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1 Introduction

For two decades, black holes in dimensions more than four have attracted many physicists
from a point of view of scientific and applied researches, for instance, by the microscopic
derivation of Bekenstein-Hawking entropy [1], the realistic production of black holes at
accelerators in the scenario of large extra dimensions [2], and AdS/CFT correspondence [3].
The recent developments by many researchers show the richness of such solutions and the
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complexity of the dynamics [4]. In particular, a black string is one of the simplest non-
spherical black objects which can be constructed by simply adding a flat spatial direction
to the Schwarzschild-Tangherlini black hole [5]. For simplicity, it has been a major testing
ground for the black hole dynamics proper to higher dimensional black holes such as the
Gregory-Laflamme instability [6, 7].

So far, higher-dimensional black holes are studied mostly in Einstein’s theory of general
relativity (GR). However, GR is not a unique theory of gravity in higher dimensions, but it
can also include higher curvature corrections, which are inspired from the string theory in the
ultraviolet scale [8]. Einstein-Lovelock theories are one of such generalization of GR to the
higher curvature theories whose equations of motion are second order differential equations.
It is of great interest in theoretical physics as it describes a wide class of models. In Einstein-
Lovelock theories, the only found exact solutions of black holes are static and spherically
symmetric black hole solutions due to the lack of analytical methods. Moreover, even black
string solutions cannot be obtained by the simple addition of a flat spatial direction [9].
However, it is known that black strings admit such simple construction in the pure Lovelock
theories that only have a single Lovelock term without Einstein-Hilbert (EH) term in
the action [10, 11]. The inclusion of the negative cosmological constant and supporting
scalar or p-form fields also admits another types of homogeneous Einstein-Lovelock black
branes [12–15], which are hinted by the construction of homogeneous AdS black branes
supported by scalar fields [16].

In this article, we focus on the d (> 4)-dimensional Einstein-Lovelock theory with
only quadratic curvature corrections, i.e., the d-dimensional Einstein-Gauss-Bonnet (EGB)
theory, whose action is given by

S = 1
16πG

∫
ddx
√
−g(R+ αGBLGB), (1.1)

where the Gauss-Bonnet (GB) term is written as

LGB := R2 − 4RµνRµν +RµνρσR
µνρσ. (1.2)

In the EGB theory, a fundamental parameter of the theory is the coupling constant αGB.
Hence it might be natural to study to construct black strings for small coupling constant [17–
19]. This limit is also used for the construction of spinning black holes in the five-dimentional
EGB theory [20]. Another controllable parameter is the dimension d, which leads to the
large d limit [21, 22] that is also useful in the construction of EGB black strings [23, 24] and
EGB rotating black holes [25]. Besides these limiting solutions, EGB black string solutions
were numerically obtained as well [17–19].

Now let us consider another new possibility of the parameter limit, in which the GB
term becomes dominant over the EH term around black holes or certain compact objects

R� αGBLGB. (1.3)

This leads us to an interesting approximation, which we call the large α approximation,
where α is the dimensionless coupling constant normalized by the spacetime curvature
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around the system R ∼ R,1

α ∼ αGBR � 1. (1.4)

For black holes of the radius r0, it should simply be R ∼ 1/r2
0, and hence, one can

also interpret this as the large curvature approximation or small black hole approximation
when αGB is fixed. At the limit α→∞, it is natural to expect that spacetime geometry
approaches that of the pure GB theory, in which black strings restore a simple construction
with a flat spatial direction [10, 11]. Indeed, static EGB black holes approach static pure GB
black holes at large α [26]. The big difference from the pure GB theory is that arbitrarily
large but finite α causes the breakdown of the assumption (1.3) near the flat region where
the spacetime becomes almost GR

R� αGBLGB. (1.5)

In our previous study on the stable bound orbits around the spherical EGB black hole [27],
we found that these two regions, which from now on we call the GB region and the GR
region, can be matched by an intermediate region of the transition region. In this article,
we use the large α approximation to construct EGB black strings. More precisely, we solve
the EGB equations in the GB, transition and GR region analytically, and then match them
to obtain the entire geometry. The physical quantities are also derived up to the leading
order and compared with the numerical calculation in d = 6, . . . , 10. To see the validity
of the large α approximation, we confirm whether the analytical result fits well with the
numerical result in the large α regime.

The rest of this article is organized as follows. We first explain the setup in section 2.
In section 3, we revisit EGB black holes at large α. Then, the GB region of EGB black
strings is solved at large α in section 4. In section 5, we study the matching in the transition
region to connect the metric in the GB region and asymptotically flat background, and
then obtain the expression for the physical quantities. These analytic results are compared
with the numerical calculation in section 6. Finally, we discuss the possible extension to
Einstein-Lovelock black holes in section 7. The results are summarized in section 8.

2 Setup

From the action (1.1), the EGB equation can be derived as

Rµν −
1
2Rgµν + αGBHµν = 0 (2.1)

where Hµν is the Lanzcoz tensor given by

Hµν = 2RRµν − 4RµαRαν − 4RµανβRαβ + 2RµαβγRναβγ −
1
2LGBgµν . (2.2)

1We only consider the positive αGB, since the coupling constant is bound below in the negative case.
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Let us consider a d = n+ 4 uniform black string under the ansatz following the convention
in ref. [18]

ds2 = −b(r)dt2 + dr2

f(r) + a(r)dz2 + r2dΩ2
n+1. (2.3)

We assume that the metric asymptotes to the Kaluza-Klein background Mn+3×S1, i.e., the
direct product of a (n+ 3)-dimensional Minkowski spacetime and a flat compact direction,
which can be written at r →∞ as

a→ 1, b→ 1, f → 1, (2.4)

with z-direction identified by z ∼ z + L. The asymptotic behavior to this background is
solved as

b = 1− ct
rn
, a = 1 + cz

rn
, f = 1− ct − cz

rn
. (2.5)

This enables us to determine the mass M and tension T by using the Arnowitt-Deser-
Misner (ADM) formula in [28],

M = Ωn+1L

16πG ((n+ 1)ct − cz), T = Ωn+1
16πG(ct − (n+ 1)cz). (2.6)

The so-called relative tension, or relative binding energy, is also computed as

N = T L
M

= ct − (n+ 1)cz
(n+ 1)ct − cz

. (2.7)

The Hawking temperature TH is defined by the surface gravity

TH = κ

2π = 1
4πr0

√
f ′(r0)a′(r0), (2.8)

where r = r0 is the horizon radius. Moreover, the black hole entropy can be derived by the
Iyer-Wald formula [29, 30] as

S = 1
4G

∫
H

(1 + 2αGBR) dS = Ωn+1
4G rn+1

0

(
1 + 2n(n+ 1)αGB

r2
0

)√
a(r0) (2.9)

where R is the spatial curvature on the horizon.

