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Abstract: Generic models of regular black holes have separate outer and inner horizons,
both with nonzero surface gravity. It has been shown that a nonzero inner horizon surface
gravity results in exponential instability at the inner horizon controlled by this parameter.
This phenomenon takes the name of “mass inflation instability”, and its presence has put
in question the physical viability of regular black holes as alternatives to their (singular)
general relativity counterparts. In this paper, we show that it is possible to make the inner
horizon surface gravity vanish, while maintaining the separation between horizons, and a
non-zero outer horizon surface gravity. We construct specific geometries satisfying these
requirements, and analyze their behavior under different kinds of perturbations, showing
that the exponential growth characteristic of mass inflation instability is not present for
these geometries. These “inner-extremal” regular black holes are thereby better behaved
than singular black holes and generic regular black holes, thus providing a well-motivated
alternative of interest for fundamental and phenomenological studies.
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1 Introduction

Regular black holes are deformations of solutions of the vacuum Einstein field equations in
which the inner singularity is excised and replaced by a non-singular core. This procedure
is highly non-unique, and the literature contains numerous proposals for both spherically
symmetric [1–6] and rotating [7–11] regular black holes. The main distinguishing feature
of these proposals is the existence of an inner horizon. In fact, in spherical symmetry
it has been shown that inner horizons must be present for the regularity conditions to
hold [12–14].1

Generically, inner horizons have a non-zero surface gravity, which translates into a char-
acteristic dynamical behavior of geodesics and metric perturbations in their vicinity. The
main effect of this dynamical behavior is a phase of exponential growth of the gravitational
energy in a neighborhood of the inner horizon, which is known as mass inflation [15–17].
Mass inflation is present when both ingoing and outgoing perturbations are considered.
One can employ simplified models of matter perturbations around the inner horizon while
still capturing the salient features of mass inflation. Existing analyses either model both
kinds of perturbations as null shells [18–20], or use null shells to describe outgoing pertur-
bations while using null dust to characterize ingoing perturbations [18, 21, 22], the latter
dating back to Ori’s model of mass inflation of Reissner-Nordström black holes [16].

In this paper, we consider regular black holes with vanishing surface gravity at the
inner horizon, and show that they do not display an exponential growth of perturbations,
in contrast to the case of a finite surface gravity. At the same time, we show that the
coefficients of the metric can be chosen in such a way that the outer horizon is well separated
from the inner horizon and features a finite nonzero surface gravity. In other words, regular
black hole metrics without mass inflation can be constructed while maintaining the outer
horizon to be non-extremal. We propose the name “inner-extremal” regular black holes for

1The question of whether inner horizons are necessary for regularity in rotating black holes is technically
open, though all known proposals display this feature.
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these geometries. The absence of unstable modes makes these regular black holes appealing
candidates to describe astrophysical black holes, candidates which are well behaved down
to the inner core.

The paper is organized as follows. We start by describing the geometries of inner-
extremal regular black holes in section 2. We then study the behaviour of the metric under
the two models of perturbations mentioned above, the double-null shell model and Ori’s
model, in sections 3 and 4 respectively. We finish the paper with a summary of our results
and a discussion of their implications in section 5.

2 Inner-extremal regular black holes

The aim of this section is to show the existence of regular black hole geometries for which
the surface gravity at the inner horizon vanishes. We will work in spherical symmetry for
simplicity, and we start by analyzing static configurations without the accretion of matter.
Under these assumptions, the most general line element can be written in advanced null
coordinates as

ds2 = −e−2φ(r)F (r)dv2 + 2e−φ(r)dvdr + r2dΩ2, (2.1)

where F (r) and φ(r) are two arbitrary functions, with the only restriction that φ(r) must
be finite for the metric determinant to be well defined.

It is also useful to introduce the Misner-Sharp quasi-local mass m(r) defined by the
expression [23, 24]

F (r) = 1− 2m(r)
r

. (2.2)

For simplicity, we will restrict our attention to geometries in which F (r) is a rational
function of the radial coordinate, namely

F (r) = Nn(r)
Dn(r) , (2.3)

where Nn and Dn are polynomials of the same degree n. This simplifying assumption has
been considered before, for instance in [25].

