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1 Introduction

Ever since Hawking discovered that a black hole has a temperature and emits thermal radi-
ations [1, 2], how its time-evolution is consistent with the principle of quantum mechanics
is one of the greatest problems in theoretical physics. One of the key points of recent de-
velopments in quantum gravity is the role of the Euclidean wormholes, which play a crucial
role in resolving the black hole information loss problem through their non-perturbative
effects (e.g., [3–5]).

The von Neumann entropy of the Hawking radiation can be defined by the entangle-
ment entropy of the bath region R, attached to the asymptotic infinity of the black hole,
see figure 1. The island formula [6–8] tells us that this entropy is given by

S(ρR) = MinExt
I

[
A(∂I)
4GN

+ Sbulk(R ∪ I)
]
, (1.1)

where I is a region in the bulk gravitating spacetime. The region which extremizes the
above generalized entropy functional is called the island. This formula can be regarded as a
natural extention of the RT/HRT formulae and their quantum extentions for holographic
entanglement entropy in AdS/CFT [9–13]. This island formula is indeed obtained by
including so called Euclidean replica wormholes to the gravitational path integral [3, 4]. The
island formula correctly reproduces the Page curve [14, 15] for the entanglement entropy
of Hawking radiation, thus gives results consistent with the principles of quantum theory
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Figure 1. The Penrose diagram of the AdS black hole attached to the non-gravitating heat bath.
We take the radiation region R (violet solid line) in the heat bath. After the Page time, the island
region I (blue solid line) becomes non-empty, and the black hole region BH (orange solid line)
is outside the horizon of the black hole. The entanglement wedge of the Hawking radiation R is
the union of the domain of dependence of the radiation R and island I regions (violet and blue
shaded regions), and that of the black hole BH is the domain of dependence of the black hole region
(orange shaded region).

within semi-classical regime of gravity. (See e.g., [16, 17] for reviews on this topic, and
related discussions on the island formula, e.g., [18–78].)

The island formula suggests that the entanglement wedge of the Hawking radiation
contains not only the radiation region R, but also the island region I. On the other
hand, the entanglement wedge of the black hole is its complement (see figure 1 again). The
boundary of the island region ∂I is located just behind the horizon for an evaporating black
hole [6–8, 79, 80]. However for an eternal black hole, it is located outside the horizon [79–83].

In a recent interesting paper [84], such a form of entanglement wedge disconnected
from the asymptotic boundary is argued to be inconsistent with the long range nature of
the gravitational force or equivalently diffeomorphism invariance. Let us consider a small
local operation on the island I which corresponds to a local excitation of on the radiation
Hilbert space HR. In a theory of gravity, such a small operation seems to be detected on the
asymptotic boundary of the spacetime using the gravitational Gauss law. This is problem-
atic because the asymptotic boundary belongs to the entanglement wedge of the black hole,
see figure 2. This implies that the local operation on the island region I (which is supposed
to be an operation on HR) can actually change the entanglement wedge of the black hole.

The above apparent inconsistency of the gravitational Gauss law is related to the incon-
sistency of the gravitational dressing of local operators on the island region [84]. In a theory
with diffeomorphism invariance, a local operator can not be physical since it is not gauge
invariant. Instead, such a local operator φ(P ) needs to be “gravitationally dressed” [85, 86]
by attaching a Wilson line W (P, PB) connecting the point P to a point PB on the asymp-
totic boundary. Then the resulting operator φ(P )W (P, PB) is gauge invariant. For the
gravitational dressing for a local operator on the island region PI ∈ I, which is a part of
the entanglement wedge of the Hawking radiation, it is natural to choose a point on the
bath region R as the asymptotic boundary point PR ∈ R. In such a case, the Wilson line
W (PI , PR) connecting the two points intersects with the entanglement wedge of the black
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Figure 2. The Penrose diagram of the AdS black hole attached to the non-gravitating heat bath
with a small local operation φ(PI) (PI ∈ I, red dot) in the island region I. The entanglement
wedge of the black hole BH (orange shaded region) includes the asymptotic AdS boundary. The
gravitational Wilson line W (PI , PR) (green line) connecting two points PI and PR (PR ∈ R, cyan
dot) intersects the entanglement wedge of the black hole (orange shaded region).

hole. However the dressed operator φ(PI)W (PI , PR) should belong only to the entangle-
ment wedge of the Hawking radiation, thus this is problematic again. See the figure 2 again.

In this paper, we address the above paradox by carefully examining how the effects
of random fluctuations of an evaporating black hole are geometrized in a semi-classical
description of gravity. In principle the black hole evaporation process is described by the
bipartite system of the Hilbert space of the black hole HBH and the one for the Hawking
radiation HR. Of course, the description of such an entangled state involves a quantum
theory of gravity, therefore it seems impossible to study such a system efficiently. However,
as was first observed by Page [14], one can obtain a time evolution of the radiation entropy
consistent with unitarity, by averaging the entropy over the random fluctuations in the
entangled state. This opens up the possibility of having a partially fine-grained description
of the evaporating black hole while maintaining its semi-classical nature, to the extent
of getting results consistent with the principles of quantum theory. Indeed, in this way,
the island formula makes it possible to recover the Page curve in a semi-classical way.
Specifically, the Euclidean replica wormholes nicely capture the effects of these random
fluctuations and their averaging through a geometric way.

This paper concerns a description of these random fluctuations in a Lorentzian space-
time in the semi-classical regime. We argue that the averaging over the random fluctuations
can be purified by introducing an auxiliary system, often called a baby universe. This new
piece of the spacetime is connected to the original spacetime with the black hole by an
Einstein-Rosen bridge, can be thought of as accommodating partially fine-grained infor-
mation of the evaporating black hole (see figure 4). See also [87, 88] for discussions on the
role of baby universes in the information loss paradox.

