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1 Introduction

The production of top quark (t) and its anti-particle (t̄) has been occupying a central
role within the precision physics programme at hadron colliders, like the Tevatron and
the Large Hadron Collider (LHC), over the last three decades. Being the heaviest known
elementary particle, the t quark has offered a portal to the discovery of the Higgs boson, and
it is considered pivotal for understanding the electroweak symmetry breaking mechanism.
Studies of top-quark production (and decay) at the current LHC physics programme enters
the high-precision tests of the parameters of the Standard Model (SM), such as couplings
and masses, as well as the analyses of backgrounds, for discriminating deviations that could
indicate the path to move beyond it. Within SM, the production of tt̄ pairs in hadronic
collisions is the main source of top quarks, therefore, it is considered among the cornerstone
processes at the current and future hadron colliders. Because of its role for the precision
physics programme at hadron colliders, the tt̄-pair production has triggered a significant
progress in the developments of theoretical methods for determination of the (differential)
cross-sections, hence it has been stimulating the constant effort of providing calculations in
Perturbative Quantum Chromodynamics (QCD), of increasing order in the strong-coupling
series expansion.

The cross-section for tt̄-production at LHC, at leading order (LO) and next-to-leading
order (NLO) in QCD has been known since long [1–5]. The total cross section up-to the
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next-to-next-to-leading order (NNLO) in QCD became available in [6–9]. Fully differen-
tial NNLO calculations require a major control over infrared (IR) divergences appearing
at intermediate stages of the calculation. Partial results were obtained by using the an-
tenna subtraction method [10–14]. The complete NNLO predictions were first carried
out in [6–9, 15–18], by using the Stripper approach [19–21]. More recently, the NNLO
computation of heavy-quark hadroproduction has been also completed in [22–26], within
the qT -subtraction scheme [27]. For recent studies on the strategies to perform precise
higher-order computations in high-energy physics, see refs. [28, 29].

The calculation of the NNLO QCD corrections to pp→ tt̄ requires four types of terms:
the double-real corrections, coming from the tree-level squared amplitude for a process with
two additional partons in the final state; the real-virtual corrections, due to the interference
of the tree-level and of the one-loop amplitude for a process with one additional gluon in
the final state; the squared one-loop corrections; the double-virtual corrections, due to the
interference of the two-loop amplitude with the tree-level one.

The scattering amplitude for the real-virtual contributions were evaluated in [30, 31],
and more recently in [32]. The purely virtual contributions depend on the square of one-loop
amplitude and the genuine two-loop amplitude. The former has been computed analytically
in [33–35], while the latter has been determined completely numerically in [36–38]. The
analytic evaluation of the two-loop amplitude is known partially [39–44]. The main diffi-
culty, in this case, is due to the analytic evaluation of the independent integrals appearing
in the decomposition of the two-loop amplitudes, known as master integrals (MIs).

At parton-level, the tt̄-production proceeds via the annihilation of a light-quark (q)
and an anti-quark (q̄), qq̄ → tt̄, and the more luminous gluon-fusion channel, gg → tt̄.

As regarding the gluon-fusion channel, the analytic evaluation of the interference of
the two-loop amplitude with the tree-level amplitude is only partially complete, and they
are expressed in terms of generalised polylogarithms (GPLs) and elliptic integrals [41–
43, 45–47]. Very recently, the two-loop helicity amplitudes for the tt̄-production in the
gluon-fusion channel within the leading colour approximation, including the contribution
of closed loops of quarks, has been computed in [44].

As regarding the light-quark pair annihilation channel, the interference of the two-
loop amplitude with the corresponding tree-level amplitude can be decomposed in terms of
ten form factors, according to the colour and flavour structure. Eight of them are known
analytically, and expressed in terms of GPLs [39, 40, 48].

In this work, we present the complete analytic evaluation of the two-loop scattering
amplitude for the scattering process qq̄ → QQ̄, with a massless (q) and a massive (Q) quark
flavour, in QCD, including leading and sub-leading colour contributions. We calculate
the whole set of ten form factors analytically, including the two form factors previously
unavailable, which take contribution from both planar and non-planar graphs. The latter
do not contribute to the eight form factors already known, and their evaluation constitute
part of the novel insights of the current work.

The loop integrals appearing in the un-renormalised interference terms of the one-
and two-loop bare amplitudes with the leading-order one are regulated within the Con-
ventional Dimensional Regularisation (CDR), where d is the number of continuous
space-time dimensions.
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The calculation is automated within the Aida [49] framework, implementing the adap-
tive integrand decomposition algorithm [50, 51] and interfaced: to FeynArts [52], Feyn-
Calc [53], for the automatic diagram generation and algebraic manipulations of the in-
tegrands; to Reduze [54], and Kira [55], for the generation of the relations required for
the decomposition in terms of MIs; to SecDec [56], for the numerical evaluation of MIs,
if needed; to PolylogTools [57], Ginac [58], and HandyG [59], for the numerical eval-
uation of the analytic expressions. The cancellation of the ultraviolet (UV) divergences of
the bare interference terms at one and two loops is carried out by renormalising the quark
fields and masses in the on-shell scheme, and the strong coupling in the MS-scheme, along
the lines of [36, 39]. By using the analytic expressions of the MIs [39, 60–65], the renor-
malised interference terms are finally expressed as Laurent series around d = 4 dimensions,
by keeping the complete dependence on the Mandelstam invariants s and t, and on the
heavy-quark mass M . The one- and two-loop contributions are computed, respectively,
up-to the first-order term, and up-to the finite term, in the four dimensional series expan-
sion, whose coefficients are expressed in terms of GPLs and transcendental constants of
up-to weight four. The analytic results are obtained in a non-physical region, where the
variables s and t are negative, and are numerically continued to the physical region, above
the heavy-quark pair-production threshold, s ≥ 4M2.