The conditions for regularity at r = 0 have been studied previously, e.g. [13]. If the
metric functions are finite everywhere, so that we can write

m(r) = m0 +m1r +m2r
2 +O(r3),

φ(r) = φ0 + φ1r + φ2r
2 +O(r3), (2.4)

then demanding regularity is equivalent to

m0 = m1 = m2 = φ1 = 0. (2.5)

These conditions can be obtained in different but equivalent ways, for instance calculating
the effective energy density and pressures at r = 0, or calculating the orthonormal com-
ponents of the Riemann tensor at r = 0. Demanding that these quantities are finite leads
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to eq. (2.5). Note further that, when including time dependence, the regularity conditions
are the natural generalization of eq. (2.5) with m0, m1, m2 and φ0 now functions of v.

Eq. (2.5) implies that F (r) = 1 at r = 0. It is then clear that regularity implies
that the metric must have an even number of horizons counting multiplicities, where the
locations of the horizons are defined as usual by the roots of F (r) [19]. A black hole with a
single simple root of F (r) such as the Schwarzschild black hole cannot be regular. At the
very least two simple roots, or one double root, are needed for regularity. These are the
standard type of regular black holes analyzed in the literature.

However, here we are interested in a different realization. We will consider situations in
which F (r) has two roots r+ ≥ r−. In most situations these two roots will be different, but
it is useful to keep the analysis general enough so that the coincidence limit can be taken.
The quantity r+ thus indicates the position of the outer horizon, and r− the position of
the inner horizon. The inner surface gravity is then given by

κ− = e−φ(r−) dF (r)
dr

∣∣∣∣
r=r−

. (2.6)

For situations with two single roots, the inner surface gravity is nonzero as long as the black
hole is nonextremal, r+ 6= r−. These situations are then unstable, as shown in previous
work [18, 19, 22], with the instability timescale being controlled by the value of κ−.

However, the condition κ− = 0 can be also satisfied away from extremality if r− is not
a single root. This is tantamount to requiring that

dF (r)
dr

∣∣∣∣
r=r−

= 0. (2.7)

Note that the function φ(r), which must be finite, can only change the value of κ− when
the latter is nonzero. As we are interested in situations in which κ− = 0 due to eq. (2.7)
being satisfied, we can assume that φ(r) = 0 for simplicity.

While we have little knowledge of the behaviour of the black hole metric in the imme-
diate vicinity of the inner core, it is reasonable to assume that general relativity holds as
a good approximation about the outer horizon r = r+ if the two scales r− and r+ are well
separated. Therefore, we maintain that r+ is a single root of F (r), in analogy with general
relativity. In this situation, for the inner surface gravity to vanish, the root r = r− has to
be at least cubic. The lowest possible degree for the polynomials in F (r) to satisfy this
requirement is n = 4. For instance, we would have that Nn=4(r) is given by

Nn=4(r) = (r − r−)3 (r − r+), (2.8)

so that we can write
F (r) = (r − r−)3 (r − r+)

a4r4 + a3r3 + a2r2 + a1r + a0
. (2.9)

Note that, while the coefficients of Nn=4(r) are determined in terms of r± , this is not
true a priori for the coefficients of Dn=4(r). However, the regularity conditions in eq. (2.5),
which are equivalent to

F (r) = 1 +O(r2) , (2.10)

– 3 –



J
H
E
P
0
9
(
2
0
2
2
)
1
1
8

and the asymptotic condition2

F (r) = 1− 2M
r

+O(r−2), (2.11)

can be used to fix
F (r) = (r − r−)3 (r − r+)

(r − r−)3 (r − r+) + 2Mr3 + b2r2
. (2.12)

This specifies the denominator in terms of the physically meaningful quantities r−, r+, M ,
and one remaining free parameter b2, where now a2 = b2 + 3r−(r− + r+). Thence