Motivated by this observation, we then study the gravitational Gauss law in the pres-
ence of the baby universe sector. Such an introduction of the baby universe significantly
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modifies the form of the gravitational Gauss law. For instance, assuming the baby universe
part has an asymptotic boundary, the gravitational Gauss law does not exactly hold within
the original spacetime as there is a contribution from the baby universe sector. This makes
sense, because restricting our attention only to the original black hole spacetime corre-
sponds to a coarse-graining. This is clearly seen from a Schwarzschild black hole solution,
which has the horizon area and therefore the Bekenstein-Hawking entropy SBH . However it
is just one solution, showing no degeneracy of the states, contradicting the huge degeneracy
given by the entropy eSBH . What we expect is that in full quantum gravity, one obtains mi-
crostates of the black hole and by counting its degeneracy, one obtains eSBH . However after
coarse-graining, all the details of the microstates are lost, and one cannot see the microstate
differences in the Schwarzschild solution. Assuming the dynamics of the black hole is suf-
ficiently chaotic, two distinct energy eigenstates can never have the same energy, and the
minimal value of the difference is of order e−SBH . Thus the geometric description of such a
class of microstates by a single black hole spacetime inevitably involves a coarse-graining, in
which the energy differences of order e−SBH are neglected. This suggests that in the black
hole spacetime, one can only trust the gravitational Gauss law up to O(e−SBH ) corrections.

The introduction of the baby universe with an asymptotic boundary naturally resolves
the paradox of the gravitational dressing as well, because the gravitational Wilson line
starting from the island region can now end on the boundary of the baby universe. This is a
kind of an expected result because the island region corresponds to fine-grained information
of the evaporating black hole, so can not have a simple description within the original black
hole spacetime.

The rest of the paper is organized as follows. In section 2, we study wormholes, and
the baby universe. In section 3, we present our main idea and explain how we modify
the gravitational Gauss law in the presence of the baby universe. We also comment on
how the boundary of the baby universe can resolve the gravitational dressing paradox. In
appendix A, we give the calculation of the von Neumann entropy of the Hawking radiation
and that of the Hawking radiation plus the baby universe in our formalism.

Note added. During the preparation of this paper, the papers [89–91] appeared, and
discussed extra information coming from the ensemble nature of gravity, which is related
to the baby universe degrees of freedom in our paper.

2 Baby universe and ensemble nature of semi-classical gravity

In this section, we clarify the role of the baby universe in the computation of the fine-grained
entropy of Hawking radiation through the island formula.

To this end, it is appropriate to begin with the fact that there are two distinct descrip-
tions of a theory of gravity. The first one is the fine-grained description, and the second
one is the coarse-grained one. In the first full-fledged fine-grained description of quantum
gravity, we have a sufficient number of observables (i.e., the complete set of operators of
quantum gravity) to perfectly distinguish quantum states. Note that, in the description, we
can perform measurements with arbitrary precision. We are interested in the gravitational
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system where a black hole keeps emitting Hawking radiations. In a full-fledged fine-grained
microscopic description, an actual state in such a system has the following form,

|ΨM 〉 =
N∑
i=1

k∑
α=1

FMiα |ψi〉BH |α〉R , (2.1)

where FMiα takes a fixed number. Here we define the orthonormal bases |ψi〉BH and |α〉R of
the Hilbert space HBH for microstates for the black hole and the similar Hilbert space HR

for the Hawking quanta participating in the entanglement. N and k are their dimensions.
The second description of the system is the coarse-grained one in terms of a semi-

classical theory, where we have a restricted number of observables, i.e., a subset of the
complete set of observables of quantum gravity, or coarse-grained observables like thermo-
dynamical quantities. The spatial and time resolution of such observables is much larger
than the Planck scale. In this description, even by measuring coarse-grained observables
precisely, we cannot completely distinguish the underlying full quantum states of the full
theory, but at best a set of states with the same expectation values of the coarse-grained
observables and the same semi-classical geometries.

Owing to the restricted number of observables and also to the fact that the resolution is
much larger than the Planck scale, one is forced to describe the system in a coarse-grained
way, in terms of a mixed state, i.e., an ensemble of states {pM , |ΨM 〉}M .1 This ensemble
consists of the class of the states |ΨM 〉 with the random coefficient matrix CMiα

|ΨM 〉 =
N∑
i=1

k∑
α=1

CMiα |ψi〉BH |α〉R . (2.2)

From the semi-classical gravity point of view, two such states |ΨM 〉, |ΨN 〉 with different
random coefficients CM , CN can not be distinguished. This corresponds that a coarse-
grained observer describes the state in terms of the following mixed state,

ρBH∪R =
∑
M

pM |ΨM 〉〈ΨM | , (2.3)

where pM is the Gaussian probability distribution determined by the ensemble of states or
random coefficient matrix CMiα as

pM =
(Nk
π

)Nk
exp

(
−Nk tr(CMCM†)

)
, (2.4)

and satisfies
∑
M pM = 1. See (A.1)–(A.3) in appendix A. We also note that the coefficients

1See [92] for a similar discussion.
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Ciα are satisfying the following relationship,

〈1〉 = 1

〈CiαC†βj〉 = 1
kN

δijδαβ

〈CiαC†βjCkγC
†
δl〉 = 1

(kN )2 (δijδαβ · δklδγδ + δilδαδ · δjkδβγ)

〈(Πn
a=1Ciaαa)(Πn

b=1C
†
βbjb

)〉 = 1
(kN )n (all possible contractions of indices)

〈(Πn
a=1Ciaαa)(Πm

b=1C
†
βbjb

)〉 = 0 for m 6= n

(2.5)

where 〈·〉 means the average over the random coefficient matrix CMiα . The randomness of
the coefficient in (2.2) is due to the fact that the dynamics of a black hole is highly chaotic.
These can be understood as follows: suppose that an observer tries to experimentally
specify the fine-grained state (2.1). Then the observer needs to perform a measurement
with the Planck scale precision. However, for coarse-grained observers, the resolution of
the measurement is much larger than the Planck scale. Note that during the measurement
time-scale, the microscopic state can evolve. Therefore, if the measurement time-scale is
much larger than the Planck scale, the microscopic state can evolve to almost all states
of the form (2.2). In this way, coarse-grained observers see the black hole state as (2.2).
This provides an intuitive way to understand the reason why the random matrices appear
in the semi-classical description of the black hole dynamics.

