the relativistic stress,
heat current and charge/matter current.

From the expressions (3.137), (3.138), (3.139), (3.140), we infer that the forms ri, ki
(and thus Qi) have weight d, while ni and the Galilean stress Σij have weight d− 1. The
Weyl condition53 (3.63) now reads ε = dp− Σ. The stress being considered as a correction
to perfect fluids, absent at global thermodynamic equilibrium, this condition splits into the
conformal equation of state

ε = dp, (3.166)
accompanied with the Weyl-invariance requirement

Σ ≡ Σija
ij = 0. (3.167)

Other thermodynamic observables like e, T , µ or h have all weight 1, and s is weight zero.
51This sort of Weyl-covariant derivative is insensitive to the fluid velocity and is thus better suited for

discussing hydrodynamic-frame invariance. Its relativistic ascendent is a Weyl connection AZ constructed,
as explained generally in footnote 16, with the vector field uZ = et̂ defined in (3.3) (and used in section 3.2),
which has norm −c2 in the Zermelo background (2.46). This connection exists irrespective of the fluid
velocity: AZ = θw

d
Ωdt.

52We saw in section 3.1 that Πij has weight d− 1, Pi and Πi weight d, and Π weight d+ 1; similarly % is
weight-d and Ni weight d− 1.

53Notice in passing that the Weyl-invariance requirement (3.63) determined from the effective action, is
also the large-c expression of the relativistic condition T µ

µ = 0 discussed at the end of section 2.1, obtained
using (2.64) with (3.134), (3.135) and (3.136).
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It is important to stress that the above analysis is consistent because we have been
systematically referring to fluids with microscopic massless degrees of freedom, and have
thus used eqs. (3.132), (3.133), (3.134), (3.135), (3.136), (3.137), (3.138), (3.139), (3.140).
Had one considered fluids with massive carriers, conflicts would have appeared in the
conformal weights, as e.g. in eq. (3.102) setting a relationship among N i and P i, which in
a Weyl-covariant system are expected to have different weights (d+ 1 and d+ 2).

Hydrodynamic equations (3.146) and (3.154) are recast as

1
ΩDt

(
ε+ (v−w) · r

Ω

)
+ ri

ΩDt
vi − wi

Ω − ξvijΣij

+ ∇̂i
(
Qi − vi − wi

Ω
(v−w) · r

Ω

)
= 0, (3.168)

%T

Ω Dt s+ 1
ΩDt

((v−w) · r
Ω

)
+ ri

ΩDt
vi − wi

Ω − ξvijΣij

− h∇̂ini + ∇̂i
(
Qi − vi − wi

Ω
(v−w) · r

Ω

)
= 0. (3.169)

For more conventional conformal fluids with ri = 0 and no conserved charge we find

1
ΩDtε− ξvijΣij + ∇̂iQi = T

ΩDtσ− ξvijΣij + ∇̂iQi = 0, (3.170)

which are Weyl-covariant of weight d+ 2. The Euler (transverse) equation (3.153) remains
unchanged and can be expressed in terms of the energy thanks to (3.166), or further
using (A.18):

1
d
∂iε− ∇̂jΣij = 1

(d+ 1)∂i(Tσ)− ∇̂jΣij = 0. (3.171)

It is Weyl-covariant of weight d+ 1.
Besides expressing hydrodynamic equations for fluids based on massless microscopic

constituents in a Galilean general-covariant fashion, our present analysis exhibits one class
of physical fluids, where hydrodynamic-frame invariance survives the Galilean limit: the
conformal fluids without any conserved charge. This is in contrast to the more general
Galilean hydrodynamics studied in section 3.2, where hydrodynamic-frame invariance was
only emerging in exotic fluids, where matter conservation was not fulfilled. Furthermore,
under the physical assumption that the heat current remains of order 1 in the infinite-c
limit (ri = 0 in (3.76)), the energy density is insensitive to the choice of fluid velocity
(see (3.152)).

Conformal isometries and conservation laws

There is not much we can add on conservation laws that has not yet been processed.
Summarizing, the large-c expansion of the energy-momentum tensor (3.134), (3.135), (3.136),
combined with the components (2.76), (2.77) in the presence of a conformal Killing field
ξ, produces

ι0r = κ+ O (1/c2) , irk = Kk + O (1/c2) (3.172)
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with κ and Kk as in (3.58) and (3.59), defining a Galilean current. Using the Weyl-
invariance condition (3.63), the equations (3.163), (3.164), and the Galilean Killing equa-
tions (3.64), (3.66), the Galilean divergence (3.57) of this current turns out to satisfy (3.67).
As usual, conservation demands a symmetry wider than a conformal isometry, for which
∂tξ

ı̂ + Lwξ
ı̂ = 0.

4 Carrollian fluid dynamics

4.1 Carroll structures and general Carrollian covariance

Carrollian manifolds

Carroll structures are alternatives to Newton-Cartan spacetimes, introduced in [34–36].
They consist of a d+ 1-dimensional manifold M = R× S endowed with a degenerate metric
and a vector field, which is the kernel of the metric. These manifolds are described in
terms of fibre bundles54 with one-dimensional fibre and a d-dimensional base S thought of
as space, the fibre being time. The Carroll group [30, 31] emerges as the isometry group
of flat Carrollian structures, but our framework is here more general with no assumption
about isometries, but Carrollian diffeomorphisms instead; the Carrollian transformations are
realized locally, in the tangent space. These diffeomorphisms have the virtue of preserving
the time/space separation, as opposed to general diffeomorphisms.

For concreteness M will be equipped with coordinates (t,x) and we will restrict to
degenerate metrics of the form

d`2 = aij(t,x)dxidxj , i, j . . . ∈ {1, . . . , d} (4.1)

with kernel generated by

et̂ = 1
Ω∂t, (4.2)

which defines a field of observers. This coordinate system is adapted to the fiber/base
splitting, which is in turn respected by Carrollian diffeomorphisms (2.80). It is also naturally
reached in the Carrollian limit of a pseudo-Riemannian spacetime in Papapetrou-Randers
gauge (2.79). The Carrollian structure naturally incorporates an Ehresmann connection,
which is a background gauge field bbb = bidxi, appearing in the dual form of the kernel
generator (4.2):

θt̂ = Ωdt− bidxi, (4.3)

the clock form. The scale factor Ω and the gauge components bi depend on t and x.

54Carrollian structures were defined as “ambient structures” in refs. [39, 40]. Notice that we use equally
the wording “manifolds,” “spacetimes” and “structures.” Mathematically the latter is more precise for it
embraces the various attributes. Depending on these attributes, it can be even refined into weak or strong
structure as we will see in the following.
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Under Carrollian diffeomorphisms (2.80) (the Jacobian is defined in (2.81)), the trans-
formation rules of the various geometric objects are as in (2.82), (2.83) as well as

∂′t = 1
J
∂t, (4.4)

∂′j = J−1i
j

(
∂i −

ji
J
∂t

)
, (4.5)

θt̂′ = θt̂, (4.6)

∂̂′i = J−1j
i ∂̂j , (4.7)

where
∂̂i = ∂i + bi

Ω∂t, (4.8)

are the vector fields dual to the forms dxi, also spelled eı̂ in (2.105).
For Carrollian manifolds it is customary to say that space is absolute, whereas time

isn’t, as opposed to their dual relatives, the Newton-Cartan spacetimes. This is again
somehow abusive, except when aij depends on space only, and it mostly refers to the form
of the Jacobian (2.81). It is rooted to the properties of the primitive Carrollian manifold
obtained as the c→ 0 limit of Minkowski spacetime.

Carrollian tensors depend generically on time t and space x. They carry indices
i, j, . . . ∈ {1, . . . , d}, which are lowered and raised with aij and its inverse spatial cometric
aij , and transform covariantly under Carrollian diffeomorphisms (2.80) with Jacobian J ji
and J−1i

j defined in (2.81). Following [29], we introduce a Levi-Civita-Carroll connection
with coefficients

γ̂ijk = ail

2
(
∂̂jalk + ∂̂kalj − ∂̂lajk

)
. (4.9)

This connection is not unique (see the already quoted literature [36, 40, 41]), but emerges
naturally in the vanishing-c limit of a Levi-Civita connection in the Papapetrou-Randers
coordinates (2.79). It defines a spatial Carrollian covariant derivative ∇̂i with tensorial
transformation properties under Carrollian diffeomorphisms (details on the transformation
properties can be found in the appendix A.2 of ref. [29]).55

The Levi-Civita-Carroll connection is torsionless and metric-compatible:

t̂kij = 2γ̂k[ij] = 0, ∇̂iajk = 0. (4.10)

The vectors ∂̂i do not commute and define the Carrollian vorticity:[
∂̂i, ∂̂j

]
= 2

Ω$ij∂t, $ij = ∂[ibj] + b[iϕj] (4.11)

with
ϕi = 1

Ω (∂tbi + ∂iΩ) , (4.12)

55Important remark: many symbols are common to the Galilean and Carrollian sides investigated in the
present paper. The context should leave no room for confusion.
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the Carrollian acceleration. Notice that

dθt̂ = ϕidxi ∧ θt̂ −$ijdxi ∧ dxj , (4.13)

so that vanishing Carrollian acceleration and vorticity are necessary and sufficient conditions
for θt̂ be closed and define a family of hypersurfaces inside M = R× S as τ(t,x) = const.,
where locally θt̂ = dτ .

The ordinary time derivative operator 1
Ω∂t acts covariantly on Carrollian tensors.

However, it is not metric-compatible because aij depends on time. Hence one defines a new
Carrollian temporal covariant derivative by requiring covariance, i.e. 1

Ω′ D̂
′
t = 1

ΩD̂t, and

D̂tajk = 0. (4.14)

This is achieved by introducing a temporal Carrollian connection

γ̂ij = 1
2Ω∂taij = ξij + 1

d
aijθ, (4.15)

which is a genuine symmetric Carrollian tensor split into a traceless part, the Carrollian
shear, and the trace, which is the Carrollian expansion:

θ = 1
Ω∂t ln

√
a . (4.16)

The action of D̂t on scalars is ∂t
D̂tΦ = ∂tΦ, (4.17)

whereas on vectors or forms it is defined as

1
ΩD̂tV

i = 1
Ω∂tV

i + γ̂ijV
j ,

1
ΩD̂tVi = 1

Ω∂tVi − γ̂
j
i Vj . (4.18)

Leibniz rule generalizes the latter to any tensor and allows to demonstrate the
property (4.14).

The commutators of Carrollian covariant spatial derivatives define further Carrollian
tensors (Φ and V i are a Carrollian scalar and a Carrollian vector):56

[
∇̂i, ∇̂j

]
Φ = $ij

2
Ω∂tΦ, (4.19)[

∇̂k, ∇̂l
]
V i =

(
∂̂kγ̂

i
lj − ∂̂lγ̂ikj + γ̂ikmγ̂

m
lj − γ̂ilmγ̂mkj

)
V j +

[
∂̂k, ∂̂l

]
V i (4.20)

= R̂ijklV
j +$kl

2
ΩD̂tV

i. (4.21)

Similarly, time and space derivatives do not commute:[ 1
ΩD̂t, ∇̂i

]
V j = ϕi

(( 1
ΩD̂t + θ

)
V j − γ̂jkV

k
)
− γ̂ k

i ∇̂kV j − dr̂jikV
k (4.22)

56In [29] an alternative tensor was defined as r̂ijkl = R̂ijkl+2γ̂ij$kl with
[
∇̂k, ∇̂l

]
V i= r̂ijklV j+$kl

2
Ω∂tV

i.
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with57

r̂jik = 1
d

(
θϕiδ

j
k + ∇̂iγ̂jk −

1
Ω∂tγ̂

j
ik

)
(4.23)

and
r̂jjk = r̂k = 1

d

(
∇̂j γ̂jk − ∂̂kθ

)
, (4.24)

further Carrollian curvature tensors.

Carrollian dynamics and Carrollian diffeomorphisms

Consider now a dynamical system on a Carrollian manifold M = R× S described with an
(effective) action S =

∫
dt ddx

√
aΩL, functional of aij , Ω and bi. The associated Carrollian

momenta, which replace the corresponding relativistic energy-momentum tensor (2.7) are
now (see [79, 90])58

Πij = 2√
aΩ

δS

δaij
, (4.25)

Πi = 1√
aΩ

δS

δbi
, (4.26)

Π = − 1√
a

(
δS

δΩ + bi
Ω
δS

δbi

)
, (4.27)

with δS
δΩ = −

√
a
(
Π + biΠi

)
. These are the energy-stress tensor, the energy current and the

energy density.
Diffeomorphisms are generated by vector fields as in (2.71)

ξ = ξt∂t + ξi∂i =
(
ξt − ξi biΩ

)
∂t + ξi

(
∂i + bi

Ω∂t
)

= ξ t̂
1
Ω∂t + ξi∂̂i. (4.28)

Carrollian diffeomorphisms (2.80) are restricted to ξi = ξi(x). As usual, the variation under
diffeomorphisms is implemented through the Lie derivative and we find the following:

− δξaij = Lξaij = 2∇̂(iξ
kaj)k + 2ξ t̂γ̂ij − 2b(iaj)k

1
Ω∂tξ

k, (4.29)

where the last term drops for Carrollian diffeomorphisms. Furthermore

Lξet̂ = −
( 1

Ω∂tξ
t̂ + ϕiξ

i
)
et̂ = µet̂, (4.30)

and (the form θt̂ is defined in (4.3))

Lξθ
t̂ =

( 1
Ω∂tξ

t̂ + ϕiξ
i
)
θt̂ +

((
∂̂i − ϕi

)
ξ t̂ − 2ξj$ji

)
dxi. (4.31)

From the latter we infer

−δξ lnΩ = 1
ΩLξΩ = 1

Ω∂tξ
t̂+ϕiξi,−δξbi =Lξbi = bi

( 1
Ω∂tξ

t̂+ϕjξj
)
−
((
∂̂i−ϕi

)
ξ t̂−2ξj$ji

)
.