D4(r) = (r − r−)3 (r − r+) + 2Mr3 + b2r
2

= r4 + (2M − 3r− − r+)r3 + a2r
2 − r2

−(3r+ + r−)r + r3
−r+. (2.13)

This can be rewritten as a sum of squares

D4(r) = r2
[
r + (2M − 3r− − r+)

2

]2
+ c2r

2 + r3
−r+

[
1− 1

2r
( 3
r−

+ 1
r+

)]2
, (2.14)

where now

a2 = b2 + 3r−(r− + r+) = c2 + (2M − 3r− − r+)2

4 +
r3
−r+(3/r− + 1/r+)2

4 . (2.15)

Certainly, as long as c2 ≥ 0, (that is, as long as a2, [or b2], are sufficiently large), the
denominator will be a positive sum of squares, and so the denominator will have no zeros
on the real axis — and thence the metric function F (r) will have no poles on the real axis.

Let us now consider some more specific physically plausible choices of parameters.
Assume that both r− � 2M and |r+ − 2M | � 2M , (the following analysis changes slightly
if these assumptions are not met). Under these conditions

a2 ∼ c2 + 4r2
− + 9

4r+r− ∼ c2 + 9
4 r+r−. (2.16)

The condition for a non-zero denominator (c2 > 0) is then equivalent to

a2 &
9
4 r+r−. (2.17)

This is the only condition we have to impose on a2 in order to avoid the presence of zeros
in the denominator.

In summary, we consider the metric in eq. (2.1) with

F (r) = (r − r−)3 (r − r+)
(r − r−)3 (r − r+) + 2Mr3 + [a2 − 3r−(r+ + r−)]r2

, φ(r) = 0 , (2.18)

subject to
r− � 2M ; |r+ − 2M | � 2M ; a2 &

9
4r+r−. (2.19)

2Let us mention that a few works argue for a more restrictive fall-off based on the assumption that the
metric is a vacuum solution of quantum gravity [26, 27]. While we do not consider this fall-off condition
here (as we do not necessarily assume that the metric is a vacuum solution), it is interesting to point out
that this condition could be satisfied choosing higher order polynomial in eq. (2.3).
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Figure 1. Schematic representation of the relevant sections of the Penrose’s diagram of a regular
black hole. A pair of outgoing/ingoing null shells cross at a point r0(v) close to the inner horizon
dividing the spacetime into four regions (A, B, C and D). We will consider several ingoing shells
and analyze the behavior of the system as the point r0(v) is displaced along the outgoing null shell.

3 Analysis of perturbations: double null shell model

Let us now study the stability of the geometry just introduced. We begin by following the
analysis of [19, 28, 29] considering a perturbation constituted by two null shells crossing
at a radius r0 and we study the backreaction on the geometry as r0 approaches the inner
horizon along an outgoing null shell. These shells meet at r0 at a given moment of time.
We can also use null coordinates, which is useful as we are interested in analyzing the
behavior of the system when r0 is displaced along a null outgoing curve. Hence, we can
take a constant value u = u0, being this value arbitrary but for the condition that it lies
inside the outer horizon, and modify the value of v, which means that we can describe the
trajectory of the crossing point in terms of the curve r0(v)u=u0 .

As shown in figure 1, we can see that the spacetime is divided into four regions (A,
B, C and D). We assume that the metric has the same functional form in all the four
regions. However, the value of the mass function is different inside or outside the shells.
The precise jump of the Misner-Sharp mass across the shells is obtained using Israel’s first
junction condition [30] which, on purely geometrical grounds, can be used to derive the
Dray-’t Hoof-Redmount (DTR) relation [19, 28, 29] which allows us to relate the geometry,
and hence the Misner-Sharp masses, in the aforementioned four regions, obtaining [19]

mA(r0) = mB(r0) +min(r0) +mout(r0)− 2mout(r0)min(r0)
r0FB(r0) , (3.1)

where mA and mB are the values of the Misner-Sharp mass in the regions A and B respec-
tively, andmout ≡ mD−mB andmin ≡ mC−mB denote the jump of the Misner-Sharp mass
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across the two shells. The values of these jumps depend on the energy of the perturbation
and on the specific theory under consideration. The quantity FB(r) in the denominator of
eq. (3.1) goes to zero for r close to the inner horizon as