Once we coarse-grain the system, the state is reduced from the pure state (2.1) to the
mixed state (2.2), and apparently we lose the microscopic details of the states. However we
nevertheless can compute some aspects of the fine-grained entropy of Hawking radiation by
purifying this mixed state by introducing an auxiliary system HBU , which we often call the
baby universe. For instance, recent progress in understanding the island formula suggests
that the purification enables us to capture some part of the fine-grained information of
Hawking radiation while maintaining the semi-classical description. Discussions on the
relevance of random fluctuations for the physics of black holes can be found for example
in [93–95]. We also note that Gaussian random fluctuations have a geometric interpretation
in terms of end of the world branes in two-dimensional JT gravity [3].

Note that to purify the original system with the mixed state (2.3), we need an auxiliary
system HBU whose dimension is at least equal to or greater than that of the original
system. The dimension of the baby universe Hilbert space depends in particular on the
coarse-graining procedure. On this new Hilbert space, the simplest purified state is given by

|Φ〉BH∪R∪BU =
∑
M

√
pM |ΨM 〉BH∪R|M〉BU , (2.6)

where {|M〉BU} are orthonormal baby universe states. A fine-grained observer can ac-
cess this auxiliary system, but coarse-grain observers can not. Let us emphasize that the
description using the auxiliary system is not a full fledged fine-grained description of the
system. This is because we are artificially adding degrees of freedom, which do not show
up in the original Hilbert space HBH ⊗ HR. More concretely, in the quantum gravity
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description, the actual fine-grained state realized in the system is one of the states in
the ensemble, not the one with the baby universe. We nevertheless consider the purified
state (2.6), because it has an effective semi-classical description, on the contrary to the full
fledged fine-grained state in quantum gravity. Furthermore, as we will show later, if we are
only concerned with the averaged property of the fine-grained entropy, such as the Page
curve, considering this purified state is good enough.

Note that by tracing out the black hole degrees of freedom BH in the mixed state (2.3),
the reduced density matrix of the Hawking radiation ρR gives an approximately thermal
mixed state, and the von Neumann entropy SvN[ρR] gives the Hawking’s result

SvN[ρR] = SvN[ 〈ρ(M)R〉M ]
= log k,

(2.7)

where we have defined,

ρ(M)R = trBH [ |ΨM 〉〈ΨM |BH∪R ] , 〈ρ(M)R〉M =
∑
M

pM ρ(M)R. (2.8)

See the appendix A.1 for detailed derivation.
Now let us consider the same entropy of Hawking radiation in the fine-grained descrip-

tion. To do so, let us first figure out a geometric description of the purified state (2.6).
In this state, the Hawking radiation HR and the black hole HBH are entangled with the
auxiliary baby universe HBU . From the viewpoint of ER=EPR [96], we expect that this
is realized geometrically by an Einstein-Rosen bridge connecting the baby universe and
the original system (see figure 4). The property of the ER bridge depends highly on the
choice of the ensemble. If we realize this system within the framework of the AdS/CFT
correspondence, the auxiliary universe can be modeled by an additional boundary and its
gravity dual involves an Einstein-Rosen bridge connecting the new boundary.2 This purifi-
cation process is the key in recent studies, especially in the finding of the island formula
which captures some aspects of fine-grained information of the quantum gravity states, in
the semi-classical description through a non-perturbative way. For instance, in describing
an evaporation process of a black hole semi-classically, such non-perturbative contribu-
tions are required to get a consistent result. In such a process discreteness of the energy
spectrum of the black hole microstates is a crucial ingredient to ensure unitarity of the
process. However, in the coarse-grained description, energy differences between black hole
micro-states are invisible, since they are typically of order O(e−SBH ), where SBH is the
Bekenstein-Hawking entropy [98]. A discrete energy spectrum is only after including non-
perturbatively small contributions which are provided by Euclidean wormholes [99, 100].

What the island formula implies is that one should identify the fine-grained Hilbert
space of the Hawking radiationHR with the tensor product of two Hilbert spacesHR⊗HBU ,
after the Page time. On the other hand, before the Page time HR should be identified
with just that of the Hawking radiation HR, and correspondingly the Hilbert space of the
black hole should coincide with the tensor product of the black hole and the baby universe

2See [97] for a similar discussion by using string theory.
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Black Hole Hawking Radiation von Neumann Entropy
Before the Page time BH∪BU R SvN[ρBH∪BU ] =SvN[ρR] = logk
After the Page time BH R∪BU SvN[ρBH ] =SvN[ρR∪BU ] =SBH

Table 1. How to divide the total system BH ∪R ∪BU into two sub systems before and after the
Page time, and the corresponding von Neumann entropies.

