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1 Introduction

One the most impressive achievements of the flavor physics program in the 21st century is
the thorough study of rare b→ s`+`− transitions, which has resulted in strong constraints
on physics beyond the Standard Model (BSM). These constraints are now one order of
magnitude stronger compared to the situation in ∼ 2010 [1–3], forcing the theory commu-
nity to revisit in depth the various issues in theory predictions and the source and size of
their hadronic uncertainties.

There are two categories of b→ s`+`− observables that are gathering special interest:
those probing lepton-flavor universal (LFU) physics, and those probing lepton-flavor non-
universality (LFNU). From the point of view of theoretical predictions, the ones that can be
predicted with best accuracy are the LFNU ratios, for instance RK or RK∗ , whose Standard
Model (SM) predictions have negligible uncertainties [4, 5]. Nevertheless, b → s`+`−

observables require in general the calculation of local and non-local form factors (FFs).
LFNU ratios are thus good “smoking guns” of BSM physics, if the corresponding theory
turns out to violate LFU significantly. But in order to infer more precisely a potential
new physics pattern (e.g., the pattern of BSM contributions to the Wilson coefficients of
the EFT at low energies), it is much more advantageous to use all available data. Not to
mention that in the presence of significant LFNU, the hadronic uncertainties in ratios such
as RK do not exhibit the level of cancellations present in the SM [6–8].

The combination of theoretical and experimental work in the last decade has eventually
led to the establishment of the so-called “B anomalies”. The B anomalies have been in
the focus point since the P ′5 [3] measurement in 2013 [9–13]. They are of interest to the
particle physics community as a whole, as new measurements seem to confirm once and
again the patterns of the early analyses. Global fits to all available data already pointed to
the current pattern of BSM physics even before the RK measurement in 2014 [14]. Since
then, global fits include also separate analyses with only LFNU observables [15–21].

Exclusive b → s`+`− observables in B → K(∗)`+`− decays were first systematically
discussed by Beneke, Feldmann and Seidel (BFS) in 2001 [22] using QCD-factorization
(QCDF) in the heavy-quark limit [23, 24]. The QCDF approach is characterized by two
elements. First, it exploits the large-recoil relations for local FFs [25–27]. Second, it
incorporates the contributions to the non-local FFs where a hard-collinear interaction with
the B-meson spectator quark is present. The main contribution to the non-local FFs is
given by the perturbative contribution from (s̄b)(c̄c) operators, which can be framed as
a local operator-product expansion (OPE) and leads to a contribution to the amplitude
proportional to the local FFs.

With new more refined calculations of the complete set of local FFs, both within the
light-cone sum rules (LCSR) [28–31] and lattice QCD (LQCD) [32–35], the practice of
using the large-recoil FF relations for the “factorizable” part of the amplitude has been
mostly abandoned. The theory determination of the full set of local FFs is now performed
by simultaneously fitting a parametrization based on the z-expansion to the LCSR deter-
minations at low q2 and the LQCD determinations at large q2 (see, e.g., refs. [29, 30]). This
procedure provides a very accurate (and systematic) determination of the q2 dependence
in the whole semileptonic region.
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Concerning the non-local FFs, a comprehensive discussion was given by Khodjamirian,
Mannel, Pivovarov and Wang (KMPW) in 2010 [36], explaining how to extend the BFS
formalism in the low-q2 region and calculating the first correction to the perturbative
contribution from the (s̄b)(c̄c) operators, which is the next-to-leading term in a light-cone
OPE (LCOPE). In that paper, a dispersion relation has also been used to account for the
presence of the narrow charmonium resonances J/ψ and ψ(2S) in the dilepton spectrum.

Following the same spirit of the z-expansion for the local FFs, a similar approach was
proposed for the non-local FFs in ref. [37]. The analytic structure in this case is much more
complicated, as can be understood directly from the two-loop perturbative corrections [38].
Nevertheless, the z-expansion allows to use data on the non-leptonic decays B → Mψ to
fix the residues of several poles in the non-local FFs, providing direct constraints on the
coefficients of the z-expansion. Also in line with the case of local FFs, a dispersive bound
that constrains the coefficients of the z-expansion has been formulated recently [39], thereby
providing a handle on the issue of convergence and truncation. The theory calculations
of the non-local FFs at negative q2 (where the convergence of the LCOPE is fast) can
also be used directly in the fit to the coefficients of the z-expansion. In this regard, an
updated calculation of the next-to-leading contribution in the LCOPE has been presented
in ref. [39], pointing to a much smaller effect than the previous calculation in ref. [36].
This change of magnitude is well understood, and can be traced back to missing hadronic
matrix elements and updated input parameters.

Other developments include the calculation of local and non-local Bs → φ FFs from
LCSRs with Bs-meson distribution amplitudes [39], and the finite-width and non-resonant
effects in B → K∗ FFs [31].

In the present paper we take the challenge of providing state-of-the-art theory predic-
tions for a variety of exclusive b→ sµ+µ− observables, and performing a global analysis of
the available b→ sµ+µ− data using these improved theory predictions. Since we focus on
b→ sµ+µ− data, we do not include the LFNU ratios RK and RK∗ in our analysis.

The most important results of our work are:

• We provide the necessary framework to produce theory predictions both within and
beyond the SM in presence of the dispersive bound for the non-local FFs. We go be-
yond the framework of QCDF in a way that is consistent with fundamental principles
of QCD. Thus, our uncertainties are larger but better understood than those given
in the literature.

• We confirm the substantial tension between the SM predictions and the presently
available measurements in the three exclusive b→ sµ+µ− processes considered. Our
predictions within the SM are somewhat more compatible with the data than other
QCDF-based predictions in the literature. However, a strong preference for BSM ef-
fects remains, with BSM-induced shifts to the Wilson coefficients that are compatible
with those found in other works.

• We find that the local FFs, rather than the non-local FFs, are now driving the bulk
of the theory uncertainties. We look forward to new and updated LQCD analyses of
the local FFs.
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In section 2 we briefly review the theoretical framework together with the various
definitions and conventions. In section 3 we describe the details and the strategy followed
in our analysis and provide our SM predictions. Section 4 gathers the comparison of our
results to experimental measurements and a model-independent BSM analysis. We discuss
the conclusions that follow from our analysis and give an outlook into future prospects
in section 5. The various appendices contain supplemental information concerning both
analysis results and relevant formulas.

2 Theoretical framework

In this section we review the theoretical framework that we use to study B → K(∗)`+`− and
Bs → φ`+`− decays, which we collectively denote as B → M`+`−. The first step consists
in factorizing the short-distance (perturbative) and the long-distance (non-perturbative)
contributions using an effective field theory. While the short-distance contributions —
encoded in the Wilson coefficients — are well known and have been calculated in the
literature with high accuracy, the long-distance contributions — encoded in the hadronic
matrix elements — are the main obstacle to obtaining precise predictions for the observables
of interest. These matrix elements can be classified into local and non-local matrix elements
that are usually decomposed in terms of local and non-local FFs, respectively. We use
the available calculations of these FFs and fit them to the parametrizations proposed in
ref. [29] (for the local FFs) and ref. [39] (for the non-local FFs). In this way we obtain
SM predictions for B → M`+`− observables in the region of the momentum transfer
0 < q2 < M2

J/ψ. Using the same framework and allowing a new physics contribution in
certain Wilson coefficients, we also perform a model-independent global analysis of the
experimental data in b→ sµ+µ− transitions.

2.1 Effective theory

It is convenient to describe the B-meson decays within an effective field theory called the
Weak Effective Theory (WET) or the Low-Energy Effective Theory (LEFT) [40–42], where
degrees of freedom at or above the electroweak scale have been integrated out. In the case
of b → s`+`− transitions, the relevant set of effective operators up to mass-dimension six
which is closed under renormalization contains 114 operators [41]. The WET Lagrangian
for these transitions reads

Lsb``WET = LQED + LQCD + Lsb``D=6 . (2.1)

Here, LQED and LQCD are the Lagrangians describing electromagnetic and strong interac-
tions among leptons and the five active quark flavors, and Lsb``D=6 contains the dimension
six WET operators:

Lsb``D=6 = 4GF√
2

[
λt

( 2∑
i=1

CiOci +
10∑
i=3

CiOi

)
+ λu

( 2∑
i=1

Ci (Oci −Oui )
)]

+ h.c. , (2.2)
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C1(µb) C2(µb) C3(µb) C4(µb) C5(µb) C6(µb) C7(µb) C8(µb) C9(µb) C10(µb)

−0.2906 1.010 −0.0062 −0.0873 0.0004 0.0011 −0.3373 −0.1829 4.2734 −4.1661

Table 1. NNLO Wilson coefficients at the scale µb = 4.2GeV [44, 45].

with λq = VqbV
∗
qs. Here, we have included in Lsb``D=6 only the operators that are relevant in

the SM. We use the operator basis defined in ref. [43]:

Oq1 = (s̄LγµT aqL)(q̄LγµT abL) , Oq2 = (s̄LγµqL)(q̄LγµbL) ,
O3 = (s̄LγµbL)

∑
p

(p̄γµp) , O4 = (s̄LγµT abL)
∑
p

(p̄γµT ap) ,

O5 = (s̄LγµγνγρbL)
∑
p

(p̄γµγνγρp) , O6 = (s̄LγµγνγρT abL)
∑
p

(p̄γµγνγρT ap) , (2.3)

O7 = e

16π2mb(s̄LσµνbR)Fµν , O8 = gs
16π2mb(s̄LσµνT abR)Gaµν ,

O`9 = e2

16π2 (s̄LγµbL)(¯̀γµ`) , O`10 = e2

16π2 (s̄LγµbL)(¯̀γµγ5`) ,

with q = u, c and ` = e, µ, τ while the sum runs over all five active quark flavors, i.e.,
p = u, d, s, c, b. We use the following conventions: PR,L ≡ (1 ± γ5)/2, σµν ≡ i

2 [γµ, γν ],
the covariant derivative is given by Dµq ≡ (∂µ + ieQqAµ + igsT

AGAµ )q, and mb ≡ mb(µ)
denotes the MS b-quark mass. Throughout this work we neglect the terms in eq. (2.2)
proportional to λu, since they are CKM suppressed. The numerical values for the Wilson
coefficients used in this work are collected in table 1.

In this framework, the decay amplitude for B̄ → K̄(∗)`+`− and B̄s → φ`+`− decays to
the leading non-trivial order in QED can be written as

AM`` ≡ GF αe VtbV
∗
ts√

2π

{
(C9 L

µ
V + C10 L

µ
A)FB→Mµ − LµV

q2

[
2imbC7FB→MT,µ + 16π2HB→Mµ

]}
.

(2.4)
Here, q2 is the invariant squared mass of the lepton pair and LµV (A) ≡ ū`(q1)γµ(γ5)v`(q2)
are leptonic currents. We emphasize that the decay amplitude (2.4) depends on both the
local matrix elements FB→M(T ),µ and the non-local matrix elements HB→Mµ , defined as

FB→Mµ (k, q) ≡ 〈M(k)|s̄γµPL b|B̄(q + k)〉 , (2.5)
FB→MT,µ (k, q) ≡ 〈M(k)|s̄σµνqνPR b|B̄(q + k)〉 , (2.6)
HB→Mµ (k, q) ≡

∑
p

HB→Mp,µ (k, q) (p = u, d, s, c, b) , (2.7)

where

HB→Mp,µ (k, q) ≡ iQp
∫
d4x eiq·x (2.8)

× 〈M(k)|T
{
p̄γµp(x),

(
C1Oc1 + C2Oc2 +

6∑
i=3

CiOi + C8O8

)
(0)
}
|B̄(q + k)〉.
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For convenience, we have decomposed the non-local matrix element HB→Mµ into its dif-
ferent contributions HB→Mp,µ from the electromagnetic current. The numerically dominant
contributions to HB→Mµ come from the operators Oc1 and Oc2 in HB→Mc,µ . We study the
contributions to HB→Mc,µ using the parametrization and the corresponding dispersive bound
derived for the first time in ref. [39]. For completeness, we also include the contribution
from the penguin operators in HB→Mc,µ , which are suppressed by small Wilson coefficients.
The operator O8 does not contribute to HB→Mc,µ at the precision we are working at.

For our numerical analysis, we also take into account HB→Ms,µ and HB→Mb,µ in the frame-
work of QCD factorization [22, 46]. The relevant formulas are given in appendix C. We
neglect HB→Mu,µ and HB→Md,µ , since they do not receive contributions from the four-quark
operators Oc1 and Oc2 and hence they are numerically suppressed.

The amplitude in eq. (2.4) is independent of the renormalization scale, with the scale
dependence of the Wilson coefficients Ci cancelling the scale dependence of the non-local
matrix elements HB→Mµ . In practice, there is a remaining residual scale dependence due to
the fact that the Wilson coefficients are only known up to NNLO while the short-distance
part of HB→Mµ is only known to NLO. In our framework, the determination of HB→Mµ is
based on the OPE calculation at negative q2 — which has the explicit scale dependence
needed to cancel the scale dependence of the Wilson coefficients C7,9 up to NLO, — and
the experimental data on the charmonium poles. This latter input to the determination is
an observable and thus is scale independent, but this is consistent because, while HB→Mµ

is scale dependent, the residues at the charmonium poles are not. The conventional thing
to do would be to vary the renormalization scale simultaneously in the Wilson coefficients
and HB→Mµ in order to estimate the effect of missing NNLO contributions. However,
since this effect will be much smaller than the uncertainties introduced by the local FF
determinations, we choose to fix the scale to µb = 4.2GeV.

