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1 Introduction

Proposed in its first version in 2005, the fermionic field of spin-1/2 with mass dimension one,
abbreviated to MDO, is built on a complete set of eigenspinors of the charge conjugation
operator C, the so called Elko1 spinors [1]. The construction of the field is characterized by
the presence of spinors belonging to the (0, 1/2)⊕(1/2, 0) family of the Weyl representation
space. In its original formulation, these fields were quantum objects based on a representa-
tion of the subgroups HOM(2) and SIM(2) of the Lorentz group, whose algebra is based
on Very Special Relativity (VSR) [2]. A few years ago, a modification of the dual of the field
— taking advantage of the fact that only bilinears are observable in nature — endowed the
field with complete Lorentz (Poincaré) symmetry [3]. Thus, the old non-local field turns
into a local one after a redefinition of phase factors in the right and left-hand components of
the field. These recent developments put the theory on solid grounds and stimulated several
works in broad areas of Physics, with numerous results explored in the book [4], in Particle
Phenomenology [5] and Cosmology [6], as brief examples. More recently, ref. [7] presents a
detailed discussion of duals and adjoints of the field, and the fermionic self-interaction and
interactions with a real scalar field at one-loop shows that the earlier problem of unitarity
violation are absent. Also, a quantum field theoretic calculation establishes the Newtonian
gravitational interaction for a mass dimension one dark matter candidate. The partition

1Elko is a german acronym for Eigenspinoren des Ladungskonjugationsoperators.

– 1 –



J
H
E
P
0
9
(
2
0
2
2
)
1
3
2

function and main thermodynamic properties were studied and a review on the localization
of higher-dimensional ELKOs on flat and bent branes were discussed.

The crucial difference between Dirac and MDO spinors is related to parity. For Dirac
spinors, the parity is intrinsic to the theory and, as a direct consequence, Dirac dynamics is
achieved. For the MDO spinors this does not happen, as well analyzed in [8]. However, since
its construction is relativistic, the Klein-Gordon dynamics is ensured, thus, its quantum
field must inherit this dynamic. The MDO quantum field is constructed as an expansion
in terms of the four different ELKO spinors, namely two self-conjugated and two anti
self-conjugated. These spinors are eigenspinor of the charge-conjugation operator, what
ensures they are electrically neutral. Furthermore, it has become a prominent theoretical
dark matter candidate, in parts, due its canonical mass dimension, D = 1, similar to scalar
particles, what forbidden interactions of this field with other standard model particles,
except the Higgs field. Note that this characteristic is very distinct when compared with
the canonical mass dimension, D = 3/2, of the standard model fermions, ref. [9], such
as Dirac or Majorana spinors. Self interaction is also possible for MDO field, which is
expected for dark matter particles.

Some works that focused on understanding the interaction of the MDO fermion with
gravity have been studied and deserve to be highlighted, such as in quantum field theory in
curved spaces [10] and in the covariant formulation, via gravitons interactions [11]. Now we
propose to investigate the possible interaction between MDO fermions and gravity, through
the canonical (Hamiltonian) formulation. Our motivation is the fact that the canonical
approach was born as an attempt to build a quantum theory in which the metric functions
are exempt from background perturbation, unlike the covariant perturbative formulation.

The paper is organized as follows: in the section 2, we extend the gravitational action
developed by Palatini-Holst, incorporating fermionic matter with mass dimension one and
spin-1/2, through the tetrad-ADM formalism. In section 3, we investigate the classical
Hamiltonian and diffeomorphism constraints that arises from this dark matter field with
gravity. As a consequence, an energy density and associated directional energy flux density
emerges in conjunction with the MDO-gravity coupling, which gives a term similar to the
cosmological constant. Conclusions are in section 4.

2 Mass dimension one fermions action coupled to canonical gravity

2.1 Notation and preliminaries informations

For the purpose of studying the connection of matter to space-time through the canonical
treatment of gravity, it is necessary to deal with certain preliminary notations.

The Dirac gamma matrices, γµ, in the Weyl basis are expressed by [12]:

γ0 =
(

02×2 12×2
12×2 02×2

)
and γi =

(
02×2 −σi

σi 02×2

)
, (2.1)

where σi are the Pauli matrices:

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
and σ3 =

(
1 0
0 −1

)
. (2.2)
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The tetrad vector fields eaµ(x) are defined by eaµ(x)ebν(x)ηab = gµν(x), being gµν the met-
ric of spacetime and ηab = (1,−1,−1,−1) the metric of a local minkowskian manifold. The
matrices-γ in the arbitrary spacetime are given by γµ = eµaγ

a and obey Clifford’s algebra:

{γµ, γν} = γµγν + γνγµ = 2gµν (2.3)

and
γ5 = iγ0γ1γ2γ3 =

(
12×2 02×2
02×2 −12×2

)
. (2.4)

In Quantum Field Theory (QFT) is used, in general, the metric notation (+,−,−,−). On
the other hand, in General Relativity (GR) and Loop Quantum Gravity (LQG) the usual
notation is (−,+,+,+). To transcribe the fermionic fields in QFT to GR/LQG, we just
multiply all the Dirac matrices (2.1) by i ∈ Im(C) [13]. In this paper we will make use of
this last notation. Note that in fact Clifford algebra does not change,

{γµ,γν}(QFT ) =2gµν=2(+,−,−,−) 7−→{γµ,γν}(GR)={iγµ,iγν}=i2{γµ,γν}(QFT )=i22gµν⇔
{γµ,γν}(GR) =−2gµν=2(−,+,+,+).