The structure of the infrared (IR) singularities of the massless and massive gauge
theory scattering amplitudes has been studied in [66–76]. In the current work, the IR
singularities of the two-loop renormalised amplitude are successfully compared to the pre-
dicted expression built within the Soft Collinear Effective Theory (SCET), along the lines
of the method presented in [74, 76] and [77, 78].

The study of the virtual NNLO QCD corrections for the process qq̄ → QQ̄, hereby
presented, extends to the non-Abelian case the study of the four-fermion scattering ampli-
tude with one massive fermion pair, in gauge theories, recently completed for the process
e+ e− → µ+ µ− in Quantum Electrodynamics (QED) [79].

In the following pages, we describe the strategy we adopted to solve the problem of
the analytic evaluation of the double-virtual NNLO corrections to one, out of two, partonic
reactions contributing the hadroproduction of heavy-quark pair. Thus, providing what we
consider an important validation and extension of the purely numerically known results,
which have been employed to obtain state-of-the-art perturbative predictions within top-
quark physics studies at hadron colliders (see [80–82] and reference therein, for recent
applications).

2 Scattering amplitude

We consider the scattering amplitude of the process,

q(p1) + q̄(p2)→ Q(p3) + Q̄(p4) , (2.1)

where q [q̄] stands for a massless quark [anti-quark], i.e. mq = 0, and Q [Q̄], for a massive
quark [anti-quark], i.e. mQ = M 6= 0, in QCD. The Mandelstam invariants of the scattering
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Figure 1. Tree-level Feynman diagrams for the process qq̄ → QQ̄. Thin lines indicate a light quark
(q), whilst thick ones indicate a heavy quark (Q); curly lines correspond to gluons.

reaction are s = (p1 + p2)2, t = (p1 − p3)2, and u = (p2 − p3)2, satisfying the condition
s+ t+ u = 2M2. In the physical region, the range of Mandelstam variables reads,

s ≥ 4M2 & −
(√

s−
√
s− 4M2

2

)2
≤ t ≤ −

(√
s+
√
s− 4M2

2

)2
. (2.2)

The dependence of the scattering amplitude on the kinematic variables can be conveniently
parametrised in terms of the dimensionless variables, η and φ, defined as,

η = s

4M2 − 1 , φ = M2 − t
s

, (2.3)

which, in the physical region satisfy the conditions,

η > 0 & 1
2

(
1−

√
η

1 + η

)
≤ φ ≤ 1

2

(
1 +

√
η

1 + η

)
. (2.4)

The scattering amplitude A of the process can be evaluated in perturbative QCD, and
expressed as a power series in the strong coupling αs, as,

A (αs) = 4παs
[
A(0) +

(
αs
π

)
A(1) +

(
αs
π

)2
A(2) +O

(
α3
s

) ]
. (2.5)

The LO term A(0), referred to as Born term, receives contribution from a single tree-
level Feynman diagram, see figure 1. The colour-summed, un-polarised squared amplitude
at LO (summed over the number of colours, summed over the final spins, and averaged
over the initial states) has a rather simple expression,

M(0) = 1
4
∑

colours
spins

|A(0)|2 =
(
N2
c − 1

)
A(0) , (2.6)

with,

A(0) = 2(1− ε)s2 + 4
(
t−M2)2 + 4st
s2 , (2.7)

where Nc is the number of colours, and ε = (4 − d)/2, with d being the number of (con-
tinuous) space-time dimensions. The higher order contributions A(n), with n = 1, 2, get
contributions from one- and two-loop diagrams, respectively, shown in figures 2 and 3, 4.
The interferences of one- and two-loop amplitudes with the Born term are defined as,

M(n) = 1
4
∑

colours
spins

2Re(A(0)∗A(n)) , for n = 1, 2 , (2.8)
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Figure 2. One-loop Feynman diagrams for the process qq̄ → QQ̄. Thin lines indicate a light quark
(q), whilst thick ones indicate a heavy quark (Q); curly and dashed lines correspond to gluons and
ghosts, respectively.

and can be organised as combinations of gauge invariant factors, according to the depen-
dence on the number of colours (Nc) and on the flavour structure (i.e., the number of light-
and heavy-fermion closed loops, respectively, nl and nh). In particular, the contributions
at one- and two-loop admit the following decomposition [36, 37, 48],

M(1) = 2
(
N2
c − 1

)(
A(1)Nc + B(1)

Nc
+ C

(1)
l nl + C

(1)
h nh

)
, (2.9)

M(2) = 2
(
N2
c − 1

)(
A(2)N2

c +B(2) + C(2)

N2
c

+D
(2)
l Nc nl +D

(2)
h Nc nh

+ E
(2)
l

nl
Nc

+ E
(2)
h

nh
Nc

+ F
(2)
l n2

l + F
(2)
lh nl nh + F

(2)
h n2

h

)
. (2.10)

The analytic expressions of the one-loop form factors have been known since long
time [1–5, 83–85].