(4.32)
57Notice that 1

Ω∂tγ̂
j
ik =

(
∇̂i + ϕi

)
γ̂jk +

(
∇̂k + ϕk

)
γ̂ji−

(
∇̂j + ϕj

)
γ̂ik is a Carrollian tensor, even though

γ̂jik is not.
58The fluid energy density Π was spelled ee in [29].
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We can now move to the variation of the action under Carrollian diffeomorphisms:

δξS =
∫

dtddx
√
aΩ

(1
2Πijδξaij + Πiδξbi −

1
Ω
(
Π + biΠi

)
δξΩ

)
. (4.33)

Using (4.29) and (4.32) with ξi = ξi(x), we obtain (indices are here lowered with aij)

δξS =
∫

dtddx
√
aΩ

{
−ξ t̂

[( 1
Ω∂t + θ

)
Π +

(
∇̂i + 2ϕi

)
Πi + Πij γ̂ij

]
+ ξi

[(
∇̂j + ϕj

)
Πj

i + 2Πj$ji + Πϕi
]}

+
∫

dtddx
{
∂t
[√
a
(
ξ t̂
(
Π + biΠi

)
− ξjbiΠi

j

)]
+ ∂i

[√
aΩ

(
ξ t̂Πi − ξjΠi

j

)]}
. (4.34)

Ignoring the boundary terms (last two lines of (4.34)), δξS = 0 implies that the Carrollian
momenta defined previously in (4.25), (4.26), (4.27) are Carrollian-covariant, and leads to
two equations. The energy equation is simple because ξ t̂ depends on t and x:( 1

Ω∂t + θ

)
Π +

(
∇̂i + 2ϕi

)
Πi + Πij γ̂ij = 0. (4.35)

The momentum equation calls for a careful treatment. Indeed, ξi is a function of x only,
hence the factor in brackets in the second line of (4.34) needs not vanish, but rather

(
∇̂j + ϕj

)
Πj

i + 2Πj$ji + Πϕi = −
( 1

Ω∂t + θ

)
Pi (4.36)

because
√
aΩξi

(
1
Ω∂t + θ

)
Pi = ∂t

(√
a ξiPi

)
, which is a boundary term and vanishes inside

the integral.
The new vector Pi, which we will refer to as momentum, is not defined directly through

a variation of the action with respect to some conjugate variable. It is however inescapable,
and this can be verified whenever a microscopic action is available in terms of fundamental
fields leading to full-fledged equations of motion. In this instance, eqs. (4.35) and (4.36)
must be obeyed on-shell, and this procedure determines the momentum Pi (for a Carrollian
scalar field see [103]).

A plethora of comments and comparison to the existing literature is appropriate at
this point. The Carrollian equations at hand, which are ultimately the Carrollian fluid
equations, have been the source of confusion or misinterpretation, and unfortunately this is
not fading.

As a first and minor remark, the term in the right-hand side of (4.36) was missing
in [79, 90].59 More importantly, it has been claimed that both vectors, the energy current
Πi and the momentum Pi, should vanish [74, 77]. Systems where this happens are not

59More precisely, eq. (4.36) here is in disagreement with eq. (2.30) in [79] resulting from the invariance of
the action under Carrollian diffeomorphisms. It agrees however with eq. (4.4) in the same reference, reached
via a vanishing-c limiting procedure (see also our eq. (4.81)).
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excluded, but there is no principle that demands a priori such a property — as no reason
exist for the Galilean energy current and momentum to vanish.60

Another feature of the above equations (4.35) and (4.36) is their superficial resemblance
to eqs. (3.42) and (3.41). This is superficial because when coming to the genuine fluid equa-
tions, the various momenta are expressed in terms of kinematical and physical parameters,
which are different in the two instances (e.g. there is no “velocity” in Carrollian dynamics —
see next section for details on the Carrollian fluids). But even at the superficial level, the
resemblance is alleviated by the symmetries, which are undoubtedly distinct: Carrollian
versus Galilean. Nonetheless, confusion has settled for good in the literature around the
membrane paradigm, which was originally carefully stated [91], but has drifted in time
giving an overwhelming importance to Navier-Stokes equations, which are Galilean par
excellence, for the description of phenomena occurring in the vicinity of black-hole horizons,
which call for Carrollian physics (ref. [92] is a good example of abuse). Recently, efforts
were made to clarify this issue [70, 71].

A U(1) local invariance and conservation law

If the action on the Carrollian manifold is further invariant under a local U(1) associated
with a gauge field B = B(t,x)dt+Bi(t,x)dxi as in (3.43), then a further conservation is
available. This sort of conservation is not as useful as it was in the Galilean framework.
Indeed, the thermodynamic law (A.2) that sets the relationship between a conserved charge
and the energy (see also the discussion in section 3.3) is invalidated here by the vanishing-c
limit, and plays no subsequent role in the fluid dynamics.

The conjugate momenta are again the charge density and the charge current:

% = 1√
a

(
δS

δB
− bi

Ω
δS

δBi

)
, (4.37)

N i = 1
Ω
√
a

δS

δBi
(4.38)

with δS
δB =

√
a
(
%+ biN

i
)
. The gauge variation of the action is here:

δΛS =
∫

dtddx
√
a
((
%+ biN

i
)
δΛB + ΩN iδΛBi

)
(4.39)

= −
∫

dtddx
√
a
((
%+ biN

i
)
∂tΛ + ΩN i∂iΛ

)
=
∫

dtddx
√
aΩΛ

( 1
Ω∂t%+ θ%+

(
∇̂i + ϕi

)
N i
)

−
∫

dtddx
{
∂t
(√

aΛ
(
%+ biN

i
))

+ ∂i
(√

aΛΩN i
)}

. (4.40)

Invariance of S leads to a Carrollian continuity equation:( 1
Ω∂t + θ

)
%+

(
∇̂i + ϕi

)
N i = 0. (4.41)

60As an aside comment, in flat as in AdS holography, the momentum Pi of the boundary fluid is mapped
onto the bulk angular-momentum aspect [28], and this is not expected to vanish. From a different perspective,
as already mentioned, microscopic systems such as the Carrollian scalar field exhibit non-vanishing Πi and
Pi [79, 103].
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Using Stokes and Gauss theorems (see also footnote 33) and the Carrollian continuity
equation (4.41) we find∫

W
dtddxΩ

√
a

(( 1
Ω∂t+θ

)
%+
(
∇̂i+ϕi

)
N i
)

=
∮
∂W

√
a%dx1∧. . .∧dxd

−
∮
∂W

√
a

d∑
i=1

dx1∧. . .∧N iθt̂∧. . .∧dxd,

(4.42)

where W ⊂M = R× S and N iθt̂ (θt̂ given in (4.3)) is the ith factor in the exterior product
of the last term. Assuming a good behaviour for the fields, a conserved charge exists and
can be expressed as an integral over an arbitrary space-like hypersurface Σd of M = R× S.
This conserved charge is identical to the relativistic Papapetrou-Randers result obtained
e.g. in (2.110). As for the Galilean instance, it is suitable to chose Σd ≡ S i.e. a constant-t
hypersurface, and the charge then reads:61

QN =
∫
S
ddx
√
a
(
%+ biN

i
)
. (4.43)

Following the Galilean steps, time-independence reveals by replacing S in (4.43) with V ⊂ S,
where the boundary ∂V does not depend on t, for convenience. Using (4.41), the time
evolution of the matter/charge content of V is the following:

d
dt

∫
V
ddx
√
a
(
%+ biN

i
)

= −
∫
V
ddx ∂i

(√
aΩN i

)
= −

∫
∂V

Ω ?N. (4.44)

If V is extended to the whole S the time dependence fades and we find that QN is conserved.

Isometries, conservation and non-conservation

Isometries of Carrollian spacetimes are generated by Killing fields of the Carrollian
type (4.28), required to obey

Lξaij = 0, Lξet̂ = 0, (4.45)

because the metric (4.1) and the field of observers (4.2) are the fundamental geometric data
in the spacetimes at hand (see refs. [34–36, 45]). For Carrollian diffeomorphisms (ξi ≡ ξ ı̂ is
only x-dependent), eqs. (4.29) and (4.30) lead to

∇̂(iξ
kaj)k + ξ t̂γ̂ij = 0, 1

Ω∂tξ
t̂ + ϕiξ

i = 0. (4.46)

61It should be noticed that the presence of bi apparently breaks the manifest covariance, since according
to (2.83) the form of the integrand is respected only by coordinate transformations such that t′ = t′(t) i.e. a
subset of Carrollian diffeomorphisms. This is actually innocuous, and merely translates a feature of the
hypersurface chosen for computing the charge, which is otherwise an absolute constant, as emphasized in
footnote 9 for the relativistic case, and further discussed in section 3.1 within the Galilean framework. If
the clock form is closed (see eq. (4.13)), locally θt̂ = dτ and one may alternatively choose the integration
hypersurface Στ as τ(t,x) kept constant. In this instance, we obtain QN =

∫
Στ

ddx
√
a %. Nevertheless, all

choices of space-like hypersurface Σd lead to the same charge.
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These equations refer to the invariance of a weak Carroll structure [35] and possess an
infinite set of solutions. As for the Newton-Cartan case discussed in section 3.1, strong
Carroll structures are further equipped with a torsionless metric-compatible connection,
which is also required to be invariant under Carrollian isometries. This constricts the
solution space of (4.46). Observe however that one does not demand the Ehresmann be
invariant, hence for a Carrollian Killing field ξ, using (4.46) inside (4.31) we obtain:

Lξθ
t̂ =

((
∂̂i − ϕi

)
ξ t̂ − 2ξj$ji

)
dxi. (4.47)

The case of a Carroll spacetime with aij = δij , Ω = 1 and constant bi (standard
flat Carroll spacetime with our connection) provides a nice illustration of the above.
Equations (4.46) possess an infinite number of solutions:

ξ =
(
Ω j
i x

i +Xj
)
∂j + f(x)∂t (4.48)

with constant and antisymmetric Ωij = Ω k
i δkj generating the rotations in so(d), constant

Xj for the space translations, and an arbitrary function of space f(x). The latter is only
linear if the connection of the strong Carroll structure is required to remain invariant under
ξ: f = T − Bixi, T generating time translations and Bi being the Carroll boosts. The
total number of solutions is now (d+2)(d+1)/2, which is the dimension of the Carroll algebra
carr(d+ 1). Besides, we find that

Lξθ
t̂ = −

(
Bi + Ω j

i bj
)
dxi 6= 0, (4.49)

exhibiting a constant shift in the Ehresmann connection.
We can now handle the conservation law that would take the Carrollian form (4.41)

with a Carrollian scalar κ and a Carrollian vector Ki determined from the components ξ t̂
and ξ ı̂ of a Carrollian Killing, and from the Carrollian momenta, i.e. the energy density Π,
the energy current Πi and the energy-stress tensor Πij defined in eqs. (4.25), (4.26), (4.27),
as well as the momentum P i, and satisfying the conservation equations (4.36) and (4.35).
If such a conservation exists, the Carrollian scalar

K=
( 1

Ω∂t + θ

)
κ+

(
∇̂i + ϕi

)
Ki (4.50)

shall vanish on-shell. In fine, κ and Ki are disclosed in the on-shell boundary terms of
δξS (see (4.34)) — or likewise, inherited from the relativistic-current components (2.107),
(2.108), (2.109):62

κ = ξiPi − ξ t̂Π, (4.51)

Ki = ξjΠ i
j − ξ t̂Πi. (4.52)

62We anticipate here section 4.3, where eqs. (4.133) are obtained as a small-c expansions of (2.108)
and (2.109), leading to (4.134), which includes (4.51) and (4.52).
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The scalar K can be determined using the conservation equations (4.36) and (4.35):

K= −Π
( 1

Ω∂tξ
t̂ + ϕiξ

i
)
−Πi

((
∂̂i − ϕi

)
ξ t̂ − 2ξj$ji

)
+ Πi

j

(
∇̂iξj + ξ t̂γ̂ j

i

)
(4.53)

= −Πi
((
∂̂i − ϕi

)
ξ t̂ − 2ξj$ji

)
. (4.54)

We have obtained (4.54) from (4.53) thanks to the Killing equations (4.46). This latter result
shows that in Carroll structures, a Killing field does not guarantee an on-shell conservation
law for Carrollian dynamics.63

The above result is expected as in the Galilean case, where a similar non-conservation
was proven: the energy current Πi is conjugate to bi (4.26) and bi does transform under
diffeomorphisms (see (4.32)), even when this diffeomorphism is an isometry. Nonetheless,
eq. (4.54) infers that a conservation law exists for the subalgebra of Killing vectors such
that Lξθt̂ = 0,64 in agreement with general Nœther’s theorem, for which isometry seems
insufficient and a stronger symmetry required. Incidentally, one cannot exclude that the
right-hand side of (4.54) originates from a boundary term (as for the corresponding Galilean
equation (3.61)). Conservation would then occur — put differently (4.50) would vanish
with effective Carrollian curent κ′ and Ki′, amended by the boundary-term contributions.