The set of the spinors associated with the construction of the spin 1/2 MDO field is
represented by eigenstates of the charge conjugation operator C with two possible eigenval-
ues, namely (±1). Thus, λ(p, σ) = [λSα(p, σ), λAα (p, σ)] are the eigenstates self-conjugated
and anti self-conjugated associated with eigenvalues (+1,−1), respectively, properly desig-
nated with its momentum p and spin states σ. In addition, each of these objects has a dual
helicity α = {±,∓} that emerges from its structures, as demonstrated in [1], and therefore
may be compactly expressed by four spinors with notation λ(p) = [λS{±,∓}(p), λA{±,∓}(p)].

In this manuscript, we will work with the representation of classical wave functions
in momentum configuration space, being λ(x) a classical field with λS,A(pµ) as its Fourier
coefficients [3], namely:

λS(x) = N1

∫
d4pλS(pµ)e−ip·x and λA(x) = N2

∫
d4pλA(pµ)e+ip·x, (2.5)

for self-conjugated λS(pµ) and anti self-conjugated λA(pµ) spinors, respectively. Here, we
assume N1 and N2 as normalizations of wave functions that propagate in an arbitrary
four-dimensional pseudo-Riemannian manifold M. This is a classic procedure for accom-
modating waves functions.2 Thus, from now on, we will denote λ(x) for one of the classical
fields of (2.5).

It is important to emphasize that the decomposition used in the equation (2.5) is not
the same for the treatment of the expansion of MDO quantum fields, denoted by f(x) and
¬
f (x) in ref. [3], whose expansion coefficients are the creation and annihilation operators of
a one particle state, i.e., â†(p, σ)|0〉 = |p, σ〉 and â(p, σ)|0〉 = |0, 0〉 ∀ |p, σ〉 ∈ H, where H
is the Hilbert space. The reason for this is due to the fact that we are using the classical
treatment in this work.

2For Dirac spinors, for instance, plane waves are described by ψ(x) = u(p)e−ip·x and ψ(x) = v(p)e+ip·x,
in Minkowskian spacetime, representing particles and antiparticles, respectively [14].
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In curved space-time, the covariant derivatives acting on the usual λ(x) and dual
¬
λ (x)

classical MDO fields are defined by [12]:

∇µλ ≡ ∂µλ− Γµλ and ∇µ
¬
λ≡ ∂µ

¬
λ +

¬
λ Γµ, (2.6)

and the spin connection Γµ as well as the commutation of two covariant derivatives acting
on the field are expressed as (see appendix A):

Γµ = i

4ω
ab
µ σab and [∇µ,∇ν ]λ = − i4F

ab
µν σabλ, (2.7)

where ω ab
µ σab = eaν∂µe

νb + eaνe
ρbΓνµρ is the connection written via tetrad fields and the

Levi-Civita connection, with spacetime (external indices µ) and of Lorentz (internal indices
a) indices. F ab

µν = ∂µω
ab
ν − ∂νω ab

µ + ω ac
µ ω b

νc − ω ac
ν ω b

µc is the “curvature” due to the spin
connection on the spinor λ, with similar function to the Riemann curvature, coming from
the related connection, for tensors in curved spaces, and σab = i/2[γa, γb].

Recently, Ahluwalia demonstrated that the dual spinor fields associated with the mass
dimension one fermion guarantee local symmetry of Lorentz, [3], allowing to obtain the
self-conjugated and anti-self-conjugated duals as

¬
λ
S

α= λ̃SαA and
¬
λ
A

α= λ̃AαB, (2.8)

with λ̃α(pµ) def= [Ξ(pµ)λα(pµ)]†γ0, where the “Dirac-type” operator is denoted as
Ξ(pµ) = (G(pµ)/m)γµpµ, in which the matrix G is explicitly given by

G(pµ) def=


0 0 0 −ie−iϕ

0 0 ieiϕ 0
0 −ie−iϕ 0 0
ieiϕ 0 0 0

 . (2.9)

Assuming that such objects were constructed via Weyl’s left hand spinors with the momen-
tum in spherical coordinates: pµ = (E, p sin θ cosϕ, p sin θ sinϕ, p cos θ) and p = |~p| [1, 3].
The operators A and B guarantee the locality of the theory when the spin sum,∑
α
λ
S/A
α

¬
λ
S/A

α [3], is obtained using the so-called τ−deformation.

2.2 Building the MDO fermion action in canonical gravity

The Einstein-Hilbert action [15] (eq. (10.1.2)) with the MDO fermion action (dark matter)
in curved space-time [10, 12, 16] is given by:

S =SEH +SMDO = 1
16πG

∫
M
d4x
√
−gR+ 1

2

∫
M
d4x
√
−g[gµν(∇µ

¬
λ∇νλ)−m2 ¬

λλ−ξR
¬
λλ],

(2.10)
where g is the determinant of metric gµν , R is the Ricci scalar curvature and m is the mass
associated to λ, characterizing the term of self-interaction

¬
λ λ. ξ is a coupling constant

between the MDO field and the gravitational field. The boundary term ∂M of the manifold
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M is not being considered. Explicitly, the quadratic kinetic term of MDO field is described
by:

∇µ
¬
λ∇νλ = (∂µ

¬
λ+

¬
λΓµ)(∂νλ−Γνλ) = ∂µ

¬
λ∂νλ−(∂µ

¬
λ)Γνλ+

¬
λΓµ(∂νλ)−

¬
λΓµΓνλ (2.11)

= ∂µ
¬
λ ∂νλ−(∂µ

¬
λ)
[
i

4ω
cd
ν σcdλ

]
+
¬
λ

[
i

4ω
ab
µ σab

]
(∂νλ)−

¬
λ

[
i

4
i

4ω
ab
µ ω cd

ν σabσcdλ

]
.