2.2 Local form factors

The matrix elements of local currents FB→Mµ and FB→MT,µ can be decomposed in terms of
the local FFs FB→M(T ),λ :

FB→M(T ),µ (k, q) ∝
∑
λ

FB→M(T ),λ (q2)Sλµ(k, q) , (2.9)

where the explicit form of this decomposition and of the Lorentz structures Sλµ is given in
appendix A. These FFs have been calculated in lattice QCD (LQCD) for high values of q2

(small recoil). Since the low-q2 region is not accessible by LQCD calculations as of yet,
we use the light-cone sum rules (LCSRs) results in this region. The inputs used in our
analysis are listed in section 3.1. We combine LQCD and LCSR results by fitting them to
the parametrization used in ref. [29]:

FB→M(T ),λ (q2) = 1
1− q2

m2
JP

∞∑
k=0

αFk

[
z(q2)− z(0)

]k
, (2.10)

– 6 –
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where the conformal variable z is defined as

z(q2) ≡
√
s+ − q2 −

√
s+ − s0√

s+ − q2 +
√
s+ − s0

. (2.11)

The parameter s+ ≡ (MB + MM )2 is fixed and it coincides with the lowest-lying branch
point of the corresponding FF. The parameter s0 can be chosen arbitrarily in the open
interval (∞, s+). The common choice

s0 = (MB +MM )
(√

MB −
√
MM

)2
(2.12)

minimizes the absolute value of z in the semileptonic region and hence the truncation error.
To ensure interoperability with the results of ref. [29] we use the masses of sb̄ resonances
as given in table 3 thereof.

2.3 Non-local form factors

In analogy with the local matrix elements discussed above, the non-local matrix elements
HB→Mµ can be decomposed in terms of the non-local FFs HB→Mλ :

HB→Mp,µ (k, q) ∝
∑
λ

HB→Mp,λ (q2)Sλµ(k, q) . (2.13)

The explicit form of this decomposition and of the Lorentz structures Sλµ is given in ap-
pendix A.

The non-local FFs HB→Mc,λ are more complicated objects than the local FFs FB→M(T ),λ . So
far there are no LQCD determinations of these FFs. Most theory predictions for HB→Mc,λ

have been obtained in the framework of QCD factorization [22, 46], which uses a perturba-
tive calculation of the charm loop. However, this treatment of the charm loop is manifestly
invalid close to and above the partonic charm threshold (i.e., for q2 & 4GeV2) and misses
potentially relevant power corrections even for q2 < 4 GeV2. This introduces an uncon-
trollable systematic uncertainty, sometimes estimated using ad hoc models. Following our
previous works [37, 39], we use a different strategy to calculate each individual non-local
FFs HB→Mc,λ , which can be summarized as follows:

• We calculate HB→Mc,λ for negative values of the momentum transfer (i.e., at q2 =
{−7,−5,−3,−1}GeV2) using a LCOPE.

• We extract the residue of HB→Mc,λ at q2 = M2
J/ψ from the measurement of the branch-

ing ratios and angular observables in B →MJ/ψ decays.

• We obtain data-driven theory predictions by interpolating the two types of inputs for
HB→Mc,λ over the time-like region 0 < q2 < M2

J/ψ.

In the remainder of this subsection we discuss these steps in further detail.

– 7 –
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For 4m2
c − q2 � mb Λhad the non-local FFs HB→Mc,λ can be expanded in a LCOPE [36,

39, 47]:

HB→Mc,λ = − 1
16π2

(
q2

2M2
B

∆C9FB→Mλ + mb

MB
∆C7FB→MT,λ

)
+ 2Qc

(
C2 −

C1
2Nc

)
ṼB→Mλ

+ higher-power corrections . (2.14)

The first term on the r.h.s. is the leading-power contribution to the LCOPE, which consists
of the local FFs FB→M(T ),λ multiplied by the corresponding matching coefficients ∆C7,9. These
coefficients have been computed to next-to-leading order in QCD [38, 48–52]. The next-to-
leading power corrections ṼB→Mλ cannot be expressed in terms of local FFs and hence re-
quire the calculation of specific non-local matrix elements. The quantities ṼB→Mλ have been
computed for the first time in ref. [36], where the authors have found them to have a consid-
erable impact on the numerical values of the functions HB→Mc,λ . However, this calculation
is superseded by the one in ref. [39], where it has been shown that the ṼB→Mλ contribution
is mostly negligible. The difference between the two results is well understood and results
from (i) the inclusion of missing three-particle distributions amplitudes that were not con-
sidered in ref. [36] and (ii) an update of the inputs necessary to evaluate these distribution
amplitudes [53, 54]. Higher-power corrections in eq. (2.14) have not been studied yet.

The B → MJ/ψ decay amplitudes are proportional to the residues of the non-local
FFs HB→Mc,λ at q2 = M2

J/ψ [36, 37]:

AMJ/ψ
λ ∝ Res

q2→M2
J/ψ

HB→Mc,λ (q2) . (2.15)

Therefore, the r.h.s. can be inferred from the measurement of branching ratios and angular
observables in B → MJ/ψ decays. The exact relations between AMJ/ψ

λ and HB→Mc,λ can
be found in appendix B. Although this would yield larger uncertainties in the final results,
our approach equally applies even if one does not use this experimental information at the
J/ψ pole.

We use the parametrization given in ref. [39] to interpolate HB→Mc,λ . This parametriza-
tion reads

HB→Mc,λ (q2) = 1
φB→Mλ (ẑ)P(ẑ)

∞∑
n=0

βB→Mλ,n pn(ẑ) , (2.16)

where the conformal variable ẑ ≡ ẑ(q2) is defined as

ẑ(q2) ≡
√
ŝ+ − q2 −

√
ŝ+ − ŝ0√

ŝ+ − q2 +
√
ŝ+ − ŝ0

. (2.17)

The only difference with the definition (2.11) is that here ŝ+ = 4M2
D, reflecting a different

left-most branch point for the non-local FFs compared to the local ones. This implies the
optimal value of ŝ0 is also different, due to the fact that the parametrization of eq. (2.16)
is valid for q2 < 4M2

D and not in the whole semileptonic region. In our analysis we use
eq. (2.16) in the region −7GeV2 ≤ q2 ≤M2

J/ψ. We choose

ŝ0 = 4GeV2 , (2.18)

– 8 –
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which implies |ẑ(−7GeV2)| ∼ |ẑ(M2
J/ψ)|, in order to maximize the convergence of the series

in eq. (2.16). This value of ŝ0 yields ẑ(m2
ψ(2S)) ∼ 0.7, while |ẑ(−7GeV2)| ∼ |ẑ(M2

J/ψ)| ∼ 0.2.
Hence, although our parametrization should in principle also account for the ψ(2S) pole,
we cannot expect the same level of accuracy for predictions of the non-local FFs at the
ψ(2S) as at negative q2 or at the J/ψ pole. This observation and the already very large
number of parameters convinced us to keep the value of HB→Mc,λ at this resonance unfixed
for the present work. Nevertheless, we check the values of the HB→Mc,λ residue at the ψ(2S)
pole a-posteriori. We checked that a change in the value of ŝ0 in the range ∼ 4 − 8GeV2

does not have a noticeable impact on our results for the non-local FFs once the dispersive
bound is enforced.

The analytical expression of the outer functions φB→Mλ and Blaschke factor P are
given in ref. [39] (see also appendix D here). The polynomials pn are orthonormal with
respect to the integration measure dµ = θ(| arg z| − αHbHs)dz [39]. They can conveniently
be written using the Szegő recurrence relation [55], which is used for their implementation
in the public source code of the EOS software [56, 57]. Details are given in appendix E.

Compared to other approaches proposed in the literature — for instance the q2 expan-
sion of ref. [58], the isobar model of refs. [59–61], the dispersive approach of ref. [36], and
the “naive” z expansion of ref. [37] — the parametrization proposed in ref. [39] exhibits a
crucial advantage. The coefficients of this parametrization obey the bound

∞∑
n=0

2
∣∣∣βB→K0,n

∣∣∣2 +
∑

λ=⊥,‖,0

[
2
∣∣∣βB→K∗λ,n

∣∣∣2 +
∣∣∣βBs→φλ,n

∣∣∣2]
 < 1 . (2.19)

This dispersive (or unitarity) bound has been derived for the first time in ref. [39]. We
summarize its derivation in appendix D, where we also extend it to include penguin oper-
ators and one-particle contributions. The left-hand side of eq. (2.19) is referred to as the
saturation of the bound in the following.

3 Theory predictions

In this section we provide our theory predictions together with technical details and the
inputs needed to obtain them. As a first step, in section 3.1, we fit the parametrization
of the local FFs as given in eq. (2.10) to available theory constraints. As a second step,
in section 3.2, we perform a Bayesian analysis to provide data-driven predictions for the
non-local FFs, which relies on the strategy outlined in section 2.3 and uses the parametriza-
tion (2.16). The theory predictions for the non-local FFs critically depend on the results
for the local FFs. Once all the FFs are known we are able to provide predictions for
B → M`+`− observables. Our SM predictions are then presented and compared to those
of previous approaches in section 3.3.

3.1 Local form factors

Analysis setup. The various local B → M FFs FB→M(T ),λ have been calculated using
LQCD in refs. [32–35]. These calculations have been performed at small recoil (i.e., large
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q2). In principle, one could extrapolate the LQCD results at high-q2 to the low-q2 region.
However, this would introduce a systematic error that cannot be controlled, since dispersive
bounds for the local FFs in b → s transitions have so far not been very constraining [62].
For this reason we use LCSR results, which are valid only at low q2, to anchor the FFs
at both ends of the phase space. There are two types of LCSRs that can be used for
this purpose: LCSRs with light-meson distribution amplitudes (DAs), and LCSRs with
B-meson DAs. The light-meson LCSRs have currently smaller uncertainties than B-meson
LCSRs due to smaller parametric uncertainties of the corresponding light-meson DAs.

Fitting both LQCD and LCSR results to the parametrization (2.10), we obtain all
the local B → M FFs in the whole semileptonic region, that is for 0 ≤ q2 ≤ q2

max ≡
(MB −MM )2. Such combinations have previously been undertaken in refs. [29, 30].

For the local B → K FFs, we use the light-meson LCSR calculation of ref. [28]. We
do not use the B-meson LCSR calculation of the B → K FFs provided in ref. [30] as
recommended by the authors, due to issues with the determination of the sum rule thresh-
olds that are not yet understood. Our fit uses four synthetic points at q2 = {0, 6}GeV2

for fB→K+ and fB→KT , which are generated using the coefficients and the parametrization
provided in ref. [28].

Similarly, we generate eight synthetic points at q2 = {q2
max − 6GeV2, q2

max −
3GeV2, q2

max} for all the B → K FFs using the BGL coefficients of ref. [63], which av-
erages the LQCD results of refs. [32, 33]. The synthetic points are eight instead of nine
because we drop the point q2 = {q2

max−6GeV2} for fB→K0 due to the constraint in eq. (A.9).
For the local B → K∗ and Bs → φ FFs, we use the B(s)-meson LCSR calculations

of refs. [30, 39]. Although the results for these FFs from light-meson LCSR calculations
are more precise [29], we avoid using them due to a conceptional concern about using
distribution amplitudes for non-asymptotic states. The results of refs. [30, 39] have similar
central values, but larger uncertainties compared to results of ref. [29]. Thus, our choice
leads to more conservative estimates of the final uncertainties and aims to have a smaller
dependence on the LCSR approach. In addition, it is not entirely clear how to include the
finite K∗-width effect in the results of ref. [29], while this can be done consistently in the
B-meson LCSRs framework, as argued in ref. [31]. Following this reference, we multiply
by 1.1 the central values of the synthetic points of the B → K∗ FFs given in ancillary files
attached to the arXiv version of ref. [30]. We only apply the P -wave correction factor of
1.1 to the B → K∗ FFs in the low-q2 region, where the analysis of ref. [31] is valid. The
Bs → φ FF results attached to the arXiv version of ref. [30] are used as-is.

We generate synthetic points at q2 = {16GeV2, q2
max} for each of the local B → K∗

and Bs → φ FFs using the coefficients and the parameters of the LQCD calculations of
refs. [34, 35].1 For both the LCSRs and LQCD results of B → K∗ and Bs → φ FFs, the
correlation between the (axial-)vector FB→Vλ and tensor FB→VT,λ FFs are not known. Hence,
we are forced to treat these two sets of FFs as uncorrelated.

1Our LQCD inputs stem from private communications with the authors of both references, which provide
more data points than what is publicly available. No such updates are available for the local Bs → φ FFs.
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Transition Constraints # Priors # LQCD ref. LCSR ref.
B → K 12 8 [63] [28]

B → K∗ 117 19 [34, 35] [30]

Bs → φ 47 19 [34, 35] [39]

Table 2. Details of the fit of the local B →M FFs. The number of constraints is the total number
of synthetic data points from LQCD and LCSR analyses. The number of (uniform) priors is the
number of independent αFk coefficients.

We combine the LQCD and LCSR synthetic data points discussed above using the
parametrization (2.10). We truncate the series at k = 2, taking into account that the num-
ber of independent αFk coefficients is reduced by the constraints (A.9) and (A.24)–(A.25).
We checked that truncating the series at k = 3 does not sensibly impact the results. We
perform one fit per process. The details of these fits are summarized in table 2. Posterior
samples are drawn with the EOS software using a Markov chain Monte-Carlo (MCMC)
method based on the Metropolis-Hastings algorithm. A Gaussian mixture density is then
iteratively adapted using the Population Monte-Carlo (PMC) algorithm [64] to the poste-
rior samples that are obtained with the MCMC method. Although this step is not strictly
necessary, it allows to reuse the posterior for the local FF coefficients in subsequent analyses
and to sample from the posterior in a computationally efficient way. We then use our local
FF results as priors for our theory predictions for non-local FFs and within the WET fits.