As we have emphasized slightly above, ordinary Carrollian boosts in flat Carroll
structures (aij = δij, Ω = 1, bi constants) do not satisfy the extra condition Lξθ

t̂ = 0
(see (4.49)), and thus no conservation law is necessarily associated with them. This property
was disregarded in refs. [74, 76, 77], where the authors took for granted that such a
conservation should exist in the primitive sense i.e. with K= 0 in (4.54).65 This assumption
led to the conclusion that Πi should always vanish, as we have already pointed out. A similar
reasoning in the Galilean case (see (3.61)) amounts to stating that the fluid momentum Pi
ought to vanish. This is a notoriously degenerate state, where either the fluid is absent, or
motion is absent — global equilibrium is reached. Having no intuition for Carrollian fluids,
we leave open a teensy possibility for a state with vanishing energy flux to make sense. Such
a state is by no means a consequence of any spacetime symmetry though.66 This feature
will be recast at the end of section 4.3, where besides the Carrollian current (4.51), (4.52),
more currents of the same sort appear, which may or may not be conserved as a consequence
of the vanishing of a vector, be it the energy flux Πi met here, or another vector emerging
in the small-c expansion of the relativistic heat current.

63Credit should be given to the authors of [79] for observing this phenomenon in a quite general framework.
64The Jacobi identity is used to show that the commutator of two ξs obeying Lξθ

t̂ = 0, satisfies the
same condition.

65Notice that conservation might be valid with non-vanishing K, if the latter is a generalized divergence.
In flat space we find K= Πi

(
Bi + Ω j

i bj
)
using eqs. (4.48) and (4.49). Under the assumption of potential

flow (we borrow the Galilean language) Πi = ∂̂iφ+ ∂tφi with φ(t,x) and φi(t,x) the potential functions so
that K= ∂̂iφU

i+∂tφiU
i with U i = Bi+Ωijbj . In this very specific instance, there is a conserved Carrollian

current associated with boosts and rotations, and components κ−φiU i and Ki−φU i making (4.50) vanish.
66Situations of this sort are not forbidden but are not demanded a priori. They may occur outside the

realm of fluids. For instance, a Carrollian scalar field has always vanishing energy flux in its electric edition,
and can be set to zero in magnetic some configurations [77, 79, 103]. However, this flux is generically
non-zero in the magnetic version, although configurations do exist for which it vanishes.
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Weyl invariance, conformal isometries, conservation and non-conservation

As for the Newton-Cartan spacetimes, Weyl transformations can be investigated in Carrollian
manifolds. They act on their basic geometric data as

aij →
1
B2aij , Ω→ 1

B
Ω, bi →

1
B
bi, (4.55)

where B= B(t,x) is an arbitrary function. The Carrollian momenta Πij , Πi and Π defined
in (4.25), (4.26) and (4.27) inherit conformal weights d+3, d+2 and d+1 when the effective
action is presumed Weyl-invariant. The momentum P i appearing in (4.36) has also weight
d + 2, and in the matter sector, assuming the gauge field B and Bi be weight-zero, we
conclude from (4.37) and (4.38) that the density % and the matter current N i have weights
d and d+ 1.

Requiring Weyl invariance for the effective action δBS = 0, expression (4.33) implies that

Π i
i = Π. (4.56)

In order to implement elegantly Weyl covariance, the appropriate covariant derivatives will
be introduced in section 4.2 for time and space, dubbed Weyl-Carroll. For the moment, we
wish to circumscribe our discussion and adapt to Carroll the pattern discussed in section 3.1
for Newton-Cartan spacetimes, Weyl-invariant dynamics and conformal isometries. This
will lead to the same conclusion as above: a conformal Killing field does not always provide
a conservation law in Weyl-invariant Carrollian dynamics.

Following [33–36, 45] a conformal isometry is generated by a vector field ξ satisfying

Lξaij = λaij , (4.57)

where
λ(t,x) = 2

d

(
∇̂iξi + θξ t̂

)
. (4.58)

The extra condition imposed for reaching an operational definition of conformal Killing
vectors is again (3.66) i.e. 2µ+ λ = 0 with (see (4.30))

µ(t,x) = −
( 1

Ω∂tξ
t̂ + ϕiξ

i
)
. (4.59)

A dynamical exponent z, here equal to 1, can also be defined (see footnote 38), and the
distinction of weak versus strong Carroll structures supplements the discussion on the web
of conformal Killing fields.

Assuming the existence of a conformal isometry, the conservation equations (4.35)
and (4.36) can be used for computing the Carrolian scalar K (4.50) with (4.51), (4.52)
and (4.56):

K= Π
(
λ

2 + µ

)
−Πi

((
∂̂i − ϕi

)
ξ t̂ − 2ξj$ji

)
. (4.60)

The defining equation (3.66) for conformal Killing vectors on Carrollian spacetimes ex-
pectedly arises in (4.60), but is insufficient to ensure K = 0. As anticipated, a plain
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conformal Killing field does not generically provide a conservation law in Weyl-invariant
Carrollian dynamics.

The same conclusion has been reached for Galilean spacetimes in section 3.1. It will be
further investigated from the small-c viewpoint in the following paragraphs, and finally in
appendix D.2.

As an example, let us again consider the standard flat Carroll spacetime (aij = δij ,
Ω = 1 and constant bi). Equations (4.57) and (3.66) possess an infinite number of solutions,
which for a strong Carroll structure read [35, 36, 45]:

ξ = Y j(x)∂j +
(
T (x) + t

d
∂iY

i
)
∂t (4.61)

with T (x) an arbitrary function generating the supertranslations and Y i(x)∂j being con-
formal Killing fields of Euclidean d-dimensional space, generating so(d+ 1, 1). This is the
conformal Carroll algebra ccarr(d + 1) ≡ so(d + 1, 1) + supertranslations, also known as
BMSd+2 (for Bondi-van der Burg-Metzner-Sachs) [35, 36].67 We also find how the clock
form behaves:

Lξθ
t̂ =

(
∂i
(
T − Y jbj

)
+ bi
d
∂jY

j + t

d
∂i∂jY

j
)
dxi. (4.62)

The associated current is not conserved since K in (4.60) does not generically vanish,68

unless ∂jY j = C0 and T = T0 + Y jbj − C0
d bix

i, thus linear in xi (C0 and T0 are constants).
This excludes the d special conformal transformations of so(d+ 1, 1) and leaves the super-
translations with the time translation as unique freedom, leading to a symmetry subgroup
of finite dimension d2

2 + d
2 + 2.

One should stress again that generally, Πi
((
∂̂i − ϕi

)
ξ t̂ − 2ξj$ji

)
with ξ a conformal

Killing field of a Carrollian manifold M, might be a boundary term possibly leading to
a conserved Carrollian current. This needs however to be appreciated case-by-case and
not premised.

4.2 Carrollian hydrodynamics from relativistic fluids — I

The small-c expansion

Following the pattern introduced in [29], we will now study the vanishing-c limit of relativistic
hydrodynamics on a pseudo-Riemannian manifold, in Papapetrou-Randers coordinates. As
for the Galilean case, all c-dependence in the geometry is explicit. In particular, the fluid
velocity is parameterized with βi introduced in (2.85), and for small c we obtain:

vi = c2Ωβi + O
(
c4
)
. (4.63)

67In the presence of a dynamical exponent defined via 2µ+ zλ = 0 (in this case the Carrollian structure
is not inherited from the Carrollian limit of a pseudo-Riemannian spacetime), the algebra exhibits a level
N = 2/z: ccarrN (d+ 1). Strictly speaking ccarr(d+ 1) ≡ ccarr2(d+ 1) is BMSd+2 for d = 1, 2 only, because for
higher d the BMS algebra is finite-dimensional, whereas ccarrN (d+ 1) is not. Infinite-dimensional extensions
of the BMS algebra have been nevertheless presented in the literature (see e.g. [99] for a recent account and
further references).

68For general Carrollian fluids it has no a priori reason to vanish, and no Nœther current exists. Nonetheless,
one finds explicit dynamics where these currents are enforced (see e.g. [98] for the scalar electrodynamics),
and where the full conformal Carroll group is realized in terms of the associated conserved charges.
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The fluid velocity vanishes at zero c — this is not a surprise — but a kinematical parameter
with dimensions of an inverse velocity is bound to remain in as a Carrollian-fluid variable.
The full fluid congruence then reads:

u0 = −cΩ + O
(
c3
)
, ui = c2βi + O

(
c4
)
, (4.64)

whereas the expansion and the shear behave as

Θ = 1
Ω∂t ln

√
a + O

(
c2
)

= θ + O
(
c2
)
, (4.65)

σij = − 1
Ω

(1
2∂ta

ij + 1
d
aij∂t ln

√
a

)
+ O

(
c2
)

= ξij + O
(
c2
)

(4.66)

with ξij and θ defined for a Carrollian manifold in (4.15) and (4.16).
In order to go on with the fluid equations, we should handle the behaviour of the

energy-momentum tensor at small c. This includes ε, p qi and τ ij . The matter current ji, if
present, plays no role since no relationship amongst ε and % survives in the Carrollian limit.
In the absence of thermodynamic or transport hints for the behaviour of these quantities, we
will consider an ansatz motivated by the Carrollian fluids emerging in flat holography [28].
The simplest is

ε = η + O
(
c2
)
, (4.67)

p = $ + O
(
c2
)
, (4.68)

qi = Qi + c2πi + O
(
c4
)
, (4.69)

τ ij = −Ξij + O
(
c2
)
. (4.70)

This follows the pattern of the Galilean counterpart (3.75) and (3.76), except that the
energy is now of order 1, as for the case of a massless-carrier Galilean fluid. In section 4.3 we
will consider a Laurent expansion with order-1/c2 terms, as required in flat-holography fluids.

Although a conserved current is not essential in the discussion, we present it for
completeness with the following ansatz

%0 = χ+ O
(
c2
)
, jk = nk + O

(
c2
)
. (4.71)

We recall that %0 is the proper density i.e. the density measured by an observer with
velocity uµ. We could consider a fiducial observer, who would play here the role of uZ in
Zermelo frame:

uPR = 1
Ω∂t. (4.72)

This observer is not geodesic (unless ∂t it is a Killing field), but this is of secondary
importance since inertial frames play no role in the Carrollian limit. For this observer, the
fluid density is − 1

c2Jµu
µ
PR = c

ΩJ0, which coincides with %0r given in (2.103).

– 59 –



J
H
E
P
0
9
(
2
0
2
2
)
1
6
2

Carrollian momenta and hydrodynamic equations

With the data (4.67), (4.68), (4.69), (4.70), the invariant pieces of the relativistic energy-
momentum tensor defined in (2.97), (2.100), (2.101) and (2.102) read:

qir = Πi + c2P i + O
(
c4
)
, (4.73)

εr = Π + O
(
c2
)
, (4.74)

pra
ij + τ ijr = Πij + O

(
c2
)

(4.75)

with
Π = η + 2βiQi, Πi = Qi, Πij = Qiβj + βiQj +$aij − Ξij , (4.76)

and
P i = πi + βi

(
η +$ + βkQ

k
)
− βkΞki + βββ2

2 Qi. (4.77)

Equations (2.1) with the energy-momentum tensor at hand demand the follow-
ing expressions

c

Ω∇µT
µ
0 = E+ O

(
c2
)
, (4.78)

∇µTµi = 1
c2

{( 1
ΩD̂t + θ

)
Πi + Πj γ̂ i

j

}
+ Gi + O

(
c2
)

(4.79)

be zero with

E= −
( 1

ΩD̂t + θ

)
Π−

(
∇̂i + 2ϕi

)
Πi −Πij γ̂ij , (4.80)

Gj =
(
∇̂i + ϕi

)
Πi

j + 2Πi$ij + Πϕj +
( 1

ΩD̂t + θ

)
Pj + P iγ̂ij . (4.81)

Hence, we recover the Carrollian momenta conservation equations (4.35) and (4.36) (notice
the use of the Carrollian time covariant derivative (4.18)) augmented with an extra equation
on the energy current ( 1

ΩD̂t + θ

)
Πi + Πj γ̂ i

j = 0. (4.82)

The whole Carrollian scheme of the present section, and eq. (4.82) in particular,
resonate with the discussion made on the Galilean side, section 3.3. This equation is
indeed absent when working directly in the framework of a Carrollian manifold with
Carrollian diffeomorphisms, as in section 4.1. It is in fact a boundary term that could
not be retrieved by a variational principle — as the Carrollian momentum P i appeared
to be necessary but undetermined. Getting the Carrollian dynamics as a zero-c limit of
relativistic hydrodynamics is richer.

On the one hand, equation (4.82) emerges as a vestige of the original full-diffeomorphism
relativistic invariance,69 and is the dual of the Galilean constraint equation (3.122) —

69Precise statements on this reminiscence of full diffeomorphisms are illusive. In particular, no central
extension can accompany the Carrollian contraction. According to ref. [84], the prerequisite for this to occur
is the existence of an absolute time i.e. Galilean or Aristotelian frameworks.
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remember that time and space play dual roles in the two limits considered here, interchanging,
among others, momentum and energy current. On the other hand, the momentum P i

is no longer undetermined, and stands for the subleading term of the relativistic heat
current (4.73), expressed explicitly in terms of the kinematical and “thermodynamic-
transport” observables — βi and η, $, Qi, πi, Ξij in (4.77).