Rewriting the action (2.10) in terms of the tetrad fields, assuming the Einstein-Cartan
formalism, considering the gravitational action SEH equivalent to the action of Palatini-
Holst [17] and using the spin connection (2.6), we have (see appendix B):

S = 1
16πG

∫
M
d4x(eeµI e

ν
JP

IJ
KLF

KL
µν (ω))(1− 8πGξ

¬
λ λ) (2.12)

+1
2

∫
M
d4x(e)[(eµI e

ν
Jη

IJ∂µ
¬
λ ∂νλ)−m2 ¬

λ λ]

+ i

8

∫
M
d4x(eeµI e

ν
Jη

IJ)[
¬
λ ω

IJ
µ σIJ(∂νλ)− (∂µ

¬
λ)ω MN

ν σMNλ− i/4
¬
λ (ω IJ

µ ω MN
ν σIJσMN )λ],

where the curvature F KL
µν (ω) = 2∂[µω

IJ
ν] + [ωµ, ων ] is described in terms of the Lorentz

connection ω IJ
µ . The term P IJKL of Holst action, as well as its inverse, in the compact

form [13], is written as:

P IJKL = δ
[I
Kδ

J ]
L −

1
γ

εIJ KL
2 and P−1 KL

IJ = γ2

γ2 + 1

(
δ

[K
I δ

L]
J + 1

γ

ε KL
IJ

2

)
, (2.13)

where γ (it can not to be confused with Dirac matrices γµ) is the parameter of Barbero-
Immirzi and εIJ KL is a tensor completely antisymmetric. It is important to clarify that
the coupling term between the gravitational field and the fermion were merged in the
Palatini-Holst action in order to propose ξ = 2G−1ρvac/(R

¬
λ λ) as being dependent on

purely scalar factors and, therefore, invariant. Such term assumes a similar form as a
time-varying cosmological model Λ(t) [18–20], for the cosmological constant Λ = 8πρvac,
with ρvac = 5, 96× 10−27kg/m3 being the vacuum density [21]. It is also valid for scalar-
tensor theories à la Brans-Dick [22–24]. This proposal is constructed for reference frames
in which the Holst term recovers the exact scalar Ricci curvature, R, originally present in
the Einstein-Hilbert action. Furthermore, it is noted that the matter part, in our case, is
written as a sum of two parts in the action of the MDO field: the first part resembles the
dynamics of a massive scalar field and the second part carries the quadratic information
of the pure fermionic portion of the MDO fermion with spin connection (the last term
integrated over theM manifold of action (2.12)). This is due to the Klein-Gordon dynamic
nature of energy conservation and the structure of this fermion, respectively.

A canonical (Hamiltonian) formalism is built from a Legendre transformation in action.
For this, it will be necessary to transcribe the action (2.12) from manifold M, provided
with a metric, to a family of constant foliations Σt, and determined by the function of time
t, which are embedded in the manifold (M, gab) 7−→ (Σt, t) ≡ Σt × R ⊆M, as originally
prescribed by [25], known as ADM (Arnowitt-Deser-Misner) formalism. Instead of working

– 5 –



J
H
E
P
0
9
(
2
0
2
2
)
1
3
2

with spacetime tensors, we will use the description of how a vector field tµ evolves from a hy-
persurface Σt to another, Σt+δt, in direction to the future, since it is using a Lorentzian met-
ric signature. Following the same approach used in [13], the four-vector, in spacetime, tµ is

tµ = Nnµ +Nµ, (2.14)

where nµ is the vector normal to the hypersurface Σt, Nµ is the shift vector tangent to
the surface Σt and N is the lapse function which dictates the temporal transition from
one hypersurface to another, therefore, Nµnµ = 0. The spatial evolution of ta must obey
ta∇at = 1, being a, b, c,. . . spatial tensor indices. The metric gµν is described, therefore, as

gµν = qµν − nµnν . (2.15)

Since we are using the tetrad formalism in addition to the ADM formalism, it is necessary
to perform a gauge fixation in internal vector fields of the tetrad, thus it can be decomposed
into internal time units, as a vector and a triad (spatial part of the tetrad). Setting the
internal vector field as a constant nI = −δ0

I , where nInI = 1, we get:

na = nIeaI and eaI = εaI − nanI , (2.16)

where na is the unit normal to foliation, εaIna = εaIn
I = 0, with εaI := triad. From

equation (2.14), one has
na = N−1(ta −Na), (2.17)

for the normal and tangential projection of (2.15) in Σt.
Thus, using ADM formalism decomposition and tetrad fields, the action of MDO

matter with the Palatini-Holst gravitation is described as (see appendix C):

S[ε, ω, λ] = SPH,ξ + S
λ,
¬
λS

+ S
λ,
¬
λF

= 1
16πG

∫
R
dt

∫
Σ
d3xN

√
qΩab

IJP
IJ
KLF

KL
ab (ω)(1− 8πGξ

¬
λ λ)

+1
2

∫
R
dt

∫
Σ
d3xN

√
q[Ωab

IJη
IJ(∂a

¬
λ ∂bλ)−m2 ¬

λ λ]

−1
8

∫
R
dt

∫
Σ
d3xN

√
qΩab

IJη
IJ{i/2(

¬
λ ω

IJ
a [γI , γJ ](∂bλ)

−(∂a
¬
λ)ωMN

b [γM , γN ]λ) + i/16
¬
λ (ωIJa ωMN

b [γI , γJ ][γM , γN ])λ}, (2.18)

where Ωab
IJ = (εaIεbJ − 2N−1nIt

aεbJ + 2N−1NanIε
b
J). The subscripts in the action of

matter, S
λ,
¬
λS

and S
λ,
¬
λF

, are to emphasize the difference between two terms: a part with
characteristic similar to the Klein-Gordon dynamics (scalar — S) and other with pure
fermionic quadratic dynamics (fermionic — F), respectively, due to the aforementioned
nature of this fermion.

