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1 Introduction

Stability of the electroweak vacuum, in which we are living, is highly non-trivial in quantum
field theory. Even if the electroweak vacuum, at which the Higgs vacuum expectation
value (VEV) is given by 〈h〉 ' 246 GeV, corresponds to a local minimum of the Higgs
potential, there may exist another minimum of the potential at which the energy density
becomes smaller than that of the electroweak vacuum. If so, the electroweak vacuum
becomes metastable and it decays into the true vacuum via the quantum tunneling effect [1–
8]. The metastability of the electroweak vacuum occurs in the standard model as well as in
certain models with physics beyond the standard model.

In the standard model, it is well known that the Higgs quartic coupling, which is
positive at the electroweak scale, may become negative at higher energy scale due to the
renormalization group effect. Using the central values of standard-model parameters, the
Higgs quartic coupling constant becomes negative at the instability scale of ∼ O(1010) GeV.
The negativity of the quartic coupling constant indicates that the electroweak vacuum is
not the absolute minimum of the potential and that it is metastable. We emphasize that
the metastability of the electroweak vacuum does not imply the difficulty to realize the
electroweak vacuum in the present universe. Indeed, in the standard model, the lifetime of
the electroweak vacuum is much longer than the present cosmic time [9–17]. Thus, once
the Higgs field settles to the electroweak vacuum in the early universe, we can safely live in
the electroweak vacuum even if the standard model is valid up to a very high energy scale.

The behavior of the Higgs field is, however, highly non-trivial in the early universe.
In particular, during and after the inflation, the Higgs field is influenced by the dynamics
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of the rapid expansion of the universe as well as by the motion of the inflaton. During
the inflation, the quantum fluctuation of the Higgs field may make the Higgs amplitude
larger than the instability scale; in such a case, the Higgs shows a run-away behavior during
inflation due to the negative quartic coupling, which provides a cosmic history inconsistent
with the present universe [18–28]. Such a problem can be avoided if the Higgs field has a
non-minimal coupling to the Ricci scalar. The non-minimal coupling induces an effective
mass term of the Higgs during the inflation which stabilizes the Higgs potential if the sign
of the non-minimal coupling constant is properly chosen. Hereafter, we concentrate on the
case with the non-minimal coupling of the Higgs. Even though the non-minimal coupling
stabilizes the Higgs potential during the inflation, it may cause an instability after the
inflation [29–38]. With the non-minimal coupling, the effective mass of the Higgs may have
significant time-dependence because of the oscillatory behavior of the Ricci scalar after
inflation. Then, the Higgs amplitude may be amplified due to the parametric resonance [39–
43] or tachyonic resonance [44–46] at the preheating epoch after the inflation; if the effect
of the parametric resonance is too large, the Higgs amplitude exceeds the instability scale
and the Higgs shows the run-away behavior. The effect of the parametric resonance is more
enhanced with larger value of the non-minimal coupling, and we obtain an upper bound on
the non-minimal coupling to realize the electroweak vacuum in the present universe.

The dynamics of the Higgs field after inflation depends on couplings of the Higgs to
the inflaton and Ricci scalar as well as on the model of the inflation. The upper bound on
the non-minimal coupling has been studied in simple inflation model in which the gravity
sector is described by the Einstein-Hilbert action [29–38]. Based on the recent observations
of cosmic density perturbations, however, an inflation model with R2 term (with R being
the Ricci scalar), which is called the Starobinsky inflation [47], has been attracting many
attentions. The Starobinsky inflation predicts the scalar spectral index and the tensor-to-
scalar ratio consistent with the observations [48]. In addition, the Starobinsky inflation
provides an interesting possibility of producing hidden-sector dark matter via the decay of
the inflaton [49–52]. Phenomenology based on the Starobinsky inflation crucially depends
on the stability of the electroweak vacuum during and after the inflation. Importantly, the
evolution equation of the Higgs field in Starobinsky inflation differs from that in simple
inflation models (without the R2 term). Thus, the dedicated study about the stability of
the electroweak vacuum is necessary for the case of the Starobinsky inflation.

In this paper, we consider the stability of the electroweak vacuum during and after the
Starobinsky inflation. In particular, we study in detail the Higgs dynamics after inflation
by a numerical lattice simulation. Then, we derive an upper bound on the non-minimal
coupling constant to realize the electroweak vacuum in the present universe.