3 EGB black holes at large α

In our previous study on stable bound orbits around the spherical EGB black holes [31], we
have found that the large α approximation provides us a useful analytic approach, which
simplifies the analysis of the geodesic motion [27]. Before the black string analysis, we
revisit the large α limit for asymptotically flat, static and spherically symmetric EGB black
holes in the (n+ 3)-dimension. The metric of the EGB black hole spacetime is given by

ds2 = −F (r)dt2 + dr2

F (r) + r2dΩ2
n+1, (3.1)

– 4 –



J
H
E
P
0
9
(
2
0
2
2
)
1
3
5

Figure 1. Two separate regions in EGB black holes at large α.

with

F (r) = 1 + r2

2αr2
0

1−

√
1 + 4α(α+ 1)rn+2

0
rn+2

 , (3.2)

where the horizon is at r = r0, and we have introduced the dimensionless coupling constant
by

α := n(n− 1)αGB
r2

0
. (3.3)

In ref. [26], it is noticed that this solution is endowed with the following two regimes. For
the large α with fixed r, the solution approaches a black hole spacetime in the pure GB
theory

F (r) ' 1−
(
r0
r

)n−2
2
. (3.4)

On the other hand, the limit r → ∞ with fixed α recovers the asymptotic behavior in
d = n+ 3 GR

F (r) ' 1− (α+ 1)rn0
rn

. (3.5)

In ref. [27], it is further pointed out that two regions, where we call the GB region and the
GR region, are separated by the transition scale

rtr = r0 α
2

n+2 , (3.6)

which can be seen from figure 1. Around this scale r ∼ rtr a transition region is formed, which
has sufficient overlaps with other two regions to allow the matched asymptotic expansion.
For n = 2 (d = 5), the pure GB theory becomes kinematic as the three dimensional GR, and
there is no black hole solution without negative cosmological constant [32, 33]. Nevertheless,
eq. (3.2) still admits a horizon in the large α approximation for n = 2

F (r) ' r2 − r2
0

2αr2
0
. (3.7)

Unlike n > 2 cases, we cannot take the limit α → ∞ in F (r). Taking into account such
difference, we consider n > 2 cases and n = 2 separately in the following analysis.
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4 EGB black strings in GB region

First, we consider the GB region. Although a simple direct product of the (n+3)-dimensional
black hole metric (3.1) with a one-dimensional flat metric is not a solution to the (n+ 4)-
dimensional EGB equation (2.1), we expect that the spatial section of a (n+ 4)-dimensional
black string (2.3) has the same separation of scales as the (n+ 3)-dimensional black hole in
the transverse direction. Note that we consider only n ≥ 2 (d ≥ 6) since for n = 1 (d = 5)
αGB is bounded above by the horizon scale [17],2 and hence our approach cannot be used.
We introduce the dimensionless constant α by eq. (3.3) in which the black hole radius is
replaced with the black string radius. In the following, as mentioned in the previous section,
we study the n > 2 cases and n = 2 case separately by using the 1/α expansion.

4.1 n > 2 cases

For n > 2, the black string solution for the pure GB theory is easily found as [10]

b(r) = f(r) = 1−
(
r0
r

)n−2
2
, a(r) = 1, (4.1)

where we set the horizon at r = r0. Then, we consider the 1/α-correction

b = bH

(
1−

(
r0
r

)n−2
2

+ 1
α
b1

)
, f = 1−

(
r0
r

)n−2
2

+ 1
α
f1, a = aH

(
1 + 1

α
a1

)
(4.2)

where bH and aH are the constant scales of t and z, which are determined by the asymptotic
behavior. From the combination of some equations of motion (see appendix A.1), the
equations for a1, b1 and f1 are written as, respectively,

d

dr

[
r

((
r

r0

)n−2
2
−1
)
d

dr
a1

]
= n+4

2n(n+1)r0

(
r

r0

)n
2
, (4.3)

∂r

(
b1

1−(r/r0)−n−2
2

)
= 2n−(n+2)(r/r0)−n−2

2

4(n−1)
(
1−(r/r0)−n−2

2
)a′1

− (n−2)f1

2r
(
1−(r/r0)−n−2

2
)2 + (n+2)r

4(n−1)nr2
0

(
1−(r/r0)−n−2

2
) ,
(4.4)

f1 = (n−2)(n+3)(r/r0)2

2n(n+2)(n2−1) + C1

r
n−2

2
+ n−2

4(n−1)

(
r0
r

)n−2
2
a1, (4.5)

where C1 is an integration constant. The regular solution of eq. (4.3) becomes

a1 = 2(n+ 4)
(n− 2)n(n+ 1)(n+ 2)Fn

(
(r0/r)

n−2
2
)
, (4.6)

where we defined

Fn(x) :=
∫ 1

x

y
n+2
2−n − 1
1− y dy. (4.7)

2Interestingly, ref. [34] investigates black strings close to the maximum αGB,max in five dimension.
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Then, f1 and b1 are solved as, respectively,

b1 = (r/r0)2 − 1
2n(n− 1) −

8 + 5n
2n(n− 2)(n2 − 1)

(
1−

(
r0
r

)n−2
2
)

−
(n+ 4)

(
4− (n+ 2)(r0/r)

n−2
2
)

Fn
(
(r0/r)

n−2
2
)

2n(n2 − 1)(n2 − 4) , (4.8)

f1 = (n− 2)(n+ 3)r2

2n(n+ 2)(n2 − 1)r2
0
−

(n− 2)(n− 3)− (n+ 4)Fn
(
(r0/r)

n−2
2
)

2n(n2 − 1)(n+ 2)

(
r0
r

)n−2
2
, (4.9)

where the integration constants are determined by b1(r0) = b′1(r0) = f1(r0) = a1(r0) = 0.
All the scaling degrees of freedom for t→ λ1t and z → λ2z are absorbed into aH and bH .