Regarding the two-loop form factors in the colour decomposition (2.10), contributions
from the leading colour (A(2)), one closed fermionic loop (D(2)

l , D(2)
h , E(2)

l , E(2)
h ), and two

closed fermionic loops (F (2)
l , F

(2)
lh , F

(2)
h ) are known both numerically as well as analyti-

cally [36, 39, 40]; B(2) and C(2), instead, are known only numerically [36]. Their analytic
evaluation requires the evaluation of non-planar diagrams (that give no contribution to the
leading colour term), and they are presented for the first time in this work.

The evaluation of the previously known colour factors, together with the novel cal-
culation of B(2) and C(2), allows us to obtain, for the first time, the complete analytic
expression of the two-loop scattering amplitude for the four-quark scattering in QCD with
a massive quark-pair, both as internal and as external states.

The results for the four-quark scattering qq̄ → QQ̄ in QCD, hereby presented, can
be considered as the natural extension to a non-Abelian theory of the ones obtained for
the four-fermion scattering e+e− → µ+µ− in QED, recently presented in [79]. We observe
that the coefficient C(2), as well as E(2)

l , E
(2)
h , F (2)

l , F
(2)
lh , and F (2)

h , can be written as linear
combination of (colour stripped) Feynman diagrams that appear also in the Abelian case.
The form factors A(2), B(2), D(2)

l , and D(2)
h get contribution from Abelian and non-Abelian
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(colour stripped) diagrams. We refer the Reader to appendix A for a detailed discussion
on the colour decomposition.

The complete analytic calculation ofM(2), or in other words, the computation of the
form factors in decomposition (2.10), is the main result of the present manuscript.

3 Analytic evaluation

We begin by considering the bare LO squared amplitude and the bare interference terms,

M(0)
b = 1

4
∑

colours
spins

|A(0)
b |

2 , (3.1)

M(n)
b = 1

4
∑

colours
spins

2Re(A(0)∗
b A(n)

b ) , for n = 1, 2 , (3.2)

where A(n)
b (n ≥ 0) are the coefficients of the series expansion of the bare amplitude Ab

in the bare strong coupling constant, αb
s ≡ g2

s/(4π). Its expression up-to the second-order
corrections reads as,

Ab
(
αb
s

)
= 4παb

s Sε µ
−2ε
[
A(0)

b +
(
αb
s

π

)
A(1)

b +
(
αb
s

π

)2

A(2)
b +O

(
(αb

s )3
)]
, (3.3)

with Sε ≡ (4πe−γE )ε, and µ being the ’t Hooft mass scale. The CDR scheme is adopted
throughout the whole computation, hence, internal and external states are, accordingly,
regularised in d = 4 − 2ε space-time dimensions [86–88]. The LO term A(0)

b = A(0), given
in eq. (2.6), is finite in the limit d → 4 (ε → 0); whereas the higher order terms require
the evaluation of one- and two-loop integrals that may contain UV and IR divergences,
parametrised as poles in ε.

3.1 UV renormalisation

The one- and two-loop amplitudes contain both UV and IR divergences. The UV diver-
gences are removed by renormalising the bare quark fields and the bare mass of the heavy
quark in the on-shell scheme,

ψb =
√
Z2 ψ , Mb = ZMM , (3.4)

and by renormalising the bare coupling constant αb
s at the scale µ in the MS scheme,

αb
s Sε = αs(µ2)µ2ε ZMS

αs
. (3.5)

By employing this, we can express the renormalised amplitude in terms of the bare ampli-
tude as,

A = Z2,q Z2,QAb
(
αb
s = αb

s (αs) ,Mb = Mb(M)
)
, (3.6)

where Z2,q and Z2,Q are the on-shell wave function renormalisation constants for the
massless and massive quarks; M is the renormalised mass for the heavy quark in the
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1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24

25 26 27 28 29 30 31 32

33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48

49 50 51 52 53 54 55 56

57 58 59 60 61 62 63 64

65 66 67 68 69 70 71 72

73 74 75 76 77 78 79 80

81 82 83 84 85 86 87 88

89 90 91 92 93 94 95 96

Figure 3. Two-loop Feynman diagrams for the process qq̄ → QQ̄ (set 1 of 2).
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97 98 99 100 101 102 103 104

105 106 107 108 109 110 111 112

113 114 115 116 117 118 119 120

121 122 123 124 125 126 127 128

129 130 131 132 133 134 135 136

137 138 139 140 141 142 143 144

145 146 147 148 149 150 151 152

153 154 155 156 157 158 159 160

161 162 163 164 165 166 167 168

169 170 171 172 173 174 175 176

177 178 179 180 181 182 183 184

Figure 4. Two-loop Feynman diagrams for the process qq̄ → QQ̄ (set 2 of 2).

on-shell scheme. The renormalised amplitude depends on four renormalisation constants
(Z2,q, Z2,Q, Zαs , ZM ), which admit a perturbative expansion in the renormalised coupling
constant αs,

Zj = 1 +
(
αs
π

)
δZ

(1)
j +

(
αs
π

)2
δZ

(2)
j +O(α3

s) , for j = {q,Q, αs,M} . (3.7)
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Figure 5. Mass renormalisation counter-term diagrams.