The equation (2.18), for now, presents the Lagrangian density of a dark fermionic
matter coupled to gravity with the contribution of dark energy for models Λ(t) or Brans-
Dick theory, admitting ξ = 2G−1ρvac/(R

¬
λ λ).

– 6 –
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3 Hamiltonian constraint between MDO and gravity

The action (2.18), and its Lagrangian density, is the most complete way of treating the
Hamiltonian formalism in terms of the classical matter field of interest. In the scope of
this work, the scenario without torsion and with the Palatini-Holst dual term recovers the
usual Ricci scalar structure. Under a family of foliations Σ in the manifold and with the
aid of the expression (2.10), one has

S = 1
16πG

∫
R
dt

∫
Σ
d3xN(GabcdKabKcd +√q(3)R)[1− 8πGξ

¬
λ λ]

+1
2

∫
R
dt

∫
Σ
d3xN

√
q[(qµν + nµnν)(qαµDα

¬
λ q

β
νDβλ)−m2 ¬

λ λ], (3.1)

where Dα = qµα∇µ is the projection of the covariant derivative operator on M onto
the hypersurface Σt and the pair (Gabcd, Gabcd) is the DeWitt metric, Kab = Γµabnµ =
−Γ0

ab/
√
−g00 is a symmetrical “velocity” associated with the three-metric qab [29], ex-

pressed in terms of the spatial components of the equation (2.15). Thus, both are written
respectively as:

Gabcd =
√
q

2 (qacqbd+qadqbc−2qabqcd) and Gabcd = 1
2√q (qacqbd+qadqbc−2qabqcd), (3.2)

and
Kµν ≡ q ρ

µ q
σ
ν ∇ρnσ = q ρ

µ ∇ρnν = Kνµ, (3.3)

which characterizes a purely special form, as well as qµν , furthermore Kµν is orthogonal to
nµ (Kµνn

µ = Kµνn
ν = 0).

In order to seek a canonical approach that couples this dark matter candidate with
gravity, we will start by choosing a configuration variable and defining the momentum for
the MDO (′p = ∂L/∂q̇′), in order to ensure the Legendre transformation:

H
λ,
¬
λ

= pλλ̇+ p¬
λ

¬̇
λ− L

λ,
¬
λ
. (3.4)

Starting from the explicit Lagrangian density of the MDO fermion,

L
λ,
¬
λ

= 1
2
√
−g[∂ν

¬
λ ∂νλ− ∂ν

¬
λ Γνλ+

¬
λ Γν∂νλ−

¬
λ ΓνΓνλ−m2 ¬

λ λ], (3.5)

we can get the following operators

∂L
λ,
¬
λ

∂(∂αλ) =
√
−g
2 (∂ν

¬
λ δ

α
ν +

¬
λ Γνδαν ) and

∂L
λ,
¬
λ

∂(∂α
¬
λ)

=
√
−g
2 (δαβ∂βλ− δαβΓβλ) (3.6)

allowing us to construct their conjugate momentum as

pλ =
∂L

λ,
¬
λ

∂(∂0λ) =
√
−g
2 (∂0 ¬

λ +
¬
λ Γ0) and p¬

λ
=

∂L
λ,
¬
λ

∂(∂0
¬
λ)

=
√
−g
2 (∂0λ− Γ0λ). (3.7)

– 7 –
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Then, the respective “velocity” of the field in terms of momentum is determined, with the
help of (3.7), as

λ̇ = ∇0λ = (∂0λ− Γ0λ) = 2√
−g

g00p¬
λ

and
¬̇
λ = ∇0

¬
λ= (∂0

¬
λ +

¬
λ Γ0) = 2√

−g
g00pλ.

(3.8)
We also note that the Lagrangian density (3.5) can be written more explicitly as

L
λ,
¬
λ

= 1
2
√
−g [∂0 ¬

λ ∂0λ− ∂0 ¬
λ Γ0λ+

¬
λ Γ0∂0λ−

¬
λ Γ0Γ0λ]︸ ︷︷ ︸

A

−1
2
√
−g[∂i

¬
λ ∂iλ+m2 ¬

λ λ]

−1
2
√
−g[

¬
λ Γi∂iλ− ∂i

¬
λ Γiλ−

¬
λ ΓiΓiλ], (3.9)

where
A = (∂0 ¬

λ +
¬
λ Γ0)(∂0λ− Γ0λ) = 2√

−g
2g00√
−g

(pλp¬
λ
). (3.10)

Thus, one has

L
λ,
¬
λ

= 2√
−g

g00(pλp¬
λ
)− 1

2
√
−g[∂i

¬
λ ∂iλ+m2 ¬

λ λ]− 1
2
√
−g[

¬
λ Γi∂iλ− ∂i

¬
λ Γiλ−

¬
λ ΓiΓiλ].