Results. The three fits to the local FF coefficients are excellent: the p values of the best-
fit points are 72%, > 99%, and > 99% for B → K, B → K∗, and Bs → φ, respectively.
These large p values are due to the sizable uncertainties of the LCSR inputs. The posterior
distributions of the αFk coefficients in each fit are perfectly described by a single multivariate
Gaussian distribution: when adapting a Gaussian mixture density to these posteriors using
the PMC algorithm, all but one components are pruned out, and the remaining component
yields perplexities larger than 99%. The parameters of these distributions are given in the
ancillary files BToK-local.yaml, BToKstar-local.yaml and BsToPhi-local.yaml. The
mean values and uncertainties of the αFk coefficients are also given for convenience in
appendix F. As an illustration, three of the local FFs are plotted in figure 1, where we
juxtapose our results with those of refs. [29, 30].

Due to our use of the extended LQCD data set (see footnote 1), our results for B → K∗

present comparable uncertainties to those of ref. [29] but a slightly different shape. In
contrast, our results for Bs → φ are less precise than those of ref. [29] due to our use of
the B-LCSR results over the light-meson LCSR results therein.

3.2 Non-local form factors

Analysis setup. We produce synthetic correlated data points for the non-local B →M

FFs HB→Mc,λ from the LCOPE expression (2.14), which holds for 4m2
c − q2 � mbΛhad. To

ensure a rapid convergence of the LCOPE, we use it only at four negative values of q2:
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Figure 1. Plots of a selection of the local B → M FFs discussed in this work. Our results (in
orange) are juxtaposed with those of ref. [30] for B → K and ref. [29] for B → K∗ and Bs → φ

(both in blue). We show the medians as solid lines and the central 68% uncertainty interval as
shaded areas. For the B → K process, we show the product of the FF fB→K

+ and P (q2) = 1− q2

m2
JP

for readability, see eq. (2.10). The conversion between the form-factor basis used for these plots
and in the literature and the basis used in this work is presented in appendix A.

{−7,−5,−3,−1}GeV2. This approach follows the recommendation in refs. [37, 39]. At
leading power, the computation of the non-local FFs requires two inputs (cf. eq. (2.14)):
the local FFs and the matching coefficients ∆C7,9.

We evaluate the local FFs at each point in q2, using the posterior distributions of the
fit described in the previous paragraph. We also determine their covariance matrix across
local FFs in the same channel and across different q2 values. The correlations between
(axial-)vector local FFs and the tensor ones are unknown, except for the B → K LQCD
results. We encourage the authors of local FF calculations to provide these correlations,
which play an important role in rare B decays.

We evaluate the matching coefficients ∆C7,9 using the analytic NLO results provided in
ref. [38]. The numerical evaluation is carried out using the code attached to the arXiv ver-
sion. The parametric uncertainty of the matching coefficients is estimated by varying the c-
and b-quark masses in the MS scheme, following the central values and uncertainties of the
world averages [65]. As explained in section 2.1, we keep the scale µb = 4.2GeV fixed in our
analysis. We determine the parametric covariance matrix across the two different matching
coefficients and across different q2 values. The imaginary part of the matching coefficient
arises first at NLO in αs and hence by simply varying its input parameter one is likely to
underestimate its total uncertainty. To compensate for this effect, we add an additional
αs/π ∼ 5% systematic uncertainty to the imaginary parts of the matching coefficients.
This systematic uncertainty is assumed to be uncorrelated across matching coefficient and
q2 points, and is therefore added in quadrature to the parametric covariance matrix.

At next-to-leading power, the computation of the non-local FFs requires knowledge
the non-local soft-gluon matrix elements ṼB→Mλ (cf. eq. (2.14)). It has been shown in
ref. [39] that ṼB→Mλ is negligibly small at negative q2. We choose to only account for these
contributions by increasing the uncertainty of the non-local FFs, by adding the square of
their central values to the diagonal of the total covariance matrix.
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To account for potentially large contributions beyond next-to-leading power (BNLP),
we add an additional relative uncertainty to the diagonal of total covariance matrix. This
additional systematic uncertainty is chosen to be

∆HB→Mc,λ

∣∣
BNLP = mbΛhad

4m2
c − q2 ×H

B→M
c,λ

∣∣
LP , (3.1)

where Λhad = 0.1 GeV. We hold that our approach yields very conservative estimates for
the non-local FFs.

We emphasize that there are both (i) sources of cross correlations between the local
and non-local FFs for the same process and (ii) cross correlations between FFs for different
processes.

(i) The first type of correlations arise from the fact that the non-local FFs depend on
the local FFs (cf. eq. (2.14)). Most of these correlations can be accounted for by
working with the (mostly uncorrelated) set {F ,FT /F ,H/F} instead of {F ,FT ,H}.
Accounting for the remaining correlations throughout the different steps in the anal-
ysis is computationally expensive. To ensure that they are negligible, we perform an
iterative procedure. The theory points at negative q2 are first computed using the
posteriors of the fit to the local FFs. We then perform a simultaneous fit of the local
and non-local FF parameters and use the best-fit point to update the theory points
(the covariance matrix is not updated). This procedure is iterated until convergence,
that is until the posterior predicted FF values at negative q2 match the input val-
ues. We finally perform a χ2 test to quantify the compatibility of the final theory
points at negative q2 and the points obtained without this procedure. For the three
channels under consideration, we find p values exceeding 99% and conclude that the
correlations between local and non-local FFs can be safely neglected.

(ii) The second type of correlations arise from the small uncertainties of the matching
coefficients ∆C7,9. Since these uncertainties are very small, so are the total correla-
tions. In principle, also the LCSRs calculations of refs. [30, 39] for the B → K∗ and
Bs → φ local FFs are correlated, since they use a similar set of inputs and distribution
amplitudes. However, these correlations are unknown. Therefore, we do not account
for these correlations in this work either.

Our setup yields independent likelihoods for the processes B → K`+`−, B →
K∗`+`−, and Bs → φ`+`− that feature 8, 24, and 24 degrees of freedom, respec-
tively. They account for two real-valued degrees of freedom per data point and four data
points per non-local FF. The multivariate Gaussian distributions describing the values of
HB→Mλ /FB→Mλ at negative q2 are provided as ancillary files BToK-nonlocal-data.yaml,
BToKstar-nonlocal-data.yaml, and BsToPhi-nonlocal-data.yaml. The normalization
to FB→Mλ reduces the dependence of these likelihoods on local FFs.

In addition to these likelihoods, we also use the residues of the non-local B → M

FFs at q2 = M2
J/ψ. The likelihoods for these residues are obtained from the experimental

measurements of the branching ratios and angular observables in B → MJ/ψ decays,
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as discussed in section 2 and detailed in appendix B. This extraction involves elements
of the CKM matrix. The latter are computed in the Wolfenstein parametrization where
the parameters are chosen to be Gaussian and based on the “Spring 2021” results by the
CKMFitter collaboration [66]:

A = 0.816± 0.009 , λ = 0.22500± 0.00023 ,
ρ̄ = 0.1584± 0.0066 , η̄ = 0.3507± 0.0086 . (3.2)

The B →MJ/ψ branching ratios are taken from the most recent PDG world average [65].
The angular observables are taken from LHCb measurements [67–69], which are the most
precise measurements currently available. Both types of observables suffice to constrain
the residues of the non-local FFs on the J/ψ pole up to a global phase.

Within our analysis, we simultaneously fit ẑ-polynomials to the joint likelihood com-
prised of the synthetic data points at negative q2 and the experimental information at
q2 = M2

J/ψ. For convenience, we carry out these fits using Lagrange basis polynomials.
Subsequently, the result are converted to the basis of orthogonal polynomials in eq. (2.16).
This step is documented in detail in appendix E. Since we consider Lagrange basis polyno-
mials of degree five (i.e., O

(
ẑ5)), there are 12 real-valued fit parameters per non-local FF.

• For B → K we constrain eight real-valued parameters from the synthetic data points
at negative q2 and one real-valued parameter from the B → J/ψK branching ratio.
We are therefore left with three unconstrained parameters, one modulus and two
phases.

• For B → V (i.e., B → K∗ and Bs → φ) we constrain 24 real-valued parameters
from the synthetic data points at negative q2 and five real-valued parameters from
the B → J/ψV branching ratio and angular observables. We are therefore left with
seven unconstrained parameters, three moduli and four phases.

Therefore, the joint likelihood from the synthetic data points and the nonleptonic decays
is not sufficient to constrain all fit parameters by construction: our analysis features a
total of 17 blind directions. We parametrize these blind directions as follows:

• the moduli and phases of the residues of the non-local FFs at the ψ(2S) pole; and

• the phases of the residue of the longitudinal (λ = 0) non-local FFs at the J/ψ pole.

As discussed in ref. [39] and revisited in section 2.3, the dispersive bound for the non-local
FFs provides some control over the truncation error of the expansion (2.16), which has now
become a parametric uncertainty. Application of this bound is explained in section 3.3,
where SM predictions are derived. In our analysis, the use of this bound is essential
for phenomenological applications, since it provides means to constrain the seventeen
otherwise “blind” parameters, which would otherwise yields unbounded uncertainties.

We can now motivate the choice to expand the non-local FFs up to order ẑ5: it is the
lowest order that allows a nontrivial use of the dispersive bound. Truncating the expansion
at lower order would not yield sufficiently many unconstrained fit parameters and therefore
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Transition Constraints # Priors # Comment Experimental ref. χ2 p value [%]
B → K 10 9 B0&B+ [65] 2.6 11

B → K∗ 30 29 B0&B+ [65, 67] 0.34 56

Bs → φ 33 29 [65, 68, 69] 0.48 98

Table 3. Summary of the goodness of fit for the posteriors of the non-local B → M FFs. The
17 unconstrained parameters discussed in the text do not enter the likelihood, which makes a
goodness-of-fit discussion possible. We use the neutral and charged modes for the branching ratios
of B → K(∗)J/ψ, as well as the two angular analyses of Bs → φJ/ψ decays, which differ in the
decay of the J/ψ to either muon or electron pairs.

fall short of a maximally conservative estimate of the uncertainties due to the non-local FFs.
We have explicitly checked that expanding the non-local FFs up to ẑ6 leads to virtually
the same size of parametric uncertainties; albeit with minor distortions of the shape that
are compatible with the ẑ5 results within their respective uncertainties.

Results. The quality of the fits to non-local FF for the three processes B → K, B → K∗

and Bs → φ is very satisfactory, with p values in excess of 11%. A summary of the inputs
and the goodness of these fits is given in table 3. For further discussion of our results,
including determinations of uncertainties and discussions of the saturation of the disper-
sive bound, we draw posterior samples for all non-local FF parameters. The parameters
included in the likelihood of each fit follow a multivariate Gaussian distribution. The re-
maining parameters with blind directions, i.e., the longitudinal phases of the residues on the
J/ψ pole and all phases and moduli describing the residues on the ψ(2S) pole, follow their
respective priors. For these phases, we draw from independent uniform priors on the inter-
val [0, 2π). For these moduli, we draw from independent uniform priors whose intervals are
conservatively chosen to contain at least 99% of the samples that are allowed by the bound.

We present the central value and standard deviation of the analytic functions ĤB→Mc,λ

— defined in eqs. (D.14)–(D.15) — in tables 6–8. The central values and covariances are
additionally provided in the three ancillary files BToK-hatH.yaml, BToKstar-hatH.yaml,
and BsToPhi-hatH.yaml. These distributions do not yet respect the dispersive bound.
To illustrate this, we produce posterior-predictive distributions for the saturation of the
bound by each process. These distributions are illustrated in the left-hand plot of figure 2.
For B → K we find a clear peak at ∼ 40% saturation. For B → K∗ and Bs → φ the bound
is clearly violated, and we find clear peaks at ∼ 250% saturation. This is not surprising,
since the bound has not been taken into consideration for the sampling of the parameters.

3.3 Standard Model predictions of Bq →Mµ+µ− observables

Analysis setup. Using the preceding results within this section, we compute data-driven
SM predictions for a variety of observables. In addition to the parametrized approach to
non-local FFs HB→Mc,λ , we account for non-local FFs HB→Msb,λ that arise from four-quark
operators with and without charm fields and from the chromomagnetic operator, as dis-
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Figure 2. (Left) Posterior-predictive PDFs pB→M
B (r) for the relative saturation r of the dispersive

bound by a single process B → M in the absence of applying the bound. We only display the
interval r ∈ [0, 5]. (Right) Reweighted PDFs pB→M

B (r) as defined in eq. (3.4), that is after applying
the bound. The changes in the shape of B → K∗ and Bs → φ in the right-hand plot are due to
different factors in the penalty function in eq. (3.4).

cussed in section 2.1 and detailed in appendix C. Our predictions arise from re-weighted
importance samples of the posterior-predictive distributions.

As discussed earlier in this section, the application of the dispersive bound for the
non-local FFs is central to our approach. We apply it to the samples for each of the three
processes, and we use the process B → K to illustrate how we apply it. Let rB→K be the
saturation of the bound due to the longitudinal and only non-local FF in B → K`+`−:

rB→K ≡
∑
n

|βB→K0,n |2 . (3.3)

We compute this saturation for each of the importance samples for this process. Since we
assumed the processes to be uncorrelated, we can re-weight each sample with a relative
weight w(rB→K), which is computed as

w(rB→K) =
∫
drB→K

∗
∫
drBs→φ pB→K

∗
B (rB→K∗) pBs→φB (rBs→φ)

× P
(
2 rB→K + 2 rB→K∗ + rBs→φ

)
. (3.4)

Above, pB→K∗B and pBs→φB are the PDF of the raw saturation of the bound due the other
processes under consideration, as shown in left-hand plot of figure 2, and P is a penalty
function that enforces the strong dispersive bound. The application to weights for the
other processes is straight forward. For a strict handling of the bound, the penalty function
would read P (r) ≡ θ(1 − r). However, to account for the perturbative uncertainty in the
calculation of χOPE — which sets the scale for the bound, see appendix D for the definition
— a different penalty function can be used. Here, we use the approach of ref. [70], which
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applies the penalty function

− 2 lnP (r) =


0 if r < 1,
(r − 1)2

σ2 otherwise.
(3.5)

We use σ = 5%, which comfortably accounts for the perturbative uncertainty of ref. [39].
We show the PDF for the process-specific saturation of the re-weighted importance samples
in the right-hand plot of figure 2. As shown, the samples with saturation in excess of 100%
have been effectively removed by re-weighting.