The mass and wave-function renormalisation of the heavy quark is known to three loop
accuracy in the on-shell scheme [89–91]; the wave-function renormalisation of the light
quark, due to the presence of heavy quark, is provided at two loop accuracy in [48]; the
strong coupling constant renormalisation is known up-to five-loop accuracy [92–97]. Their
expressions, up-to the required order, are collected in appendix B.

Upon combining eqs. (3.3), (3.6), and (3.7), we obtain the UV renormalised amplitude
A, given in eq. (2.5), whose coefficients A(n) can be written in terms of the bare coefficients
A(n)

b , as,

A(0) = A(0)
b , A(n) = A(n)

b + δA(n) , (n > 0) , (3.8)

with,

δA(1) =
(
δZ(1)

αs
+ δZ

(1)
Q

)
A(0)

b , (3.9a)

δA(2) =
(
2δZ(1)

αs
+ δZ

(1)
Q

)
A(1)

b +
(
δZ(2)

αs
+ δZ

(2)
Q + δZ(2)

q + δZ
(1)
Q δZ(1)

αs

)
A(0)

b

+δZ(1)
M A

(1,mass CT)
b . (3.9b)

The last term in eq. (3.9b), corresponding to the mass renormalisation counter-term, takes
contributions from the diagrams depicted in figure 5 and consists of the one-loop diagrams
with an insertion of the mass counter-term in the heavy-quark propagators.

With the above definitions, one- and two-loop renormalised interference terms M(n)

are obtained as,

M(n) =M(n)
b + δM(n) , for n = 1, 2 , (3.10)

where,

δM(n) = 1
4
∑

colours
spins

2Re
(
A(0)∗

b δA(n)
)
. (3.11)

3.2 Algebraic decomposition

The generation of the one- and two-loop diagrams contributing toM(1)
b andM(2)

b , as well
as of those needed for the mass-renormalisation, is carried out using FeynArts [52]. By
choosing Feynman gauge for the gluon propagator, we identify 10 diagrams at one loop,
184 diagrams at two loops, and 7 counter-term diagrams for the mass renormalisation,
respectively, shown in figure 2, figures 3 and 4, and figure 5. Scaleless loop integrals (e.g.,
one- and two-loop massless tadpoles), and non-planar diagrams that vanish because of
colour algebra (see figure 6) are neglected.1

1Details on the diagrammatic contributions to the colour decomposition can be found in appendix A.
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Figure 6. Two-loop diagrams that, upon interference with the Born amplitude, give rise to van-
ishing contributions, due to colour algebra.

Figure 7. One-loop parent graphs for the process qq̄ → QQ̄. Thin lines indicate massless propa-
gators, whilst thick ones indicate massive ones.

Figure 8. Representative two-loop parent graphs for the process qq̄ → QQ̄. Thin [Thick] lines
indicate massless [massive] particles.

After performing colour, spin and Dirac-γ algebra by means of FeynCalc [53], the
interference terms are expressed in terms of n-loop scalar integrals as,

M(n)
b = (Sε)n

∫ n∏
i=1

ddki
(2π)d

∑
G

NG(pi, ki,M2)∏
σ∈GDσ(pi, ki,M2) , (3.12)

where G denotes an n-loop graph interfered with the Born terms, Dσ denotes the set of
denominators corresponding to the internal lines of G, and NG stands for a polynomial in
the scalar products built out of external momenta pi and loop momenta ki, and M2.

The decomposition of the integrals is automated within the Aida framework [49],
where integrands are grouped according to their common set of propagators with respect
to the ones of the parent graphs, identified among all the diagrams as the ones with the
largest sets of independent denominators. At one-loop, Aida identifies 3 parent graphs,
shown in figure 7; at two-loop, 31 parent diagrams (22 belonging to four-point topologies
and 9 belonging to three-point topologies), shown in figure 8, for representative topologies.

The quantities M(n) are simplified within Aida by employing the adaptive integrand
decomposition method [50, 51] followed by the use of integration-by-parts identities [98–
100]. The latter are automatically generated for the parent diagrams only, generated by
Aida through its interface to the public codes Reduze [54] and Kira [55]. After integrand
and integral decompositions, the interference terms M(n)

b appear to be written as linear
combinations of a set of independent MIs, say I(n),

M(n)
b = C(n) · I(n) , (3.13)

where C(n) represents a vector of coefficients, rational functions depending on ε and the
kinematic variables, s, t,M2. In particular, at one-loop, I(1) is a vector of 12 MIs, and, at
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two-loop, I(2) is a vector of 270 MIs, analytically known: two- and three-point functions,
and a subset of the planar four-point functions have been known since long [39, 40, 60–
62], whereas the complete set of planar and non-planar four-point integrals were computed
in [63, 64, 101]2 using the differential equation method via Magnus exponential [103], and
independently in [65].