(3.11)
With the Legendre transformation performed on L

λ,
¬
λ
, in the expression (3.11), we develop

the Hamiltonian density of the dark fermion in curved space,

H
λ,
¬
λ

= pλλ̇+ p¬
λ

¬̇
λ− L

λ,
¬
λ

= 2√
−g

g00(p¬
λ
pλ) + 1

2
√
−g(∂i

¬
λ ∂iλ+m2 ¬

λ λ) (3.12)

+ 1
2
√
−g[

¬
λ Γi∂iλ− ∂i

¬
λ Γiλ−

¬
λ ΓiΓiλ),

which in turn allows us to finally describe the Hamiltonian of the MDO fermion in a
foliation scenario, Σt, à lá ADM, in the form:

H
λ,
¬
λ

=
∫

Σ
d3xH

λ,
¬
λ

=
∫

Σ
d3xN

(2p¬
λ
pλ
√
q

+
√
q

2 (qab∂a
¬
λ ∂bλ+m2 ¬

λ λ)
)

+
∫

Σ
d3xNa

(1
2q

b
a[
¬
λ Γb∂cλ− ∂b

¬
λ Γcλ−

¬
λ ΓbΓcλ]nc

)
≡
∫

Σ
d3x(NH

⊥,λ,
¬
λ

+NaH
a,λ,
¬
λ
), (3.13)

noting that the transformations
√
−g 7→ N

√
q and

√
−ggijAjBi 7→ Naqba(AbBc)nc were

performed to mapM−→ R× Σ.
The equation (3.13) allows us to visualize H

⊥,λ,
¬
λ
as the energy density of the MDO

field (T00 = ρ
λ,
¬
λ
), which “flows” through the lapse function, and consequently orthogonal

to Σ, at a given fixed instant of time t. The term H
a,λ,
¬
λ
can be interpreted as a “flux”

(J
a,λ,
¬
λ
≡ q b

a Tbcn
c) associated with the MDO fermions, which moves through the shift
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vector Na tangential to the hypersurface Σt. It is notable that this directional energy
density flux depends exclusively on the spatial derivative and the spin connection of the
mass-dimension-one field.

We can clarify the physical meaning of the Hamiltonian and diffeomorphism con-
straints for gravity in this scenery. It is important to note that in the absence of
matter, the structures of gravitational constraints, denoted in the expression below by
H⊥, g (Hamiltonian) and Ha, g (diffeomorphism) respectively, are well established in the
literature, according to [25, 29]. Now, we obtained a result with geometry of space-time
and a peculiar material content, i.e., gravity and the MDO fermion, as developed from the
action (3.1). Therefore, one has:

H⊥ = H⊥, g+H⊥,λ,¬λ=
(

16πGGabcdpabpcd−
√
q

16πG

(3)
R

)
[1−8πGξ

¬
λλ]+ρ

λ,
¬
λ
≈0 and (3.14)

Ha = Ha, g+H
a,λ,
¬
λ

=−2Dbp
b
a [1−8πGξ

¬
λλ]+J

a,λ,
¬
λ
≈0, (3.15)

or even more explicitly, using the equation (3.12),

H⊥ =
(

16πGGabcdpabpcd −
√
q

16πG

(3)
R

)
[1− 8πGξ

¬
λ λ]

+
(2p¬

λ
pλ
√
q

+
√
q

2 (qab∂a
¬
λ ∂bλ+m2 ¬

λ λ)
)
≈ 0 and (3.16)

Ha = −2Dbp
b
a [1− 8πGξ

¬
λ λ] +

(1
2q

b
a[
¬
λ Γb∂cλ− ∂b

¬
λ Γcλ−

¬
λ ΓbΓcλ]nc

)
≈ 0, (3.17)

remembering that the term −8πGξ
¬
λ λ was merged to the Ricci scalar, in the geometric

portion of the action, in order to guarantee a similar behavior to the cosmological constant
in Λ(t) models. This new term comes from the coupling constant ξ between MDO and grav-
ity, and from the orthonormal invariance

¬
λ (x)λ(x′) = ±2mδ(x−x′) for the same helicities

of the fermion, in its self-conjugated (S) and anti-self-conjugated (A) forms, respectively.
Just as a comparative analysis, when incorporating a scalar Lagrangian density field

Lφ =
√
−g(−1/2gµν∇µφ∇νφ − 1/2m2φ2) to same gravitational scenario [29], the con-

straints of scalar field φ, H⊥,φ and Ha,φ, in curved space-time are given by

H⊥,φ = ρφ =
(
p2
φ

2√q +
√
q

2 (qab∂aφ∂bφ+m2φ2)
)

and Ha,φ = Ja,φ = pφ∂aφ. (3.18)

It is possible to notice, in (3.16)–(3.17) and (3.18), that the energy density of the MDO
field, (ρ

λ,
¬
λ
), closely resembles the one for scalar field (ρφ), since the dynamic equation

of both fields follows the Klein Gordon equation in the same way. However, while the
“current” — directional density of energy flux — in the hypersurface Σt of the MDO field
(J
a,
¬
λ,λ

) is a function of the spatial derivatives and spin connections, the scalar field current
is also a function of the spatial derivative, but it has no spin connection term, as expected.
This difference is clarified due to the spinor structure of the fermion in curved space.
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4 Conclusion

In this work we present a proposal for the incorporation of the mass-dimension-one fermion
with gravity, under a canonical approach. We start the first section with the Hamiltonian
formulation of General Relativity using the ADM formalism [25], which foliate a pseudo-
Riemannian manifold, equipped with a physical metric (M, gµν), for a globally hyperbolic
spacetime, on Cauchy hypersurfaces Σt for each fixed t ∈ R, being M ' R × Σ. In
this formulation, the existence of two fundamental forms, represented by the three-metric
decomposition and the extrinsic curvature (qµν ,Kµν), in conjunction with the projection
of the covariant derivative Dµ in the hypersurface, are responsible for characterizing the
so-called ADM action, whose Legendre transformation on its Lagrangian density results
in a geometric Hamiltonian and diffeomorphism constraints associated with gravity and
which establish the so-called “dynamics of the theory in the absence of matter”. In the
subsequent section, we effectively incorporate the MDO fermion into the Einstein-Hilbert
action. Aiming on a greater completeness, via fermionic and gravitational interaction,
the geometric part of the Einstein-Hilbert action was rewritten in terms of tetrads into an
extension of Palatini [17], which holds a dual field for the original gravitational theory. The
portion associated with the coupling constant between fermion and gravity was rewritten
in order to reproduce the behavior of a cosmological constant term. Performing the same
foliation process, in the light of the ADM formalism, we build an action that combines
dark matter MDO and gravity via Palatini-Holst in ADM-tetrad (2.18), comprising the
most complete form for a Hamiltonian analysis in terms of the field of interest.