Results. We begin with the predictions for the differential branching ratios for the three
processes under consideration, which we illustrate in figure 3. Our predictions are juxta-
posed with the predictions obtained in the QCD factorization framework of refs. [22, 46].
In these references, the large-energy symmetry relations to the local FFs (the “factoriz-
able contributions”) are used. The likelihoods used to constrain the remaining local FFs
are described in section 3.1. Predictions for further observables, including the angular
observables, are obtained and provided in appendix F.

Several observations regarding figure 3 are in order:

• The central values of the two different predictions are in excellent agreement within
uncertainties. However, our predictions show a larger uncertainty than the QCDF
predictions.

• Our predictions exhibit increasing uncertainties when approaching the J/ψ pole, as
expected. No such increase is present in the QCDF approach, since it does not
account for this resonant effect.

• We find very similar shapes across both approaches for B → K(∗)µ+µ−. However,
the shapes of the two predictions for Bs → φµ+µ− differ significantly, with a larger
slope visible in our predictions.

We verify that our predictions for the B → Mψ(2S) branching ratios are consistent
with experimental data. Although we obtain central values an order of magnitude larger,
the sizable uncertainties of O (100%) make our results trivially compatible with data.

As a last remark, we emphasize the theory predictions in our approach can be sys-
tematically improved with more precise local FF calculations — which are the largest
contribution to the uncertainties in our SM predictions — and/or saturating the dispersive
bound adding more channels, for instance Λb → Λµ+µ−.

4 Confrontation with data

Having correlated predictions within the SM at hand, we confront them with the available
experimental measurements in section 4.1. We then continue with a simple BSM analysis
of the data in section 4.2.
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Figure 3. Comparison between our SM predictions for the differential branching ratio in the three
channels and the result obtained in QCD factorization [22, 46], including the form-factor relations
in the large-energy limit.

4.1 Compatibility of the SM results

Analysis setup. We confront our SM predictions obtained in section 3.3 with the
presently available experimental measurements from the ATLAS, BaBar, Belle, CMS,
and LHCb collaborations. For this purpose, we restrict our analysis to the processes
B → Kµ+µ−, B → K∗µ+µ−, and Bs → φµ+µ−. A summary of the three likelihoods that
describe the data is presented in table 4.

The experimental constraints on the branching ratios are driven by LHCb measure-
ments. For each B → M transition, these measurements are performed relative to the
branching ratio of the normalization channel B → MJ/ψ. Since our setup also pre-
dicts these non-leptonic branching fractions, we use LHCb measurements of the ratios
B(B → Mµ+µ−)/B(B → MJ/ψ).2 This avoids double-counting of the experimental un-
certainty of the normalization mode in our setup.

Results. In figure 4 we compare our predictions with the available experimental data
of the branching ratios and the P ′5 observable for B → K∗µ+µ− in bins of q2. Further
plots confronting our SM predictions of the remaining angular observables with the data are
provided in appendix F. The bins are chosen to align with those of the LHCb measurements
for ease of comparison. We find a clear discrepancy between the central values of the
predictions and the measurements of certain observables. The compatibility of the data
with the SM predictions is determined with a goodness-of-fit test at the best-fit point of
the hadronic parameters for the local and non-local FFs. We emphasize that we fit all the
hadronic parameters, i.e., we permit the fit to move away from the prior prediction of the FF
coefficients as obtained in section 3.1 and section 3.2. A summary of our fit results is shown

2These ratios are extracted from LHCb publications using:

σstat
ratio = σstat

``

µJ/ψ
, σsyst

ratio = 1
µJ/ψ

(
σsyst
`` −

µ``
µJ/ψ

√
(σstat
J/ψ

)2 + (σsyst
J/ψ

)2

)
,

where µ, σstat and σsyst are the mean, the statistical uncertainties and the systematic uncertainties, while
`` and J/ψ denote B(B →Mµ+µ−) and B(B →MJ/ψ), respectively.
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Process Description # of obs. Collaboration Comment Ref.

B → Kµ+µ−
binned B 2 BaBar [71]
binned B 1 Belle [72]
binned B 10 LHCb B0&B+ [73]

B → K∗µ+µ−

binned ang. obs. 12 ATLAS 6 obs. [74]
binned ang. obs. 16 CMS B0&B+; AFB&FL [75–77]
binned ang. obs. 64 LHCb B0&B+; 8 obs. [78, 79]

binned B 2 BaBar [71]
binned B 2 Belle B0&B+ [80]
binned B 7 CMS [75, 76]
binned B 7 LHCb B0&B+ [73, 81]

Bs → φµ+µ−
binned ang. obs. 12 LHCb 4 obs. [82]

binned B 4 LHCb [83]
Bs → µ+µ− B 1 ATLAS+CMS+LHCb world average [84]

Table 4. Summary of the experimental likelihoods used in our analysis. Binned branching ratios
(B) and angular observables (ang. obs.) are binned in the squared dimuon invariant mass q2. The
measurements cover the range from q2 ∼ 1 GeV2 to q2 ' 8 GeV. Present measurements of the
angular observables below ∼ 1 GeV2 suffer from inconsistent treatment of muon mass effects, and
are not used here. Bins above ' 8 GeV2 and below the J/ψ pole are presently not available. For the
Bs → φµ+µ− angular analysis of ref. [82], we marginalized the likelihood w.r.t. the CP-violating
observables Ai, which are not relevant to our analysis.

Analysis
SM BSM9,10

χ2 d.o.f. p value [%] χ2 d.o.f. p value [%]
B → Kµ+µ− 54 (23) 10 < 10−5 (1.1) —
B → K∗µ+µ− 106 (103) 103 41 (48) 99 (99) 101 53 (54)
Bs → φµ+µ− 19 (13) 9 2.7 (16) 13 (13) 7 6.9 (7.8)
Bs → µ+µ− & B → Kµ+µ− 59 (28) 11 < 10−5 (0.33) 20 (20) 9 1.7 (1.8)

Table 5. Summary of the goodness of fit at the respective best fit points for the individual analyses.
We provide two sets of values, the main numbers include both the theory priors and the experimental
likelihoods, while the values in parenthesis only account for the latter.

in the “SM” columns of table 5. In this table we give two values per each channel. The first
value is obtained by evaluating the χ2 of the experimental likelihoods and the multivariate
priors for the local and non-local FF parameters. The second value, given in parenthesis,
only accounts for the experimental likelihoods. Our findings can be summarized as follows:

• In our approach, the SM predictions of each individual B → K∗µ+µ− observable is
in good agreement with the data. The p value of the SM best-fit point exceed 40%
and doesn’t require a large departure from the local and non-local FF priors. This
observation differs from what can be found in the literature (see ref. [16] for a channel
specific analysis). The reason for this is partially explained by the input used for the
local FF fit. Performing the same analysis using the FF parameters of ref. [29] results
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Figure 4. Updated SM predictions for the normalized differential branching ratios and the opti-
mized angular observable P ′5, which we overlay with two BSM scenarios. The scenario labeled “BSM
best fit” corresponds to the process-specific BSM best-fit point of the likelihoods of figure 5. “BSM
benchmark” is obtained by setting CBSM

9 = −CBSM
10 = −0.5 and adapting all hadronic parameters.

The small uncertainty in the first bin of P ′5 compared to the literature is due to a smaller soft gluon
contribution [39].

in an increase of the tension. The tension between the SM prediction and the data
is dominated by the full angular distribution, which yields ∼ 90% of the overall χ2.

• A similar conclusion also apply, although to a lesser extend, to Bs → φµ+µ−. The SM
best-fit point can account for the experimental data with a p value of 16%. However,
this agreement requires a sizable distortion of the hadronic parameters, and especially
of the local FFs. Here again, the tension is smaller than in the literature due to local
FF inputs (see ref. [16] for a channel specific analysis). As can be seen in figure 1,
the inputs used in the present work imply larger uncertainty on these FFs, hereby
reducing the tension between the SM predictions and the measurements.

• For B → Kµ+µ−, the tension between the SM and the data is sizable. The SM
best-fit point can barely account for the semi-leptonic branching ratios, and this low
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agreement is only obtained through a large distortion of the local FFs. Note that
contrary to B → K∗µ+µ− and Bs → φµ+µ−, for the local FFs in B → Kµ+µ− we
use light-meson LCSR results that have smaller uncertainties than the corresponding
B-meson LCSR results (cf. section 3.1).

• We finally observe that for the three processes under consideration, the SM best-fit
points show an upper deviation with respect to the prior describing the moduli on
the ψ(2S). This produces a significant tension with respect to the measurements
of the B → Mψ(2S) branching ratios. This behavior is expected as it allows to
decrease the predicted semi-leptonic branching ratios in the physical region, as
required by the data.

4.2 BSM analysis

Analysis setup. As an outgrowth of our SM predictions, we conduct a simple BSM anal-
ysis, accounting model-independently for effects in the operators Oµ9 and Oµ10 only. Clearly,
this simple analysis should be followed up with an analysis that takes into account the full
basis of sbµµ operators at mass dimension six. However, it would require a magnitude
more in computing resources and time than what has been used in the present analysis.

Our analysis involves the theoretical likelihoods for the local and non-local FFs as
discussed in the previous section, the experimental likelihoods for the various measurements
listed in table 4, and non-informative (i.e., flat) priors for all fit parameters. Since we only fit
for Wilson coefficients in the sbµµ sector of the WET and we wish to emphasize the effects
of the non-local FFs, we choose not to include the lepton universality testing ratios RK(∗) .

Given the large number of parameters, we choose to conduct our BSM analysis as three
individual analyses, labeled B → Kµ+µ− + Bs → µ+µ−, B → K∗µ+µ−, Bs → φµ+µ−.
The combination of B → Kµ+µ− and Bs → µ+µ− data is required to simultaneously
constraint C9 and C10. All three analyses share independent but identical uniform priors
for the Wilson coefficients C9 and C10.

Since we choose to conduct three individual analyses, our application of the dispersive
bound is limited to the process under study, thereby weakening the bound somewhat. This
leads to posterior regions that are slightly more conservative than they could be. The three
analyses differ in their respective likelihoods and in the sets of hadronic parameters. Due
to the use of the absolute branching ratio of Bs → µ+µ− decay, the simultaneous analysis
of B → Kµ+µ− + Bs → µ+µ− requires additionally priors for the Wolfenstein CKM
parameters. The latter are chosen to be Gaussian as given in eq. (3.2). Except for the Bs
decay constant fBs , all hadronic parameters follow from our results in the previous section.
For this decay constant we use a univariate Gaussian prior of fBs = 0.2303±0.0013GeV [63].

Results. We show the three marginalized 2D posteriors for the individual likelihoods in
figure 5. We observe that the channel-specific results are in good agreement with each
other: the point (ReC9

BSM,ReC10
BSM) = (−1.0,+0.4) is compatible with all channels at

the ∼ 1σ level. This shift away from the SM point is compatible with albeit somewhat
larger than what has been discussed previously in the literature [85–89]. To compute the
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Figure 5. 1 and 2σ contours of the posterior samples of the CBSM
9 , CBSM

10 fit. All other Wilson
coefficients are assumed SM-like. The strong dispersive bound is applied to all samples. The pulls
are 5.7σ, 2.7σ and 2.6σ for B → Kµ+µ− + Bs → µ+µ−, B → K∗µ+µ−, and Bs → φµ+µ−,
respectively.

SM-pull in the marginalized posterior plane, we approximate the posterior distributions
with Gaussian mixture densities and compute the isobar of the distribution corresponding
to the SM point. We find pulls of 5.7σ, 2.7σ and 2.6σ for B → Kµ+µ− + Bs → µ+µ−,
B → K∗µ+µ−, and Bs → φµ+µ−, respectively.

A summary of our fit results is shown in the “BSM9,10” columns of table 5. We observe
a small improvement of the goodness-of-fit in B → K∗µ+µ− with respect to the SM fit,
as expected from our previous comments. For Bs → φµ+µ−, the global χ2 also improved,
resulting in larger p value, but the one associated to the experimental likelihood only
changed marginally. As can be inferred from the number in parenthesis, the best-fit point
can now be obtained without distortion of the hadronic parameters. The B → Kµ+µ− fit
is also improved in the presence of BSM physics, but a tension remains. We find that the
large χ2 value is driven by Belle 2019 measurement of the semi-leptonic branching ratio.
Being in agreement with SM predictions, this measurement is de facto in tension with the
measurements of the other collaborations.