HBH ⊗ HBU . This difference between the radiation Hilbert spaces before and after the
Page time comes from the fact that the inequality for the dimensions of the Hilbert spaces
of the Hawking radiation and that of the black hole changes. In fact, before the Page time,
since the total state (2.6) is pure, the von Neumann entropy of the union of the black hole
and the baby universe BH ∪ BU is equal to the previous von Neumann entropy (2.7) of
R, i.e., SvN[ρBH∪BU ] = SvN[ρR] = log k, which is consistent with the island formula before
the Page time.

After the Page time, the reduced density matrix of the Hawking radiation and the
baby universe ρR∪BU in (2.6) gives the fined grained entropy of the Hawking radiation,
which deviates from the entropy (2.7) of the naive density matrix (2.3),

SvN[ρR] = SvN[ρR∪BU ]
= logN
= SBH .

(2.9)

In appendix A.2 we provide details of this calculation. The result reproduces the behaviour
of the Page curve after the Page time, giving the Bekenstein-Hawking entropy SBH . There-
fore by appropriately dividing the total system BH∪R∪BU , we can get the von Neumann
entropy which obeys the Page curve (see table 1).3

At the same time, we know that the fine-grained entropy SvN[ρR] of Hawking radiation
is computed by the island formula (1.1) too. In the entropy calculations using this formula,
it was crucial to include the contribution of the island, which typically occupies the region
behind the horizon of the black holes. Therefore it is natural to identify the island region

3One may also consider the possibility of dividing the baby universe Hilbert space HBU into two parts
HBUBH ⊗ HBUR , and then define the radiation Hilbert space as HR = HBUR ⊗ HR, instead of HR =
HBU ⊗HR which we do in the body of the paper. In such a case, the states of the baby universe are given
by |M〉BUBH ⊗ |M〉BUR . In this case, assuming the orthogonality of the basis of HBUBH , we see that the
entropy of ρBUR∪R is given by

SvN[ρBUR∪R] = −
∑
M

pM log pM +
∑
M

pMSvN[ρ(M)R], (2.10)

where ρ(M)R is the reduced density matrix given by (A.5). Then it is natural to define the fine grained
entropy of Hawking radiation S(ρR) as a conditional entropy of knowing the probability distribution pM
by subtracting the classical Shannon piece H(pM ) = −

∑
M
pM log pM

S(ρR) = SvN[ρBUR∪R]−H(pM ) =
∑
M

pM SvN[ρ(M)R]. (2.11)

However we do not know the natural choice for such a splitting of the baby universe Hilbert space HBU .
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behind the horizon with the Einstein-Rosen bridge of the purified state (2.6) connecting
the original spacetime and the baby universe, which stores fine-grained information of the
original spacetime.

These states {|M〉BU} in the fine-grained Hilbert space can be naturally identified
with so called α states [101–103] in the baby universe Hilbert space which diagonalizes
the boundary creation operators [88]. Then each fine-grained state |ΨM 〉|M〉 belongs to
different superselection sector, because each α state does. In particular, this means that
off diagonal element of matrix 〈ΨM |〈M |(O ⊗ I)|ΨN 〉|N〉 for any local operator O on the
black hole BH and the Hawking radiation R vanishes, therefore any local measurement
on them can not distinguish the entangled pure state (2.6) with the mixed state only with
classical correlation of the following form

ρ =
∑
M

pM |ΨM 〉〈ΨM | ⊗ |M〉〈M |, (2.12)

in the sense that

tr [|Φ〉〈Φ| (O ⊗ I)] = tr [ρ (O ⊗ I)] =
∑
M

pM 〈ΨM |O|ΨM 〉. (2.13)

In other words, LOCCs acting only on the black hole BH and the Hawking radiation
R, which can be available to coarse-grained observers, can not distinguish the classically
and quantum mechanically correlated states (2.6), (2.12). However one can easily see the
entanglement entropy of these two states on R = R∪BU are different. Indeed, the entropy
of ρ contains a classical Shannon term, whereas the same entropy of (2.6) does not. From
another point of view, LOCCs on the sub-system BH ∪ R and the baby universe BU ,
which can only be available to fine-grained observers, can distinguish the classically and
quantum mechanically correlated states, since the equalities in (2.13) do not necessarily
hold for operators on BH ∪R ∪BU .

In the next section, we discuss several properties of the baby universe and the wormhole
connecting the baby universe and the original spacetime. The wormholes may be dependent
on the actual geometry of the baby universe. We cannot fully specify the geometry of the
baby universe from the first principles of quantum gravity. There is a canonical and minimal
choice for such a baby universe; starting from the original system |ΨM 〉, we prepare a copy of
it |Ψ̃M 〉, and regard it as a purifier |M〉BU = |Ψ̃M 〉Puri.. Then the expression (2.6) becomes∑

M

√
pM |ΨM 〉BH∪R|Ψ̃M 〉Puri.. (2.14)

The existence of the boundaries in the original system |ΨM 〉 implies that purifier |M〉BU =
|Ψ̃M 〉Puri. should also have boundaries. More generally, there is a possibility that we may
choose the multiple copies of the original system as the baby universe |M〉BU = |Ψ̃M 〉⊗nPuri.
and further choose their linear combinations as that. Again from ER=EPR this entangle-
ment between the two spacetimes implies the existence of the wormhole connecting two
island regions for two spacetimes. This wormhole will affect the non-perturbative physics
of this system. Note that the more the number of copies of the original spacetime increase,
the more the effects from wormholes are topologically suppressed.
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3 Gauss law modified by the baby universe

In this section, we discuss the physical consequences of the existence of the baby universe
sector introduced in the last section, which accommodates fine-grained information of the
system. We are mainly interested in how the baby universe helps to recover information of
the black hole interior from Hawking radiation. We will also briefly mention the relation
between our discussion and the paradox raised in the recent paper [84].