The organization of this paper is as follows. In section 2, we give an overview of the
Starobinsky inflation model as well as the behavior of the Higgs and inflaton potential in the
framework of our interest. In section 3, we discuss the stability of the electroweak vacuum
during and after the Starobinsky inflation. In section 4, we perform a lattice simulation
to study the stability of the electroweak vacuum in the preheating epoch after inflation
and derive an upper bound on the non-minimal coupling constant. Section 5 is devoted to
conclusions and discussion.
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2 Model

In this section, we summarize the basic features of the Starobinsky inflation model with the
Higgs non-minimal coupling to gravity. We also give a brief summary of the properties of
the Higgs potential in the standard model.

2.1 Lagrangian

We start with introducing the total Lagrangian of the model we consider. In the Jordan
frame, the action has the following form:

S = Sinf + SHiggs + Sint, (2.1)

where Sinf , SHiggs, Sint are actions of the inflation sector, the Higgs sector and the interaction
between Higgs and gravity, respectively. Taking the unitary gauge Φ = (0, h/

√
2)T (with Φ

being the Higgs doublet while h being a real scalar field), they are given by [47]

Sinf =
∫
d4x

√
−ĝ

[
−M

2
Pl

2

(
R̂− 1

6µ2 R̂
2
)]

, (2.2)

SHiggs =
∫
d4x

√
−ĝ

(1
2 ĝ

µν∂µh∂νh−
λ

4h
4
)
, (2.3)

Sint =
∫
d4x

√
−ĝ 1

2ξR̂h
2, (2.4)

where fields with hat are defined in the Jordan frame, MPl ' 2.4× 1018 GeV is the reduced
Planck scale, and ξ is the Higgs-gravity non-minimal coupling constant.1 Hereafter, we
consider the case of ξ being non-negative.2 The Higgs quartic coupling constant λ depends
on the renormalization scale Q. More detail about the scale dependence of λ will be
discussed in the next subsection.

By introducing an auxiliary field ϕ [53], the action (2.1) can be rewritten as

S =
∫
d4x

√
−ĝ

[
−M

2
Pl

2

(
1− ϕ

3µ2 −
ξ

M2
Pl
h2
)
R̂− M2

Plϕ
2

12µ2 + 1
2 ĝ

µν∂µh∂νh−
λ

4h
4
]
. (2.5)

Note that the Euler-Lagrange equation of ϕ gives

ϕ = R̂, (2.6)

and by substituting back to (2.5) we obtain the original action.
For the study of the stability of the electroweak vacuum, it is convenient to work in

the Einstein frame. With the conformal transformation of the metric

gµν = Ω2ĝµν , (2.7)

1We neglect the bare Higgs quadratic term which is irrelevant for our discussion.
2In our convention, the conformal coupling is ξ = 1/6. If ξ < 0, the non-minimal coupling induces a

tachyonic mass term of the Higgs field, so the electroweak vacuum is destabilized during inflation [24].
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where

Ω2 = 1− ϕ

3µ2 −
ξ

M2
Pl
h2, (2.8)

we can eliminate the non-minimal couplings and obtain the action in the Einstein frame as

S =
∫
d4x
√
−g

[
−M

2
Pl

2 R+ 1
2g

µν∂µφ∂νφ+ 1
2e
−χgµν∂µh∂νh− V (φ, h)

]
, (2.9)

where we have defined χ and the scalaron field φ through

φ

MPl
=
√

3
2 ln Ω2, χ =

√
2
3
φ

MPl
. (2.10)

Although φ (or, equivalently, ϕ) was introduced as the auxiliary field, it becomes a physical
degree of freedom; with the R2 term, there exists an extra physical degree of freedom
in the metric other than the tensor modes, and it is converted to φ by the conformal
transformation. In addition, the scalar potential V (φ, h) is given by

V (φ, h) = 3µ2M2
Pl

4

(
1− e−χ + ξ

M2
Pl
e−χh2

)2

+ λ

4 e
−2χh4. (2.11)

If the initial amplitude of φ is larger than MPl, an approximate de Sitter space is
realized and the inflation occurs. This can be understood by studying the potential of φ
(with neglecting the Higgs field):

V ' 3µ2M2
Pl

4

[
1− exp

(
−
√

2
3
φ

MPl

)]2

. (2.12)