4.2 n = 2 case

In the n = 2 case, the black hole result (3.7) suggests that the metric function should scale
as f = O(α−1). This rescaling actually leads to the leading order solution at large α

a = aH
r2

r2
0
, f = 1

6α

(
r2

r2
0
− r0

r

)
, b = bH

(
r2

r2
0
− r0

r

)
, (4.10)

where aH and bH are again the scaling constant of z and t. Clearly, this leading order
metric cannot have asymptotically flat region at r →∞, but rather tends to be a warped
product of AdS3 and S3,

ds2 ' 6αr2
0

[
dr2

r2 + r2

r2
0

(
−dt̄2 + dz̄2

)]
+ r2dΩ2

3, t̄ :=
√
bH
6α

t

r0
, z̄ :=

√
aH
6α

t

r0
. (4.11)

The 1/α correction

a = aH

(
r2

r2
0

+ a1
α

)
, f = 1

6α

(
r2

r2
0
− r0

r

)
+ f1
α2 , b = bH

(
r2

r2
0
− r0

r
+ b1
α

)
, (4.12)

is easily found as

a1 = r

2r0
2F1

(
1
3 ,1,

4
3; r

3
0
r3

)
− r(r

3 +r3
0)

6r4
0

+ r2

6r2
0

log
(

1− r
3
0
r3

)
, (4.13a)

b1 =
(H1/3−1)r0

24r +
(
2r3 +r3

0
)2

24rr5
0

2F1

(
1
3 ,1,

4
3; r

3
0
r3

)
log
(

1− r
3
0
r3

)
− 4r6 +3r3

0r
3−r6

0
72r2r4

0
, (4.13b)

f1 =
(H1/3−1)r0

24r + r2
0

8r2 2F1

(
1
3 ,1,

4
3; r

3
0
r3

)
+ r(2r3−3r3

0)
72r4

0
+ r0

24r log
(

1− r
3
0
r3

)
− (6r−r0)r0

72r2 .

(4.13c)

where 2F1(a, b, c;x) is the hypergeometric function.
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5 Transition region

Since the GB-dominant condition (1.3) breaks down near the flat region, the previous GB-
dominant solution in the large α approximation needs a continuation to the asymptotically
flat region through the transition region around r ∼ rtr = r0α

2
n+2 , in which we will use the

rescaled coordinate

u := r/rtr. (5.1)

The solution in the transition region is matched with the GB-dominant solution in the inner
overlap region (r0 � r � rtr or u� 1) and with the asymptotic solution (2.5) in the outer
overlap region (r � rtr or u� 1), respectively. As in the GB region, the n > 2 cases and
n = 2 case are studied separately.

5.1 n > 2

First, we consider the behavior of the GB-dominant solution in the inner overlap region in
terms of the rescaled coordinate (5.1), in which the leading order solution (4.6) behaves as

b/bH ' f ' 1−
(
r0
r

)n−2
2

= 1− α−
n−2
n+2u−

n−2
2 . (5.2)

From eq. (B.7), the next-to-leading order correction (4.6), (4.8), (4.9) behaves as the same
order,

a1
α
∼ b1
α
∼ f1

α
∼ r2

α
= α−

n−2
n+2u2. (5.3)

Therefore, we expect the metric functions in the transition region to take the following form

a = aH
(
1 + α−

n−2
n+2A(u)

)
, b = bH

(
1 + α−

n−2
n+2B(u)

)
, f = 1 + α−

n−2
n+2F (u), (5.4)

where A(u), B(u), F (u) are regular functions of u, which satisfy

A(u) ' const., B(u) ' −u−
n−2

2 , F (u) ' −u−
n−2

2 for u� 1. (5.5)

From the behavior of the metric (5.4), one can expect a certain simplification by expanding
the EGB equation (A.1) in the power of α−

n−2
n+2 . Note that the same power α−

n−2
n+2 also

appears in the effective potential of the EGB black holes [27]. We can notice that eqs. (A.1a)
and (A.1b) to the leading order in α−

n−2
n+2 are integrable to give

A′(u) = (n2 − 1)u−n−1 (α1u
2 + un+2F (u)− unF (u)2)

2(n+ 1)F (u)− (n− 1)u2 , (5.6)

B′(u) = (n2 − 1)u−n−1 (β1u
2 + un+2F (u)− unF (u)2)

2(n+ 1)F (u)− (n− 1)u2 , (5.7)

where α1, β1 is integration constants. Using the above equations, and eliminating A′(u)
and B′(u) from the leading order of eq. (A.1c), we obtain the quartic equation with respect

– 8 –
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to F (u) (
n2 − 1

)
u8
(
2α1β1 (n+ 1)u−2n−4 + (n− 1)(α1 + β1)u−n−2

)
− (n− 1)2u6

(
2(α1 + β1)(n+ 1)u−n−2 − n− 2

)
F (u)

+ (n− 1)u4
(
2(α1 + β1)(n+ 1)2u−n−2 − 3(n− 1)(n+ 2)

)
F (u)2

+ 4(n2 − 3)(n+ 1)u2F (u)3 − 2(n+ 1)3F (u)4 = 0. (5.8)

If we introduce the function F̃ (u) and the variable x by

F̃ := F/u2, x := u−n−2. (5.9)

Eq. (5.8) reduces to the quadratic equation with respect to x as

F̃ (x)
(
−2(n+1)3F̃ (x)3+4(n+1)(n2−3)F̃ (x)2−3(n−1)2(n+2)F̃ (x)+(n−1)2(n+2)

)
+
(
n2−1

)
(α1+β1)

(
2(n+1) F̃ (x)2−2(n−1)F̃ (x)+n−1

)
x+2α1β1 (n−1)(n+1)2x2 = 0,

(5.10)

which admits two branches

x= 1
4(n−1)(n+1)2(n2−1)α1β1

[
−(α1+β1)(2(n+1)n2F̃ 2−2(n−1)F̃−n+1)±

√
Q(F̃ )

]
,

(5.11)

where

Q(F̃ ) = 4(n−1)(n+1)4
(
2(3n+1)α1β1 +(n−1)(α2

1 +β2
1)
)
F̃ 4

−8(n+1)3(n−1)
(
2(n+1)(3n−5)α1β1 +(n−1)2(α2

1 +β2
1)
)
F̃ 3

+8(n+1)2(n−1)3
(
(5n+6)α1β1 +n

(
α2

1 +β2
1

))
F̃ 2

+4(n+1)2(n−1)3
(
(α1−β1) 2−n

(
4α1β1 +α2

1 +β2
1

))
F̃ +(n−1)4(n+1)2 (α1 +β1) 2.