Before doing so, let us present a remark. In the light of AdS/CFT correspondence,
the introduction of an additional boundary, i.e., the boundary of the baby universe sounds
puzzling, because AdS/CFT is the correspondence between a theory of full quantum gravity
in the bulk and a (non gravitating) CFT on the boundary. This means that in principle,
all the details of the bulk quantum gravity Hilbert space can be read off from the single
CFT Hilbert space. Therefore, we do not need the second copy of the CFT, as we did in
the previous section, which results in the baby universe sector.

Nevertheless, we are forced to do so, because we are sticking to a semi-classical de-
scription of the system. Then, to restore fine-grained information within the semi-classical
regime, we need to introduce an auxiliary system and regard the new degrees of freedom
as a part of the radiation degrees of freedom after the Page time. If we do not do this,
this restriction amounts to that on the boundary, we are only accessible to a sub-Hilbert
space Hcoarse which characterizes coarse-grained degrees of freedom. To incorporate the
rest of the CFT Hilbert space, which we term Hfine just because it describes fine-grained
degrees of freedom, we need to introduce a second copy of the CFT Hilbert space, and
accommodate Hfine to it.

The full Hilbert space on the single boundary is obtained by gluing two asymptotic
boundaries of the spacetime. In the resulting bulk spacetime, there are two homologically
inequivalent paths, both of which connect a point in the interior of the black hole (and be-
long to the island region) to the boundary of the spacetime (see figure 3). The first path is
the trivial one (the blue line in figure 3 ), which entirely lies within the original spacetime.
This path necessarily intersects with the entanglement wedge of the black hole. However,
in the presence of the baby universe, there is a second path which does not cross the entan-
glement wedge of the black hole. Instead, it crosses the Einstein-Rosen bridge connecting
the original spacetime to the baby universe, and reaches the second asymptotic boundary
which accommodates fine-grained degrees of freedom as in the green line in figure 3. Since
these two boundaries are in the end glued together, it connects the island region and the
conformal boundary, without passing through the entanglement wedge of the black hole.

3.1 The modification of Gauss law

In the presence of the baby universe sector which has its own asymptotic boundary, the
gravitational Gauss law is inevitably modified. Let Σ be a time slice of the spacetime, then
the gravitational Gauss law relates the expectation value of the bulk stress energy tensor
〈Tbulk〉 to the boundary energy H∂ [h] (holographic stress energy tensor)

〈Tbulk〉 = H∂ [h]. (3.1)
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R R

IBH BH BU BU
I

Path 2

Path 1

Original Spacetime Baby Universe (Purifier)

Glue

Glue

Figure 3. Schematic picture of the geometry of the AdS black hole coupled the bath CFT (left
Penrose diagram) and the baby universe geometry (right red Penrose diagram) connected by the
Einstein-Rosen bridge (transparent green shaded region), corresponding to the state (2.14). After
the Page time, the fine-grained Hawking radiation R is the union of the Hawking radiation R

(violet region) and the baby universe BU (red region). We regard the above spacetime describing
this union by gluing two distinct asymptotic boundary regions BU and R . The island region I is
connected to the fine-grained Hawking radiation R ∪ BU through two paths, path 1 and 2. The
path 1 (thick blue dotted line) intersects with the entanglement wedge of the black hole BH (orange
shaded region), but the path 2 (thick green dotted line) does not intersect with that.

Here the boundary energy H∂ [h] is explicitly given by the integration of the ADM current
J i over the conformal boundary ∂Σ [104],

H∂ [h] ≡ 1
2κ2

∫
∂Σ
dd−1x

√
g niJ

i (κ =
√

8πGN ), (3.2)

where ni is the normal vector to the boundary ∂Σ, and the ADM current J i is defined by

Ji ≡ N∇j
(
hij − hg0

ij

)
−∇jN

(
hij − hg0

ij

)
(3.3)

under the ADM decomposition

ds2 = −N2dt2 + gij
(
dxi +N idt

) (
dxj +N jdt

)
, (3.4)

and the expansion from the background metric gij = g0
ij + κhij . More precisely, (3.1) is

a perturbative version of the gravitational Gauss law which can be derived from the full
Hamiltonian constraint

H[πij , gij ] = 2κ2g−1
(
gijgklπ

ikπjl − 1
d− 1

(
gijπ

ij
)2
)
− 1

2κ2 (R− 2Λ) +Hmatter = 0, (3.5)

where gij is the metric on the Cauchy slice, πij is the conjugate momentum, and Hmatter

is the matter Hamiltonian density. Expanding (3.5) from the background metric, gij =
g0
ij + κhij , then look at the second order of the expansion gives (3.1). Details of the
derivation can be found, for example in [104]. H∂ [h] should be understood as the change
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of the mass of the black hole, H∂ [h] = MBH [g+h]−MBH [g] due to the back reaction from
the bulk stress energy tensor, 〈Tbulk〉.

In the paper [84], it was argued that the gravitational Gauss law provides an interesting
puzzle on the island formula. Suppose we act a local operation on a state on the island
region. Since the information of the island region is encoded in the Hilbert space of Hawking
radiation HR, this operation can be regarded as a local operation on HR. This operation
changes the expectation value of the bulk stress energy tensor. Then the gravitational
Gauss law relates this change of 〈Tbulk〉 on the island region behind the horizon to the
change of the boundary energy H∂ . This means that any change on the island region, no
matter how it is small, is always detectable from the conformal boundary ∂Σ. However,
this sounds troublesome because ∂Σ belongs to the entanglement wedge of the black hole.
For instance, this implies that in the bipartite system HR⊗HBH , a local operation on HR

can change the state of HBH .
The above paradox is naturally resolved, once we take into account the effects of the

baby universe sector which admits the new boundary (see figure 3). In the presence of this
new part of the spacetime, the gravitational Gauss law must be modified as

〈Tbulk〉 = H∂BH [h] +H∂BU [h], (3.6)

where we denote H∂BH [h] by the boundary energy of the original spacetime with the black
hole, and similarly H∂BU [h] is the boundary energy of the baby universe.