One can see that the potential becomes flat when φ � MPl. Due to the flatness of this
potential at large φ, the slow-roll inflation (called Starobinsky inflation) can happen. The
expansion rate during the inflation is evaluated as

Hinf '
1
2µ. (2.13)

We define t∗ as the time when the slow roll parameter, ε ≡ −Ḣ/H2, becomes equal to unity
(i.e., end of the inflation); at the time of t = t∗,

ε(t∗) = 1, φ∗ ≡ φ(t∗) ' 0.97MPl, φ̇∗ ≡ φ̇(t∗) ' −3.75× 10−6M2
Pl. (2.14)

In the Starobinsky inflation model, the curvature perturbation amplitude As, the scalar
spectral index ns, and the tensor-to-scalar ratio r are evaluated as

As(k) ' 1
24π2

µ2

M2
Pl
N2
e , (2.15)

ns(k)− 1 ' − 2
Ne

, (2.16)

r(k) ' 12
N2
e

, (2.17)
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where Ne is the e-folding number at which the mode with comoving wavenumber k exits
the horizon and is related to the scalaron amplitude as

Ne '
3
4 exp

(√
2
3
φ

MPl

)
. (2.18)

Taking Ne(k = 0.05Mpc−1) ' 56, the observed value of As ' 2.1× 10−9 [54] gives

µ ' 3.1× 1013 GeV, (2.19)

which will be used for our numerical analysis, while the scalar spectral index and the
tensor-to-scalar ratio are well within the allowed region [48, 55].

We also note here that, during the inflation, the Higgs field acquires an effective mass
squared of ∼ 12ξH2

inf . Thus, if ξ is larger than ∼ 0.1, the Higgs field is forced to be at the
origin during the inflation.

2.2 Higgs potential at quantum level

Next, we discuss the behavior of the Higgs potential with including the quantum effects.
The Higgs potential is dominated by the quartic term as indicated in the previous section.
The coupling constant λ for the quartic interaction of the Higgs has scale dependence and,
as is well known, it may become negative at the scale much higher than the electroweak
scale. In order to take account of the scale dependence of the quartic coupling constant, we
evaluate λ at the scale of the Higgs amplitude. Because we will deal with the case that the
Higgs field is inhomogeneous, we approximate the Higgs potential as

VHiggs = 1
4λ
(
Q =

√
〈h2〉

)
h4, (2.20)

where λ(Q) denotes the quartic coupling constant at the renormalization scale Q and 〈· · · 〉
is the spatial average. The bare mass term of the Higgs is neglected because it is irrelevant
for our following discussion.

In our analysis, we assume the particle content of the standard model (as well as
inflaton) and study the scale dependence of λ. The renormalization group behavior of λ is
sensitive to standard model parameters, in particular, the top quark mass Mt, the strong
coupling constant αs, and the Higgs mass.

Let us first consider the top quark pole massMt. It can be obtained from the kinematics
in the top anti-top events. The latest PDG average gives [56]

Mt = 172.76± 0.3 GeV. (2.21)

We take the central value of Mt as our canonical value and, in order to take account of the
top-mass uncertainty, we also provide the numerical results with several values of the top
mass. For the strong coupling constant, we adopt [56]

αs(mZ) = 0.1179(9). (2.22)
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Figure 1. The Higgs quartic coupling λ as a function of the renormalization scale µRG with different
input standard-model couplings. In the left panel we show the running λ with the central values of
the measured standard-model couplings including (2.21) (black solid line). The blue dotted (red
dashed) lines indicate the 1 and 2 σ range by varying Mt (αs) according to eq. (2.22) (eq. (2.21)).
In the right panel, we show the scale dependence of λ with Mt = 169.0, 169.5, 170.0, · · · , 173.5GeV
from top to bottom.