(5.12)

5.1.1 Matching in the inner overlap region r0 � r � rtr (u� 1)

Now, we consider the matching between the GB region, which has an overlap with the
transition region for r0 � r � rtr (u� 1). The matching condition (5.5) requires

F̃ ' −u−
n+2

2 = −
√
x for x� 1.. (5.13)

One the other hand, expanding eq. (5.11) for |F̃ | � 1, we obtain

x '
−(n− 1)(α1 + β1)±

√
(n− 1)((n− 1)(α2

1 + β2
1) + 2(3n+ 1)α1β1)

2(n− 1)α1β1
F̃ 2 +O(F̃ ),

(5.14)

– 9 –
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yielding a matching condition

1 = − 2(n− 1)α1β1

(n− 1)(α1 + β1)±
√

(n− 1)((n− 1)(α2
1 + β2

1) + 2(3n+ 1)α1β1)
. (5.15)

Plugging the behavior of F (u) in eq. (5.5) into eqs. (5.6) and (5.7), we obtain A and B for
u� 1,

A ' const.+ (n− 1)(α1 − 1)
n− 2 u−

n−2
2 , B ' const.+ (n− 1)(β1 − 1)

n− 2 u−
n−2

2 . (5.16)

Comparing this with A(u) and B(u) in eq. (5.5), we can determine

α1 = 1, β1 = 1
n− 1 . (5.17)

It is easy to check that this condition also satisfies eq. (5.15).

5.1.2 Matching in the outer overlap region r � rtr (u� 1)

In the outer overlap region r � rtr (u � 1), matching with the asymptotically flat
background f → 1 requires F̃ ' 0 for x� 1. Expanding eq. (5.11) around F̃ ' 0, we obtain

x ' n− 1
4(n+ 1)α1β1

(−α1 − β1 ± |α1 + β1|) +O(F̃ ). (5.18)

Therefore, for the consistent match, we should choose (+) branch because α1 + β1 =
n/(n− 1) > 0, that gives

x = 1
4n2(n2 − 1)

[
−n(2n2(n2 − 1)F̃ 2 − 2n(n− 1)F̃ + 1) +

√
Q̃(F̃ )

]
(5.19)

with

Q̃(F̃ ) = 4n4(n2 − 1)2(n+ 2)2F̃ 4 − 8n3(n2 − 1)(n3 + 3n2 − 12)F̃ 3

+ 8n2(n− 1)(n3 + 3n2 + 3n− 6)F̃ 2 − 4n(n− 1)(n2 + 2n+ 4)F̃ + n2. (5.20)

Finally, from eq. (5.19), we can determine the behavior of F in the outer overlap region
r � rtr (u� 1) as

F ' − n(n+ 1)
(n− 1)(n+ 2)

1
un
, (5.21)

which also determines the behavior of A and B through eqs. (5.6) and (5.7),

A ' const.− 2(n+ 1)
n(n− 1)(n+ 2)

1
un
, B ' const.− (n+ 1)(n2 − 2)

n(n− 1)(n+ 2)
1
un

(5.22)

From the original form (5.4), the metric functions behave as

a ' aH
(
1 + const.× α−

n−2
n+2
)
− 2(n+ 1)αaH
n(n− 1)(n+ 2)

rn0
rn
, (5.23a)

b ' bH
(
1 + const.× α−

n−2
n+2
)
− (n+ 1)(n2 − 2)α bH

n(n− 1)(n+ 2)
rn0
rn
. (5.23b)
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The scaling constants need O(α−
n−2
n+2 ) corrections so that the metric asymptotes to the

Minkowski at r →∞,

aH = 1 +O(α−
n−2
n+2 ), bH = 1 +O(α−

n−2
n+2 ). (5.24)

From the ADM formula (2.6), eq. (5.23) leads to the mass and tension at large α

M ' (n+ 1)Ωn+1
16πG α rn0L, (5.25)

T ' (n+ 1)Ωn+1
16πG(n− 1)α r

n
0 . (5.26)

Particularly, the relative tension approaches a finite limit at large α

N = LT
M
' 1
n− 1 , (5.27)

which is greater than that of the black string in GR

NGR = 1
n+ 1 . (5.28)

Since the scaling constants are determined as aH ' bH ' 1, the temperature and entropy
are identical to that of the pure Gauss-Bonnet metric (4.1) at the leading order

TH '
n− 2

8π
1
r0
, (5.29)

S ' (n+ 1)Ωn+1
2G(n− 1) α rn+1

0 L. (5.30)

It is easy to verify that these variables satisfy the first law with the variation of (r0, L) at
O(α)

dM = THdS + T dL, (5.31)

and the Smarr-type formula (A.4) [18]

M = T L+ THS. (5.32)

Note that the matching result (5.24) shows that the corrections to these variables should be
given in the power of α−

n−2
n+2 , or both of α−

n−2
n+2 and α−1, rather than the simple expansion

in α−1. However, we will not pursue determining the correction terms, as it will require
more laborious calculations.
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5.1.3 Fragmentation at large α

As we obtained the mass and entropy of the black string of the length L at large α, let us
compare the entropy with that of the black hole of the same mass. The mass and entropy
of the d = n+ 4 Boulware-Deser black hole with the radius rH is given by

MBH = (n+ 2)Ωn+2
16πG

(
n(n+ 1)αGB + r2

H

)
rn−1
H ' (n+ 1)(n+ 2)Ωn+2

16πG(n− 1) α r2
0 r

n−1
H (5.33)

and

SBH = Ωn+2
4G

(
1 + 2(n+ 1)(n+ 2)αGB

r2
H

)
rn+2
H ' (n+ 1)(n+ 2)Ωn+2

2Gn(n− 1) α r2
0 r

n
H , (5.34)

where eq. (3.3) is used. Comparing with eq. (5.25), the corresponding black hole radius is
given by

rH =
((n− 1)Ωn+1

(n+ 2)Ωn+2

) 1
n−1

r
n−2
n−1
0 L

1
n−1 . (5.35)

Therefore, using eq. (5.30), the entropy ratio becomes

S

SBH
' nΩn+1

(n+ 2)Ωn+2

rn−1
0 L

rnH
= C

(
r0
L

) 1
n−1

, C := n

n− 1

((n+ 2)Ωn+2
(n− 1)Ωn+1

) 1
n−1

(5.36)

This ensures that the black hole phase has larger entropy, and hence the Gregory-Laflamme
instability occurs for thin enough strings r0 � L even at the large α limit, which is in
accordance with the fact that pure GB black strings are dynamically unstable [26].