This last observation calls for a comparison with the existing literature. At the first
place it should be accepted that the very concept of spacetime energy-momentum tensor
is loose in Carrollian (and Galilean) physics. This was clearly emphasized in the early
work [79], where the role of Carrollian momenta as a necessary replacement to the energy-
momentum tensor was proposed. It is stated again here, and one should moreover avoid
the latent confusion amongst momenta (or energy-momentum tensor, if any) as a response
of the system to geometry disturbances, and Nœtherian currents, which are generically
absent as no isometries have been assumed. Next, it is clear that nothing requires the
vanishing of neither the energy flux Πi, nor the momentum P i, irrespective of the approach
— Carrollian conservation or zero-c limit. This has been undermined in [74, 76, 77]. Finally,
the momenta are expressed in terms of an “inverse velocity” βi and not a velocity vi, since
no velocity is compatible with Carrollian physics due to the shrinking of the light cone. It
should be added that no matter density enters the momenta because no relationship exists
any longer between energy and mass. Equation (A.2) is obsolete in the Carrollian limit,
and it is fair to admit that Carrollian thermodynamics remains in limbo — as pointed out
in appendix A. This is sometimes overlooked.

From a more abstract viewpoint, a relation between energy and some other charge
(possibly, but not necessarily the mass) might appear only if a conservation exists that defines
this charge, independently of the conservation involving the energy. Such a conservation
may or may not be present for the relativistic fluids, and is emergent in the Galilean limit.
For the Carrollian case, if a U(1) conservation law of the type (2.2) is available in the
ascendent theory, we find, after inserting (4.71) inside (2.103) and (2.104):

%0r = %+ O
(
c2
)
, (4.83)

jir = N i + O
(
c2
)
, (4.84)

with
% = χ+ βin

i, N i = ni, (4.85)

the matter Carrollian momenta explicitly determined in terms of βi. We can now compute
the divergence of (2.4) in the Papapetrou-Randers background (2.79). The result is

∇µJµ = J+ O
(
c2
)

(4.86)

with
J=

( 1
Ω∂t + θ

)
%+

(
∇̂j + ϕj

)
N j , (4.87)

and demanding the conservation, we recover the Carrollian continuity equation (4.41).
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Hydrodynamic-frame invariance

We discussed hydrodynamic-frame invariance in the framework of relativistic fluids, where
it states that the relativistic fluid equations remain invariant under arbitrary unimodular
transformations of the velocity field u, performed together with transformations of the energy
density, pressure, heat current and stress tensor — see e.g. (2.92), (2.93) and (2.94).70 The
question we want now to answer is again whether this invariance survives the Carrollian limit.

From the experience we have acquired in the Galilean section, answering requires a
careful analysis, and the output depends on several options. Assumptions are made about
the small-c behaviour of the various observables (see (4.67), (4.68), (4.69), and (4.70)) and
this behaviour may not be stable under Carrollian hydrodynamic-frame transformations.
As opposed to the Galilean situation, there is no physical intuition that can argue in favour
or against. There are however concrete results from flat holography [26, 27] suggesting
that Carrollian hydrodynamic-frame invariance should hold as a local boundary symmetry,
translating in a bulk diffeomorphism transformation.

As for the Galilean case, the operators entering (4.80), (4.81) and (4.82) are velocity-
independent, and the momenta Pi, Π, Πi and Πij appear as coefficients in the expansion of
the hydrodynamic-frame-invariant relativistic momenta (4.73), (4.74) and (4.75). In order
to conclude about hydrodynamic-frame invariance, we must investigate the stability of the
scaling properties encoded in (4.67), (4.68), (4.69) and (4.70), using the transformation
rules set in the Papapetrou-Randers frame (2.92), (2.93) and (2.94). We find the following:

δη = −2δβiQi, (4.88)

]δQi = 0, (4.89)

δπi = δβj
(
Ξij − (η +$)aij + βiQj

)
, (4.90)

δ
(
Ξij −$aij

)
= δβk

(
Qiajk +Qjaik

)
. (4.91)

Remarkably, under the frame transformations at hand, the Carrollian densities and fluxes
defined in (4.76) and (4.77) are invariant:

δΠ = 0, δΠi = 0, δΠij = 0, δP i = 0. (4.92)

Contrary to the Galilean massive case (section 3.2), but similarly to the Galilean massless
case (section 3.4), the energy-momentum-tensor dynamics and the current dynamics are
decoupled here. This decoupling holds in particular for hydrodynamic-frame invariance,
and we are invited to iterate the above course for matter dynamics. For matter, the
transformation rules in Papapetrou-Randers frame are (2.95) and (2.96), whereas the
invariant relativistic momenta (4.83), (4.84) should be used in conjunction with the small-c

70In the Papapetrou-Randers frame, the local unimodular transformations (2.28) are captured by βi →
βi + δβi(t,x) (see eqs. (2.51)), (2.85), (2.87)) parameterized as δβi = Bi − c2Bjβjβi + Ωijβj . Infinitesimal
Lorentz boosts are associated with Bi(t,x), while infinitesimal rotations go along with the antisymmetric
Ωij(t,x). In the Carrollian limit, the general transformation, which captures Carrollian boosts and rotations,
reads: δβi = Bi + Ωijβj .
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behaviour (4.71). The output is now

δχ = −δβini, (4.93)

δni = 0. (4.94)

Using (4.85), one shows that
δ% = 0, δN i = 0. (4.95)

This result demonstrates the invariance of (4.87). In conclusion, matter dynamics is
hydrodynamic-frame-invariant, establishing thereby that Carrollian fluid dynamics is
hydrodynamic-frame invariant.

Weyl-invariant Carrollian fluids

Carrollian fluids are fundamental ingredients of flat holography, where they appear in
their Weyl-invariant version [28]. On a Papapetrou-Randers frame, Weyl transformations
generated by B(t,x) act as they do on the fundamental data of a Carrollian spacetime,
eqs. (4.55). The Weyl-invariance condition (4.56) is here reached as the zero-c limit of
the relativistic Weyl-invariance condition Tµµ = 0 discussed at the end of section 2.1,
using (2.98), (4.73), (4.74) and (4.75). For Carrollian fluids, the various Carrollian mo-
menta (4.76), (4.77), (4.85) are expressed in terms of fluid variables such as the inverse
velocity βi, the energy density η, the pressure $ as well as Qi, πi and Ξij . Their conformal
weights are71 1, d+ 1, d+ 1, d, d and d− 1. Similarly the weights of χ and ni are d and
d+ 1. Condition (4.56) reads η = d$ − Ξii, which is split as usual:

η = d$, Ξii. (4.96)

The geometric tools necessary for handling Carrollian Weyl covariance were introduced
in appendix A.2 of [29] and we summarize them here. We define Weyl-Carroll covariant
time and space derivatives using θ and ϕi defined in (4.16) and (4.12), which transform
as connections

θ → Bθ − d

Ω∂tB, ϕi → ϕi − ∂̂i ln B, (4.97)

as opposed to the Carrollian shear ξij (4.15) and Carrollian vorticity $ij (4.11), which are
Weyl-covariant of weight −1. The action of the Carrollian Weyl-covariant time derivative
on a weight-w function Φ is

1
ΩD̂tΦ = 1

ΩD̂tΦ + w

d
θΦ = 1

Ω∂tΦ + w

d
θΦ, (4.98)

and this is a scalar of weight w + 1. On a weight-w vector, the action is

1
ΩD̂tV

l = 1
ΩD̂tV

l + w − 1
d

θV l = 1
Ω∂tV

l + w

d
θV l + ξliV

i. (4.99)

71We mentioned in section 4.1 that Πij , Πi, Πi and Π have conformal weights d + 3, d + 2, d + 2 and
d+ 1, whereas the density % and the matter current N i have weights d and d+ 1.
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These are the components of a Carrollian vector of weight w + 1. Similarly for any tensor
by Leibniz rule and in particular we find:

D̂takl = 0. (4.100)

For a weight-w scalar function Φ, we introduce the space Weyl-covariant Carrol-
lian derivative

D̂jΦ = ∂̂jΦ + wϕjΦ, (4.101)

which has the same conformal weight. Similarly, for a vector with weight-w components V l:

D̂jV
l = ∇̂jV l + (w − 1)ϕjV l + ϕlVj − δljV iϕi. (4.102)

The Weyl-Carroll spatial derivative does not modify the weight of the tensor it acts on.
The action on any other tensor is obtained using the Leibniz rule, as in example for
rank-two tensors:

D̂jtkl = ∇̂jtkl + (w + 2)ϕjtkl + ϕktjl + ϕltkj − ajltkiϕi − ajktilϕi. (4.103)

Moreover, it is metric-compatible:
D̂jakl = 0. (4.104)

Time and space Weyl-Carroll covariant derivatives do not commute. Their commutators
allow to define further geometric tensors such as the Weyl-Carroll curvature (spatial and
mixed space-time), which do also emerge in the small-c expansion of the relativistic Weyl
curvature tensors introduced in (2.41), (2.42), (2.43), and evaluated in a Papapetrou-Randers
background. More information is available in the already quoted reference [29].

With these derivatives, Carrollian equations (4.35), (4.36) and equation (4.82) read for
a conformal fluid:

1
ΩD̂tΠ + D̂iΠi + Πijξij = 0, (4.105)

D̂iΠi
j + 2Πi$ij +

( 1
ΩD̂tδ

i
j + ξij

)
Pi = 0, (4.106)

1
ΩD̂tΠj + Πiξ

i
j = 0. (4.107)

These equations are Weyl-covariant of weights d+2, d+1 and d+1 (Pi is weight-d). They are
also manifestly hydrodynamic-frame invariant. Similarly, for the matter sector, (4.41) reads:

1
ΩD̂t%+ D̂jN

j = 0, (4.108)

and is Weyl-covariant of weight d+ 1 and hydrodynamic-frame invariant.
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4.3 Carrollian hydrodynamics from relativistic fluids — II

More degrees of freedom

The behaviours (4.67), (4.68), (4.69) and (4.70) of energy, pressure, heat current and stress
tensor are required for matching the zero-c limit of hydrodynamic equations with the
Carrollian momenta conservation, while preserving hydrodynamic-frame invariance. At
the end of section 3.3, we contemplated exotic Galilean situations involving more degrees
of freedom and obeying extended systems of fluid equations reached at infinite c, such
as (3.125). Although of limited use in the non-relativistic framework, this sort of extensions
play a pivotal role when studying Carrollian fluids in flat holography, were more divergent
terms appear to be needed [28]. It is worth elaborating in this direction in the spirit of [29],
and consider in particular72

ε = ζ

c2 + η + O
(
c2
)
, (4.109)

p = φ

c2 +$ + O
(
c2
)
, (4.110)

qi = ψi

c2 +Qi + c2πi + O
(
c4
)
, (4.111)

τ ij = −Σij

c2 − Ξij + O
(
c2
)
. (4.112)

We can at the same time extend the matter sector with

%0 = ω

c2 + χ+ O
(
c2
)
, jk = mi

c2 + nk + O
(
c2
)
. (4.113)

With the new scalings, the expansion of the energy-momentum tensor components
(2.100), (2.101), (2.102) is now

εr = Π̃
c2 + Π + O

(
c2) ,

qir = Π̃i
c2 + Πi + c2P i + O

(
c4) ,

pra
ij + τ ijr = Π̃ij

c2 + Πij + O
(
c2) .

(4.114)

The Carrollian momenta are displayed in (B.1). Similarly, the matter current (eqs. (2.103)
and (2.104)) exhibits the following:

%0r = %̃

c2 + %+ O
(
c2
)
, jkr = Ñk

c2 +Nk + O
(
c2
)

(4.115)

with %̃, %, Ñk and Nk given in (B.2).
Using the above expansions in the relativistic divergence of the energy-momentum

tensor on Papapetrou-Randers background (2.79) one obtains
c

Ω∇µT
µ
0 = F

c2 + E+ O
(
c2
)
, (4.116)

∇µTµi = Xi

c4 + Hi

c2 + Gi + O
(
c2
)
, (4.117)

72In holographic Carrollian fluids, one keeps terms up to order 1/c4. The pattern is the same.
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while the divergence of the matter current reads:

∇µJµ = N

c2 + J+ O
(
c2
)
. (4.118)

In these expressions, E, Gj and J are given in (4.80), (4.81) and (4.87), whereas the new
expressions are

F= −
( 1

ΩD̂t + θ

)
Π̃−

(
∇̂i + 2ϕi

)
Π̃i − Π̃ij γ̂ij , (4.119)

Hj =
(
∇̂i + ϕi

)
Π̃i

j + 2Π̃i$ij + Π̃ϕj +
( 1

ΩD̂t + θ

)
Πj + Πiγ̂ij , (4.120)

Xj =
( 1

ΩD̂t + θ

)
Π̃j + Π̃iγ̂ij , (4.121)

and
N=

( 1
Ω∂t + θ

)
%̃+

(
∇̂j + ϕj

)
Ñ j . (4.122)

At zero c, the Carrollian energy and momenta equations are thus E= F= Gj = Hj = Xj =
0, and similarly J= N= 0 describe the matter sector. All these equations are invariant
under hydrodynamic-frame transformations because the differential operators are geometric
and thus invariant, and because the momenta Π̃, Π, Π̃i, Πi, P i, Π̃ij , Πij , %̃, %, Ñ i, N i also
are, as shown in appendix B.