The one-loop counter-term δM(1) is directly computed from the knowledge of the
renormalisation constants δZj and the Born squared amplitude. Differently, the two-loop
counter-term δM(2) requires also the decomposition of one-loop integrals, due to both the
genuine one-loop amplitude and to the mass renormalisation counter-term, coming from
the one-loop diagrams shown in figure 5, and, therefore, it admits a decomposition in terms
of the basis I(1).

4 Results

After inserting the expression of the MIs and adding the bare quantities M(n)
b to the

corresponding counter-terms δM(n), finally, the renormalised interference terms M(n) are
analytically expressed as a Laurent series around ε = 0, as

M(1) =
1∑

k=−2
M(1)

k εk +O(ε2) , and M(2) =
0∑

k=−4
M(2)

k εk +O(ε) , (4.1)

whose coefficientsM(n)
k contain GPLs, iteratively defined as [104],

G(wn, . . . , w1; τ) ≡
∫ τ

0

dt

t− wn
G(wn−1, . . . , w1; t) , (4.2a)

with G(w1; τ) ≡ log
(

1− τ

w1

)
. (4.2b)

The analytical expression ofM(1) andM(2) are computed in the non-physical region,
s < 0, t < 0, and their analytic continuation to the region of heavy-quark pair production
is performed numerically. In particular,M(2) contains 5033 GPLs up-to weight four, whose
arguments are written in terms of 18 letters, wi = wi(x, y, z) defined as,

w1 = x , w2 = 1 + x ,

w3 = 1− x , w4 = y ,

w5 = 1 + y , w6 = 1− y ,
w7 = x+ y , w8 = 1 + xy ,

w9 = 1− y(1− x− y) , w10 = z ,

w11 = 1 + z , w12 = 1− z ,
w13 = z + y , w14 = z − y ,
w15 = z2 − y , w16 = 1− y + y2 − z2 ,

w17 = 1− 3y + y2 + z2 , w18 = z2 − y2 − yz2 + y2z2 , (4.3)
2A comparison on a planar subset of master integrals, computed both in [39] and in [63], partly performed

along the lines of [102], revealed that the numerical coefficient (a rational number) of π4, within the weight-
four term of the integrals I30 and I31, defined in eq. (6.2) of [63], was not correct. The revised version of the
corresponding ancillary file, containing the analytic expression of the planar set of MIs used in this work,
is available on the arXiv.
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which depend on the Mandelstam variables through the relations [63, 64, 101],

− t

M2 = x, − s

M2 = (1− y)2

y
, −u−M

2

t−M2 = z2

y
, (4.4)

and their inverse,

x = − t

M2 , y = (2M2 − s−
√

4M2 − s
√
−s)

2M2 , z =
√
y
√
u−M2

√
M2 − t

. (4.5)

The numerical evaluation of GPLs, in the physical region (2.4), is performed by adopting
the prescription,

s→ s+ iδ , (4.6)

by assigning a small positive imaginary part to the squared center-of-mass energy variable,
above the pair production threshold.3

As anticipated in section 2, the analytic evaluation of the one-loop amplitude has
been performed long ago by following different approaches [1–5, 83–85]. On the two-loop
side, instead, analytic expressions for the form factors present in the colour decomposi-
tion (2.10) is partially known. In particular, the knowledge of these analytic expressions
is restricted to leading-colour and closed fermion-loop terms (A(2), D(2)

l , D(2)
h , E(2)

l , E(2)
h ,

F
(2)
l , F

(2)
lh , F

(2)
h ) [39, 40]. The analytic evaluation of B(2) and C(2) required the evalua-

tion of non-planar diagrams, that were absent from the leading-colour term, and they are
presented for the first time in this work.

The independent evaluation of the previously known form factors, together with the
novel calculation of B(2) and C(2), allows us to validate the previously known numerical
results [36], and to obtain, for the first time, the complete analytic expression of the two-
loop scattering amplitude for the partonic scattering qq̄ → QQ̄ in QCD. Our result is the
first example of a complete analytic calculation of a two-loop amplitude in QCD with a
massive quark-pair in the internal and as well as external states, including both the leading
and sub-leading colour contributions.

The analytic expressions are too long to be shown here, therefore, we provide them in
a Mathematica notebook file, available at:

https://wjtorresb@bitbucket.org/wjtorresb/interfamp_ttbar.git

For the convenience of the users, we include two Mathematica notebook files to numeri-
cally evaluate the expression at a specific phase-space point with the aid of HandyG [59]
and Ginac [58] through PolyLogTools [57].

A flow chart of the complete computational algorithm implemented in the Aida pack-
age is shown in figure 9.