Noticing that the dual term of Palatini-Holst, when it is null in eq. (2.18), recovers the
original form for the Ricci scalar, we can investigate the Hamiltonian formulation developed
according to the ADM formalism. For our context, we will obtain the constraints between
the gravitational Hamiltonian density and the MDO fermion. After the proper Legendre
transformation for the fermion Lagrangian density (3.5), in curved space, we were able
to write the Hamiltonian in a foliation scenario Σt by means of ADM formalism, which
explained the Hamiltonian component H

⊥,λ,
¬
λ
as the energy density of the MDO fermion

(T00 = ρ
λ,
¬
λ
), which “flows” through the lapse function, orthogonal to Σ at a given instant

of fixed time t. Moreover, H
a,λ,
¬
λ
can be decomposed as a directional energy flux density,

which is a function of spatial derivatives and spin connections of the MDO field under the
representation (J

a,λ,
¬
λ
≡ q b

a Tbcn
c), which moves through the shift vector Na tangential to

the hypersurface Σt.
In this way, we obtained the Hamiltonian and diffeomorphic constraints due to the

incorporation of the MDO matter to the action, via ADM formalism, expressed by the
equations (3.17)–(3.18), which elucidate three ingredients for canonical dynamics, namely:
gravity, dark matter and dark energy. The latter one can be interpreted through the varying
cosmological constant like term in Λ(t) models, now encoded in the term −8πGξ

¬
λ λ, where

¬
λ λ is an orthonormal invariant for each and every observable,

¬
λ (x)λ(x′) = ±2mδ(x−x′),

dictated for the same helicities of the fermion in its self-conjugated (S) and anti-self-
conjugated (A) form, respectively.
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It is important to call attention for the fact that such contribution is absent in Dirac
fermion sector. Looking for the action (2.10) we see that ξ is a dimensionless coupling,
what forbids the coupling of a mass dimension 3/2 fermion to it. A Dirac fermion ψ

could couple to another dimensionfull constant ζ through ζRψ̄ψ, where ζ has dimension
[Mass]−1. Thus, such effect of non-minimal coupling to gravity through a dimensionless
constant is restrict to scalar fields or mass dimension one fermions.3

The role of this coupling due to ξ can also be interpreted as a contributing part in
Brans-Dicke [32] scalar-tensor theories. We also notice that the energy density ρ

λ,
¬
λ
coming

from H
⊥,λ,

¬
λ
has a similar form to that expected for a scalar field (ρφ) in the same scenario,

unlike the structure observed for directional flow of energy between both matter fields, Ja.
It should be noted that this construction related to the constraints was carried out on a
general metric gµν = qµν − nµnν , thus being able to be applied to different scenarios of
cosmological interests such as FLRW, black holes, wormholes among others.

Furthermore, a possible hypothesis raised for future investigations would be to resort to
Ashtekar’s new canonical variables (Eai (x), Ajb(x′)) [33], which presently support the bases
of the modern canonical quantization theory of gravity, Loop Quantum Gravity (LQG).
LQG is a quantum theory of gravitation based on a geometric formulation, whose intention
is to unify Quantum Mechanics and General Relativity, incorporating the Standard Model
matter to the established framework for the case of pure quantum gravity. We intend to
use this proposal of gravitation directly in the action (2.18) in search of new constraints
between gravity-MDO, which can lead to quantization, in the future.
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(CAPES) — Finance Code 001. SHP acknowledges financial support from Conselho
Nacional de Desenvolvimento Científico e Tecnológico (CNPq) (No. 303583/2018-5 and
308469/2021-6).

A Covariant derivatives commutation of MDO field

Using the definition of the spin connection (2.7) in the covariant derivative in equation (2.6),
and performing the commutation of two covariant derivatives over λ, has been:

[∇µ,∇ν ]λ = ∇µ∇νλ−∇ν∇µλ=∇µ
(
∂ν−

i

4ω
ab
ν σab

)
λ−∇ν

(
∂µ−

i

4ω
ab
µ σab

)
λ (A.1)

=
[
∂µ

(
∂ν−

i

4ω
ab
ν σab

)
λ−Γρµν

(
∂ρ−

i

4ω
ab
ρ σab

)
λ− i4ω

ab
µ σab(∂νλ)+ i

4ω
ab
µ σab

i

4ω
cd
ν σcdλ

]
−
[
∂ν

(
∂µ−

i

4ω
ab
µ σab

)
λ−Γρνµ

(
∂ρ−

i

4ω
ab
ρ σab

)
λ− i4ω

ab
ν σab(∂µλ)+ i

4ω
cd
ν σcd

i

4ω
ab
µ σabλ

]
,

3Refs. [13, 30] uses ζ = 0, so that such contribution for DE is absent.