From our results we conclude that the non-local FFs are not the source of the tension
between SM predictions and data: floating these FFs is insufficient to bring the three
processes in agreement with the SM. We also find that the local FFs are driving the
uncertainties. For the process Bs → φµ+µ− in particular, the tension with the SM increases
substantially when we use light-meson LCSR results [29] instead of the B-LCSR results [39]
for the local FFs; see the discussion in section 4.1.
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5 Conclusions and outlook

We have carried out the first global analysis of exclusive b→ sµ+µ− data within the frame-
work of parametrizable non-local form factors (FFs) [37, 39]. Our results include correlated
theory predictions for the local (tables 9–11) and non-local (tables 6–8) FFs as well as SM
predictions of the branching ratios (table 13) and the angular observables (table 12) for
the three processes B → Kµ+µ−, B → K∗µ+µ−, and Bs → φµ+µ−. Numerical results for
these quantities are attached to this article as supplementary material. All of our numerical
results have been obtained using the EOS software in version 1.0.3, which has been modified
for this purpose. Through EOS, we make both our analytical and numerical results available
to the community at large, for immediate use or for comparison with other software.

We compare our SM predictions to those obtained within the QCD factorization frame-
work, which is ubiquitously used in the literature. We find overall good agreement between
them, albeit with substantially larger uncertainties within our approach. We confront
our SM predictions with the large body of data available from various experiments. For
B → Kµ+µ−, we find substantial tensions between the SM predictions and the available
experimental data. For B → K∗µ+µ− and Bs → φµ+µ−, the tension is less pronounced,
dominantly due to the substantial uncertainties of their respective local FFs.

Our results further include simple, process-specific model-independent BSM analyses
of three available data sets. Our analyses are in mutual agreement with a BSM-induced
shift to the C9 and C10 Wilson coefficients in the sbµµ sector of the Weak Effective Theory:

(ReC9
BSM,ReC10

BSM) ' (−1.0,+0.4) .

We have not yet achieved a simultaneous global analysis of the data, which poses serious
computational obstacles. Chief among them ranks the fact that sampling from a posterior
with ∼ 140 parameters requires magnitudes more computation power and time than the
analyses presented here.

Our approach shows that a parametrization of the non-local FFs is viable large-scale
statistical analyses of exclusive b→ s`+`− processes, although nontrivial and computation-
ally expensive. This holds for producing SM predictions and (simple) BSM analyses of the
available data, which we illustrate at the hand of b→ sµ+µ−. Our results clearly illustrate
that systematic uncertainties due to the non-local FFs have now been transformed into
parametric uncertainties. Our results also show that the onus has been shifted toward the
local FFs, due to their dual role: they enter the observables directly at timelike q2, and
they produce the presently largest uncertainty in the prediction of the non-local FFs at
spacelike q2.

Our work is only the first step toward controlling the hadronic uncertainties due to
non-local FFs in a statistical analyses of the available data. It should and will be followed
up in future analyses, e.g., by

• performing a simultaneous analysis of the three decay modes;

• using LFU-probes such as RK , RK∗ and Rφ in the BSM analyses;

• using Λb → Λµ+µ− data to obtain complementary constraints on the BSM Wilson
coefficients.
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We wish to end on the message that our analysis is systematically improvable. Re-
ducing the uncertainties of the local FFs will reduce the overall uncertainties of the theory
predictions both within and beyond the SM more than linearly. We look forward to im-
pending updated and new lattice QCD analyses of the local B → K(∗) and Bs → φ FFs.
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A Definitions of local and non-local form factors

Form factors (FFs) are scalar-valued functions, which parametrize hadronic matrix elements
of exclusive semileptonic decay processes. In this appendix, we collect our definitions of
local and non-local FFs that are relevant to B → K(∗)`+`− and Bs → φ`+`− decays. Our
definitions coincide with the ones in ref. [39]. Throughout this work, the FFs are understood
to be functions of the squared dimuon mass m2

µ+µ− ≡ q2, i.e., FB→M(T ),λ ≡ FB→M(T ),λ (q2)
and HB→Mλ ≡ HB→Mλ (q2). Even though we focus on the B → K and B(s) → {K∗, φ}
transitions, the same definitions can be used for any B(s) → P (seudoscalar) and B(s) →
V (ector) transitions, respectively. Hence, in the following we do not specify the exclusive
final states but only their spin and parity.

A.1 B → P transitions

We define the B → P FFs as follows:

FB→Pµ (k,q)≡〈P (k)| s̄γµPL b |B̄(q+k)〉= 1
2
[
S0
µFB→P0 +StµFB→Pt

]
, (A.1)

FB→PT,µ (k,q)≡〈P (k)| s̄σµνqνPR b |B̄(q+k)〉= i

2MB S0
µFB→PT,0 , (A.2)

HB→Pµ (k,q)≡ i
∫
d4xeiq·x

×〈P (k)|T
{
jemµ (x),

(
C1Oc1 +C2Oc2 +

6∑
i=3

CiOi+C8O8

)
(0)
}
|B̄(q+k)〉

=M2
B S0

µHB→P0 , (A.3)
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where jemµ = ∑
pQpp̄γµp. In these definitions we have used the two independent B → P

Lorentz structures Sλµ :

S0
µ(k, q) ≡ 2kµ −

2(q · k)
q2 qµ , Stµ(k, q) ≡ M2

B −M2
P

q2 qµ , (A.4)

where λ = 0, t denotes either longitudinal or timelike polarization of the underlying current.
Our FF basis is related to traditional basis of local FFs (defined in, e.g., refs. [30, 90])

and the non-local FF HB→P of ref. [36] by

FB→P0 = fB→P+ , (A.5)
FB→Pt = fB→P0 , (A.6)

FB→PT,0 = q2

MB(MB +MK)f
B→P
T , (A.7)

HB→P0 = −Qc
q2

2M2
B

HB→P . (A.8)

The following identity holds at maximum recoil:

fB→P+ (q2 = 0) = fB→P0 (q2 = 0) . (A.9)

A.2 B → V transitions

We define the B → V FFs as follows:

FB→Vµ (k, q) ≡ 〈V (k, η)| s̄γµPL b |B̄(q + k)〉

= 1
2 η
∗α
[
S⊥αµFB→V⊥ − S‖αµFB→V‖ − S0

αµFB→V0 − StαµFB→Vt

]
, (A.10)

FB→VT,µ (k, q) ≡ 〈V (k, η)| s̄σµνqνPR b |B̄(q + k)〉

= i

2 MB η
∗α
[
S⊥αµFB→VT,⊥ − S‖αµFB→VT,‖ − S0

αµFB→VT,0

]
, (A.11)

HB→Vµ (k, q) ≡ i
∫
d4x eiq·x

× 〈V (k, η)| T
{
jemµ (x),

(
C1Oc1 + C2Oc2 +

6∑
i=3

CiOi + C8O8

)
(0)
}
|B̄(q + k)〉

= M2
B η
∗α
[
S⊥αµHB→V⊥ − S‖αµHB→V‖ − S0

αµHB→V0

]
. (A.12)

In the above, η is the polarization vector of the vector meson. In these definitions we have
used the four independent B → V Lorentz structures Sλαµ:

S⊥αµ(k, q) =
√

2MB√
λkin

εαµkq , S‖αµ(k, q) = iMB√
2

[
gαµ −

4(q · k)
λkin

qαkµ + 4M2
V

λkin
qαqµ

]
,

Stαµ(k, q) = 2iMV

q2 qαqµ , S0
αµ(k, q) = 4iMVM

2
B

q2λkin

[
q2qαkµ − (q · k) qαqµ

]
,

(A.13)

where λ =⊥, ‖, 0, t denotes the different polarisations of the underlying current, and λkin ≡
λ(M2

B,M
2
V , q

2) is the Källén function.
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Our FF basis is related to the traditional basis of local FFs (defined in, e.g., refs. [30,
90]) and the non-local FFs HB→Vi of ref. [36] by

FB→V⊥ =
√

2λkin
MB(MB +MV )V

B→V , (A.14)

FB→V‖ =
√

2 (MB +MV )
MB

AB→V1 , (A.15)

FB→V0 = (M2
B −M2

V − q2)(MB +MV )2AB→V1 − λkinAB→V2
2MVM2

B(MB +MV ) , (A.16)

FB→Vt = AB→V0 , (A.17)

FB→VT,⊥ =
√

2λkin
M2
B

TB→V1 , (A.18)

FB→VT,‖ =
√

2(M2
B −M2

V )
M2
B

TB→V2 , (A.19)

FB→VT,0 = q2(M2
B + 3M2

V − q2)
2M3

BMV
TB→V2 − q2λkin

2M3
BMV (M2

B −M2
V )T

B→V
3 , (A.20)

HB→V⊥ = Qc

√
λkin√
2M3

B

HB→V1 , (A.21)

HB→V‖ = −
√

2Qc
M2
B −M2

V

M3
B

HB→V2 , (A.22)

HB→V0 = −Qc
q2

2M4
BMV

[
(M2

B + 3M2
V − q2)HB→V2 − λkin

M2
B −M2

V

HB→V3

]
. (A.23)

The following identities hold at maximum recoil:

AB→V0 (q2 = 0) = MB +MV

2MV
AB→V1 (q2 = 0)− MB −MV

2MV
AB→V2 (q2 = 0) , (A.24)

TB→V1 (q2 = 0) = TB→V2 (q2 = 0) . (A.25)

B Decay and transversity amplitudes

In this appendix we list our definitions of the decay amplitudes and the transversity ampli-
tudes. We give our formulas explicitly for B → K and B → K∗ transitions, but analogous
formulas apply to, for example, Bs → φ. We use the notation introduced in appendix A.

B.1 B → K`+`−

We decompose the amplitude of B̄(p)→ K̄(k)`+(q1)`−(q2) as

AK`` ≡ GF αe VtbV
∗
ts√

2π

{
(C9 L

µ
V + C10 L

µ
A) FB→Kµ − LµV

q2

[
2imbC7FB→KT,µ + 16π2HB→Kµ

]}
≡ GF√

2
αe
4π

VtbV
∗
ts

NK``

{
(LµV − L

µ
A)S0

µAK``0,L + (LµV + LµA)S0
µAK``0,R − L

µ
AS

t
µAK``t

}
, (B.1)
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where

LµV (A) ≡ ū`(q1)γµ(γ5)v`(q2) , NK`` = GFαeVtbV
∗
ts

√√√√ β`λ
3/2
kin

3 · 210π5M3
B

, β` ≡

√
1− 4m2

`

q2 .

(B.2)
The transversity amplitudes in eq. (B.1) read

AK``λ,L(R) = NK``
{

(C9 ∓ C10)FB→Kλ + 2mbMB

q2

[
C7FB→KT,λ − 16π2MB

mb
HB→Kλ

]}
, (B.3)

with λ = 0, t and FB→KT,t = HB→Kt = 0. Since we restrict ourselves to the case where the
leptons in the final state have the same mass, the equality AK``t = AK``t,L −AK``t,R holds. The
definitions above — neglecting lepton masses — imply

dΓ(B̄ → K̄`+`−)
dq2 =

∣∣∣AK``0,L

∣∣∣2 +
∣∣∣AK``0,R

∣∣∣2 . (B.4)

In our numerical evaluation we account for nonzero lepton masses.

B.2 B → K∗`+`− and Bs → φ`+`−

We decompose the amplitude of B̄(p)→ K̄∗(k, η) `+(q1)`−(q2) as

AK∗`` ≡ GF αe VtbV
∗
ts√

2π

{
(C9 L

µ
V + C10 L

µ
A) FB→K∗µ − LµV

q2

[
2imbC7FB→K

∗
T,µ + 16π2HB→K∗µ

]}
≡ GF√

2
αe
4π

VtbV
∗
ts

NK∗``
η∗α

{
(LµV − L

µ
A)
[
S⊥αµAK

∗``
⊥,L − S‖αµAK

∗``
‖,L − S0

αµAK
∗``

0,L

]
+ (LµV + LµA)

[
S⊥αµAK

∗``
⊥,R − S‖αµAK

∗``
‖,R − S0

αµAK
∗``

0,R

]
+ LµAS

t
αµAK

∗``
t

}
. (B.5)

where

LµV (A) ≡ ū`(q1)γµ(γ5)v`(q2) , NK∗`` = GFαeVtbV
∗
ts

√
q2β`
√
λkin

3 · 210π5MB
. (B.6)

The transversity amplitudes in eq. (B.5) read

AK∗``λ,L(R) = NK∗``
{

(C9 ∓ C10)FB→K∗λ + 2mbMB

q2

[
C7FB→K

∗
T,λ − 16π2MB

mb
HB→K∗λ

]}
,

(B.7)
with λ =⊥, ‖, 0, t and FB→K∗T,t = HB→K∗t = 0. Since we restrict ourselves to the case where
the leptons in the final state have the same mass, the equality AK∗``t = AK∗``t,L −AK

∗``
t,R holds.

The definitions above — neglecting lepton masses — imply
dΓ(B̄ → K̄∗`+`−)

dq2 =
∑

χ=L,R

[∣∣∣AK∗``λ,χ

∣∣∣2 +
∣∣∣AK∗``λ,χ

∣∣∣2 + M2
B

q2

∣∣∣AK∗``λ,χ

∣∣∣2] . (B.8)

In our numerical evaluation we account for nonzero lepton masses.
The transversity amplitudes AK∗``λ,L(R) defined in eq. (B.7) are related to the transversity

amplitudes AK∗``λ,L(R) defined in, for instance, refs. [91, 92] via

AK
∗``
⊥,L(R) = AK∗``⊥,L(R) , AK

∗``
‖,L(R) = −AK∗``‖,L(R) ,

AK
∗``

0,L(R) = −MB√
q2A

K∗``
0,L(R) , AK

∗``
t = − 1

MB

√
λkin
q2 A

K∗``
t .