3The numerical effect of δ 6= 0 has been estimated to be of O(δ), therefore, yielding numerical values of
the interference terms in double precision with a choice of δ ∼ O(10−17).
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Feynman integrands generation
@1,2 loops

Colour/Dirac/Tensor Algebra

Adaptive Integrand
Decomposition

IBP DecompositionParent Topologies
Identification

Master Integrals Reduction to Master
Integrals

Laurent Expansion
around d = 4 

Analytical expression  
of the amplitude

  Reduction Methods  

Figure 9. Flow-chart of the Aida framework.

4.1 IR structure

The structure of IR singularities of the massless and massive gauge theory scattering ampli-
tudes has been studied in [66–76]. The coefficients of the poles in ε appearing in the renor-
malised amplitudesM(1) andM(2) agree with the the universal IR structures of the QCD
amplitudes, derived from the knowledge of the lower order terms, within SCET [74, 76–
78, 105],

−1∑
k=−2

M(1)
k εk = 2ZIR

1 M(0)
∣∣∣
poles

, (4.7a)

−1∑
k=−4

M(2)
k εk = 2

[(
ZIR

2 −
(
ZIR

1

)2
)
M(0) + 1

2 Z
IR
1 M(1)

]∣∣∣
poles

, (4.7b)
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Figure 10. Three-dimensional plots of the finite terms M(n)
0 , n = 1, 2, of the renormalised one-

and two-loop amplitudes, in eqs. (2.9), (2.10), where Nc = 3, nl = 5, and nh = 1.

where ZIR
i (i = 1, 2) are the coefficients of the IR renormalisation factor ZIR encoding the

IR divergence. For the process under consideration, involving the production of a massive
quark pair, ZIR reads as [78],

ZIR = 1 +
(
αs
π

)
ZIR

1 +
(
αs
π

)2
ZIR

2 +O(α3
s) , (4.8)

with,

ZIR
1 = Γ′0

16ε2 + Γ0
8ε , (4.9)

ZIR
2 = (Γ′0)2

512ε4 + Γ′0
128ε3

(
Γ0 −

3
2β0

)
+ Γ0

128ε2
(
Γ0 − 2β0

)
+ Γ′1

256ε2 + Γ1
64ε

−2TF
3

nh∑
i=1

[
Γ′0
16

(
1

2ε2 ln µ2

m2
i

+ 1
4ε

[
ln2 µ

2

m2
i

+ π2

6

])
+ Γ0

16ε ln µ2

m2
i

]
, (4.10)

where Γ′i = ∂Γi/∂ lnµ, and Γi and βi are the coefficients of the perturbative expansion of
the anomalous dimensions and of the QCD beta-function, respectively (expressed in the
powers of renormalised coupling constant αs). The anomalous dimension matrix Γ for the
qq̄ → tt̄ has been reported in [78].

4.2 Finite terms

In figure 10, we plot the finite part of one- and two-loop renormalised amplitudes M(i)
0 ,

i = 1, 2 in the physical region, as function of the auxiliary kinematic variables η and φ,
defined in eq. (2.4), by setting nl = 5, nh = 1, and Nc = 3. The contributions of the
individual colour factors at one and two loops are shown in figures 11 and 12.

The plots are obtained by evaluating the analytic formulas at one and two loops with
high precision on 10,500 evenly spaced grid points. The numerical evaluation of the GPLs
is carried out by HandyG [59] (away from threshold) and Ginac [58] (close to threshold)
through their interface to PolyLogTools [57].

The numerical evaluation of the analytic expressions were carried out on a desktop
machine with processor Ryzen 7 PRO 4750G and 32 GB of RAM, in which we experi-
enced a CPU time per phase-space point ranging from O (20′′) (within HandyG) to O (5′)

– 14 –
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Figure 11. Three-dimensional plots of the coefficients (finite part) appearing in the decomposition
of the renormalised one-loop amplitude in eq. (2.9).

(within PolyLogTools), through a setup given by Mathematica interfaces. Addition-
ally, we observed a noteworthy feature in the region s � M2, where the evaluation time
considerably got reduced by factor of 5.

The finite term of the analytic expression of the two-loop contribution M(2)
0 , which

constitutes the main result of this communication, is found in agreement with the numerical
results available in [36]. In particular, the numerical values of the grid attached to the arXiv
submission of the latter reference agree with the (higher accuracy) values obtained from
the numerical evaluation of our analytic expressions, in the same phase-space points. For
completeness, the values of M(2)

0 , numerically evaluated at 1600 phase-space points, are
given in the ancillary file qqQQGrid.m, attached to the arXiv submission. Our grid is given
in the format {φ, η,M(2)

0 }, for the scale choice µ2 = M2, in the same phase-space points
chosen in [36].

In table 1, we showcase the numerical values of the analytic expressions of the individual
colour factors, at one- and two-loop. The analytic expressions are evaluated with Ginac at
the kinematic point s/M2 = 5, t/M2 = −5/4, µ2 = M2 (following the prescription given
in eq. (4.6), the imaginary term is chosen to have δ = 10−25), which corresponds to the
same kinematic point as in the table 3 of [36] (see also table 1 of [37]), and our results are
in agreement up-to the digits reported in the latter.