In addition, the Higgs boson mass is given by [56]

mh = 125.25± 0.17 GeV. (2.23)

We show the scale dependence of λ in figure 1. We use the SMDR code [57], which
partially includes 3, 4, and 5 loop effects, to numerically solve the renormalization group
equations in the standard model. In the left panel, Mt and αs are varied within 2 σ

ranges around their central values. We can see that even adopting such uncertainties in the
standard model parameters, λ becomes negative at a high scale and the Higgs potential
is metastable. Using the central values of the standard model parameters, we find the
instability scale, define as λ(ΛI) = 0, to be

ΛI ' 3.3× 1010 GeV. (2.24)

The instability scale may vary by an order of magnitude when we take account of the ∼ 2σ
uncertainties. In the right panel, we show the scale dependence for several values of Mt

while taking central values of other parameters. The Higgs potential becomes absolutely
stable for Mt . 171GeV, which is inconsistent with eq. (2.21) at ∼ 6σ level. Thus in the
standard model, the Higgs potential is very likely to have a radiative instability.

2.3 Effective mass of the Higgs

The Higgs dynamics becomes highly non-trivial due to the presence of inflaton field. In the
flat space-time (i.e., when the inflaton is at the minimum of its potential), the Higgs field
can just stay at the electroweak vacuum. During and after the inflation, on the contrary,
the inflaton is in motion which affects the dynamics of the Higgs field.

Although our numerical lattice simulation is performed based on the action given in
eq. (2.9), it is also instructive to consider the frame in which the Higgs field is canonically
normalized. Such a frame can be realized with the following transformation:

hc ≡ e−χ/2h. (2.25)
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Then, the total action is found to be

S =
∫
d4x
√
−g

[
−M

2
Pl

2 R+ 1
2g

µν∂µφ∂νφ+ 1
2g

µν∂µhc∂νhc − Ṽ (φ, hc)
]
, (2.26)

where3

Ṽ (φ, hc) = 3µ2M2
Pl

4 (1− e−χ)2 + 1
2m

2
effh

2
c + 1

4

(
λ+ 3µ2

M2
Pl
ξ2
)
h4
c , (2.27)

with

m2
eff ≡

1
2
√
−g

∂µ
(√
−ggµν∂νχ

)
− 1

4g
µν(∂µχ)(∂νχ) + 3µ2(1− e−χ)ξ. (2.28)

Because the inflaton field is (almost) homogeneous, m2
eff can be expressed as

m2
eff '

1√
6MPl

(φ̈+ 3Hφ̇)− 1
6M2

Pl
φ̇2 + 3µ2

[
1− exp

(
−
√

2
3
φ

MPl

)]
ξ, (2.29)

where H is the expansion rate of the universe. Using the relation R ' (φ̇2 − 4V )/M2
Pl, m2

eff
can be also expressed as

m2
eff ' −ξR+

(
ξ − 1

6

)(
φ̇2

M2
Pl

+
√

6∂φV
MPl

)
. (2.30)

We can see that the effective Higgs mass squared is dependent on the inflaton amplitude.
During the inflation, the inflaton is slowly rolling with its amplitude much larger than
MPl and hence, if ξ is sizable, m2

eff ' 3ξµ2 ' 12ξH2
inf during the inflation. In particular, if

ξ & O(0.1), meff becomes of the order of the expansion rate and the quantum fluctuation
during the inflation is suppressed. On the contrary, in the preheating epoch, φ is oscillating
and hence m2

eff becomes highly time-dependent. It is also clearly seen in eq. (2.30) that
there appear additional terms proportional to (ξ − 1/6) which is characteristic for the
Starobinsky inflation model. Thus we cannot simply apply the bound on ξ obtained for
inflation models with Einstein gravity in the case of Starobinsky inflation. In the following
sections, we will see details of the Higgs dynamics with fully taking account of these effects.

3 Instability of the electroweak vacuum

Now, we are in the position to discuss the stability of the electroweak vacuum in the
Starobinsky inflation model. In this section, we give an overview of the Higgs dynamics.
A detailed study of the Higgs dynamics based on a lattice simulation will be given in the
next section. In the Starobinsky inflation model, the vacuum instability may be a serious
issue in two epochs: inflationary epoch and preheating epoch. The Higgs dynamics in
these epochs are considered in the following, taking into account important features in the
Starobinsky model.