(B.9)
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B.3 B → Kψ

We decompose the B̄(p)→ K̄(k)ψ(q, ε) amplitude, with ψ = J/ψ, ψ(2S), as

AKψ ≡ 4GF√
2
VtbV

∗
ts 〈K̄(k)ψ(q, ε)|C1Oc1 + C2Oc2 +

6∑
i=3

CiOi + C8O8 |B̄(p)〉+O(VubV ∗us)

≡ 4GF√
2
VtbV

∗
ts

NKψ
ε∗µS0

µA
Kψ
0 +O(VubV ∗us) . (B.10)

where ε is the polarization vector of the vector charmonium ψ, and

NKψ ≡ GFVtbV ∗ts

√√√√ λ
3/2
kin

2πM3
BM

2
ψ

. (B.11)

The transversity amplitude in eq. (B.10) reads

AKψ0 = NKψ M2
B

Mψfψ
Res

q2→M2
ψ

HB→K0 (q2) , (B.12)

where fψ is the decay constant of the charmonium state considered. Note that in this case
the transversity amplitude only depends on the non-local FF HB→K0 and that

Res
q2→M2

J/ψ

HB→Mλ (q2) = Res
q2→M2

J/ψ

HB→Mc,λ (q2) .

This formula holds for B → K∗ψ and Bs → φψ decays as well. The definitions above
imply

Γ(B̄ → K̄ψ) =
∣∣∣AKψ0

∣∣∣2 . (B.13)

B.4 B → K∗ψ and Bs → φψ

We decompose the B̄(p)→ K̄∗(k, η)ψ(q, ε) amplitude, with ψ = J/ψ, ψ(2S), as

AK∗ψ ≡ 4GF√
2
VtbV

∗
ts 〈K̄∗(k, η)ψ(q, ε)|C1Oc1 + C2Oc2 +

6∑
i=3

CiOi + C8O8 |B̄(p)〉+O(VubV ∗us)

≡ 4GF√
2
VtbV

∗
ts

NK∗ψ
η∗αε∗µ

[
S⊥αµA

K∗ψ
⊥ − S‖αµA

K∗ψ
‖ − S0

αµA
K∗ψ
0

]
+O(VubV ∗us) , (B.14)

where ε is the polarization vector of the vector charmonium ψ, and

NK∗ψ ≡ GFVtbV ∗ts

√√
λkin

2πMB
. (B.15)

The transversity amplitudes in eq. (B.14) read

AK
∗ψ

λ = NK∗ψ M2
B

Mψfψ
Res

q2→M2
ψ

HB→K∗λ (q2) . (B.16)
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The definitions above imply

Γ(B̄ → K̄∗ψ) =
∣∣∣AK∗ψ⊥

∣∣∣2 +
∣∣∣AK∗ψ‖

∣∣∣2 + M2
B

M2
ψ

∣∣∣AK∗ψ0

∣∣∣2 . (B.17)

Our notation for transversity amplitudes AK
∗ψ

λ defined in eq. (B.14) is related to notation
for the transversity amplitudes AK

∗ψ
λ adopted by the LHCb collaboration (see, e.g., ref. [67])

through the equalities

∣∣∣AK∗ψ⊥

∣∣∣=
∣∣∣AK∗ψ⊥

∣∣∣√
Γ(B̄→ K̄∗ψ)

,
∣∣∣AK∗ψ‖

∣∣∣=
∣∣∣AK∗ψ‖

∣∣∣√
Γ(B̄→ K̄∗ψ)

,
∣∣∣AK∗ψ0

∣∣∣= MB

Mψ

∣∣∣AK∗ψ0

∣∣∣√
Γ(B̄→ K̄∗ψ)

.

(B.18)

B.5 B → K∗γ and Bs → φγ

We decompose the amplitude of B̄(p)→ K̄∗(k, η) γ(q, ε) as

AK∗γ ≡ −i
4GF√

2
e

16π2VtbV
∗
ts ε
∗µ
{

2mbC7FB→K
∗

T,µ − i16π2HB→K∗µ

}
≡ 4GF√

2
e

16π2
VtbV

∗
ts

NK∗γ
η∗αε∗µ

[
S⊥αµA

K∗γ
⊥ − S‖αµA

K∗γ
‖

]
, (B.19)

where ε is the polarization vector of the photon, and

NK∗γ = GFVtbV
∗
ts

√
αeMB(M2

B −M2
K∗)

27π4 . (B.20)

The transversity amplitudes in eq. (B.19) read

AK
∗γ

λ ≡ NK∗γ
(
mbC7FB→K

∗
T,λ − 16π2MBHB→K

∗
λ

)
, (B.21)

with λ =⊥, ‖. The definitions above imply

Γ(B̄ → K̄∗γ) =
∣∣∣AK∗γ⊥

∣∣∣2 +
∣∣∣AK∗γ‖

∣∣∣2 . (B.22)

C Contribution of HB→M
sb,µ in QCD factorization

Our approach allows to parametrize exclusively the non-local matrix element HB→Mc,µ de-
fined in eq. (2.8). The matrix element HB→Msb,µ ≡ HB→Ms,µ +HB→Mb,µ is added to our results for
HB→Mc,µ . The latter is computed using formulas given in refs. [22, 46], which are obtained in
the framework of QCD factorization. In this appendix, we give explicitly the formulas that
we use to evaluate HB→Msb,µ . We neglect HB→Mu,µ and HB→Md,µ , because their contributions
are suppressed by small Wilson coefficients.

Starting from eq. (15) of ref. [22], we compute HB→Msb,µ with the following adaptations:

• We remove all contributions proportional to Qc, since they are already accounted for
by HB→Mc,µ .

• We remove all factorizable contributions, since they are already accounted for by the
local FFs FB→Mµ and FB→MT,µ .
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C.1 B → K`+`−

Using the results of refs. [22, 93], one obtains

HB→Ksb,0 = − 1
16π2 tF

B→K
0 − 1

16π2 tT F
B→K
0,T − twa , (C.1)

where

t = s

2M2
B

(
Y

(t)
sb −

αs
4π
(
C2F

(9)
2,sb + C1F

(9)
1,sb + Ceff

8 F
(9)
8

))
, (C.2)

tT = − αs
4π

mb

MB

((
C2 −

C1
6

)
F

(7)
2,sb + Ceff

8 F
(7)
8

)
, (C.3)

twa = mb s fBfP
16M4

BNc

∫
dω

ω
ΦB,−(ω)

∫ 1

0
duΦK(u)T0,−(u, ω) . (C.4)

The F
(j)
i,sb functions are given in ref. [38], while the functions F

(9)
8 and T0,−(u, ω) =

−T‖,−(u, ω) are given in ref. [22]. We have also introduce the notation

Y
(t)
sb = −1

2

(
7C3 + 4

3 C4 + 76C5 + 64
3 C6

)
h(q2,mb)

− 1
2

(
C3 + 4

3 C4 + 16C5 + 64
3 C6

)
h(q2, 0) (C.5)

+ 2
9

(
6C3 + 32C5 + 32

3 C6

)
,

where h(q2,m) is defined in eq. (11) of ref. [22].

C.2 B → K∗`+`− and Bs → φ`+`−

Using the results of ref. [22], one obtains

HB→K∗sb,λ = − 1
16π2 tF

B→K∗
λ − 1

16π2 tT F
B→K∗
T,λ − δλ0twa , (C.6)

where

t = s

2M2
B

(
Y

(t)
sb −

αs
4π
(
C2F

(9)
2,sb + C1F

(9)
1,sb + Ceff

8 F
(9)
8

))
, (C.7)

tT = −αs4π
mb

MB

((
C2 −

C1
6

)
F

(7)
2,sb + Ceff

8 F
(7)
8

)
, (C.8)

twa = − mbsλkin
32M5

BNc(M2
B −m2

V )
fBfV
E

∫
dω

ω
ΦB,−(ω)

∫ 1

0
duΦV,‖(u)T‖,−(u, ω) . (C.9)

In the equations above, we have used the same notation as in the B → K`+`− case.
For the evaluation the non-local FFs HBs→φsb,λ , we use eqs. (C.6)–(C.9) replacing the

B → K∗ local FFs with the Bs → φ ones and taking into account that the function
T‖,−(u, ω) in the weak annihilation term is slightly different [46].
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D Dispersive bound

Dispersive bounds (or unitarity bounds) are constraints on the FFs. They have been origi-
nally applied to kaon decays more than half a century ago [94–97], and then in the nineties
to B-meson decays (see, e.g., refs. [98–101]). They have been and still are successfully used
to control the truncation error of the various parametrizations needed to extrapolate (or
interpolate) the local FFs in the whole physically-allowed region.

In ref. [39], three of us extended this method to the non-local FFs in B → M`+`−

decays for the first time. The formulation of a dispersive bound for non-local FFs is much
more involved than the one for local FFs. This is due to the complicated analytic structure
of the non-local FFs, where the energy of the first branch point at 4M2

D is smaller than
the threshold (MB + MM )2. Conversely, the lowest-energy branch point of the local FFs
coincides with the threshold (MB +MM )2.

In this appendix we summarize the derivation of the bound of ref. [39], to which we
refer for further details. We also complement the derivation ref. [39] by including the one-
particle contribution and the penguin operators O3,...,6; the operator O8 does not contribute
at the precision we are working at.

To obtain the dispersive bound for non-local FFs HB→Mc,λ we define the correlator

Πµν(q) ≡ i
∫
d4x eiq·x 〈0| T

{
Oµ(q;x), Oν,†(q; 0)

}
|0〉 =

(
qµqν

q2 − g
µν
)

Π(q2) , (D.1)

where

Oµ(q;x) =
(
−16π2i

q2

)∫
d4y e+iq·y T

{
c̄γµc(x+ y),

(
C1Oc1 + C2Oc2 +

6∑
i=3

CiOi

)
(x)
}
,

Oν,†(q; 0) =
(

+16π2i

q2

)∫
d4z e−iq·z T

{
c̄γµc(z),

(
C1Oc1 + C2Oc2 +

6∑
i=3

CiOi

)
(0)
}
. (D.2)

We are only interested in the discontinuity of the correlator Π due to on-shell intermediate
states with flavor quantum numbers B = −S = −1, which we label Discbs̄ Π. We use it to
define a new function χ via a doubly-subtracted dispersion relation:

χ(−m2
b) ≡

1
2iπ

∞∫
0

ds
Discbs̄ Π(s)
(s+m2

b)3 , (D.3)

where we have already chosen −m2
b as subtraction point.

The function χ can be calculated using the local OPE proposed in refs. [102, 103].
This calculation is described in detail in ref. [39]. The inclusion of the penguin operators
changes only the prefactor of the function f (9)

LO defined in ref. [38]:

CFC1 + C2 → CFC1 + C2 + 6C3 + 60C5 . (D.4)

The O (αs) corrections of the penguin operators to the corresponding matching coefficient
have not yet been calculated and hence we neglect them. The Wilson coefficients C3 and
C5 are numerically small, thus the value of χ found in ref. [39] remains unchanged:

χOPE(−m2
b) = (1.81± 0.02) · 10−4 GeV−2 . (D.5)
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The discontinuity Discbs̄ Π can be expressed in terms of hadronic quantities using
unitarity:

Discbs̄ Πhad(s) = i

(
qµqν

s
− gµν

)∑∫
Γ

dρΓ (2π)4δ(4)(pΓ − q) 〈0|Oµ(q; 0)|Γ〉〈Γ|O†,ν(q; 0)|0〉 ,

(D.6)
where s = q·q and the sum runs over all on-shell hadronic states Γ. TheB∗s meson is the only
one-particle state below the threshold (MB + MM )2 with a non-vanishing contribution.3
Its contribution to Discbs̄ Π reads

Disc1−pt
bs̄ Πhad(s) = 2

3 iπ
(
qµqν

s
− gµν

)
〈0|Oµ|B∗s 〉 〈B∗s |O†,ν |0〉 δ(s−M2

B∗s
) . (D.7)

The matrix element in this equation can be estimated using again the local OPE:

〈0|Oµ(q; 0)|B∗s 〉 '
1
2C3,1(M2

B∗s
)
(
gµα − qµqα

M2
B∗s

)
〈0|s̄γαb|B∗s 〉 , (D.8)

where C3,1 is defined as in eq. (3.6) of ref. [39]. Using the definition of the B∗s decay
constant

〈0|s̄γαb|B∗s 〉 = iηαMB∗s fB∗s , (D.9)

where ηα is the B∗s polarization vector, the function Disc1−pt
bs̄ Π can be written as

Disc1−pt
bs̄ Πhad(s) = i

π

2
∣∣∣C3,1(M2

B∗s
)
∣∣∣2M2

B∗s
f2
B∗s
δ(s−M2

B∗s
) . (D.10)

We can now estimate the numerical contribution of the B∗s to χhad. We find

χ1-pt(−m2
b) = 1.53 · 10−6 GeV−2 . (D.11)

This contribution is very small compared to χOPE and hence we conclude that the one-
particle contribution has no impact on the dispersive bound. A large one-particle contri-
bution — like in the case of the dispersive bounds for the local B → D∗ FFs — would have
made the dispersive bound for the FFs HB→Mc,λ more constraining.

Following ref. [39], we replace the definitions of the B →M non-local FFs of appendix A
in eq. (D.6). Thus, the contribution to Discbs̄ Π of the BK, BK∗, and Bsφ states can be
written as

3
32iπ3 Discbs̄Πhad(s)= 2M4

Bλ
3/2(M2

B,M
2
K ,s)

s4

∣∣∣HB→Kc,0 (s)
∣∣∣2θ(s−sB→K∗+ )

+
2M6

B

√
λ(M2

B ,M
2
K∗ ,s)

s3

(∣∣∣HB→K∗c,⊥ (s)
∣∣∣2+

∣∣∣HB→K∗c,‖ (s)
∣∣∣2+M2

B

s

∣∣∣HB→K∗c,0 (s)
∣∣∣2)θ(s−sB→K∗+ )

+
M6
B

√
λ(M2

Bs
,M2

φ,s)
s3

(∣∣∣HBs→φc,⊥ (s)
∣∣∣2+

∣∣∣HBs→φc,‖ (s)
∣∣∣2+

M2
Bs

s

∣∣∣HBs→φc,0 (s)
∣∣∣2)θ(s−sBs→φ+ )

+.... (D.12)
3Resonances above the threshold (MB+MM )2 are considered features of a multi-body branch cut, rather

than one-particle contributions.
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Here, sB→M+ ≡ ŝ+ ≡ (MB +MM )2 and the ellipsis denote the contribution of further states
with the right quantum numbers.