Weyl-invariant Carrollian fluids

For the system under investigation, the use of an effective action is not convenient, as it
would require a complete set of variables conjugate to the momenta Π, Πi, Πij and Π̃, Π̃i,
Π̃ij , which is bigger than aij , bi and Ω. Weyl invariance is here easier to impose as a zero-c
limit of Tµµ = 0 discussed at the end of section 2.1, using (2.98) with (4.114):

Tµµ = 1
c2

(
Π̃ i
i − Π̃

)
+ Π i

i −Π + O
(
c2
)

= 0, (4.123)

leading to
Π̃ i
i = Π̃, Π i

i = Π. (4.124)
These conditions can be recast in terms of Carrollian-fluid observables using the explicit
expressions of the momenta (B.1). Splitting them again à la (2.45), into global-equilibrium
equations of state plus conditions for the dynamical irreversible components, we find
the following:

ζ = dφ, Σi
i = 0, η = d$, Ξii = βiβjΣij . (4.125)

The conformal weights of Π̃, Π̃i, Π̃ij match those of Π, Πi, Πij ; those of the extra variables
ζ, φ, ψi and Σij are d+ 1, d+ 1, d and d− 1, while for ω and mi we find d and d+ 1.

Finally, using (4.124), the equations E = F = Gj = Hj = Xj = 0 and J = N = 0
become Weyl-covariant with

J= 1
ΩD̂t%+ D̂jN

j , (4.126)

N= 1
ΩD̂t%̃+ D̂jÑ

j , (4.127)
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and

E= − 1
ΩD̂tΠ− D̂iΠi −Πijξij , (4.128)

F= − 1
ΩD̂tΠ̃− D̂iΠ̃i − Π̃ijξij , (4.129)

Gj = D̂iΠi
j + 2Πi$ij +

( 1
ΩD̂tδ

i
j + ξij

)
Pi, (4.130)

Hj = D̂iΠ̃i
j + 2Π̃i$ij +

( 1
ΩD̂tδ

i
j + ξij

)
Πi, (4.131)

Xj = 1
ΩD̂tΠ̃j + Π̃iξ

i
j . (4.132)

These equations are the seed for flat holography, see [25–28]. They are covariant un-
der Carrollian diffeomorphisms, covariant under Weyl rescalings and invariant under
hydrodynamic-frame transformations, which are local Carroll transformations (Carroll
boosts and rotations).

Isometries and conformal isometries

As a final application of the above results on multiplication of degrees of freedom, we
can insert the behaviour (4.114) inside the components (2.107), (2.108) and (2.109) of a
relativistic conserved current resulting from the combination of the energy-momentum
tensor with a Killing or a conformal Killing field. We obtain

− 1
cΩI0 = ι0r =

˜̃κ
c4 + κ̃

c2 + κ+ O
(
c2
)
, Ik = ikr = K̃k

c2 +Kk + O
(
c2
)

(4.133)

with (remember that ξi ≡ ξ ı̂ is a function of x only for Carrollian diffeomorphisms)

κ = ξiPi − ξ t̂Π

κ̃ = ξiΠi − ξ t̂Π̃

˜̃κ = ξiΠ̃i

Ki = ξjΠ i
j − ξ t̂Πi

K̃i = ξjΠ̃ i
j − ξ t̂Π̃i,

(4.134)

where κ and Ki are precisely as anticipated in (4.51) and (4.52), and described in footnote 62.
Inserting (4.133) in the relativistic divergence of the matter current Iµ in Papapetrou-
Randers background we recover a multiplication of (4.50) in the form

∇µIµ =
˜̃K
c4 + K̃

c2 + K+ O
(
c2
)

(4.135)

with 
˜̃K=

(
1
Ω∂t + θ

)
˜̃κ = 0

K̃=
(

1
Ω∂t + θ

)
κ̃+

(
∇̂i + ϕi

)
K̃i = −Π̃i

((
∂̂i − ϕi

)
ξ t̂ − 2ξj$ji

)
K=

(
1
Ω∂t + θ

)
κ+

(
∇̂i + ϕi

)
Ki = −Πi

((
∂̂i − ϕi

)
ξ t̂ − 2ξj$ji

)
.

(4.136)
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The last equalities are obtained owing to the Carrollian Killing (4.46) (or conformal
Killing (3.66), (4.57), (4.58), (4.59)) conditions and the equations of motion E= F= Gj =
Hj = Xj = 0 (see eqs. (4.128), (4.129), (4.130), (4.131), (4.132) — and (4.124) for the
Weyl-covariant situation). One of the three currents is conserved as a consequence of the
(conformal) isometry, whereas the other two are not.

The multiplication of degrees of freedom induced by the behaviour of the energy-
momentum tensor (4.114), triggers a multiplication of currents in the presence of an
isometry (or a conformal isometry if the dynamics is Weyl-invariant) — here three, but
possibly more if more terms are present in (4.114). These currents are generically non-
conserved, as we already observed in section 4.1 for a single current (eqs. (4.54) or (4.60)),
unless the symmetry is stronger than a Carrollian (conformal) isometry i.e. if Lξθ

t̂ =((
∂̂i − ϕi

)
ξ t̂ − 2ξj$ji

)
dxi = 0. Alternatively each of those currents may or may not be

conserved, irrespective of the others, when an appropriate vector in the expansion of qir
vanishes, be it Πi or Π̃i, and this explains why ˜̃K = 0 in the above paradigm, whereas
K̃ 6= 0 and K 6= 0.

As we emphasized at the end of section 3.3 in the Galilean framework, i.e. for infinite
c, it is puzzling that the conservation law ∇µIµ = 0 of a relativistic current Iµ = ξνT

µν

produced by a Killing vector ξ of a pseudo-Riemannian spacetime, similarly fails when the
limit c-to-zero is taken. This is once again due to the nature of the Carrollian Killing fields;
details are available in appendix D.2.

5 Aristotelian dynamics

Aristotelian spacetimes

Aristotelian spacetimes were introduced in [80]. They are part of a rich web of geometric
structures, which incorporate Newton-Cartan and Carroll, among others. Their defining
feature is a manifold M = R× S of dimension d+ 1, endowed with a degenerate metric and
a degenerate cometric. The first implies that there is a symmetric rank-two tensor acting
on tangent-space elements

d`2 = `µν(t,x)dxµ dxν , µ, ν . . . ∈ {0, 1, . . . , d} (5.1)

with one-dimensional kernel, the field of observers

υ = υµ(t,x) ∂µ : `µνυ
µ = 0. (5.2)

The second translates into the existence of symmetric rank-two tensor acting on cotangent-
space vectors:

∂2
m = mµν(t,x) ∂µ ∂ν , (5.3)

where
µ = µν(t,x) dxν : mµνµν = 0, (5.4)

defines a clock form (one should say “anti-clock” because of the sign), such that

− υµµν +mµλ`λν = δµν , υνµν = −1, mµν`µν = d. (5.5)
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The topological structure M = R × S provides here a genuine, vertical and horizontal
foliation, as opposed to Carrollian manifolds, where it generally supports a fiber bundle over
a d-dimensional basis, and to Newton-Cartan were the fibration is defined over a line. In
other words, Aristotelian spacetimes lie in the intersection of Carrollian and Newton-Cartan
geometries with trivial Ehresmann connection for the Carrollian and trivial field of observers
for the Newton-Cartan.73

The vector υ and the covector µ are intrinsic geometric objects. Aristotelian trans-
formations are meant to leave them invariant and respect the associated foliation. This
forbids boosts, which is a characteristic feature of Aristotelian spacetimes translating into
the absolute nature of time and space. In practice it allows to adopt a convenient choice:74

d`2 = aij dxi dxj , ∂2
m = aij ∂i ∂j (5.6)

with aikakj = δij and

υ = 1
Ω∂t, µ = −Ωdt, (5.7)

where aij and Ω are functions of t and x. Aristotelian diffeomorphisms act as

t′ = t′(t), x′ = x′(x) (5.8)

with Jacobian
J(t) = ∂t′

∂t
, J ij(x) = ∂xi′

∂xj
. (5.9)

The transformations of the metric and kernel components are thus

a′ij = aklJ
−1k
i J
−1l
j , Ω′ = Ω

J
. (5.10)

Aristotelian manifolds can be equipped with covariant derivatives, which allow to obtain
genuine tensors under Aristotelian diffeomorphisms (5.8). As for the various spacetimes
met earlier, we will focus here on the simplest torsionless and metric-compatible space and
time connections, which naturally appear in the conservation equations.

The spatial connection is the same as the one introduced for the Galilean manifolds
in (3.8):

γijk = ail

2 (∂jalk + ∂kalj − ∂lajk) . (5.11)

The associated covariant derivative is spelled ∇i since it needs not be distinguished from the
ordinary Levi-Civita derivative on a Riemannian d-dimensional manifold — it just depends
on time here. It is torsionless, because γijk are symmetric and also obeys ∇iajk = 0.75 Its

73Our definition of Aristotelian manifolds is that of [80], also used in [74, 76]. In refs. [39, 40] “Aristotelian”
is somewhat less restrictive. It is meant to be a Leibnizian structure and a Fröbenius-integrable distribution
associated with the absolute clock form (µ ∧ dµ = 0 obvious for (5.7)). The necessary extra ingredient
to match the more conventional picture we use is the field of observers υ (5.2) (or (5.7) in the concrete
realization), as described in Props. A.5 and A.6 of [40].

74This is not the most general choice, as (3.1)–(3.2) and (4.1)–(4.2) were not the most general either for
Newton-Cartan and Carrollian manifolds.

75For a more general discussion on compatible connections, see Props. A.17 and A.18 of [40].
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Riemann, Ricci and scalar curvature tensors are defined as usual d-dimensional Levi-Civita
curvature tensors would be, except that they are t-dependent.

The time derivative operator 1
Ω∂t is also promoted to an Aristotelian temporal metric-

compatible covariant derivative
Dtajk = 0, (5.12)

using
γij = 1

2Ω∂taij = ξij + 1
d
aijθ. (5.13)

We have introduced the familiar by now traceless shear tensor ξij and expansion scalar
θ = 1

Ω∂t ln
√
a , which can be completed with the acceleration form

ϕi = ∂i ln Ω. (5.14)

The action of Dt is as in the Carrollian case, eqs. (4.17) and (4.18): DtΦ = ∂tΦ and

1
ΩDtV

i = 1
Ω∂tV

i + γijV
j ,

1
ΩDtVi = 1

Ω∂tVi − γ
j
i Vj (5.15)

generalized using the Leibniz rule.
Time and space derivatives do not commute:[ 1

ΩDt,∇i
]
V j = ϕi

(( 1
ΩDt + θ

)
V j − γjkV

k
)
− γ k

i ∇kV j − drjikV
k (5.16)

with76

rjik = 1
d

(
θϕiδ

j
k +∇iγjk −

1
Ω∂tγ

j
ik

)
(5.17)

another Aristotelian curvature tensor, similar to the one introduced for our Carrol-
lian connection.

Dynamics from diffeomorphism invariance

Aristotelian fluids were introduced in [74], and mentioned as “self-dual” in [29]. They
received further attention [76] amid a soaring interest for non-boost-invariant dynamics [81–
83]. It is abusive though to call this “hydrodynamics” for two reasons. The first is shared
with the Carrollian instance: a fluid is meant to assimilate a phenomenological description
of a many-body system under local-equilibrium and slow-variation assumptions, and those
assumptions are non controllable in the Carrollian or Aristotelian framework due the absence
of a thermodynamic or kinetic theory — the elementary particle motion is forbidden in both
cases. Additionally, as opposed to Galilean or Carrollian manifolds, Aristotelian cannot
be obtained naturally as limits of pseudo-Riemannian spacetimes. Thus, no guide for the
would-be Aristotelian fluid equations exists that could be based on a limiting procedure,
and this is the second reason. The only safe way to reach a set of equations covariant
under Aristotelian diffeomorphisms (5.8) is to require this diffeomorphism invariance at
the level of an effective action, and study its conservation consequences for the conjugate

76Again 1
Ω∂tγ

j
ik = (∇i + ϕi) γjk + (∇k + ϕk) γji −

(
∇j + ϕj

)
γik is an Aristotelian tensor, even though

γjik is not.
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Aristotelian momenta. The latter remain however agnostic on a decomposition in terms of
kinematical (as vi for Galilean, βi for Carrollian) and kinetic (energy, pressure, heat and
stress) variables.