3As shown in eq. (2.27), the Higgs quartic coupling we observe should be λ+ 3µ2

M2
Pl
ξ2. With the model

parameters of our interest, i.e., µ ' 3.1× 1013 GeV and ξ . O(1), the second term is numerically irrelevant
and we neglect its effects.
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3.1 Higgs instability in the early Universe: |ξ| � 1

During the inflationary epoch, the Higgs field acquires quantum fluctuation. In particular, if
the effective mass of the Higgs during inflation is much smaller than the expansion rate Hinf ,
the amplitude of the quantum fluctuation is typically Hinf . In the case of the Starobinsky
inflation, such a quantum fluctuation is dangerous because Hinf ' 1.6× 1013 GeV is much
larger than the instability scale ΛI . In particular, when |ξ| � 1, for which the effective
Higgs mass during the inflation is negligible, the Higgs amplitude becomes as large as Hinf
within O(10) e-folds even if the initial amplitude vanishes [18–28].4

If the Higgs amplitude h becomes larger than ∼ ΛI during inflation due to the quantum
fluctuation, h may have run-away behavior because of the negative quartic coupling for
h & ΛI , resulting in a failure to realize the electroweak vacuum after inflation. The detailed
evolution of the Higgs amplitude is model dependent; in the case of our interest, the
evolution of the Higgs amplitude should be studied including the effects of Higgs-inflaton
coupling. In particular, in the case of the Starobinsky inflation, the effective mass of the
Higgs is induced, as shown in the previous section, which may affect the dynamics of the
Higgs field.

In order to see how the Higgs field evolves if the initial amplitude is as large as ∼ Hinf ,
we solve the classical equation of motion. Here, we neglect the spatial dependence of the
Higgs field because the non-vanishing Higgs amplitude due to the quantum fluctuation is
particularly important for the over-horizon mode. In addition, we consider the case that
the energy density of the Higgs is sub-dominant. Then, in the frame in which the Higgs
field is canonically normalized, the evolution equation is given by

ḧc + 3Hḣc +m2
effhc + λ(Q = hc)h3

c = 0, (3.1)

where, in the present calculation, the expansion rate is evaluated as

H =
√

1
3M2

Pl

[1
2 φ̇

2 + 1
2 ḣ

2
c + Ṽ (φ, hc)

]
. (3.2)

We numerically solve the above differential equation and the equation of motion (EoM) of
the inflaton simultaneously. The initial condition is imposed at the end of the inflation (see
eq. (2.14)).

We first consider the case of |ξ| � 0.1, for which the effective mass during the inflation
is negligible (see the discussion in the previous section). Then, the Higgs amplitude at the
end of inflation is expected to be ∼ Hinf or larger. We numerically solve eq. (3.1) with such
an initial condition to see if the electroweak vacuum can be realized in the present epoch.

In figure 2, we show the evolution of the Higgs amplitude as a function of time, taking
several different values of h(t∗) and ξ = 0. We can see that the Higgs amplitude shows
the run-away behavior when h(t∗) & 0.1Hinf . Our results indicate that, in the Starobinsky
inflation model, the electroweak vacuum at the present universe cannot be realized if |ξ| � 1.

4If the Higgs amplitude is much larger than Hinf/
√
|λ| at the horizon exit, the Higgs field may roll to

the true vacuum during the inflation. The inflation is then terminated due to the negatively large vacuum
energy of Higgs potential. We do not consider such a case.
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Figure 2. Evolution of the Higgs amplitude after inflation, taking h(t∗) = 0.1Hinf (blue), 0.3Hinf
(orange), Hinf (green), 3Hinf (red), and 10Hinf (purple), from the bottom to the top. The non-
minimal coupling is taken to be ξ = 0.

The instability due to the quantum fluctuation during the inflation can be avoided if
the non-minimal coupling of the Higgs to gravity is sizable. As discussed in the previous
section, if ξ & O(0.1), the effective mass of the Higgs during the inflation is as large as
∼ Hinf , with which the h(t∗) can be much smaller than Hinf . It is known that the quantum
fluctuation during the inflation is suppressed exponentially if ξ > 3

16 [24]; in the following
discussion, we consider such a case.

3.2 Higgs instability during the preheating

The quantum fluctuation of the Higgs field during the inflation can be suppressed if
ξ & O(0.1). In such a case, however, the Higgs amplitude may be amplified due to the
parametric or tachyonic resonance at the preheating after the inflation [29, 30].