5.2 n = 2

From the GB-dominant solution in eqs. (4.10) and (4.13), the behavior in the inner overlap
region r0 � r � rtr (u� 1) is given by

a ' aHα
(
u2 − u4

6

)
, b ' bHα

(
u2 − u4

18

)
, f ' u2

6 + u4

36 . (5.37)

This suggests the metric functions should take the following form in the transition region

a = aHα Ā(u), b = bHα B̄(u), f = F̄ (u), (5.38)

where Ā(u), B̄(u) and F̄ (u) are regular functions of u. Unfortunately, unlike the n > 2
cases, this ansatz never simplifies the EGB equation (A.1) in the transition region, since all
the terms become comparable as functions of u. However, we can still estimate the behavior
in the outer overlap region as

Ā(u), B̄(u), F̄ (u) ' const.+ const.
u2 , for u� 1. (5.39)
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Therefore, the asymptotic behavior of metric functions become

a = aHα
(
const.+ const.u−2

)
= 1 + const. α

r2 (5.40)

b = bHα
(
const.+ const.u−2

)
= 1 + const. α

r2 , (5.41)

where the scaling constants are set as aH , bH ∼ α−1 so that the Minkowski background is
recovered at r →∞. This estimates the large α behavior of each variables

M ∼ α, T ∼ α, TH ∼
√
bHα−1 ∼ 1

α
, S ∼ α

√
aH ∼

√
α. (5.42)

Using the Smarr formula N = 1−THS/M , one can also estimate the behavior of the relative
tension as

N = 1−O(α−3/2). (5.43)

6 Comparison with numerics

To compare with the analytic formula at large α, we solved eq. (A.1) with the Newton-
Raphson method for n = 2, . . . , 6 using the following two grids

X := rn0
rn

(6.1)

or

X̃ := 2(δ − 1)2(r/r0)n
δ(1 + δ)(r/r0)2n + (δ2 − 8δ + 3)(r/r0)n + 3δ − 1 , δ :=

(
2 + 0.2

(
nα

n− 1

) 2n
n+2
)−1

.

(6.2)

The former is used for the n = 2 case and for small value of α in other dimensions
(n = 3, 4, 5, 6). For n > 2, the latter is used to keep the resolution around the transition
region at large α. We used 100, 200, 400 or 800 meshes with the fourth order difference
scheme, so that the Smarr formula (A.4) satisfies enough accuracy.

In the figure 2, the metric functions for n = 4 are presented. The metric approaches to
that of the pure GB black strings at large α. The appearance of the transition region is
clearer if we take a look on the quantity rn+1r−n0 a′(r) ∝ a′(X) (figure 3).

In figures 4–6, physical quantities of EGB black strings are compared with the large
α results. Other than the relative tension, each quantities are normalized by the GR
values (C.11). As a characteristic behavior, one can notice that the relative tension once
falls to a minimum before it gradually grows to the large α limit.3 Because of the slow
convergence due to the fractional power α−

n−2
n+2 in the correction, it is difficult to see the

behavior at α→∞ in eqs. (5.25), (5.27), (5.29) and (5.30), directly. Instead, we use the

3The same behavior has already been observed in d = 6, 8 (n = 2, 4) (See figure 5 in ref. [18]).

– 13 –



J
H
E
P
0
9
(
2
0
2
2
)
1
3
5

α=0.12α=2.4

α=12

0.0 0.2 0.4 0.6 0.8 1.0

0.05

0.25

0.45

0.65

0.85

(r0/r)
n

b
(r
) α=0.12

α=2.4

α=12

0.0 0.2 0.4 0.6 0.8 1.0

0.05

0.25

0.45

0.65

0.85

(r0/r)
n

f(
r)

α=0.12

α=0.48

α=1.08

α=2.4

α=12

α=60

0.0 0.2 0.4 0.6 0.8 1.0

0.80

0.85

0.90

0.95

1.00

1.05

(r0/r)
n

a(
r)

Fit = 1+c1 α
-1/3+c2 α

-2/3+c3 α
-1

0.10 1 10 100
α

0.80

0.85

0.90

0.95

1.00

1.05

1.10

aH

Figure 2. Metric functions in n = 4 (d = 8). GR and pure GB black strings correspond to the black
dashed and dotted curves respectively. aH = a(r0) admits an oscillatory behavior as a function of α,
which eventually goes back to aH = 1 in O(α− n−2

n+2 ). The red dotted curve is a fit curve.
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Figure 3. Appearance of the transition scale rtr in the metric function. The red dashed curves are
the peak position for each α. In the right panel, one can see that another coordinate X̃ keeps the
transition region in the center area for better resolution at larger α.
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Figure 4. Relative tension vs. α. Numerical results are plotted by solid curves for each dimension.
Red dotted curves are the fitting curves in eq. (6.3) for n > 2 and eq. (6.7) for n = 2. The right panel
is a closeup of the small parameter region. Black dotted curves are the linear approximation (C.12).

following fitting curves to compare with the numerical result

N = 1
n− 1

(
1 +

∑
i=1

ciα
−in−2

n+2

)
, (6.3)

M

MGR
= α

(
1 +

∑
i=1

ciα
−in−2

n+2

)
, (6.4)

TH
TH,GR

= n− 2
2n

(
1 +

∑
i=1

ciα
−in−2

n+2

)
, (6.5)

S

SGR
= 2(n+ 1)

n− 1 α

(
1 +

∑
i=1

ciα
−in−2

n+2

)
, (6.6)

where we include correction terms up to O(α−1). The above estimates are only for n > 2.
For n = 2, reflecting the results (5.42) and (5.43), we rather fit by

N = 1− c α−3/2, M = c α, S = c
√
α, TH = c

α
. (6.7)

We find that all these fittings match the numerical results well at the large α region.