Starting again with an action S =
∫
dt ddx

√
aΩL on M = R× S, now functional of aij

and Ω, the Aristotelian momenta conjugate to those variables are

Πij = 2√
aΩ

δS

δaij
, (5.18)

Π = − 1√
a

δS

δΩ . (5.19)

These are the energy-stress tensor and the energy density, and with those the variation of
the action in the gravitational sector is

δS = −
∫

dtΩ
∫

ddx
√
a

(1
2Πijδa

ij + Πδ ln Ω
)
. (5.20)

Aristotelian diffeomorphisms (5.8) are generated by vector fields

ξ = ξt∂t + ξi∂i = ξ t̂
1
Ω∂t + ξi∂i, (5.21)

where ξt = ξt(t) and ξi = ξi(x). The variation under diffeomorphisms is implemented as
usual with

− δξaij = Lξaij = 2∇(iξ
kaj)k + 2ξ t̂γij . (5.22)

Now
Lξυ = µυ, Lξµ = −µµ (5.23)

with
µ(t,x) = −

( 1
Ω∂tξ

t̂ + ϕiξ
i
)
. (5.24)

Thus
− δξ ln Ω = 1

ΩLξΩ = −µ. (5.25)

Using (5.22) and (5.25) in (5.20) with ξi = ξi(x), we obtain (indices are here lowered
with aij)

δξS =
∫

dtddx
√
aΩ

{
−ξ t̂

[( 1
Ω∂t + θ

)
Π + Πijγij

]
+ ξi

[
(∇j + ϕj) Πj

i + Πϕi
]}

+
∫

dtddx
{
∂t
[√
a ξ t̂Π

]
− ∂i

[√
aΩξjΠi

j

]}
. (5.26)

The boundary terms (last line of (5.26)) are ignored and δξS = 0 implies that the momenta
defined earlier in (5.18), (5.19) are Aristotelian-covariant. It leads to two equations: the
energy equation ( 1

Ω∂t + θ

)
Π + Πijγij = − (∇i + 2ϕi) Πi, (5.27)
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and the momentum equation

(∇j + ϕj) Πj
i + Πϕi = −

( 1
Ω∂t + θ

)
Pi. (5.28)

In these equations the energy current Πi and the momentum P i are undetermined.
They arise because ξt depends on time and ξi on space, exclusively. As a consequence,√
aΩξ t̂ (∇i + 2ϕi) Πi = ∂i

(√
aΩξ t̂Πi

)
and
√
aΩξi

(
1
Ω∂t + θ

)
Pi = ∂t

(√
a ξiPi

)
, which are

boundary terms and vanish inside the integral.
Aristotelian dynamics stands at the intersection of Galilean and Carrollian. This is

expected from first principles and can be verified by comparing eqs. (5.27) and (5.28)
with (3.42)77 and (3.41) in the Galilean at wi = 0, as well as (4.35) and (4.36) in the
Carrollian bi = 0 instances. However, contrary to these, Aristotelian dynamics cannot be
reached as a limit of relativistic hydrodynamics. No kinematical parameter such as vi or
βi can be foreseen and no decomposition of the momenta à la (3.84), (3.89), (3.90), (3.91)
or (4.76), (4.77). Finally, hydrodynamic-frame invariance cannot be argued or disputed.

The presence of a matter/charge sector can be treated as in the previous families of
dynamics. We assume the existence of a gauge field B = B(t,x)dt+Bi(t,x)dxi associated
with a local U(1) transformation as in (3.43), and the conjugate momenta

% = 1√
a

δS

δB
, (5.29)

N i = 1
Ω
√
a

δS

δBi
(5.30)

are the charge density and the charge current. The gauge variation

δΛS =
∫

dtddx
√
a
(
%δΛB + ΩN iδΛBi

)
=
∫

dtddx
{√

aΩΛ
( 1

Ω∂t%+ θ%+ (∇i + ϕi)N i
)
− ∂t

(√
aΛ%

)
− ∂i

(√
aΛΩN i

)}
(5.31)

is assumed to vanish, and this leads to
( 1

Ω∂t + θ

)
%+ (∇i + ϕi)N i = 0. (5.32)

In integrated form, thanks to Stokes and Gauss theorems, this conservation reads (V ⊂ S, a
constant-time section, and ∂V does not depend on time):

d
dt

∫
V
ddx
√
a % = −

∫
V
ddx ∂i

(√
aΩN i

)
= −

∫
∂V

Ω ?N (5.33)

77Notice that a term of the type 2ϕiΠi would also have been present in this Galilean energy equation if
we had considered a torsionfull Newton-Cartan spacetime, with Ω = Ω(t,x), as we assume in the present
Aristotelian case.
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with the conserved charge defined as an integral over the entire space S:

QN =
∫
S
ddx
√
a %. (5.34)

As for the Galilean or the Carrollian situations discussed in sections 3.1 and 4.1, one can
chose any space-like hypersurface Σd for the determination of the charge:

QN =
∫

Σd

√
a % dx1 ∧ . . . ∧ dxd +

∫
Σd

√
a

d∑
i=1

dx1 ∧ . . . ∧N iµ ∧ . . . ∧ dxd, (5.35)

with the clock form µ given in (5.7), and N iµ at the ith position in the last exterior product.

Weyl invariance

Weyl invariance can also be present in Aristotelian dynamics. The reasoning is familiar,
starting from δBS = 0, we are lead to the condition

Π i
i = Π. (5.36)

The geometric tools for handling Weyl covariance are similar to those introduced in the
previous sections. The connections are θ and ϕi (see eqs. (5.13) and (5.14)) with

θ → Bθ − d

Ω∂tB, ϕi → ϕi − ∂i ln B. (5.37)

The action of the Aristotelian Weyl-covariant time derivative on any tensor increases its
weight by one unit. On a weight-w function Φ it is

1
ΩDtΦ = 1

ΩDtΦ + w

d
θΦ = 1

Ω∂tΦ + w

d
θΦ, (5.38)

while on a weight-w vector, we find using (5.15)

1
ΩDtV

l = 1
ΩDtV

l + w − 1
d

θV l = 1
Ω∂tV

l + w

d
θV l + ξliV

i. (5.39)

Similarly for any tensor by Leibniz rule and in particular we find Dtakl = 0.
A spatial Aristotelian-Weyl-covariant derivative can also be introduced, and does not

alter the conformal weight. For a weight-w scalar function Φ it acts as

DjΦ = ∂jΦ + wϕjΦ; (5.40)

for a vector we find

DjV
l = ∇jV l + (w − 1)ϕjV l + ϕlVj − δljV iϕi. (5.41)

The action on any other tensor is obtained using the Leibniz rule, and in particular
Djakl = 0.

Time and space Aristotelian-Weyl covariant derivatives do not commute and curvature
tensors follow, which resemble those already quoted for the Carrollian or Galilean cases. We
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will not elaborate on this subject here, in particular because all these connections can be
generalized and studied in a more abstract geometric framework, as for example in [39, 40].

With the above tools, Aristotelian equations (5.27) and (5.28) read, under the assump-
tion of conformal dynamics (5.36):

1
ΩDtΠ + DiΠi + Πijξij = 0, (5.42)

DiΠi
j +

( 1
ΩDtδ

i
j + ξij

)
Pi = 0. (5.43)

These equations are Weyl-covariant of weights d+ 2 and d+ 1 (Π and Πi
j have weight d+ 1,

whereas Πi and Pi are weight-d). Similarly, for the matter sector, (5.32) reads:
1
ΩDt%+ DjN

j = 0, (5.44)

and is Weyl-covariant of weight d+ 1.

Isometries, conformal isometries and conservation laws

Isometries of Aristotelian spacetimes are generated by vectors fields (5.21) required to satisfy

Lξaij = 0 , Lξµ = 0 . (5.45)

The latter lead to a set of Killing equations for ξ t̂(t) and ξi(x):

∇(iξ
kaj)k + ξ t̂γij = 0, 1

Ω∂tξ
t̂ + ϕiξ

i = 0. (5.46)

For conformal isometries, the generators must satisfy

Lξaij = λaij (5.47)

where λ is obtained by tracing the latter:

λ(t,x) = 2
d

(
∇iξi + θξ t̂

)
. (5.48)

As for the previous Galilean and Carrollian cases, the requirement (5.47) must be supple-
mented with the usual extra condition (3.66) 2µ+ λ = 0, in order to reach a well-defined
set of conformal generators — µ(t,x) is displayed in (5.24).

In the presence of isometries or conformal isometries, we can define an Aristotelian
current κ and Ki (as % and N i in (5.29), (5.30)), following the previous definitions in
Newton-Cartan ((3.58) and (3.59)) or Carrollian spacetimes ((4.51) and (4.52)) — see also
the boundary terms in δξS (5.26) evaluated on-shell:

κ = ξiPi − ξ t̂Π, Ki = ξjΠ i
j − ξ t̂Πi. (5.49)

Going on-shell and using the Killing equations, or the conformal Killing equations when
the system is Weyl-invariant i.e. when (5.36) is satisfied, we find:

K=
( 1

Ω∂t + θ

)
κ+ (∇i + ϕi)Ki = 0. (5.50)

Consequently, on Aristotelian structures, a (conformal) Killing field always supports an
on-shell conservation law for (Weyl-invariant) Aristotelian dynamics.
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6 Conclusions

Hydrodynamic equations for Galilean and Carrollian fluids on arbitrary backgrounds
were displayed in ref. [29]. The present work augments these achievements and points
towards an extensive set of features: (i) the fluid momenta conjugate to the geometric
variables that define the spacetime and their role in the dynamics; (ii) the inclusion of
a matter conserved current and its potential interplay with the energy and momentum
through thermodynamics; (iii) the hydrodynamic-frame invariance; (iv) the consequence
of isometries in terms of conservation. For this purpose, two distinct and complementary
approaches have been pursued.

The first relies on local symmetries, primarily diffeomorphism invariance, but also local
Weyl and U(1) gauge invariance. The energy and momenta are defined through geometry
and are conserved as a consequence of diffeomorphism invariance. They are different for the
relativistic, Galilean or Carrollian theories, and it should be stressed that only the relativistic
theory has an energy-momentum tensor Tµν with zero general-covariant divergence. In
Galilean dynamics there is an energy-stress tensor Πij , a momentum Pi and an energy
density Π, obeying a set of conservation equations, necessarily involving an extra variable,
the energy flux Πi, which is not conjugate to any available geometric piece of data. Similarly,
Carrollian dynamics goes through with an energy-stress tensor Πij , an energy flux Πi and
an energy density Π, whereas the momentum P i comes now aside.

The second approach consists in working within an appropriate coordinate system of
the relativistic theory, and reach the Galilean or Carrollian dynamics in the infinite or zero
speed-of-light limit. This method does not allow to retrieve Aristotelian dynamics, which is
neither a large-c nor a small-c limit, but offers the possibility to capture more degrees of
freedom by keeping overleading terms in the Laurent expansions. It is also better suited for
unravelling the subtleties in the contraction of the relativistic group of invariance, as the
persistence in the limit of a supplementary equation, absent in the direct approach. This is
for instance the continuity equation in the Galilean framework or a similar conservation
equation in the Carrollian, which betray that the relativistic diffeomorphism group valid
before the limit is bigger than the actual Galilean or Carrollian groups. Finally, only when
considering a limit from a relativistic system, can we express the various momenta in terms
of the relevant kinematical and thermodynamic variables. This is how the velocity appears
in the Galilean limit, whereas the inverse velocity arises as the relevant observable for
Carrollian fluids — particularly important for the latter, where the we have no handle or
hint from thermodynamics. The kinematical observables play a pivotal role in the further
analysis of hydrodynamic-frame invariance.

The energy-momentum variables entering the dynamical equations are variations of
some effective action with respect to geometric data. These are not any sort of Nœtherian
currents, which have no reason to exist since no isometry is assumed. Furthermore, even
when isometries are present, Nœtherian conservations appear only in relativistic dynamics.
In Galilean and Carrollian systems, conserved currents cannot be designed on the basis
of an isometry, unless the latter obeys an extra condition. This unexpected result should
be viewed as one of our main accomplishments. It jeopardizes Nœtherian descriptions
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of Galilean or Carrollian hydrodynamics on isometric backgrounds, and calls for extra
attention when studying charges in the framework of flat holography.

Focusing specifically on Galilean hydrodynamics, a few words should be devoted to
the extra conserved matter current introduced in the relativistic theory. As shown in [29],
this current is not necessary for recovering the continuity equation in the Galilean limit.
Additionally, its associated matter density defines the rest contribution to the energy density,
and their relationship is dictated by thermodynamics. This is how the chemical potential,
absent in [29] enters the dynamics. Most importantly, in the limiting process, this current
contributes to the Galilean heat current, as much as the relativistic heat current does,
confirming that both Eckart and Landau-Lifshitz hydrodynamic-frame choices are viable.
This brings us to a central theme of the present work: the hydrodynamic-frame invariance
in the Galilean limit.

The fluid velocity in the relativistic system is merely a book-keeping device. The effect
of modifying it by local Lorentz transformations propagates on the various observables
(heat current, stress tensor, thermodynamic variables) so as to keep the energy-momentum
tensor, the matter current and the entropy current invariant. When considering a limit on
the speed of light, the expansion of the observables matters on the possible preservation of
the hydrodynamic-frame invariance. Using the standard behaviour dictated by the physical
transport coefficients, this invariance does not survive in the Navier-Stokes equations. This is
not a surprise because the velocity and the matter density of a Galilean fluid are measurable
observables, protected by a symmetry supported by the conservation of mass — itself a
consequence of a central extension of the Galilean group emerging in a Poincaré-group
contraction. Adopting an alternative behaviour, with overleading terms in the heat current
saves the hydrodynamic-frame invariance at the expense of altering the continuity equation.
The resulting dynamics is reminiscent of diffusion processes or superfluids, where indeed all
species are not simultaneously conserved.

Fluids based on massless energy carriers are revealed as an exception to this Galilean
scheme. For these fluids, with or without a charge conservation, the behaviour of the
heat current, possibly but not necessarily with exotic terms, is compatible with Galilean
hydrodynamic-frame invariance. It should be emphasized that this holds irrespective of
Weyl invariance, which is not even a priori assumed. The deep reason of this feature is rather
the absence of a rest term in the energy density, behaving like c2 — and thereupon, the
inexistence of mass conservation, usually in conflict with hydrodynamic-frame invariance.