Moreover, the analytic expressions of the finite part , as well as of the poles, of A(2),
D

(2)
l , D(2)

h , E(2)
l , E(2)

h , F (2)
l , F

(2)
lh , F

(2)
h agree with earlier results published in [39, 40].
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Figure 12. Three-dimensional plots of the coefficients (finite part) appearing in the decomposition
of the renormalised two-loop amplitude in eq. (2.10).
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5 Conclusion

We completed the analytic evaluation of the scattering amplitude for the process qq̄ → QQ̄

at two loops in QCD, for a massless (q) and a massive (Q) quark type. The contribution of
the leading colour diagrams and of those containing fermion loops, whose analytical results
were already available in the literature, were independently evaluated and cross checked,
and combined with the novel contributions of the sub-leading colour terms, which were
evaluated in this work, for the first time.

The un-renormalised interference terms of the one- and two-loop bare amplitudes with
the leading-order one were computed in the framework of CDR. The renormalisation of the
ultraviolet divergences was carried out by employing the on-shell scheme for the quarks,
and the MS-scheme for the strong coupling constants.

The analytic results of the one- and two-loop renormalised contributions, obtained
as Laurent series around d = 4 dimensions, respectively, up-to the first order term, and
up-to the finite term, were expressed in terms of GPLs and transcendental constants of
up-to weight four. The singularity structure of the renormalised results was found to be
in compliance with the predicted universal infrared behaviour of QCD amplitudes [76–78].
Numerical and partial analytical results of the scattering amplitude already available in
the literature [36, 37, 39, 40] agree with the novel analytic expression.

The analytic results of the two-loop scattering amplitude for the top-quark pair pro-
duction from the light-quark annihilation channel are an essential ingredient to be com-
bined with the ones of the gluon fusion channel, whose analytic knowledge is partially
available [41–44, 46, 47], to obtain – hopefully, in a not-so-far future – the full analytic
expressions of the scattering amplitudes for the production of a heavy quark-antiquark pair
in hadron collisions, at two loops in QCD [36, 37].

The results presented for the process qq̄ → QQ̄ in QCD can be considered as an
extension to the non-Abelian case of the ones recently obtained for the process e+e− →
µ+µ− in QED [79]. The automatic framework which was developed for these calculations
is flexible and applicable to other scattering reactions. The computational efforts and the
intermediate results for the non-Abelian case, such as diagram generation, integral and
integrand decompositions, and evaluation of master integrals, are ingredients that are now
available for the study of the elastic scattering processes of one massless and one massive
particle/body, which is related by crossing symmetry to the one presented here.

The competences acquired during this work, as well as the building blocks of the
calculations, are not limited to applications within Particle Physics, and could be applied,
for instance, to investigate processes in General Relativity, like the bending of light caused
by a massive astrophysical body, see for instance [106, 107], where the massless quark is
replaced by a photon, the massive quark is replaced by the world-line of a black-hole, and
gluons are replaced by gravitons.

Let us finally remark that, more generally, the presented results constitute a crucial
reference for the study of the scattering of particles/bodies with non-vanishing masses,
for interactions mediated by self-interacting massless quanta, in the limiting case when
one of the body can be treated as massless. Therefore, they can offer additional insights
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for investigating similarities and differences between fundamental interactions occurring in
different physical scenarios.
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A Colour stripped form factors

The Feynman diagrammatic approach has been adopted throughout the calculation, and
in this appendix, we provide details on the contribution of the one- and two-loop Feynman
diagrams to the form factors present in decompositions (2.9) and (2.10), respectively.

In decomposition (2.9), for the one-loop contribution, we need to deal with 10 non-
vanishing Feynman diagrams (see figure 2). Two of them contain vacuum polarisation
insertions (with a closed heavy- and light-quark loop) contributing to form factors C(1)

l

and C
(1)
h . The remaining 8 diagrams may contribute to either A(1) (5 diagrams) or B(1)

(4 diagrams). In particular, A(1) gets contribution from purely planar diagrams with and
without self-gluon interactions. B(1), C

(1)
l , and C(1)

h get contribution only from diagrams
without self-gluon interactions.

Therefore, some of the form factors appearing in the decomposition of the considered
amplitude, for a non-Abelian theory, can be written as linear combination of colour-stripped
diagrams that would contribute to the scattering amplitude of an Abelian theory (like
e+e− → µ+µ− in QED). We list here, the decomposition of the form factors in terms of
colour-stripped (Abelian-like) diagrams:

B(1) = −d(1)
1 − d(1)

3 − 2d(1)
5 − 2d(1)

6 ,

C
(1)
l = d(1)

7 ,

C
(1)
h = d(1)

8 , (A.1)

where d(1)
k accounts for colour-stripped k-th Feynman diagram of figure 2.