7 Extension to Einstein-Lovelock black holes

So far, we have investigated the large α limit in the EGB theory. Here, we discuss the
possible extension to the Einstein-Lovelock theories [8] whose action is given by4

S = 1
16πG

∫
dxd
√
−g

R+
b(d−1)/2c∑

k=2
α′kLk

 , (7.1)

4For simplicity, we only consider the asymptotically flat background. However, we expect other non-flat
backgrounds such as (A)dS or squashed Kaluza-Klein also admit the similar simplification as long as the
typical scale of the background is sufficiently larger than the transition scale.
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Figure 5. Mass vs. α. Numerical results are plotted by solid curves for each dimension. Red dotted
curves are the fitting curves in eq. (6.4) for n > 2 and eq. (6.7) for n = 2.
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Figure 6. Temperature and entropy vs. α. Numerical results are plotted by solid curves for each
dimension. Red dotted curves are the fitting curves in eqs. (6.5) and (6.6) for n > 2 and eq. (6.7)
for n = 2.

where the k th Lovelock term Lk is given by

Lk := 2−kδa1b1···akbk
c1d1···ckdk

Rc1d1
a1b1 · · ·Rckdk

akbk
. (7.2)

In d = n+ 3 dimension, the static black hole solution can be obtained by the ansatz [35, 36]

ds2 = −(1− r2ψ(r))dt2 + dr2

1− r2ψ(r) + r2dΩ2
n+1, (7.3)

where ψ(r) is given by the real root of the following polynomial

m0
rn+2 = ψ +

bn/2+1c∑
k=2

αkψ
k, αk := α′k

2k∏
`=3

(n+ 3− `). (7.4)

The mass parameter m0 is determined by

m0 = rn0

1 +
bn/2+1c∑
k=2

α̂k

 , α̂k := r
−2(k−1)
0 αk, (7.5)
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Figure 7. Separate regions in the Einstein-Lovelock black hole with a correction Lk for α̂k � 1.

where ψ(r0) = r−2
0 , and r = r0 is the horizon radius. With the normalized metric function

ψ̂ := r2
0ψ, the condition (7.4) is rewritten in the dimensionless form

0 = ψ̂ −
(
r0
r

)n+2
+
bn/2+1c∑
k=2

α̂k

(
ψ̂k −

(
r0
r

)n+2
)
. (7.6)

If the k-th order is exclusively dominant, the solution becomes that of pure k-th Lovelock
theory [37]

ψ̂ '
(
r0
r

)n+2
k

⇒ gtt ' −1 +
(
r0
r

)n−2k+2
k

. (7.7)

7.1 With a Lk

First, we examine whether the similar separation of scales occurs in the Einstein-Lovelock
theory with a single Lovelock term Lk by assuming α̂k � 1. It is obvious that the Lovelock
term becomes dominant around the horizon where the metric almost becomes the pure
Lovelock solution (7.7), while the post-Minkowski behavior is obtained at large r. In the
intermediate region if it exists, the following terms should be comparable in eq. (7.4)

ψ̂ ∼ α̂kψ̂k ∼ α̂k
(
r0
r

)n+2
, (7.8)

which determines a transition scale

r ∼ rtr := r0 α̂k
k

(k−1)(n+2) . (7.9)

Therefore, the Einstein-Lovelock theory with a single Lovelock term can admits the similar
structure as in the EGB theory (see figure 7). One can check that the transition scale in
the EGB theory (3.6) is reproduced by setting k = 2.

7.2 With L2 and L3

Next, we consider more general cases in which the theory includes multiple Lovelock
corrections. For instance we focus on the Einstein-Lovelock theory only with the second
order and third order Lovelock terms, whose normalized coupling constants are large:

1� α̂2, α̂3. (7.10)
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Figure 8. Three separate regions in the Einstein-Lovelock black hole with L2 and L3 corrections
for 1� α̂2 � α̂3 � α̂2

2.
.

Here we do not assume the hierarchy between the two. Then, the transition between the
L3-dominant and L2-dominant regions can exist if the following terms become comparable
in eq. (7.4)

α̂2ψ̂
2 ∼ α̂3ψ̂

3 ∼ (α̂2 + α̂3)
(
r0
r

)n+2
, (7.11)

which gives a transition scale

r ∼ rtr,23 := r0
(
α̂2

3(α̂2 + α̂3)/α̂3
2

) 1
n+2 . (7.12)

Similarly, the transition between L2 dominant and GR region would occur if

ψ̂ ∼ α̂2ψ̂
2 ∼ (α̂2 + α̂3)

(
r0
r

)n+2
. (7.13)

This introduces another transition scale

r ∼ rtr,12 := r0 (α̂2(α̂2 + α̂3))
1

n+2 . (7.14)

To obtain the separation of scales r0 � rtr,23 � rtr,12, we also require

rtr,12
rtr,23

∼
(
α̂2

2
α̂3

) 2
n+2

� 1, rtr,23
r0

=
(
α̂2

3
α̂2

2
+ α̂3

3
α̂3

2

) 1
n+2

� 1, (7.15)

which is equivalent to

α̂2 � α̂3 � α̂2
2. (7.16)

This introduces an additional hierachy between α̂2 and α̂3. With the latter condition, one
can check that the discarded terms in eq. (7.4) becomes negligible at each transition scale

ψ̂

α̂2ψ̂2

∣∣∣∣∣
r=rtr,23

∼ α̂3
α̂2

2
� 1, α̂3ψ̂

3

α̂2ψ̂2

∣∣∣∣∣
r=rtr,12

∼ α̂3
α̂2

2
� 1. (7.17)

Therefore, we conclude that, at the large coupling limit, multiple Lovelock terms lead to the
layered structure in which each Lovelock term becomes dominant one by one through the
multiple transition regions (figure 8). Note that the L2-dominant region cannot appear inside
the L3-dominant region, as it requires two contradicting conditions α̂3 � α̂2

2 and α̂3 � α̂2
2.
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8 Summary

In this article, we have constructed the analytic solutions of black strings in the d = n+ 4
EGB theory, using the novel method of the large α approximation, where α is defined as
the dimensionless GB coupling constant normalized by the horizon radius. The points of
this method are summarized as follows:

• For sufficiently large α, the GB region, where the GB correction is dominant over the
Einstein-Hilbert term, appears near the horizon. In the GB region, the black string
metric can be obtained analytically by expanding in 1/α.

• Since the spacetime is asymptotically flat in the transverse direction to the horizon, the
GB correction ceases to be dominant at large enough distance from the horizon where
we also have the GR region in which the metric is approximated as the post-Minkowski
spacetime of GR.

• There is the transition region between the two regions at the scale rtr = r0 α
2

n+2 at
large α.

• These three regions admit overlaps at large α, and hence the entire geometry can be
obtained by the matched asymptotic expansion.

Using this method, we have obtained the analytic solutions of black strings, from which
we have also obtained the phase diagram of the EGB black string analytically for large
α. By solving the EGB equations numerically using the Newton-Raphson method for
n = 2, . . . , 6, we have shown that the resulting phase diagram is consistent with the analytic
formula obtained by the large α approach. Lastly, we have discussed possible extensions to
Einstein-Lovelock theories.