– 11 –



J
H
E
P
0
9
(
2
0
2
2
)
1
3
2

being (∂µ∂ν − ∂ν∂µ)λ = 0 and assuming a torsion free scenario (Γρµν − Γρνµ) = 0, we have

[∇µ,∇ν ]λ = − i4∂µ(ωabν σabλ)− i

4ω
ab
µ σab(∂νλ) + i

4∂ν(ωabµ σabλ) + i

4ω
ab
ν σab(∂µλ)

+ i

4
i

4(ωabµ σabωcdν σcd − ωcdν σcdωabµ σab)λ

= − i4(∂µωabν )σabλ−
i

4ω
ab
ν σab(∂µλ)− i

4ω
ab
µ σab(∂νλ) + i

4(∂νωabµ )σabλ

+ i

4ω
ab
µ σab(∂νλ) + i

4ω
ab
ν σab(∂µλ) + i

4
i

4(ωabµ σabωcdν σcd − ωcdν σcdωabµ σab)λ

= − i4(∂µωabν − ∂νωabµ )σabλ+ i

4
i

4ω
ab
µ ω

cd
ν (σabσcd − σcdσab)λ. (A.2)

Once σab = i/2[γa, γb] and {γa, γb} = 2ηab, immediately we have γbγa = 2ηab − γaγb and
σab = i/2[γa, γb] = i/2(γaγb − 2ηab + γaγb) = i(γaγb − ηab). Using σab in the last term of
expression (A.2);

[∇µ,∇ν ]λ = − i4(∂µωabν − ∂νωabµ )σabλ−
i

4(ωacµ ω b
νc − ωacν ω b

µc )σabλ

= − i4[(∂µωabν − ∂νωabµ ) + (ωacµ ω b
νc − ωacν ω b

µc )]σabλ. (A.3)

Therefore, from equation (A.3), it is possible to describe the commutation between the
covariant derivatives acting on λ as:

[∇µ,∇ν ]λ = − i4F
ab

µν σabλ, (A.4)

where F ab
µν = ∂µω

ab
ν − ∂νωabµ + ωacµ ω

b
νc − ωacν ω b

µc .

B From Einstein-Hilbert action to Palatini-Hilbert action with the term
of Holst

It is known, from the General Relativity, that the Riemann tensor can be obtained using
the commutation of two covariant derivatives acting on a vector, it means that

[∇µ,∇ν ]Vρ = R α
ν µρVα and R α

ν µρ = ∂νΓαµρ − ∂µΓανρ + ΓσρµΓανσ − ΓσρνΓαµσ. (B.1)

The relation between the curvature tensor R α
ν µρ and F ab

µν originates from the commuta-
tion between the covariant derivatives under an internal index object (tetrad), [∇µ,∇ν ]Sa:

[∇µ,∇ν ]Sa = ∇µ∇νSa−∇ν∇µSa=[∂µ(∂νSa+ω b
νa Sb)−Γαµν(∂αSa+ω b

αa Sb)+ω c
µa (∂νSc+ω b

νc Sb)]
−[∂ν(∂µSa+ω b

µa Sb)−Γανµ(∂αSa+ω b
αa Sb)+ω c

νa (∂µSc+ω b
µc Sb)], (B.2)

again, because of the torsion free scenario Γαµν − Γανµ = 0, we get

[∇µ,∇ν ]Sa = ∂µ∂νSa + (∂µω b
νa )Sb + ω b

νa (∂µSb) + ω c
µa (∂νSc) + ω c

µa ω b
νc Sb

−∂ν∂µSa − (∂νω b
µa )Sb − ω b

µa (∂νSb)− ω c
νa (∂µSc)− ω c

νa ω b
µc Sb

= (∂µω b
νa )Sb − (∂νω b

µa )Sb + ω c
µa ω b

νc Sb − ω c
νa ω b

µc Sb, (B.3)
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and it allows us to concluded that

[∇µ,∇ν ]Sa = F ab
µν Sb, (B.4)

where F ab
µν = ∂µω

ab
ν − ∂νωabµ + ωacµ ω

b
νc − ωacν ω b

µc .
Now, with the vector Vα in terms of tetrads and using the equation (B.4), the expres-

sion (B.1) can be rewriting as

R α
ν µρVα = [∇µ,∇ν ]Vρ = [∇µ,∇ν ]eaρVa = eaρ[∇µ,∇ν ]Va = eaρF

b
µνa Vb = eaρF

b
µνa e

α
b Vα, (B.5)

then the relation between tensor curvature and F ab
µν takes the form:

R α
ν µρ = eaρF

b
µνa e

α
b . (B.6)

From equation (B.6):

Rνσµρ=gσαR α
ν µρ=gσαeaρF b

µνa e
α
b =ηcdecσedαeaρF b

µνa e
α
b =ηcdecσeaρF b

µνa δ
d
b =ηcdecσeaρF d

µνa =Rµρνσ.
(B.7)

Once the Ricci’s scalar is R = gµνRµν = Rµρνσg
µνgρσ, from the equation (B.7) it follows

that

R = ηcde
c
σe
a
ρF

d
µνa η

gheµg e
ν
hη

jkeρje
σ
k = ηcde

c
σe
a
ρF

d
µνa η

cheµc e
ν
hη

akeρae
σ
k

= ηcdη
chηakecσe

µ
c e
a
ρe
ρ
ae
ν
he
σ
kF

d
µνa = δhdδ

µ
σe

ν
he
σ
kη

akF d
µνa

= eνde
µ
kη

akF d
µνa

= eνde
µ
kF

kd
µν . (B.8)

Making the change k → a and d→ b, the scalar of curvature, via tetrads and connection
(e, ω), is

R = F ab
µν eµae

ν
b . (B.9)

The Jacobian term for volume correction in curved spaces,
√
−g, in terms of tetrads is

characterized by
√
−g= [−det(ηabeaµebν)]1/2 = [−det(ηab)det(eaµ)det(ebν)]1/2 = [det(eaµ)det(ebν)]1/2 = (e2)1/2 = e.