F (r) = 1
3!F

′′′(r) (r − r−)3 +O
[
(r − r−)4

]
. (3.2)

However, before concluding that this leads to an unbounded growth of mA, we need to
study the behavior of min and mout. It is useful to impose boundary conditions on the
asymptotically flat regions, in particular on I + and I −, and it is useful to use the value
of the Bondi mass on I −, Min, to write these conditions explicitly. The Bondi mass will
shift due to the existence of an ingoing shell. We can then translate this shift into the shift
of the Misner-Sharp mass m(r), which is a function of r and Min. At first order, and along
the ingoing shell, we would have for instance

min(r0,M,Min) = ∂m

∂M

∣∣∣∣
r=r0

Min +O(M2
in) . (3.3)

Note the explicit dependence of min on r0 , while Min has no such dependence. We need
to evaluate this dependence explicitly in order to draw conclusions. In physical terms,
the meaning of this dependence is the following: a given ingoing shell has a fixed value
of Min by construction, but the value of the Misner-Sharp mass changes along the shell,
and also changes if the shell is dropped earlier or later (due to the spacetime being time-
dependent). Hence, for the setting that we are considering here, in which r0 is displaced
along an outgoing null shell, the value of the Misner-Sharp mass at r0(v)u=u0 will ultimately
be a function of v.

However, it is useful to evaluate eq. (3.3) for a fixed value of v = v0 first, and then gen-
eralize it to include this time dependence explicitly. For the geometry under consideration,
we have

m(r,M) = 1
2r
(

1− (r − r−(M))3 (r − r+(M))
(r − r−(M))3 (r − r+(M)) + 2Mr3 + b2(M)r2

)
. (3.4)

A direct computation of the partial derivative with respect to M shows that the resulting
expression can be arranged in two separate pieces:

∂m

∂M
= d1(r,M) ∂r−

∂M
(r − r−(M))2 + d2(r,M) (r − r−(M))3 , (3.5)

where d1(r,M) and d2(r,M) are functions of r and M , with the exact functional forms
being irrelevant for the current discussion, as we only need to consider their values at the
inner horizon, which are given by

d1 (r−,M) = −3
2

r+(M)− r−(M)
r−(M)

(
2Mr2

−(M) + b2(M)
) , (3.6)

and
d2 (r−(M),M) = 1

2
∂

∂M

(
r+(M)− r−(M)

r−(M) (2Mr−(M) + b2(M))

)
. (3.7)

– 6 –
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The important feature in eq. (3.5) is that the first term vanishes quadratically when r0 → r−
if ∂r−/∂M 6= 0, while the second term vanishes at least cubically. Hence, the partial
derivative ∂m/∂M vanishes quadratically if the location of the inner horizon depends on
the asymptotic mass, which we will assume below as this is the case for the most commonly
considered metrics [19].3

Combining eqs. (3.5) and (3.3), we obtain

min(r0,M,Min) = d1(r−,M) ∂r−
∂M

∣∣∣∣
r=r−

(r0 − r−)2Min +O[(r0 − r−)3] . (3.8)

A similar statement applies to mout as a function of Mout (the asymptotic mass defined on
the other asymptotic region in figure 1), so that we can write

mout(r0,M,Mout) = d1(r−,M) ∂r−
∂M

∣∣∣∣
r=r−

(r0 − r−)2Mout +O[(r0 − r−)3] . (3.9)

The r0 dependence in these equations translates into a dependence on v when the
crossing radius r0 approaches the inner horizon along the outgoing shell, following a tra-
jectory r0(v). Let us calculate this dependence explicitly. To this end, we note that, along
an outgoing null trajectory,

dv = 2 dr
F (r) = 12 dr

F ′′′(r−)(r − r−)3 [1 +O (r − r−)] , (3.10)

where we have used eq. (3.2). The leading order of this equation can be easily integrated,
obtaining

v ' − 6
F ′′′(r−)(r − r−)2 + v? =⇒ r − r− '

√
|F ′′′(r−)|
v − v?