This work has several possibilities of development. A quick application will be the
extension to the Einstein-Lovelock black strings with a single or multiple Lovelock terms.
As seen in the last section, the analysis with a single Lovelock correction will be almost
parallel to the EGB theory. For the theories with more than one Lovelock terms, one has to
solve multiple layers around the horizon in which each Lovelock term becomes dominant in
turn. It would be also interesting if one can apply to more realistic cases such as quantum
corrected black holes in M-theory [38].

The application to a rotating black hole in the EGB theory or Einstein-Lovelock theories
is a challenging but fruitful project, since an exact solution of such a black hole is not yet
found in the higher curvature theory (see ref. [25] on a rotating EGB black hole at large d).
If we intend to construct an analytic solution of a rotating black hole at large α, we first
have to obtain the rotating black hole solutions in the pure GB theory or pure Lovelock
theory. This deserves our future work.

We should note that spacetimes in Einstein-Lovelock theories generically suffer from
pathologies in the strong field regime, such as short scale instabilities [39], shockwave
formation [40], and more remarkably the loss of hyperbolicity [41–43]. Nevertheless, it is not
clear whether or not every solution obtained by our approach is in this pathological regime.
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For example, it is shown that static EGB black holes admit such instabilities and the loss of
hyperbolicity at large α only in d = 5, 6 [39, 41], that correspond to the transverse section
of d = 6, 7 black strings. This might imply that, in higher dimensions, those pathologies
become milder outside the horizon.

Lastly, we would also like to point out the possibility of more general and sophisticated
formulation. The large d limit [22] which is another successful approximation, has lead
to the effective theory approach [44] or equivalent membrane paradigm [45], that greatly
simplified the analysis. If one can find an effective description in the large α approximation,
that may enhance the understandings and broaden the applicability of this approximation.
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A Equations

Here we present the explicit form of the field equation

Eµν = Rµν −
1
2Rgµν + αGBHµν .

Ett

0 = n(n+1)a(r)(f(r)−1)
f(r) +rf ′(r)

(
ra′(r)
2f(r) + (n+1)a(r)

f(r)

)
+(n+1)ra′(r)− r

2a′(r)2

2a(r) +r2a′′(r)

+n(n+1)αGB
r2

(
(f(r)−1)r2(a′(r)2−2a(r)a′′(r))

a(r) − (n−1)(n−2)a(r)(f(r)−1)2

f(r)

−(3f(r)−1)r2f ′(r)a′(r)
f(r) − 2(n−1)(f(r)−1)r(a(r)f ′(r)+a′(r)f(r))

f(r)

)
.

(A.1a)

Ezz

0 = n(n+1)b(r)(f(r)−1)
f(r) +rf ′(r)

(
rb′(r)
2f(r) + (n+1)b(r)

f(r)

)
+(n+1)rb′(r)− r

2b′(r)2

2b(r) +r2b′′(r)

+n(n+1)αGB
r2

(
(f(r)−1)r2(b′(r)2−2b′′(r))

b(r) − (n−1)(n−2)b(r)(f(r)−1)2

f(r)

−(3f(r)−1)r2f ′(r)a′(r)
f(r) − 2(n−1)(f(r)−1)r(b(r)f ′(r)+b′(r)f(r))

f(r)

)
.

(A.1b)
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Err

0 =−r
2a′(r)b′(r)
4a(r)b(r) −

(n+1)ra′(r)
2a(r) − (n+1)rb′(r)

2b(r) −n(n+1)(f(r)−1)
2f(r)

+n(n+1)αGB
r2

(
(3f(r)−1)r2a′(r)b′(r)

2a(r)b(r) +(n−1)(f(r)−1)r
(
a′(r)
a(r) + b′(r)

b(r)

)

+(n−2)(n−1)(f(r)−1)2

2f(r)

)
(A.1c)

Ett + Ezz − EΩ

0 = ra′(r)
a(r) −

r2a′(r)b′(r)
2a(r)b(r) + rb′(r)

b(r) + (n+2)rf ′(r)
f(r) + n(n+3)(f(r)−1)

f(r)

+ αGB

r2

[
3nr3f ′(r)a′(r)b′(r)

a(r)b(r) + 2nr2f ′(r)(1−3f(r))
f(r)

(
a′(r)
a(r) + b′(r)

b(r)

)
− n(n−1)(n−2)(n+5)(f(r)−1)2

f(r)

− nr3f(r)a′(r)b′(r)
a(r)b(r)

(
a′(r)
a(r) + b′(r)

b(r)

)
+ (n−1)n(3f(r)−1)r2a′(r)b′(r)

a(r)b(r) + 2nf(r)r3(a′′(r)b′(r)+a′(r)b′′(r))
a(r)b(r)

+2n(f(r)−1)r2
(
a′(r)2

a(r)2 + b′(r)2

b(r)2 −
3(n−1)

r

(
a′(r)
a(r) + b′(r)

b(r)

)
− 2a′′(r)

a(r) −
2b′′(r)
b(r) −

(n−1)(n+4)f ′(r)
rf(r)

)]
(A.1d)

As shown in ref. [18], the following combinations are integrable

Rtt+α
(
Ht

t+
1
2LGB

)
= 1
rn+1

√
f

ab

d

dr

[
rn+1b′

2

√
af

b

(
−1+ 2(n+1)αGB

r2

(
n(f−1)+ rfa′

a

))]
.

(A.2)

Rzz+α
(
Hz

z+ 1
2LGB

)
= 1
rn+1

√
f

ab

d

dr

[
rn+1a′

2

√
bf

a

(
−1+ 2(n+1)αGB

r2

(
n(f−1)+ rfb′

b

))]
.

(A.3)

Thus, the condition Rtt −Rzz + α(Ht
t −Hz

z) = 0 leads to the Smarr-type formula

M = T L+ THS. (A.4)

A.1 1/α expansion

We define the dimensionless coupling constant α with the horizon radius r0 as in eq. (3.3).
The equation for the 1/α correction to the pure GB solution (4.2) is given by the combination
of eq. (A.1) expanded in 1/α

(
r

r0

)n+2
2
(

f(r)
n(n+1)× (A.1a)+ 2

n(n+1)(n+2)× (A.1b)

− 2f(r)
n(n+1)(n+2)× (A.1c)− f(r)

n(n+2)× (A.1d)
)

=
(

1−
(
r0
r

)n−2
2
)
r2a′′1(r)+

(
n

2 −
(
r0
r

)n−2
2
)
r a′1(r)− n+4

2n2 +2n
r2

r2
0

+O(α−1), (A.5)
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and

rn−1

rn0

(
−2f(r)× (A.1a)− 8

n+ 2 × (A.1b) + 8f(r)
n+ 2 × (A.1c) + 4(n+ 1)f(r)

n+ 2 × (A.1d)
)

= d

dr

[
n(n+ 1)(2− n)a1(r) + 4n(n2 − 1)

(
r

r0

)n−2
2
f1(r)− 2(n− 2)(n+ 3)

n+ 2

(
r

r0

)n+2
2
]

+O(α−1), (A.6)

which lead to eqs. (4.3) and (4.5), respectively. The expansion of eq. (A.1c) also leads to
eq. (4.4).