(B.10)
Thus, Einstein-Hilbert action can be written with the Riemann-Cartan formalism, via
equations (B.9) and (B.10), in the so-called Palatini-Hilbert action [26]:

SEH = 1
16πG

∫
M
d4x
√
−gR 7−→ SPH = 1

16πG

∫
M
d4x(e)F ab

µν eµae
ν
b . (B.11)

Almost 77 years after the Palatini’s work, Holst obtained a dual term associated with
curvature F ab

µν in the Hamiltonian formalism for gravity, now called the term of Holst
(self-dual of Palatini action) [17]:

− 1
2γ ee

µ
I e
ν
JF

IJ
µν (ω), (B.12)
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where (I, J) are the spatial components of Lorentz internal indices (a, b) and γ is the
Barbero-Immirzi parameter, proposed by both authors in refs. [27, 28], in which the self-
dual formulation corresponds to the choice of γ = −i. This Holst term allows the Palatini-
Hilbert action to be generalized to

SPH = 1
16πG

∫
M
d4x(eeµI e

ν
JP

IJ
KLF

KL
µν (ω)), (B.13)

being that, this value γ = ±i can not be performed to deal with its inverse:

P IJKL = δ
[I
Kδ

J ]
L −

1
γ

εIJ KL
2 and P−1 KL

IJ = γ2

γ2 + 1

(
δ

[K
I δ

L]
J + 1

γ

ε KL
IJ

2

)
. (B.14)

C Palatini-Hilbert-Holst coupling MDO action in ADM and tetrad for-
malism

Knowing that |det(eia)| =
√
q and |e| = |

√
−g| = N

√
q, and using the decomposi-

tion (2.16), the gravitational Lagrangian density of action (2.12) is expressed as
eeµI e

ν
JP

IJ
KLF

KL
µν (ω) 7→ N

√
qeaIe

b
JP

IJ
KLF

KL
ab (ω):

N
√
qeaIe

b
JP

IJ
KLF

KL
ab (ω) = N

√
q(εaI−nanI)(εbJ−nbnJ)P IJKLF KL

ab (ω) (C.1)
= N

√
q(εaIεbJ−εaInbnJ−nanIεbJ +nanIn

bnJ)P IJKLF KL
ab (ω),

where the last three terms inside parentheses are, from equation (2.17),

nanIn
bnJ−εaInbnJ−nanIεbJ = (N−1(ta−Na))nI(N−1(tb−N b))nJ−εaI (N−1(tb−N b))nJ

−(N−1(ta−Na))nIεbJ
= N−2(ta−Na)(tb−N b)(δ0

I δ
0
J)−N−1εaI t

bnJ +N−1εaIN
bnJ

−N−1tanIε
b
J +N−1NanIε

b
J

= −N−1[εaI tbnJ +εbJ t
anI ]+N−1[NanIε

b
J +N bnJε

a
I ]

= −2N−1nIt
aεbJ +2N−1NanIε

b
J , (C.2)

so that, using the equations (C.2) in (C.1), the gravitational Lagrangian density becomes

eeµI e
ν
JP

IJ
KLF

KL
µν (ω) 7→ N

√
q(εaIεbJ − 2N−1nIt

aεbJ + 2N−1NanIε
b
J)P IJKLF KL

ab (ω).
(C.3)

Following the same prescription, the parts with similar characteristic to scalar-S and
quadratic fermionic-F dynamics, due to nature of MDO spinor, in action (2.12), are ob-
tained by

e[(eµI e
ν
Jη

IJ∂µ
¬
λ ∂νλ)−m2 ¬

λλ] 7→N
√
q[(εaIεbJ−2N−1nIt

aεbJ +2N−1NanIε
b
J)ηIJ(∂a

¬
λ ∂bλ)−m2 ¬

λλ]
(C.4)

and

eeµI e
ν
Jη

IJ [
¬
λω

IJ
µ σIJ(∂νλ)−(∂µ

¬
λ)ωMN

ν σMNλ−i/4
¬
λ(ωIJµ ωMN

ν σIJσMN )λ] 7→

N
√
q[εaIεbJ−2N−1nIt

aεbJ+2N−1NanIε
b
J ]ηIJ{i/2(

¬
λω

IJ
a [γIγJ−γJγI ](∂bλ)−(∂a

¬
λ)ωMN

b [γMγN−γNγM ]λ)

+i/16
¬
λ(ωIJa ωMN

b [γIγJ−γJγI ][γMγN−γNγM ])λ}. (C.5)
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Thus, from the expressions (C.3), (C.4) and (C.5), the action of MDO matter with the
Palatini-Holst gravitation (2.12) is described in ADM formalism and tetrad field as

S[ε, ω, λ] = SPH,ξ + S
λ,
¬
λS

+ S
λ,
¬
λF

= 1
16πG

∫
R
dt

∫
Σ
d3xN

√
qΩab

IJP
IJ
KLF

KL
ab (ω)(1− 8πGξ

¬
λ λ)

+1
2

∫
R
dt

∫
Σ
d3xN

√
q[Ωab

IJη
IJ(∂a

¬
λ ∂bλ)−m2 ¬

λ λ]

−1
8

∫
R
dt

∫
Σ
d3xN

√
qΩab

IJη
IJ{i/2(

¬
λ ω

IJ
a [γI , γJ ](∂bλ)

−(∂a
¬
λ)ωMN

b [γM , γN ]λ) + i/16
¬
λ (ωIJa ωMN

b [γI , γJ ][γM , γN ])λ}, (C.6)

where Ωab
IJ = (εaIεbJ − 2N−1nIt

aεbJ + 2N−1NanIε
b
J). Being S

λ,
¬
λS

and S
λ,
¬
λF

the scalar and
fermionic parts of the action, respectively.
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