Although to some extent dual to Galilean, Carrollian fluids exhibit different features.
As opposed to the Galilean case, we have no inkling on what thermodynamics for these
systems is, due to the absence of motion and thus of kinetic theory. For the same reasons,
the energy density cannot be decomposed into rest plus kinetic contributions. Therefore, if
a conserved charge exists, it decouples from the hydrodynamic equations. More importantly,
no transport theory is available that would serve as a guide for the behaviour of the physical
observables (heat current and the stress tensor) when the speed of light gets extinct. Instead,
Carrollian fluids have been recognized as holographic duals of asymptotically flat spacetimes
— their unique successful application so far — and this gives a handle on the terms to keep
in the small-c expansion. With those, hydrodynamic-frame invariance is maintained in the
Carrollian limit, reflecting holographically residual bulk diffeomorphisms.
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Aristotelian dynamics was the last subject treated in this context. As we stressed
earlier, only the geometric method is applicable, based on Aristotelian diffeomorphisms.
The set of equations reached in this way appears as the intersection of Galilean (with
torsion though) and Carrollian dynamics. The reduction of the light cone onto points, the
degenerate nature of motion and the impossibility to bridge this theory with the relativistic
theory through a limit,78 leaves little room for a more in-depth discussion in terms of fluids.

All this summarizes our achievements, their relationships and the general context. This
activity, mostly based on classical physics and differential geometry, is part of a palette
of timely developments. The subject of hydrodynamic-frame invariance has been treated
here in a kinematic fashion, ignoring the entropy current and the constitutive relations.
This latter facet has come back in the forefront [11–19] (see also [63, 64]), and further
investigation of these physical features is certainly desirable in light of our more formal
results. In particular, certain aspects of the photon fluid deserve some attention, even at
an anecdotic level [93] with the notorious Planck-Ott paradox: does a moving body appear
cool? According to Israël about this paradox [5] “it is not yet quite dead,” and one indeed
finds articles where it is still debated [94]. On a less frivolous tone, relativistic and Galilean
hydrodynamics can be studied using Boltzmann equation, and this should also apply to
Carrollian fluids. More ambitiously, one may even try to root Boltzmann equation inside field
theory, which in turn would require mastering Galilean or Carrollian fields on general curved
spacetimes. At the classical level, some results are available [63–65, 79, 95–98, 100–103],
but the quantum theory remains elusive — see e.g. [104].

Besides the caveats plaguing hydrodynamic-frame invariance in relation with causality
or stability and rooted in the constitutive relations, this local gauge symmetry does also
disclose global issues. Local velocity transformations may leave the system with global
distinctnesses. To handle them, one should be able to design charges associated with the
energy and momenta, the matter current or the entropy current, possibly sensitive to global
properties. For relativistic or Carrollian fluids, those charges can be handled holographically
via a gravity dual, asymptotically anti-de Sitter or flat. They actually obey algebras, which
depend on the chosen hydrodynamic frame [25–27]. Extensions and refinements to this
analysis would be expedient.
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A A primer on thermodynamics

Relativistic thermodynamics

We remind here the usual observables of global-equilibrium thermodynamics. These are
supposed to make sense also in local-equilibrium thermodynamics, as for fluids where the
absence of short wave-length modes is assumed. In this case they depend on time and space
and refer to measurements performed by an observer comoving with respect to the fluid.
Matter conservation is generically (but not necessarily) akin to the existence of massive
carriers in conserved number.

• The temperature T .

• The mass density %0 per unit proper volume.

• The entropy per unit proper volume σ, and the entropy per unit mass s

(specific entropy):
σ = s%0. (A.1)

• The relativistic internal energy density per unit proper volume ε, which contains the
rest mass, and the specific energy per unit mass e:

ε =
(
e+ c2

)
%0. (A.2)

• The pressure p and the relativistic enthalpy w per unit proper volume:

w = ε+ p. (A.3)

• The relativistic chemical potential per unit mass (specific chemical potential) µ0. This
contains the rest-mass contribution, as opposed to µ:

µ0 = µ+ c2. (A.4)

These quantities obey the grand-potential equation, sometimes referred to as the Gibbs-
Duhem equation:

w = Tσ + µ0%0 ⇔ p = Ts%0 + µ%0 − e%0. (A.5)
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The energy density is a functional of two thermodynamic variables: ε = ε (σ, %0). The
first law of thermodynamics reads:

dε = Tdσ + µ0d%0 ⇔ de = Tds− pd
( 1
%0

)
. (A.6)

The Gibbs-Duhem equation allows to exhibit the dependence of the enthalpy per unit
proper volume w = w (σ, p, %0)

dw = Tdσ + dp+ µ0d%0, (A.7)

whereas a double Legendre transformation on ε infers the dependence of the grand potential
p = p (T, µ0)

dp = σdT + %0dµ0 = s%0dT + %0dµ. (A.8)

We would like to mention the situations where no massive degrees of freedom are present
in the microscopic theory.79 A gas of photons is the prime example but other instances
exist in condensed matter, in particular when fermions are involved, as in graphene (see
e.g. [89]). In the latter case, as opposed to the gas of photons, there is a conserved quantity.
So %0 is non-vanishing, but it is not a mass density; ε = e%0 and µ0 = µ, without rest-mass
contribution. These systems can be conformally invariant, and in that case the dependence
p = p(T, µ) is

p = TDf (µ/T) (A.9)

in D = d+ 1 spacetime dimensions.80

Coming back to a system with massless carriers and no conserved charge, as for the gas
of photons, the above thermodynamic relationships simplify by setting µ = 0 and dropping
the rest-mass terms. Specific quantities are no longer significant in this instance. Fluid
dynamics of such systems does not involve any conserved current.81 The basic laws are
summarized as follows: 

w = Tσ

dw = Tdσ + dp
dε = Tdσ
dp = σdT,

(A.10)

and when the system is furthermore conformal, p ∝ TD.
Several conserved charges might exist simultaneously in a thermodynamic system. They

would each be associated with a density and a chemical potential. Only one, if any, would
however enter the energy density (A.2).

79This happens effectively in the usual ultra-relativistic limit, meant to be relevant microscopically at
high temperature or high pressure.

80The precise bearing between conformal invariance, absence of mass and existence of conserved currents
is subtle and tight to the microscopic theory.

81This instance was discussed in the precise framework of relativistic fluid dynamics in [86] section 134,
footnote 1 and exercise 2. The general thermodynamic aspects are presented in greater detail in [105]
section 60.
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Non-relativistic limit

The thermodynamic variables introduced earlier in the relativistic theory such as %0, ε, µ etc.
are referring to a comoving observer. Measurements performed by another observer, be this
an inertial observer in special relativity or some fiducial observer in a general gravitational
background, are more relevant for the Galilean framework, but are not equal and should be
spelled stricto sensu with some distinctive index. Their differences, however, are of order
1/c2 and vanish in the infinite-c limit. In order to avoid inflation in notation, we will keep
the same symbols, e, T , p, s, µ, with the exception of %0, which becomes % for the fiducial
observer. The 1/c2 corrections amongst %0 and % (see (3.74)) play no role in thermodynamics,
but are indispensable in recovering Navier-Stokes equations as the Galilean limit of the
relativistic hydrodynamic equations.

In non-relativistic thermodynamics, it is customary to introduce the specific volume
(not to be confused with the velocity)

v = 1
%
, (A.11)

as well as specific enthalpy h = h (s, p) as82

h = e+ pv, (A.12)

which also enters in
µ = h− Ts. (A.13)

Using these definitions and the various relativistic laws mentioned above, we find the
standard expressions:

dh = Tds+ vdp, (A.14)

d (e%) = %Tds+ hd%, (A.15)

de = Tds− pdv, (A.16)

dµ = −sdT + vdp. (A.17)

Before closing this section, let us quote that Galilean thermodynamics can accommodate
fluids with massless energy carriers, as long as the macroscopic velocity is small compared
to c — although at the microscopic level the dynamics is ultra-relativistic. Again, a
conserved current may or may not exist. In case such a current is available, % is the charge
density with83 ε = e% the internal energy density and µ the chemical potential. The basic
relationships are now

w = p+ ε = Tσ+ µ%⇔ p = Ts%+ µ%− e%, (A.18)

and 
dw = Tdσ+ dp+ µd%

dε = Tdσ+ µd%

dp = σdT + %dµ.

(A.19)

82This is spelled wnr in footnote 1, section 134 of [86].
83Notice the distinction: ε = lim

c→∞
ε = e%, σ = lim

c→∞
σ = s%. In order to avoid multiplication of symbols,

we keep w = h%, p and µ both for the relativistic quantities and for their Galilean limits.
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Equations (A.11), (A.12), (A.13), (A.14), (A.15), (A.16), (A.17) remain also valid, together
with (A.9) in case of conformal invariance.

If no conserved charge is present, the chemical potential vanishes (as does dµ) and the
relevant equations are expressed with w, ε and σ rather that h%, e% or s%.

Carrollian thermodynamics

Carrollian thermodynamics is poorly understood. In most parts of this work dealing with
the fluid equations, we have kept the energy density ε and the pressure p unaltered in
the limit of vanishing velocity of light. Neither have we introduced any temperature, nor
discussed an entropy equation, and when a conserved current was assumed (as eluded
in [85]), no relationship was established or set among energy and conserved-charge densities.
This is minimalistic by default. Indeed, the shrinking of the light cone and the absence of
particle motion or signal propagation, raise fundamental questions regarding the origin —
and even the definition — of energy, pressure, entropy, temperature and thermalization
processes. Even the kinematic parameter of the fluid is an inverse velocity, which could point
towards the dynamics of instantonic space-filling branes, as mentioned in [29]. Obviously,
this sort of objects are tachyonic — like those introduced later in [77] — and we feel uneasy
advocating any sort of kinetic theory for setting up thermodynamic laws and deviations
from equilibrium.

B Carrollian momenta and hydrodynamic-frame invariance

In section 4.3 we obtained the Carrollian fluid equations under c2-scaling assumptions
involving more degrees of freedom than the standard ones treated in section 4.2: (4.109),
(4.110), (4.111) and (4.112) for the relativistic energy ε, pressure p, heat current qi and
stress tensor τ ij , and similarly for the matter sector with the matter density %0 and the
non-perfect current ji in (4.113). These equations involve the Carrollian momenta Π̃, Π,
Π̃i, Πi, P i, Π̃ij , Πij , %̃, %, Ñ i, N i, which have the following expressions in terms of the
observables entering the already quoted c-expansions:



Π̃i =ψi

Πi =Qi−βj
(
Σij−φaij

)
+βi

(
ζ+βjψj

)
+ βββ2

2 ψ
i

P i =πi−βj
(
Ξij−$aij

)
+βi

(
η+βjQj

)
+ βββ2

2

(
Qi+ 3βββ2

4 ψi
)

+βiβββ2
(
ζ+φ+ 1

2βjψ
j
)

Π̃ = ζ+2βiψi

Π = η+2βiQi−βiβj
(
Σij−φaij

)
+βββ2 (ζ+βiψi

)
Π̃ij =ψiβj+βiψj+φaij−Σij

Πij =Qiβj+βiQj+$aij−Ξij+βiβj (ζ+φ)+ βββ2

2
(
ψiβj+βiψj

)
,

(B.1)
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and 

Ñ j = mj

N j = nj + βjω

%̃ = ω + βkm
k

% = χ+ βkn
k + βββ2

2 ω.

(B.2)

The aim of the present appendix is to show that these are hydrodynamic-frame-invariant.
Although hydrodynamic-frame invariance is built-in for the relativistic momenta (2.100),

(2.101), (2.102), (2.103) and (2.104), it is not guaranteed to persist in the vanishing-c limit
because it can be incompatible with the presumed small-c behaviour of the physical
observables. This happens in the Galilean (infinite-c) limit, as we have witnessed in
section 3.2 for the ordinary i.e. with ni = 0 non-relativistic fluids, because δni ∝ δvi (see
eq. (3.113)). Here it turns out to hold and in order to prove that we use the relativistic
transformation rules (2.92), (2.93), (2.94), (2.95) and (2.96) in the Papapetrou-Randers
frame (2.79). Using (4.109), (4.110), (4.111), (4.112) and (4.113), and expanding we find

δmj = 0
δnj = −δβjω + δβkm

kβj

δω = −δβkmk

δχ = −δβk
(
nk + βββ2

2 m
k
)
,

(B.3)

and

δψi = 0

δQi = δβj
(
Σij − φaij

)
− δβiζ + δβjψ

jβi

δπi = δβj
(
Ξij − (η +$)aij

)
+ βββ2

2 δβj
(
Σij − (ζ + φ)aij

)
+ δβjβ

i
(
βj(ζ + φ) +Qj

)
+βββ2βiδβjψj

δζ = −2δβiψi

δη = −2δβi
(
Qi + βββ2

2 ψ
i
)

δΣij − δφaij = ψiδβj + ψjδβi

δΞij − δ$aij = Qiδβj +Qjδβi + δβk
(
Σkiβj + Σkjβi

)
+ βββ2

2
(
ψiδβj + ψjδβi

)
+δβkβk

(
ψiβj + ψjβi

)
+ βiβjδφ.