This form of the gravitational Gauss law immediately implies that, in the presence
of the baby universe, operations on the island region need not to be detected on the
conformal boundary of the black hole. In other words, 〈Tbulk〉 6= 0 does not necessarily
imply H∂BH [h] 6= 0. Rather, it is natural to relate 〈Tbulk〉 on the island region to the
boundary energy of the baby universe H∂BU [h] because the island region is encoded to
the Hilbert space of fine-grained Hawking radiation HR = HR ⊗HBU . Indeed, the island
region encodes fine-grained information of Hawking radiation after the Page time, so from
the boundary point of view such bulk operations on this region should be encoded in the
fine-grained part of the CFT Hilbert space, which coincides with the boundary Hilbert
space of the baby universe.

Another way to put this is the following. Let us consider putting a local operator in
the spacetime. The gravitational Gauss law implies that by measuring the total flux for an
appropriate closed surface we can know the “mass” of the particle within the closed surface.
The non-perturbative gravitational effect from the wormhole makes the measurement of
the flux highly non-trivial. The wormhole can release some part of the flux of the original
spacetime into the purifier (see figure 5). Here we note that since in our setup the baby
universe has boundaries, flux lines can end on the boundaries of the baby universe as
figure 5. Namely, in measuring the total flux, we also need to consider the purifier (right
spacetime of figure 5) or equivalently the baby universe in addition to the original spacetime
(left spacetime of figure 5). By the usual gravitational Gauss law, if we just measure the flux
of the original spacetime only (left spacetime of figure 5), then we cannot specify the exact
mass. The modification is not visible within the coarse-grained precision. However, without
the modification, we may encounter many problems, e.g., violation of the conservation law.
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R R

I

IBH BH�(P )
Ppuri.

Original Spacetime Baby Universe (Purifier)

Figure 4. Schematic picture of the geometry of the AdS black hole coupled the bath CFT (left Pen-
rose diagram) and their copy (right Penrose diagram) connected to the original spacetime through
the wormhole (blue region), corresponding to the state (2.14). The local operator φ in the island
(cyan dot) can be gravitationally dressed with a gravitational Wilson line Wgravity(P, Ppuri.) (green
line) which ends on the baby universe (right Penrose diagram) without intersecting the entangle-
ment wedge of the original black hole degrees of freedom (orange shaded region).

There are several other implications of the generalized Gauss law (3.6) as well. First,
the existence of the baby universe boundary energy term indicates that the gravitational
Gauss law does not precisely hold within the original black hole spacetime, 〈Tbulk〉 6=
H∂BH [h] in general. For instance, one way to think about the generalized Gauss law of the
form (3.6) is, it relates the spectrum of the fine-grained part H∂BU [h] to the coarse-grained
part H∂BH [h]. We expect that the fine-grained part is discrete, and the typical differences
between two nearest energy eigenvalues are of order e−SBH . This forces the coarse-grained
part also discrete, which is necessary for unitary time evolution.

Let us estimate the magnitude of the violation of the gravitational Gauss law in the
black hole spacetime. In order to obtain a unitary time evolution of an evaporating black
hole, we need non-perturbative effects of order e−SBH , where SBH is the entropy of the
black hole. This means that we need fine-grained states in a small energy window of order
e−SBH , thus H∂BU is of the same order. This leads us to the conclusion that

〈Tbulk〉 −H∂BH [h] = O(e−SBH ), (3.7)

i.e., the gravitational Gauss law is violated only non-perturbatively.
We should emphasize that such a baby universe is different from those appearing

by cutting Euclidean wormholes into half, in the semi-classical gravitational path integral.
Such a baby universe is always closed and does not have any asymptotic boundary, because
these baby universes are not described by CFTs. Such a closed universe corresponds to an
additional factor of the von Neumann algebra of the CFT [106]. On the contrary to this,
our baby universe has an asymptotic boundary to encode the fine-grained information of
the state, which is described by a CFT on the purified system. It would be interesting to
further investigate the relation between the two.

We also speculate the realization of fine-grained degrees of freedom in terms of a
baby universe with a boundary has an interesting application to the physic of a closed
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Black Hole

Hawking Radiation

Black Hole (Purifier)

Hawking Radiation (Purifier)

�

Figure 5. Schematic picture of flux lines on the geometry corresponding to (2.14) (, similar to the
figure discussed in [105]). The dotted lines are horizons. A local operator φ (red dot) is put at the
original spacetime (left region). The two spacetimes are connected by the Einstein-Rosen bridge
(blue region). Some of flux lines (orange lines) escape into the other spacetime (right red region)
through the Einstein-Rosen bridge.

universe. Sometimes it is argued that the Hilbert space of such a closed universe is one-
dimensional [106, 107],4 because in the absence of boundary, the left hand of the gravita-
tional Gauss law (3.1) is always zero, so any operations are not allowed at all. However, as
we saw above, one way to obtain its fine-grained description is to connect it to an open baby
universe with a boundary. Then the generalized Gauss law (3.6) does allow operations on
the baby universe boundary only. It would be interesting to explore further implications
of the observation.