We can now insert the OPE result (D.5) and the hadronic representation of Discbs̄ Π
of eq. (D.12) into the dispersion relation (D.3):

χOPE(−m2
b) = 32π2

3

∞∫
sB→K+

ds
M4
B λ

3/2(M2
B,M

2
K , s)

s4(s+m2
b)3

∣∣∣HB→Kc,0 (s)
∣∣∣2

+ 32π2

3

∞∫
sB→K

∗
+

ds
M6
B

√
λ(M2

B ,M
2
K∗ , s)

s3(s+m2
b)3

 ∑
λ=⊥,‖

∣∣∣HB→K∗c,λ (s)
∣∣∣2 + M2

B

s

∣∣∣HB→K∗c,0 (s)
∣∣∣2


+ 16π2

3

∞∫
sBs→φ+

ds
M6
Bs

√
λ(M2

Bs
,M2

φ, s)
s3(s+m2

b)3

 ∑
λ=⊥,‖

∣∣∣HBs→φc,λ (s)
∣∣∣2 +

M2
Bs

s

∣∣∣HBs→φc,0 (s)
∣∣∣2


+ . . . . (D.13)

We call this equation the dispersive bound. Using the change of variable (2.17), the whole
complex s-plane is mapped into the unit disk of the ẑ-plane. In particular, the integration
between ŝ+ and infinity becomes an integration over an arc of the unit circle. We then
define the functions

ĤB→Pc,0 (ẑ) ≡ φB→P0 (ẑ)P(ẑ)HB→Pc,0 (ẑ) , (D.14)
ĤB→Vc,λ (ẑ) ≡ φB→Vλ (ẑ)P(ẑ)HB→Vc,λ (ẑ) , (D.15)

which allow us to write eq. (D.13) as (using ẑ = eiα)

1 > 2
+αB→K∫
−αB→K

dα
∣∣∣ĤB→Kc,0 (eiα)

∣∣∣2 +
∑
λ

 2
+αB→K∗∫
−αB→K∗

dα
∣∣∣ĤB→K∗c,λ (eiα)

∣∣∣2 +
+αBs→φ∫
−αBs→φ

dα
∣∣∣ĤBs→φc,λ (z(α))

∣∣∣2
 .

(D.16)
where αB→M ≡

∣∣ arg ẑ(ŝ+)
∣∣. The outer functions φB→Mλ are defined such that they are free

of kinematical singularities and the dispersive bound (D.13) can be written in the simpler
form of eq. (D.16). Their analytical expression can be found in appendix C of ref. [39].
The Blaschke factor P removes the dynamical singularities of HB→Mc,λ , so that the ĤB→Mc,λ

is analytic in the open unit disk. They are defined as in ref. [39]:

P(ẑ) ≡
∏

ψ=J/ψ,ψ(2S)

ẑ − ẑψ
1− ẑ ẑ∗ψ

, (D.17)

where ẑψ = ẑ(s = M2
ψ).

The functions ĤB→Vc,λ are expanded in a series of orthonormal polynomials in the arc
of the unit circle between −αB→M and +αB→M :

ĤB→Mλ (ẑ) =
∞∑
n=0

βB→Mλ,n pn(ẑ) . (D.18)
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The polynomials up to order seven are available in the public EOS code [56], see also
appendix E. Inserting the expansion (D.18) into eq. (D.16) the dispersive bound can be
finally written as

∞∑
n=0

2
∣∣∣βB→K0,n

∣∣∣2 +
∑

λ=⊥,‖,0

[
2
∣∣∣βB→K∗λ,n

∣∣∣2 +
∣∣∣βBs→φλ,n

∣∣∣2]
 < 1 .

This inequality is of paramount importance for the study of the non-local FFs HB→Mc,λ .
It implies that the coefficients of the polynomials pn are bounded by model independent
constraints. Clearly, the bound becomes more constraining when considering B → K,
B → K∗, and Bs → φ non-local FFs simultaneously. In principle, one could also add
additional channels to saturate the bound, such as Λb → Λ`+`− or any multibody decay
mediated by b→ s`+`− transitions.

E Details on the parametrization of non-local form factors

The polynomials pn of the parametrization (2.16) are — up to a normalization factor —
Szegő polynomials [55]. As such, they can be obtained via the following recurrence relation:

Φ0(ẑ) = 1 , Φ∗0(ẑ) = 1 ,
Φn(ẑ) = ẑΦn−1 − ρn−1Φ∗n−1 , Φ∗n(ẑ) = Φ∗n−1 − ρn−1ẑΦn−1 ,

(E.1)

which holds for real z. The orthonormal polynomials then follow from

pn(ẑ) = Φn(ẑ)
Nn

, Nn =
[
2αB→M

n−1∏
i=0

(
1− ρ2

i

)]1/2

, (E.2)

where αB→M ≡
∣∣ arg ẑ(ŝ+)

∣∣ and the Verblunsky coefficients ρi are obtained from an or-
thogonalization procedure. For ŝ0 = 4GeV2 we find

2αB→M ,{ρ0, . . .ρ5}= (E.3)

=


2.482,{0.7623,−0.7982,0.8072,−0.8101,0.8114,−0.8121} for B→K ,

2.276,{0.7977,−0.8298,0.8372,−0.8396,0.8406,−0.8412} for B→K∗ ,

2.183,{0.8129,−0.8432,0.8500,−0.8522,0.8531,−0.8536} for Bs→φ.

The coefficients βB→Mλ,n of the parametrization (2.16) are constrained by the dispersive
bound eq. (2.19). However, the non-linear experimental constraints at the J/ψ pole as well
as the parametric correlations due to the presence of the bound imply that the posterior
distributions of these coefficients are not Gaussian. This makes the estimation of parametric
uncertainties very challenging. Hence, we introduce an intermediate step to perform our
fits: the analytic functions ĤB→Mc,λ defined in eqs. (D.14)–(D.15) are first fitted using ad hoc
Lagrange basis polynomials in ẑ. Our fifth order Lagrange basis polynomials are defined
such that they interpolate ĤB→Mc,λ at the following points:

ẑi ∈ {ẑ(−7GeV2), ẑ(−5GeV2), ẑ(−3GeV2), ẑ(−1GeV2), ẑ(m2
J/ψ), ẑ(m2

ψ(2S))} . (E.4)
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The resulting parametrization reads

ĤB→Mc,λ (ẑ)
∣∣∣
n≤5

=
5∑
i=0

hB→Mλ,i `i(ẑ) , (E.5)

where `i(ẑj) ≡ δij are the Lagrange basis polynomials of degree five, and hB→Mλ,i ≡
ĤB→Mc,λ (ẑi). For convenience, the complex ĤB→Mc,λ values at negative q2 are described with
Cartesian coordinates, while residues on the charmonium poles are described with polar co-
ordinates. Since no phenomenological constraint is used at the ψ(2S) pole, the correspond-
ing values are left unconstrained and allow an estimation of the parametric uncertainty.

The use of Lagrange basis polynomials ensures that the posterior distributions of the
parameters hB→Mλ,i are Gaussian distributed before the application of the bound. This is
confirmed empirically by the excellent description of these distributions by multivariate
Gaussian distributions. The perplexity of the posterior samples is in excess of 99%. The
ancillary files BToK-hatH.yaml, BToKstar-hatH.yaml, BsToPhi-hatH.yaml contain the
multivariate Gaussian distributions that describe the posteriors for the three channels. The
mean values and standard deviations of the parameters are also given in tables 6–8. Note
that we have not yet enforced the dispersive bound to the intermediate results presented
in either the ancillary files or in the tables; users are expected to apply the bounds in their
analyses. We apply the bound to the coefficients βB→Mλ,n of eq. (2.16) through the following
procedure:

1. We draw samples of the Lagrange polynomials parameters from the distributions
described in the ancillary files. The parameters that are not fixed in our fit are
varied uniformly in the ranges provide in tables 6–8.

2. We perform a change of basis from the Lagrange polynomials to the orthonormal
polynomials pn. The change of basis is achieved by evaluating the r.h.s. of eqs. (D.18)
and (E.5) at an interpolated point ẑi. It reads

βB→Mλ,n =
(
P−1

)
ni
hB→Mi with Pin ≡ pn(ẑi) . (E.6)

We emphasize that the βB→Mλ,n samples are not Gaussian distributed.

3. We subsequently apply the dispersive bound to the βB→Mλ,n samples using the proce-
dure discussed in section 3.3.

Our theory predictions are then obtained using these weighted samples of the βB→Mλ,n coef-
ficients.

F Our results in a nutshell

For the reader’s convenience, in this appendix we organize our results schematically and
refer to the table, figure or ancillary file where they can be found. We also provide supple-
mental tables and figures. Additional material can be obtained upon request.
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ẑi Parameter Posterior

ẑ(−7GeV2)
Re ĤB→Kc,0 (4.0± 2.1)× 10−5

Im ĤB→Kc,0 (−4.2± 1.0)× 10−6

ẑ(−5GeV2)
Re ĤB→Kc,0 (10.0± 2.1)× 10−5

Im ĤB→Kc,0 (−5.2± 1.2)× 10−6

ẑ(−3GeV2)
Re ĤB→Kc,0 (16.3± 2.1)× 10−5

Im ĤB→Kc,0 (−6.6± 1.4)× 10−6

ẑ(−1GeV2)
Re ĤB→Kc,0 (23.0± 3.0)× 10−5

Im ĤB→Kc,0 (−8.4± 1.7)× 10−6

ẑ(m2
J/ψ)

Abs ĤB→Kc,0 (1.225± 0.013)× 10−3

Arg ĤB→Kc,0 [0, 2π](?)

ẑ(m2
ψ(2S))

Abs ĤB→Kc,0 [0, 0.5](?)

Arg ĤB→Kc,0 [0, 2π](?)

Table 6. Posteriors of the B → K non-local FFs fit. The ranges of the parameters that are not
constrained in the fit are marked with a star (?). These large ranges contain more than 99% of the
posterior probability. They are suggested by the authors to reproduce the results of this work, as
described in the text. The multinormal distribution describing the constrained parameters is given
in the ancillary file BToK-hatH.yaml.

ẑi Parameter
Posterior

λ=⊥ λ=‖ λ= 0

ẑ(−7GeV2)
ReĤB→K

∗
c,λ (1.781±0.092)×10−4 (1.801±0.086)×10−4 (−0.6±2.3)×10−5

ImĤB→K
∗

c,λ (5.88±0.60)×10−6 (5.87±0.58)×10−6 (−4.9±1.1)×10−6

ẑ(−5GeV2)
ReĤB→K

∗
c,λ (1.861±0.097)×10−4 (1.882±0.088)×10−4 (4.4±2.2)×10−5

ImĤB→K
∗

c,λ (6.90±0.73)×10−6 (6.87±0.70)×10−6 (−6.0±1.2)×10−6

ẑ(−3GeV2)
ReĤB→K

∗
c,λ (1.87±0.10)×10−4 (1.887±0.093)×10−4 (9.6±2.1)×10−5

ImĤB→K
∗

c,λ (8.18±0.91)×10−6 (8.14±0.087)×10−6 (−7.5±1.4)×10−6

ẑ(−1GeV2)
ReĤB→K

∗
c,λ (1.78±0.13)×10−4 (1.78±0.12)×10−4 (1.55±0.28)×10−4

ImĤB→K
∗

c,λ (9.8±1.2)×10−6 (9.7±1.2)×10−6 (−9.5±1.8)×10−6

ẑ(m2
J/ψ)

AbsĤB→K
∗

c,λ (3.491±0.096)×10−4 (3.71±0.11)×10−4 (1.104±0.020)×10−3

ArgĤB→K
∗

c,λ 2.940±0.028 3.343±0.036 [0,2π](?)

ẑ(m2
ψ(2S))

AbsĤB→K
∗

c,λ [0,0.3](?) [0,0.3](?) [0,0.3](?)

ArgĤB→K
∗

c,λ [0,2π](?) [0,2π](?) [0,2π](?)

Table 7. Posteriors of the B → K∗ non-local FFs fit. The ranges of the parameters that are not
constrained in the fit are marked with a star (?). These large ranges contain more than 99% of the
posterior probability. They are suggested by the authors to reproduce the results of this work, as
described in the text. The multinormal distribution describing the constrained parameters is given
in the ancillary file BToKstar-hatH.yaml.
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ẑi Parameter
Posterior

λ =⊥ λ =‖ λ = 0

ẑ(−7GeV2)
Re ĤBs→φ

c,λ (2.03± 0.18)× 10−4 (2.02± 0.15)× 10−4 (−1.8± 4.4)× 10−5

Im ĤBs→φ
c,λ (6.74± 0.88)× 10−6 (6.58± 0.80)× 10−6 (−6.1± 1.9)× 10−6

ẑ(−5GeV2)
Re ĤBs→φ

c,λ (2.11± 0.19)× 10−4 (2.11± 0.16)× 10−4 (4.2± 4.0)× 10−5

Im ĤBs→φ
c,λ (7.9± 1.0)× 10−6 (7.69± 0.92)× 10−6 (−7.3± 1.9)× 10−6

ẑ(−3GeV2)
Re ĤBs→φ

c,λ (2.1± 0.21)× 10−4 (2.11± 0.16)× 10−4 (1.10± 0.38)× 10−4

Im ĤBs→φ
c,λ (9.3± 1.3)× 10−6 (9.1± 1.1)× 10−6 (−9.0± 2.2)× 10−6

ẑ(−1GeV2)
Re ĤBs→φ

c,λ (1.99± 0.23)× 10−4 (1.99± 0.18)× 10−4 (1.84± 0.42)× 10−4

Im ĤBs→φ
c,λ (1.10± 0.17)× 10−5 (1.10± 0.15)× 10−5 (−1.14± 0.25)× 10−5

ẑ(m2
J/ψ)

Abs ĤBs→φ
c,λ (3.62± 0.14)× 10−4 (3.56± 0.13)× 10−4 (9.90± 0.37)× 10−4

Arg ĤBs→φ
c,λ 2.62± 0.15 3.078± 0.066 [0, 2π](?)