B An integration in 1/α expansion

Here we study the asymptotic behavior around x = 0 (r � r0) of the integration (4.7),
which is rewritten as

Fn(x) :=
∫ 1

x

y
n+2
2−n−1
1−y dy (B.1)

= In(x)+(n−2)

x4− 4
n−2−1

4(n−3) +x3− 4
n−2−1

3n−10 +x2− 4
n−2−1

2(n−4) +x1− 4
n−2−1
n−6 +x−

4
n−2−1
4

 ,
(B.2)

where we defined a finite function In(x) for n > 2 by the following integral

I3(x) = 0, In(x) :=
∫ 1

x

1− y
4(n−3)

n−2

1− y dy (n > 3). (B.3)

The integration formula ∫ 1

0

1− xµ−1

1− x dx = Hµ−1 (Re(µ) > 0) (B.4)

guarantees that this function takes a finite value at x = 0

In(0) = H 4(n−3)
n−2

, (B.5)

where Hµ is the Harmonic number, whose noninteger values are defined by the digamma
function and the Euler constant Hµ := ψ(µ + 1) + γ. For n = 3, 4, 6 cases, although
the expression (B.2) seems singular, one can obtain the regular expression by taking the
continuous limit n→ 3, 4, 6, which leads to ln x ∝ ln r behavior for r � r0. The dominant
behavior in Fn(x) for x� 1 becomes

Fn(x) ' n− 2
4 x−

4
n−2 (x� 1), (B.6)

which gives the asymptotic behavior for r � r0

Fn
(
(r0/r)

n−2
2
)
' n− 2

4
r2

r2
0
. (B.7)
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C Linear perturbation from GR at small αGB

Here we extend the small αGB analysis of the black string in ref. [18] to the arbitrary
dimension. Let us consider O(αGB) correction to the GR black string solution

a = 1 + αGB
r2

0
ã1, b = 1− rn0

rn
+ αGB

r2
0
b̃1, f = 1− rn0

rn
+ αGB

r2
0
f̃1. (C.1)

The linear perturbation is solved as

ã1 =−n+1
n+2

[
nr2n+2

0
r2n+2 2F1

(
1,2+ 2

n
,3+ 2

n
; r

n
0
rn

)
−2(n+1)log

(
1− rn

0
rn

)]
, (C.2)

b̃1 =−
n(n+1)Hn+2

n
+n(n2+n−2)

n+2
rn

0
rn +

(
2(n+1)
n+2 −(n+1)r

n
0
rn

)
log
(

1− rn
0
rn

)

+(n2+n−1)r
2n+2
0
r2n+2

2(n+1)2F1

(
2, n+2

n
,2+ 2

n
; rn

0
rn

)
n+2 −1


+ r3n+2

0
r3n+2

n(3n+4)(n+1)2F1

(
1,3+ 2

n
,4+ 2

n
; rn

0
rn

)
(3n+2)(n+2) −

(
4n3+15n2+8n−8

)
2F1

(
2,2+ 2

n
,3+ 2

n
; rn

0
rn

)
2(n+2)


+ r4n+2

0
r4n+2

2
(
n3+3n2+n−1

)
2F1

(
2,3+ 2

n
,4+ 2

n
; rn

0
rn

)
3n+2 +

n2(n+1)2F1

(
2,4+ 2

n
,5+ 2

n
; rn

0
rn

)
2(n+2)(2n+1)

 (C.3)

and

f̃1 =− nrn
0

rn

 (n+1)Hn+2
n

+n2 −n−4
n+2 −

(n+1) log
(

1− rn
0

rn

)
n+2


+ r2n+2

0
r2n+2

(
2(n+1)(n2 +n−1) 2F1

(
2,1+ 2

n
,2+ 2

n
; rn

0
rn

)
−n3 −5n2 −4n+2

)
n+2

− r3n+2
0
r3n+2

(4n3 +15n2 +8n−8
)

2F1

(
2,2+ 2

n
,3+ 2

n
; rn

0
rn

)
2(n+2) −n


+ n+1

3n+2
r4n+2

0
r4n+2

n(3n+4) 2F1

(
1,3+ 2

n
,4+ 2

n
; rn

0
rn

)
n+2 +2(n2 +2n−1) 2F1

(
2,3+ 2

n
,4+ 2

n
; r

n
0
rn

)
+
n2(n+1) 2F1

(
2,4+ 2

n
,5+ 2

n
; rn

0
rn

)
2(n+2)(2n+1)

r5n+2
0
r5n+2 , (C.4)

where Hk is the Harmonic number and 2F1(a, b, c;x) is the hypergeometric function. We
imposed the boundary condition as

ã1 → 0, b̃1 → 0, f̃1 → 0, (r →∞), (C.5)
ã1 → O(1), b̃1 → O(r − r0), f̃1 → O(r − r0), (r → r0). (C.6)
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Up to the linear order, the thermodynamic variables are obtained as

M

MGR
= 1 +

(
n(n+ 1)Hn+2

n

n+ 2 + n(n− 1)
)
αGB
r2

0
(C.7)

τ

τGR
= 1 +

(
n(n+ 1)Hn+2

n

n+ 2 − n(n+ 3)
)
αGB
r2

0
(C.8)

TH
TH,GR

= 1−
((n+ 1)Hn+2

n

n+ 2 + (n+ 2)(n− 1)
)
αGB
r2

0
(C.9)

S

SGR
= 1 +

(n+ 1)2Hn+2
n

n+ 2 + 2n(n+ 1)

 αGB
r2

0
(C.10)

where

MGR := (n+ 1)Ωn+1Lr
n
0

16πG , τGR := Ωn+1r
n
0

16πG , TH,GR := n

4πr0
, SGR := Ωn+1Lr

n+1
0

4G
(C.11)

The relative tension is given by

N = 1
n+ 1

(
1− 2n(n+ 1)αGB

r2
0

)
. (C.12)

All these are consistent with the result in ref. [18] for n = 1, . . . , 4.
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