3.2 Comment on gravitational dressing

In a theory with dynamical gravity, a local operator is not physical, since it is not dif-
feomorphism invariant. One way to make it diffeomorphism invariant is to connect the
local point P to a point P∂ on the boundary, via a gravitational Wilson line, i.e., φ(P )→
φ(P )Wgravity(P, P∂). This prescription is called gravitational dressing. In [84] it was ar-
gued that such a gravitational dressing of a local operator on the island region leads to an
inconsistency of the island prescription. This is because the relevant gravitational Wilson
line connects a point on the island to a point on the conformal boundary of the AdS black
hole. However, this sounds puzzling, because whereas the island prescription asserts an
operator on the island region locally acts on the radiation Hilbert space, the gravitational

4Sometimes this problem in d(≥ 4)-dimensional spacetime is called the baby universe hypothesis [107].
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Wilson line attached to it enters the entanglement wedge of the black hole, thus it does
change the state of HBH .

In our point of view, the above paradox is naturally resolved, since in the presence
of the baby universe with a boundary, the gravitational Wilson line can end on this (see
figure 4). Furthermore since this new boundary belongs to the radiation degrees of freedom
after the Page time, it is still an operator on the radiation Hilbert space, even after the
gravitational dressing.

4 Discussion

In this paper, we studied a partially fine-grained description of semi-classical evaporating
black holes, by introducing an auxiliary system called a baby universe. We argued that
in usual consistent long-range gravitational theories, the gravitational Gauss law must be
modified by the baby universe connected to the original spacetime, and when there is an
island, this modification is crucial to get results consistent with the idea of the entanglement
wedge reconstruction.

It would be interesting to study concrete geometric models, to understand further de-
tailed properties of this system. A class of the candidate geometries is the multi-boundary
wormhole solution of three-dimensional Einstein gravity with a negative cosmological con-
stant. It is convenient to use the coordinates in which the metric of AdS3 takes the following
form

ds2 = −dt2 + cos2 tdΣ2
2, (4.1)

where dΣ2
2 denotes the metric of two-dimensional hyperbolic space. These multi boundary

wormholes are constructed by taking appropriate quotient of the hyperbolic space by the
isometry group SL(2, R)× SL(2, R). Such a geometry has multiple conformal boundaries,
on each of which we can define a CFT Hilbert space. In each asymptotic region, there is
a horizon, whose area counts the number of degrees of freedom in the boundary Hilbert
space. For simplicity, below let’s consider such a geometry with three asymptotic bound-
aries. These three boundaries represent the Hilbert space of Hawking radiation HR, the
black hole HBH, and the baby universe HBU. Thus, one can identify the horizon area of
each asymptotic region with the entanglement entropy of each Hilbert space computed
in (A.8), (A.12), (A.16) in appendix A. The region behind these horizons is identified with
the Einstein-Rosen bridge which connects the original black hole with the baby universe,
discussed in the body of this paper. The geometric description manifests the following en-
tanglement structure of (2.6). When k = dimHR is small, which models the beginning of
the black hole evaporation, this system is almost a bipartite in which HBH and HBU are en-
tangled. As we increase k, the cross section of the ER bridge gets larger, and at sufficiently
late times k � 1, HBU becomes mostly entangled with the radiation Hilbert space HR.
This means that the state (2.6) is reconstructable from the two Hilbert spaces HR andHBU.
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A The von Neumann entropy of the naive Hawking radiation, the black
hole and the baby universe

In this appendix, we give von Neumann entropies of various subsystems for the
states (2.6), (2.3) by using the relationship (2.5). In particular, we calculate the von Neu-
mann entropies of three cases: (i) the naive Hawking radiation or the union of the black
hole and the baby universe, SvN[ρR] = SvN[ρBH∪BU ]; (ii) the naive Hawking radiation and
the baby universe or the black hole SvN[ρR∪BU ] = SvN[ρBH ]; (iii) the baby universe or the
union of the black hole and the naive Hawking radiation SvN[ρBU ] = SvN[ρBH∪R].

Before starting the calculations, we note that the pure state (2.6) and the mixed
state (2.3) are related by tracing out the baby universe degrees of freedom

ρBH∪R = trBU [|Φ〉〈Φ|BH∪R∪BU ]

=
∑
M

pM |ΨM 〉〈ΨM |BH∪R. (A.1)

For accuracy, we explicitly give the probability distribution pM by (e.g., [108, 109])

pM =
(Nk
π

)Nk
exp

(
−Nk tr(CMCM†)

)
, (A.2)

and this probability distribution is normalized

∑
M

pM →
(Nk
π

)Nk ∫ N∏
i,j=1

k∏
α,β=1

dCMiα dC
†M
βj exp

(
−Nk tr(CMCM†)

)
= 1

(A.3)

and gives the relationship (2.5). Although we explicitly give the probability distribution,
in calculating the entropies below, we do not use the explicit form (A.2), but the relation-
ship (2.5).

A.1 The entropy of the naive Hawking radiation SvN[ρR] = SvN[ρBH∪BU ]

To get the von Neumann entropy of the naive Hawking radiation R, we consider the reduced
density matrix for the naive Hawking radiation. It is given by

ρR =
∑
M

pM trBH [|ΨM 〉〈ΨM |BH∪R]

=
∑
M

pM ρ(M)R

≡ 〈ρ(M)R〉M ,

(A.4)
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where in the second line we defined the reduced density matrix

ρ(M)R = trBH [|ΨM 〉〈ΨM |BH∪R]

=
N∑
i=1

k∑
α,β=1

CMiαC
†M
βi |α〉〈β|R

(A.5)

and in the last line to emphasize the ensemble average of the reduced density matrix ρ(M)R
we introduced the notation 〈ρ(M)R〉M defined by the second line. We note that the average
operation is given by the relationship (2.5) explicitly.