. (3.11)

Aside from the dependence on v through r0(v), in the specific problem we are analyzingMin
becomes a function of v, as we are considering a stream of ingoing shells (recall figure 1).
Putting all these ingredients together we obtain, at leading order,

min (r0(v),M,Min(v)) ' h(M)
v

Min(v), (3.12)

where h(M) is a function of M (thus with no dependence on v), and

mout (r0(v),M,Mout) '
h(M)
v

Mout. (3.13)

We just need one further ingredient to extract the asymptotic behavior of eq. (3.1), which
is obtained by plugging eq. (3.11) into eq. (3.2), thus obtaining

F (r(v)) '
∣∣F ′′′(r−)

∣∣5/2
v3/2 . (3.14)

3From the discussion of this section it also follows that if ∂m/∂M = 0 in a region containing the inner
horizon there would be no backreaction of the shells on the geometry. Alternatively, the geometry close to
the inner horizon is controlled only by the regularization scale, with no interplay with the ADM mass. Due
to the lack of backreaction on the position of the inner horizon, mass inflation cannot manifest in these
specific situations.

– 7 –
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Figure 2. Schematic representation of the relevant sections of the Carter-Penrose diagram of a
regular black hole. An outgoing null shell divides the spacetime in two regions.

Substituting these expressions into eq. (3.1), we obtain

mA(r0(v)) = mB(r0(v)) + hv−1Min(v) + hv−1Mout −
2h2

r− |F ′′′(r−)|5/2 v
−1/2Min(v)Mout.

(3.15)
Thus we see that the geometry under consideration does not suffer from the mass inflation
instability when perturbed with two null shells. In fact the energy of the perturbations
Mout and Min is not blueshifted close to the inner horizon, and their backreaction on the
geometry goes to zero for large v when Min(v) decays in time, or even in the case in which
it remains constant.

4 Analysis of perturbations: modified Ori model

Let us now consider a different model for perturbations in which the ingoing null geodesic
is replaced by a continuous flux of matter. This setup was originally considered by Ori
in [16] to study the instability of the Cauchy horizon of a Reissner-Nordström black hole.
The outgoing shell, which is a shared ingredient with the model studied in the previous
section, divides the spacetime into two regions. With reference to figure 2 we denote the
region exterior to this shell as R1, while the interior region will be R2. The metrics in each
of these regions can be written without loss of generality as a generalization of eq. (2.1) in
which the functions F (r) and φ(v) are now time-dependent:

ds2
1/2 = −e−2φ1/2(v,r)F1/2(v, r)dv2 + 2e−φ(r)dvdr + r2dΩ2. (4.1)

– 8 –
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As we have seen in the previous section, and is discussed in numerous works [15–22],
the instability is controlled by the inner surface gravity, the main features of which are
contained in the function F (v, r). Hence, for simplicity we can consider that φ(v, r) = φ(v),
which can be then absorbed in a redefinition of v. In practice, we will thus be working
with the metrics

ds2
1/2 = −F1/2(v, r)dv2 + 2dvdr + r2dΩ2. (4.2)

We will further assume that both F1 and F2 take the functional form in eq. (2.18),
with M1/2 being promoted to functions of v. The functional form of M1 determines the
amount of energy that is being absorbed by the black hole. There are different choices for
this function and, to follow standard conventions, we will assume that the decay of the
perturbation is described by the power law

M1 = M0 − β
(
v

v0

)−γ
. (4.3)

This relation is typically used at late times, in which regime it is known as Price’s law [31,
32]. While focusing only on the late-time behavior is justified in situations in which there
is mass inflation or, in other words, to argue for unstable behavior, arguing for stability
would require one to show that quantities remain bounded at all points during evolution.
Hence, we will assume that eq. (4.3) is valid at all times as a working assumption.