(B.4)
It is straightforward to show that the variations of all momenta (B.1) and (B.2) vanish.

C Free motion

Our results on the failure of conservation laws associated with some Galilean or Carrollian
(conformal) Killing vector fields are generic and rooted to the nature of the underlying
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geometries. The same phenomenon occurs when studying free-particle motion in Newton-
Cartan spacetimes, or instantonic branes on Carrollian structures (see [29] for motivations
on the latter paradigm). For concreteness we will illustrate here the former case.

The stage is set with an action

S[x] =
∫
C
dtΩ(t)L(t,x,v), (C.1)

where L = ΩL is the Lagrangian — as opposed to the Lagrangian density. The generalized
Lagrange momenta are

pi = ∂L

∂ v
i

Ω
(C.2)

and the energy E = ΩE with

E= piv
i

Ω −L. (C.3)

The equations of motion are Euler-Langrange

1
Ω ṗi −

∂L

∂xi
= 0. (C.4)

The dot stands for the total derivative along the trajectory, which can act also as ∂t + vi∂i
on any tensor, and should not be confused with d/dt defined in (3.24) unless they act on
scalars (cf. ordinary vs. covariant spatial derivative).

Consider Galilean diffeomorphisms generated by

ξ = ξt∂t + ξi∂i, (C.5)

where ξt = ξt(t) and

ξ t̂ = ξtΩ, ξ ı̂ = ξi − ξtwi, ξt̂ = −c2ξ t̂, ξı̂ = aijξ
̂ = ξi. (C.6)

Their effect on the dynamical variables is
t→ t+ ξt

xi → xi + ξi

vi → vi + ∂tξ
i + vj∂jξ

i − vi∂tξt.

(C.7)

On the one hand, the invariance of the action is characterized as follows:

δS = 0⇔ ΩδL+ L∂tξ
t̂ = dφ

dt , (C.8)

where φ = φ(t,x) is an arbitrary function, that needs not be zero. On the other hand, one
can determine the on-shell variation of the Lagrangian density:

δL= −L

Ω ∂tξ
t̂ + 1

Ω
d
dt
(
piξ

i − Eξ t̂
)
. (C.9)

The simplest of Nœther’s theorems states that

δS = 0⇔ piξ
i − Eξ t̂ − φ = constant of motion. (C.10)
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Suppose now that the motion is free on a Newton-Cartan spacetime featured by aij , wi
and Ω. The Lagrangian density is

L= 1
2Ω2aij

(
vi − wi

) (
vj − wj

)
(C.11)

with
pi = 1

Ω(vi − wi). (C.12)

Euler-Lagrange equations read:(
1
Ω

D̂
dt + pj∇̂j

)
pi + pj γ̂

wj
i = 0. (C.13)

As an aside remark, the latter equation is the infinite-c limit of the spatial component of the
geodesic equation uµ∇µui = 0, in a Zermelo background. The time component uµ∇µu0 = 0
leads to

1
2Ω

dpipi
dt + pipj γ̂

wij = 0, (C.14)

which is the energy equation, obtained by contracting (C.13) with pi.
We can now compute the generic variation of (C.11) under Galilean diffeomorphisms

acting as (C.7). We obtain the following:

δL= pipj
(
∇̂(iξ ̂) + ξ t̂γ̂wij

)
− pipi

1
Ω
D̂ξ t̂
dt + pi

(
1
Ω
D̂ξ ı̂
dt − γ̂

wi
jξ
̂

)
. (C.15)

If ξ is a Killing field it satisfies (3.53), the first two terms drop and

δL= pi

(
1
Ω
D̂ξ ı̂
dt − γ̂

wi
jξ
̂

)
(C.16)

does not vanish, exactly as in the Galilean fluid dynamics in the presence of an isometry.
This betrays the break down of conservation, unless the right-hand side of eq. (C.16) happens
to be of the form (C.9), in which case Nœther’s theorem applies in its version (C.10).

As already emphasized repeatedly, this pattern works the same way in all situations we
have met, involving Galilean or Carrollian dynamics. In flat spacetimes (either Galilean or
Carrollian) boosts belong invariably to the class of isometries with non-vanishing Lagrangian
variation (see (3.56) and (4.49)). There is not much we could extract from this in fluid
dynamics (except for the case of flat-space potential flows, see footnotes 37 and 65), but for
Galilean free-particle motion on flat spacetime (aij = δij , Ω = 1, wi constants) the situation
is simpler. We find indeed:

δL=
(
ẋi − wi

) (
Vi + wkΩki

)
= d

dt
(
xiVi − wiVit+ wkxiΩki

)
. (C.17)

In this particular case, (C.10) applies and gives the general constant of motion as (see
also (3.55))

Vi
(
ẋit− xi

)
− T

2
(
ẋ2 −w2

)
+Xi

(
ẋi − wi

)
+ Ωijx

iẋj . (C.18)

The boosts V i do not generate any useful first integral (the initial position xi0), as opposed
to time translation T , space translations Xi and rotations Ωij , which lead to energy,
momentum and angular momentum conservations.
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D From conservation to potential non-conservation

D.1 Galilean law from infinite speed of light

Our starting point is a pseudo-Riemannian spacetime in Zermelo frame (2.46)

ds2 = −Ω2c2dt2 + aij
(
dxi − widt

) (
dxj − wjdt

)
(D.1)

with an energy-momentum tensor Tµν obeying ∇µTµν = 0, and a vector field

ξ = ξt∂t + ξi∂i = ξ t̂et̂ + ξ ı̂eı̂, (D.2)

where the frame and coframe are defined as in (2.72), and

ξ t̂ = ξtΩ, ξ ı̂ = ξi − ξtwi, ξt̂ = −c2ξ t̂, ξı̂ = aijξ
̂ = ξi. (D.3)

We define a current as in (2.13), Iµ = Tµνξ
ν , and compute its on-shell divergence, using

eqs. (2.63):

∇µIµ = −1
2TµνLξg

µν = −εr
Ω
D̂ξ t̂
dt + (praij + τrij)

(
∇̂iξ ̂ + ξ t̂γ̂wij

)
+ 1
c2 qri

(
1
Ω
D̂ξ ı̂
dt − γ̂

wi
jξ
̂ − c2aij∂jξ

t̂

)
. (D.4)

This result is relativistic, expressed with Galilean derivatives though. It vanishes iff
1
Ω

D̂ξt̂
dt = 0

∇̂(iξ ̂) + ξ t̂γ̂wij = 0
1
Ω

D̂ξı̂
dt − γ̂

wi
jξ
̂ − c2aij∂jξ

t̂ = 0,

(D.5)

which are simply the conditions for ξ be a Killing field of the pseudo-Riemannian manifold.
We would like now to consider the infinite-c limit of (D.4). At the first place, we

must provide the bahaviour of εr, qri and praij + τrij for large c. This is typically of the
form (3.120)84 

εr = Π + O (1/c2)

qri = c2Pi + Πi + O (1/c2)

praij + τrij = Πij + O (1/c2) ,

(D.6)

and (D.4) becomes:

∇µIµ =−Π
Ω
D̂ξ t̂
dt +Πij

(
∇̂iξ ̂+ξ t̂γ̂wij

)
+
(
Pi+

Πi

c2

)( 1
Ω
D̂ξ ı̂
dt −γ̂

wi
jξ
̂−c2aij∂jξ

t̂

)
+O(1/c2) .

(D.7)
84More general behaviours have appeared in (3.86), (3.87), (3.88), or in (3.124). These choices wouldn’t

change our present argument though.
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For this expression to remain finite at infinite c, we must impose that85

∂jξ
t̂ = 0, (D.8)

which is the requirement that ξ generates a Galilean diffeomorphism. Conservation holds
in the limit if expression (D.7) vanishes, which is again a threefold condition:

1
Ω
D̂ξ t̂
dt = 0, (D.9)

∇̂(iξ ̂) + ξ t̂γ̂wij = 0, (D.10)

1
Ω
D̂ξ ı̂
dt − γ̂

wi
jξ
̂ = 0. (D.11)

Equations (D.9) and (D.10) are nothing but (3.53) i.e. the definition of a Galilean Killing
field. Equation (D.11) is an extra condition, absent for generic Galilean isometries. The
latter do not guarantee the existence of a conserved Galilean current. The break down of
the conservation is read off in

lim
c→∞

∇µIµ = Pi

(
1
Ω
D̂ξ ı̂
dt − γ̂

wi
jξ
̂

)
= Pi

Ω
(
∂tξ

ı̂ + Lwξ
ı̂
)
, (D.12)

which agrees with (3.61) or (3.130). As stressed in section 3.1, the failure might be only
apparent, if the term Pi

Ω

(
∂tξ

ı̂ + Lwξ
ı̂
)
turns out to be a boundary term, that would then

contribute the Galilean current.

D.2 Carrollian law from zero speed of light

We will here consider pseudo-Riemannian spacetime in Papapetrou-Randers frame (2.79)

ds2 = −c2
(
Ωdt− bidxi

)2
+ aijdxidxj . (D.13)

We assume a conserved energy-momentum tensor Tµν and a vector field as in (D.2) with

ξ t̂ = ξtΩ− ξibi, ξ ı̂ = ξi, ξt̂ = −c2ξ t̂, ξı̂ = aijξ
̂ = ξi + ξt̂bi. (D.14)

The frame and coframe are defined in (2.105).
We now compute the on-shell divergence of the current (2.13) Iµ = Tµνξ

ν , using
eqs. (2.97):

∇µIµ = 1
2T

µνLξgµν = −εr

( 1
Ω∂tξ

t̂ + ϕiξ
i
)

+
(
pra

ij + τ ijr

) (
∇̂iξ̂ + ξ t̂γ̂ij

)
− qir

((
∂̂i − ϕi

)
ξ t̂ − 2ξj$ji −

1
c2Ωaij∂tξ

j
)
. (D.15)

85Following the discussion on section 3.3, one may refine the limiting procedure for the Killing fields, and
reach the Galilean diffeomorphisms as ξt̂(t,x) = ξt̂G(t) + 1

c2 ν(t,x) + O
(

1
c4

)
. This would alter eq. (D.11) as

1
Ω

D̂ξi
dt − γ̂

wj
iξj −∂iν = 0. Similarly the arbitrary function ν(t,x) would also appear in the large-c expansions

of eqs. (2.76) and (2.77), altering the Galilean currents (3.129). Ultimately, this would have no incidence
on our conclusions about the interplay between Galilean isometries and conservation. It may nevertheless
provide a complementary view on the large-c contraction of the relativistic diffeomorphisms, possibly in line
with the approach followed in ref. [106], where a further duality relationship has been established among
leading Galilean and subleading Carrollian contributions (see footnote 87), and vice-versa.
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Although expressed with Carrollian derivatives, this is relativistic and vanishes iff
1
Ω∂tξ

t̂ + ϕiξ
i = 0

∇̂i(ξ̂) + ξ t̂γ̂ij = 0(
∂̂i − ϕi

)
ξ t̂ − 2ξj$ji − 1

c2Ωaij∂tξ
j = 0.

(D.16)

These conditions define a Killing field ξ on a pseudo-Riemannian manifold.
We would like now to consider the zero-c limit of (D.15). We must provide the bahaviour

of εr, qir and pra
ij + τ ijr for small c, which is typically of the form (4.73), (4.74), (4.75)86

εr = Π + O
(
c2)

qir = Πi + c2P i + O
(
c4)

pra
ij + τ ijr = Πij + O

(
c2) .

(D.17)

Equation (D.15) reads now:

∇µIµ = −Π
( 1

Ω∂tξ
t̂ + ϕiξ

i
)

+ Πij
(
∇̂iξ̂ + ξ t̂γ̂ij

)
−
(
Πi + c2P i

)((
∂̂i − ϕi

)
ξ t̂ − 2ξj$ji −

1
c2Ωaij∂tξ

j
)

+ O
(
c2
)
. (D.18)

Finiteness at zero c, demands87

∂tξ
i = 0, (D.19)

hence ξ generates a Carrollian diffeomorphism. Conservation holds in the limit if expres-
sion (D.18) vanishes. This is occurs if

1
Ω∂tξ

t̂ + ϕiξ
i = 0, (D.20)

∇̂(iξ̂) + ξ t̂γ̂ij = 0, (D.21)(
∂̂i − ϕi

)
ξ t̂ − 2ξj$ji = 0. (D.22)

Equations (D.20) and (D.21) are as in (4.46) i.e. the definition of a Carrollian Killing
field. Equation (D.22) is an extra condition, absent for generic Carrollian isometries, which
therefore do not guarantee the existence of a conserved Carrollian current. The disruption
to the conservation is measured as

lim
c→0
∇µIµ = −Πi

((
∂̂i − ϕi

)
ξ t̂ − 2ξj$ji

)
, (D.23)

in agreement with (4.54) or (4.136).
86More general behaviours have appeared in (4.114). The latter wouldn’t change our present conclu-

sions though.
87 Mirroring footnote 85, an option is to set ξi(t,x) = ξiC(x) + c2νi(t,x) + O

(
c4
)
. With this, eq. (D.22)

becomes
(
∂̂i − ϕi

)
ξt̂− 2ξjC$ji− 1

Ωaij∂tν
j = 0, and further work would be necessary on eqs. (2.108), (2.109)

and (4.134), that would not alter our final conclusions, but could shed light on the small-c contraction of
general diffeomorphisms.
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