ẑ(m2
ψ(2S))

Abs ĤBs→φ
c,λ [0, 0.3](?) [0, 0.3](?) [0, 0.3](?)

Arg ĤBs→φ
c,λ [0, 2π](?) [0, 2π](?) [0, 2π](?)

Table 8. Posteriors of the Bs → φ non-local FFs fit. The ranges of the parameters that are not
constrained in the fit are marked with a star (?). These large ranges contain more than 99% of the
posterior probability. They are suggested by the authors to reproduce the results of this work, as
described in the text. The multinormal distribution describing the constrained parameters is given
in the ancillary file BsToPhi-hatH.yaml.

Coefficient This work Ref. [30] Coefficient This work Ref. [30]
α+

0 0.39± 0.02 0.33± 0.02 αT0 0.36± 0.02 0.30± 0.03
α+

1 −0.56± 0.16 −0.87± 0.14 αT1 −0.71± 0.19 −0.77± 0.15
α+

2 0.36± 0.37 0.01± 0.75 αT2 0.07± 0.42 0.01± 0.87

α0
1 0.72± 0.14 0.20± 0.17
α0

2 0.66± 0.25 −0.45± 0.41

Table 9. Posteriors of the B → K local FFs fit. We have used the exact relation (A.9) to reduce
the number of parameters to 8. The posterior distribution is accurately described with a single mul-
tivariate Gaussian distribution, whose parameters are given in the ancillary file BToK-local.yaml.
We compare our results to those of ref. [30].

Local form factors. Tables 9–11 contain the central value and the standard deviation of
the coefficients of the parametrization (2.10). The correlations between these coefficients
are given in the ancillary files BToKstar-local.yaml, BsToPhi-local.yaml and BToK-
local.yaml. We compare our results with those of refs. [29, 30] for the FFs fB→K+ , AB→K∗1 ,
and ABs→φ1 in figure 1.

Non-local form factors. Tables 6–8 contain the central value and the standard de-
viation of the posteriors of the analytic functions ĤB→Mc,λ defined in eqs. (D.14)–(D.15)
at q2 = {−7GeV2,−5GeV2,−3GeV2,−1GeV2, m2

J/ψ,m
2
ψ(2S)} . The correlations of each

of these functions across the different q2 points are given in the ancillary files BToK-
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Coefficient This work Ref. [29] Coefficient This work Ref. [29]
αA0

0 0.34± 0.03 0.37± 0.03 αT1
0 0.32± 0.02 0.31± 0.03

αA0
1 −1.12± 0.20 −1.37± 0.26 αT1

1 −0.95± 0.14 −1.01± 0.19
αA0

2 2.18± 1.76 0.13± 1.63 αT1
2 2.11± 1.28 1.53± 1.64

αA1
0 0.29± 0.02 0.30± 0.03 αT23

0 0.62± 0.03 0.67± 0.06
αA1

1 0.46± 0.13 0.39± 0.19 αT23
1 0.97± 0.32 1.32± 0.22

αA1
2 1.22± 0.73 1.19± 1.03 αT23

2 1.81± 2.45 3.82± 2.20

αA12
1 0.55± 0.34 0.53± 0.13 αT2

1 0.60± 0.18 0.50± 0.17
αA12

2 0.58± 2.08 0.48± 0.66 αT2
2 1.70± 0.99 1.61± 0.80

αV0 0.36± 0.03 0.38± 0.03
αV1 −1.09± 0.17 −1.17± 0.26
αV2 2.73± 1.99 2.42± 1.53

Table 10. Posteriors of the B → K∗ local FFs fit. We used the exact relations (A.24)–(A.25)
to reduce the number of parameters to 19. The posterior distribution is accurately described
with a single multivariate Gaussian distribution, whose parameters are given in the ancillary file
BToKstar-local.yaml. We compare our results to those of ref. [29].

Coefficient This work Ref. [29] Coefficient This work Ref. [29]
αA0

0 0.38± 0.04 0.42± 0.02 αT1
0 0.34± 0.04 0.30± 0.01

αA0
1 −1.26± 0.40 −0.98± 0.24 αT1

1 −0.77± 0.32 −1.10± 0.08
αA0

2 2.83± 3.83 3.27± 1.36 αT1
2 0.93± 2.76 0.58± 1.00

αA1
0 0.30± 0.03 0.29± 0.01 αT23

0 0.64± 0.06 0.65± 0.04
αA1

1 0.48± 0.30 0.35± 0.10 αT23
1 1.18± 0.69 2.10± 0.33

αA1
2 1.99± 1.84 1.70± 0.79 αT23

2 1.78± 5.14 6.74± 1.80

αA12
1 0.33± 0.54 0.95± 0.13 αT2

1 0.74± 0.43 0.40± 0.08
αA12

2 −0.60± 3.19 2.15± 0.48 αT2
2 1.93± 2.59 1.04± 0.61

αV0 0.38± 0.05 0.36± 0.01
αV1 −0.91± 0.39 −1.22± 0.16
αV2 3.80± 4.09 3.74± 1.73

Table 11. Posteriors of the Bs → φ local FFs fit. We used the exact relations (A.24)–(A.25)
to reduce the number of parameters to 19. The posterior distribution is accurately described
with a single multivariate Gaussian distribution, whose parameters are given in the ancillary file
BsToPhi-local.yaml. We compare our results to those of ref. [29].
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Process q2 bin FL[10−1] S3[10−2] S4[10−1] S5[10−1] AFB[10−1] S7[10−2] S8[10−3] S9[10−4]
B

0
→
K
∗0
µ

+
µ
− [0.1,0.98] 3.00+0.45

−0.32 1.17+0.28
−0.24 0.92+0.02

−0.04 2.39+0.08
−0.07 −0.97+0.05

−0.05 −0.99+0.09
−0.10 −6.62+0.39

−0.69 −3.77+1.06
−1.78

[1.1,2.5] 7.68+0.30
−0.41 0.40+0.21

−0.16 −0.09+0.12
−0.08 0.66+0.20

−0.25 −1.53+0.21
−0.27 −1.17+0.25

−0.25 −6.22+1.25
−1.70 −4.04+2.55

−3.00

[2.5,4.0] 8.08+0.19
−0.28 −1.02+0.43

−0.34 −1.42+0.13
−0.09 −1.87+0.27

−0.35 −0.29+0.16
−0.27 −0.89+0.35

−0.52 −3.80+2.71
−2.35 −3.91+3.05

−3.80

[4.0,6.0] 7.18+0.27
−0.34 −2.48+0.87

−0.56 −2.21+0.12
−0.10 −3.37+0.22

−0.35 1.19+0.25
−0.28 −0.67+0.64

−0.64 −2.74+4.14
−4.72 −6.12+9.00

−7.29

[6.0,8.0] 6.07+0.31
−0.49 −4.06+1.44

−0.82 -2.57+0.11
−0.09 −4.05+0.34

−0.30 2.45+0.30
−0.46 −0.36+1.10

−1.58 −3.99+8.91
−4.65 14.2+41.1

−34.0

B
s
→
φ
µ

+
µ
− [0.1,0.98] 3.30+0.48

−0.49 1.26+0.55
−0.57 0.94+0.04

−0.04 2.46+0.09
−0.11 −0.91+0.07

−0.07 −1.14+0.11
−0.12 −2.31+0.45

−0.62 −4.11+2.32
−2.30

[1.1,4.0] 8.05+0.31
−0.34 −0.44+0.37

−0.38 −0.74+0.18
−0.17 −0.38+0.45

−0.45 −0.87+0.21
−0.26 −1.38+0.47

−0.52 −3.59+2.48
−2.83 −4.46+3.92

−4.90

[4.0,6.0] 7.54+0.39
−0.43 −3.01+1.17

−1.29 −2.18+0.20
−0.15 −3.00+0.61

−0.47 0.91+0.44
−0.43 −0.90+0.99

−0.95 −2.66+5.41
−6.55 4.60+13.3

−14.9

[6.0,8.0] 6.55+0.51
−0.56 −4.92+1.79

−1.88 −2.58+0.20
−0.15 −3.66+0.58

−0.49 1.98+0.66
−0.63 −0.63+1.67

−1.77 −2.89+11.8
−12.4 −9.41+53.3

−57.2

Table 12. SM predictions for the angular observables for the B0 → K∗0µ+µ− and Bs → φµ+µ−

decays. Note that we provide the central 68% intervals and that the posterior-predictive distribu-
tions are not Gaussian.

hatH.yaml, BToKstar-hatH.yaml, and BsToPhi-hatH.yaml. These results are prior to
the dispersive bound application.

Standard Model predictions. Table 13 contains the median and the standard devi-
ation of our SM predictions for the B → Mµ+µ− branching ratios. We compare these
predictions to experimental measurements and two BSM scenarios in figure 4. Table 12
contains the and the standard deviation of our SM predictions for the B → V µ+µ− an-
gular observables. We compare these predictions to experimental measurements and two
BSM scenarios in figures 6 and 7 for B → K∗µ+µ− and Bs → φµ+µ− decays, respectively
(see figure 4 for the plot of P ′5). For the original definition of the angular observables see
ref. [91]. We use the conventions defined in the appendices of ref. [104]; see also the discus-
sion of angular conventions in ref. [105]. Our SM predictions are also valid for B →Me+e−

observables up to tiny effects due to the lepton masses.
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Process q2 bin
B̂ [10−5] B [10−8]

SM LHCb SM LHCb

B+ → K+µ+µ−

[0.1, 0.98] 4.28+0.42
−0.43 2.93± 0.16 4.18+0.40

−0.38 2.92± 0.22
[1.1, 2.0] 4.38+0.40

−0.41 2.10± 0.14 4.29+0.35
−0.37 2.10± 0.17

[2.0, 3.0] 4.78+0.39
−0.43 2.83± 0.16 4.69+0.36

−0.41 2.82± 0.21
[3.0, 4.0] 4.67+0.40

−0.39 2.54± 0.15 4.57+0.35
−0.36 2.54± 0.20

[4.0, 5.0] 4.57+0.40
−0.38 2.21± 0.14 4.48+0.33

−0.35 2.21± 0.18
[5.0, 6.0] 4.49+0.36

−0.39 2.31± 0.14 4.39+0.34
−0.38 2.31± 0.18

[6.0, 7.0] 4.38+0.46
−0.43 2.45± 0.14 4.28+0.43

−0.39 2.45± 0.18
[7.0, 8.0] 4.28+0.74

−0.54 2.31± 0.14 4.17+0.71
−0.49 2.31± 0.18

B0 → K∗0µ+µ−

[0.1, 0.98] 7.21+0.92
−0.75 7.51+0.53

−0.58 9.86+1.11
−1.25 8.94+0.88

−0.92

[1.1, 2.5] 4.55+0.74
−0.55 3.84+0.40

−0.38 6.24+0.98
−0.90 4.56+0.56

−0.55

[2.5, 4.0] 4.59+0.68
−0.62 4.21+0.41

−0.44 6.42+0.73
−1.00 5.01+0.59

−0.62

[4.0, 6.0] 6.81+0.97
−0.95 5.94+0.49

−0.47 9.74+0.98
−1.71 7.08+0.74

−0.73

[6.0, 8.0] 7.88+1.23
−1.01 7.22+0.47

−0.51 11.2+1.9
−2.1 8.58+0.83

−0.82

Bs → φµ+µ−

[0.1, 0.98] 9.89+1.91
−1.69 6.70± 0.47 11.1+2.1

−1.7 6.81± 0.58
[1.1, 2.5] 6.47+1.32

−0.98 4.33± 0.42 7.23+1.24
−1.16 4.41± 0.47

[2.5, 4.0] 6.56+1.32
−1.13 3.45± 0.38 7.30+1.26

−1.23 3.51± 0.43
[4.0, 6.0] 9.84+1.88

−1.70 6.10± 0.49 10.8+1.8
−1.7 6.22± 0.58

[6.0, 8.0] 11.4+2.3
−1.9 6.20± 0.48 12.6+2.3

−1.9 6.30± 0.58

Table 13. SM predictions and measurements by the LHCb experiment [73, 81, 83] for the integrated
branching ratios B and the integrated normalized branching ratios B̂ ≡ B(B → Mµ+µ−)/B(B →
MJ/ψ). Our predictions for the integrated B account for correlations between the normalized pre-
dictions and the normalization channel. Ignoring tiny differences due to the masses, the predictions
for the modes B0 → K0µ+µ− and B+ → K∗+µ+µ− can be obtained by rescaling with the ratio
of B lifetimes. Note that we provide the central 68% intervals and that the posterior-predictive
distributions are not Gaussian.
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Figure 6. SM predictions for the angular observables of the B → K∗µ+µ− decays. Our SM
predictions are also given in table 12.
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Figure 7. SM predictions for the angular observables of the Bs → φµ+µ− decay. Our SM
predictions are also given in table 12.
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