Eq. (4.3) fixes the form of the metric in the region external to the shell, which means
that we just need to determine the behavior of internal metric. In particular, we are inter-
ested in understanding the behavior of the gravitational energy enclosed by the outgoing
shell, which is given by m2(v, r0), which is related to F2(v, r0) by eq. (2.2). This function
can be obtained using the junction conditions on the outgoing shell which, as described
in [22], results into the equation

1
F1

∂m1
∂v

∣∣∣∣
r=R(v)

= 1
F2

∂m2
∂v

∣∣∣∣
r=R(v)

, (4.4)

in which v := v1 is the v coordinate in the exterior region.
This equation can be solved numerically assuming that the geometry is described by
eq. (2.18) both outside and inside the shell. To perform the numerical integration, we
need to make some choices on the free parameters. As a working example, we consider

r+ = 2M ; r− = `

(
1 + α

`

M
+O

(
`2

M2

))
. (4.5)

where ` is the regularization parameter and α is an order one constant. The reason for this
choice of the expression for r− is that it describes the location of the inner horizon for the
geometries that are usually studied in the literature [19].

Finally, in order to check that the absence of the instability is due the vanishing of the
surface gravity at the inner horizon, we will study the slightly modified geometry

F (r) = (r − r−)(r − kr−)2(r − r+)
r4 + (2M − 3r− − r+)r3 + a2r2 − r2

−(r− + 3r+)r + r3
−r+

. (4.6)

– 9 –
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Figure 3. Numerical evolution of the Misner-Sharpm+ for different values of κ−. For the numerical
integration we have considered M0 = 100, ` = 1, α = β = v0 = 1, γ = 12, a2 = 10M0`.

For k = 1 this geometry reduces to the one in (2.18), whereas for k 6= 1 the surface gravity
at the inner horizon is non-zero, and is given by

κ− = 1
2
dF

dr
= − r+ − r−

2 (2Mr− + a2 − 3r− (r− + r+)) (1− k)2 . (4.7)

Figure 3 shows the result of the numerical integration of eq. (4.4). We can see that the
instability timescale is longer for smaller values of the surface gravity, and for κ− = 0 the
numerical integration does not show any sign of instability.

5 Conclusions

We have discussed the features of a new kind of regular black hole that combines features
of non-extremal and extremal black holes: inner-extremal regular black holes have two
horizons, at positions r = r+ and r = r−, an arbitrary outer surface gravity κ+, and a
vanishing inner surface gravity κ− = 0.

The main motivation behind our proposal is the fact that, in previously analyzed
regular black in which κ− 6= 0, the timescale for mass inflation (and the corresponding
exponential instablity) is controlled by κ−. Hence, that it is possible to find regular black
holes in which the inner surface gravity vanishes, suggests that these situations can avoid
the mass inflation issue.

– 10 –
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However, answering this question was not as simple as using the expressions for κ− 6= 0
and taking the limit κ− → 0, as these expressions are not valid in this limit. Reaching a
definitive answer required evaluating the next order in the equations evolving the evolution
of perturbations on top of these geometries. We have performed this calculation for two
different models that are routinely used in the study of mass inflation: a model with two
null shells, and a model with a null shell and a continuous stream of radiation (Ori model).
In both cases, we have seen that there is indeed no exponential mass inflation, and that
the backreaction of perturbations vanishes asymptotically as long as perturbations decay
in time (or, at most, remain constant).

These non-extremal regular black holes with κ− = 0 are therefore natural candidates to
consider as alternative to singular black holes, and also to regular black holes with κ− 6= 0.
Our proposal represents an improvement with respect to these two kinds of geometries,
and provides a proof of principle that singularity regularization does not need to result in
exponential instabilities. A fundamental question that remains to be answered is whether
these geometries could represent the stable endpoint of the dynamical evolution driven by
the backreaction of perturbations in unstable (κ− 6= 0) regular black holes. We hope to
come back to this question in the future.
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