Next we consider the Rényi entropy for the reduced density matrix

trRρnR=
∑

M1,M2,···,Mn

pM1pM2 ···pMn trR[ρ(M1)R ρ(M2)R ···ρ(Mn)R]

=
∑

M1,M2,···,Mn

pM1pM2 ···pMn

N∑
i1,i2,···,in=1

k∑
α1,α2,···,αn=1

CM1
i1α1

C†M1
α2i1

CM2
i2α2

C†M2
α3i2
···CMn

inαn
C†Mn
α1in

=
N∑

i1,i2,···,in=1

k∑
α1,α2,···,αn=1

〈CM1
i1α1

C†M1
α2i1
〉M1〈C

M2
i2α2

C†M2
α3i2
〉M2 ···〈C

Mn
inαn

C†Mn
α1in
〉

=
N∑

i1,i2,···,in=1

k∑
α1,α2,···,αn=1

1
(kN )n δi1i1δα1α2δi2i2δα2α3 ···δininδαnα1

= 1
kn−1 , (A.6)

where in the third line we distinguished the labels M1, · · · ,Mn, take the ensemble averages
for factors, which have the same label Ms, and in the forth line we used the relation-
ship (2.5).

Therefore we obtain the von Neumann entropy (2.7)

SvN[ρR] = SvN[〈ρ(M)R〉M ]
= − lim

n→1
∂n trR ρnR

= log k.

(A.7)

This von Neumann entropy is coincides with the Hawking’s result, and it implies the
information paradox. We note that this von Neumann entropy is equal to that of the
union of the black hole and the baby universe BH ∪BU

SvN[ρBH∪BU ] = SvN[ρR]
= log k.

(A.8)
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A.2 The entropy of the naive Hawking radiation and the baby universe
SvN[ρR∪BU ] = SvN[ρBH ]

To get the von Neumann entropy of the naive Hawking radiation and the baby universe
R ∪BU(= R), we consider the following reduced density matrix

ρR∪BU = trBH [|Φ〉〈Φ|BH∪R∪BU ]

=
∑
MN

√
pMpN (trBH |ΨM 〉〈ΨN |BH∪R)⊗ |M〉〈N |BU

=
∑
MN

√
pMpN

N∑
i=1

k∑
α,β=1

CMiαC
†N
βi |α〉〈β|R ⊗ |M〉〈N |BU .

(A.9)

As in the previous case, we consider the Rényi entropy
trR∪BUρnR∪BU=

∑
M1,M2,···,Mn

pM1pM2 ···pMn

×trR[(trBH |ΨM1〉〈ΨM2 |)(trBH |ΨM2〉〈ΨM3 |)···(trBH |ΨMn〉〈ΨM1 |)]

=
∑

M1,M2,···,Mn

pM1pM2 ···pMn

N∑
i1,i2,···,in=1

k∑
α1,α2,···,αn=1

CM1
i1α1C

†M2
α2i1

CM2
i2α2C

†M3
α3i2
···CMn

inαn
C†M1
α1in

=
N∑

i1,i2,···,in=1

k∑
α1,α2,···,αn=1

〈C†M1
α1in

CM1
i1α1〉M1〈C

†M2
α2i1

CM2
i2α2〉M2〈C

†M3
α3i2

CM3
i3α3〉M3 ···〈C

†Mn
αnin−1

CMn
inαn
〉Mn

=
N∑

i1,i2,···,in=1

k∑
α1,α2,···,αn=1

1
(kN )n δini1δα1α1δi1i2δα2α2 ···δin−1inδαnαn

= 1
Nn−1 , (A.10)

where in the fourth line we used the relationship (2.5), and we note that N = eSBH .
From this Rényi entropy, we get the von Neumann entropy of the union of the naive

Hawking radiation and the baby universe (2.9)

SvN[ρR∪BU ] = − lim
n→1

∂n trR∪BU ρnR∪BU

= logN
= SBH .

(A.11)

This von Neumann entropy is also equal to that of the black hole BH

SvN[ρBH ] = SvN[ρR∪BU ]
= SBH .

(A.12)

A.3 The entropy of the baby universe SvN[ρBU ] = SvN[ρBH∪R]

To get the von Neumann entropy of the baby universe BU , we consider the following
reduced density matrix,

ρBU = trBH∪R [|Φ〉〈Φ|BH∪R∪BU ]

=
∑
MN

√
pMpN (trBH∪R |ΨM 〉〈ΨN |BH∪R)⊗ |M〉〈N |BU

=
∑
MN

√
pMpN

N∑
i=1

k∑
α=1

CMiαC
†N
αi |M〉〈N |BU .

(A.13)

– 18 –
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Then we get the Rényi entropy

trBUρnBU=
∑

M1,M2,···,Mn

pM1pM2 ···pMn

N∑
i1,i2,···,in=1

k∑
α1,α2,···,αn=1

CM1
i1α1C

†M2
α1i1

CM2
i2α2C

†M3
α2i2
···CMn

inαn
C†M1
αnin

=
N∑

i1,i2,···,in=1

k∑
α1,α2,···,αn=1

〈C†M1
αnin

CM1
i1α1〉M1〈C

†M2
α1i1

CM2
i2α2〉M2〈C

†M3
α2i2

CM3
i3α3〉M3 ···〈C

†Mn
αn−1in−1

CMn
inαn
〉Mn

=
N∑

i1,i2,···,in=1

k∑
α1,α2,···,αn=1

1
(kN )n δini1δαnα1δi1i2δα1α2 ···δin−1inδαn−1αn

= 1
(kN )n−1 , (A.14)

where in the third line we used the rule (2.5).
From the Rényi entropy, we get the von Neumann entropy of the baby universe

SvN[ρBU ] = − lim
n→1

∂n trBU ρnBU

= log(kN )
= SBH + log k.

(A.15)

It is equal to the entropy of the union of the black hole and the Hawking radiation BH ∪R

SvN[ρBH∪R] = SvN[ρBU ]
= SBH + log k.

(A.16)
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