Similarly, the form-factors appearing in decomposition of the two-loop amplitude
in (2.10), gets contribution from 184 non-vanishing Feynman diagrams. In particular: A(2)
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gets contributions from 49 diagrams, which similarly to A(1), are only planar; B(2) gets
contributions from 62 (planar and non-planar) diagrams; C(2) gets contributions from 35
(planar and non-planar) diagrams; D(2)

l , from 19 diagrams; D(2)
h , from 20 diagrams; E(2)

l ,
from 15 diagrams; E(2)

h , from 15 diagrams; F (2)
h , from 1 diagram; F (2)

lh , from 2 diagrams;
and F (2)

l , from 1 diagrams.
In the same way, as in the one-loop decomposition, we notice that form factors

A(2), B(2), D(2)
l and D

(2)
h get contributions from Feynman diagrams with and without

self-gluon interactions, whereas, C(2), E
(2)
l , E

(2)
h , F

(2)
l , F

(2)
lh , and F (2)

h contain only diagrams
without self-gluon interaction. Thus, the latter form factors can be decomposed in colour-
stripped (Abelian-like) diagrams as:

C(2) = d(2)
4 + d(2)

12 + d(2)
17 + d(2)

21 + d(2)
29 + d(2)

34 + d(2)
38 + 2d(2)

42 + 3d(2)
44 + 3d(2)

45 + 2d(2)
46

+ 2d(2)
48 + 2d(2)

49 + 2d(2)
51 + 2d(2)

53 + 2d(2)
54 + 2d(2)

56 + 2d(2)
58 + 2d(2)

60 + 2d(2)
62

+ 3d(2)
64 + 3d(2)

65 + 2d(2)
66 + 3d(2)

68 + 3d(2)
69 + d(2)

106 + d(2)
107 + d(2)

112 + d(2)
130

+ d(2)
131 + d(2)

136 + 2d(2)
158 + 2d(2)

163 + 2d(2)
164 + 2d(2)

165 ,

E
(2)
l = − 2d(2)

8 − 2d(2)
10 − 2d(2)

25 − 2d(2)
27 − d(2)

78 − d(2)
88 − d(2)

90 − d(2)
98

− d(2)
117 − d(2)

122 − d(2)
141 − 2d(2)

146 − 2d(2)
150 − 2d(2)

154 − 2d(2)
159 ,

E
(2)
h = − 2d(2)

9 − 2d(2)
11 − 2d(2)

26 − 2d(2)
28 − d(2)

79 − d(2)
89 − d(2)

91 − d(2)
99

− d(2)
118 − d(2)

123 − d(2)
142 − 2d(2)

147 − 2d(2)
151 − 2d(2)

155 − 2d(2)
160 ,

F
(2)
l = d(2)

168 ,

F
(2)
lh = d(2)

169 + d(2)
170 ,

F
(2)
h = d(2)

171 ,

(A.2)

with d(2)
k stands for the colour-stripped k-th Feynman diagram of figures 3 and 4.

B Renormalisation constants

In this appendix, we provide the expressions of the UV renormalisation constants intro-
duced in section 3.1, for convenience:

• Light quark field:

δZ(1)
q = 0 ; (B.1)

δZ(2)
q = CfTf nh

( 1
16ε + 1

8Lµ −
5
96

)
; (B.2)

• Heavy quark field and mass:

δZ
(1)
Q = Cf

(
− 3

4ε − 1− 3
4Lµ + ε

(
− 2− Lµ −

3
8L

2
µ −

π2

16

)
+ε2

(
− 4− 2Lµ −

1
2L

2
µ −

1
8L

3
µ −

π2

12 −
π2

16Lµ + 1
4ζ3

))
; (B.3)
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δZ
(2)
Q = CfTf nh

( 1
16ε + 1

4εLµ + 947
288 + 11

24Lµ + 3
8L

2
µ −

5π2

16

)
(B.4)

+CfTf nl
(
− 1

8ε2 + 11
48ε + 113

96 + 19
24Lµ + 1

8L
2
µ + π2

12

)
+C2

f

( 9
32ε2 + 51

64ε+ 9
16εLµ+ 433

128 + 51
32Lµ+

9
16L

2
µ−

49π2

64 +π2 ln(2)− 3ζ3
2

)
+CfCA

( 11
32ε2 −

127
192ε −

1705
384 −

215
96 Lµ −

11
32L

2
µ + 5π2

16 −
π2 ln(2)

2 + 3ζ3

)
;

δZ
(1)
M = Cf

(
− 3

4ε − 1− 3
4Lµ + ε

(
− 2− Lµ −

3
8L

2
µ −

π2

16

)
+ε2

(
− 4− 2Lµ −

1
2L

2
µ −

1
8L

3
µ −

π2

12 −
π2

16Lµ + 1
4ζ3

))
; (B.5)

• Coupling constant:

δZ(1)
αs

=
(
− 11

12εCA + 1
3εTf (nl + nh)

)
; (B.6)

δZ(2)
αs

= C2
A

( 121
144ε2 −

17
48ε

)
+ CATf (nl + nh)

( 5
24ε −

11
18ε2

)
+CfTf (nl + nh) 1

8ε + T 2
f (nl + nh)2 1

9ε2 ; (B.7)

where Lµ ≡ ln
(
µ2/M2).
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