Importance of the parametric resonance can be understood by studying the behavior of
the Higgs effective mass in the preheating epoch. After the inflation, the inflaton starts to
oscillate around the minimum of the potential with the amplitude smaller than the Planck
scale. Then the effective mass of the Higgs (2.29) in the preheating epoch is approximately
given by

m2
eff

∣∣∣
preheating

' (6ξ − 1) µ2φ√
6MPl

+ (1− 2ξ) µ
2φ2

2M2
Pl
− φ̇2

6M2
Pl
. (3.3)

The first term is dominant for |φ| �MPl and we focus on it for the moment.5 With this
oscillating effective mass, the evolution of the Higgs amplitude is well described by the
Mathieu equation.6 For the time scale much shorter than H−1, for which we can neglect

5Note, however, that it is the second and third terms that give non-vanishing contributions to the effective
mass squared after time average. By using 〈φ̇2〉 ' µ2〈φ2〉, we find 〈m2

eff |preheating〉 ' (1− 3ξ)H2. Thus it
gives tachyonic mass for ξ > 1/3.

6In the limit of small inflaton oscillation amplitude, the first term of (3.3) describes the perturbative
decay of the inflaton into the Higgs boson pair (c.g. refs. [58, 59]).
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the effect of the cosmic expansion and approximate the motion of the inflaton as

φ|preheating ∼ φ̄ cosµt, (3.4)

the Fourier amplitude of the Higgs, denoted as hk with k being the wave number, is governed
by (

d2

dz2 +Ak + 2q cos 2z
)
hk = 0, (3.5)

where z = µt/2, Ak = 4k2/µ2 and

q ≡
√

2
3
φ̄

MPl
(6ξ − 1). (3.6)

Here, the effect of the quartic coupling, which is unimportant unless the Higgs amplitude
becomes large, is neglected. At the onset of the preheating epoch, at which the inflaton
amplitude is order of magnitude smaller than ∼MPl, the broad resonance condition, q & 1,
is satisfied for ξ & O(1). When ξ is larger than a few, the Higgs Fourier amplitudes in the
resonance modes become significantly populated. Such a tachyonic preheating process may
make the Higgs amplitude larger than ΛI and cause a run-away behavior of the Higgs field.
Thus, we expect that the non-minimal coupling constant ξ is bounded from above to realize
the electroweak vacuum in the present universe.

In deriving the upper bound on ξ, a careful analysis is necessary. Once the Higgs
amplitude becomes sizable, the quartic interaction of the Higgs becomes important. In
addition, as discussed in the previous section, the EoMs of the inflaton and Higgs are
coupled so that the EoMs should be solved simultaneously to take account of the effects of
the back reaction to the inflaton dynamics from the particle creation due to the parametric
resonance. For the precise study of the dynamics of the inflaton and Higgs fields taking
into account the above mentioned effects as well as the cosmic expansion, we perform a
numerical lattice simulation in the next section.

4 Higgs dynamics after inflation

In this section, we study the dynamics of the Higgs field in the preheating epoch in detail.
Even if the Higgs quantum fluctuation during the inflation is suppressed by, for example,
the mass term from the Higgs non-minimal coupling, the Higgs field may be resonantly
excited in the preheating epoch. Once the averaged amplitude of the Higgs field becomes
larger than ∼ ΛI , Higgs may show the run-way behavior because of the negative quartic
coupling [30, 32, 34]. As mentioned earlier, the effect of the parametric resonance is expected
to be more important for larger value of ξ. Too large ξ should result in the instability of
the electroweak vacuum. The upper bound on ξ is studied in detail in the following.

The resonant production is effective, particularly for the modes in the instability bands.
Because the oscillation frequency of the inflaton is ∼ µ in the preheating epoch, the wave
number of the instability modes are k ∼ 1

2µ, µ,
3
2µ, · · · . For the study of the parametric
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resonance, the inclusion of the spatial dependence of the Higgs amplitude is crucial. We
should also consider the effects of cosmic expansion. In order to take account of these,
we use a numerical lattice simulation to study the dynamics of the Higgs field after the
Starobinsky inflation.

We perform our lattice simulation based on the Einstein frame action given in eq. (2.9).
The equation of motion of the inflaton is given by

φ̈+ 3Hφ̇− 1
a2∂

2
i φ+ 1√

6Mp

e−χ
[
ḣ2 − 1

a2 (∂ih)2
]

+ ∂V

∂φ
= 0, (4.1)

while that of the Higgs field is

ḧ+ 3Hḣ− 1
a2∂

2
i h−

√
2
3

1
Mp

[
φ̇ḣ− 1

a2 (∂iφ)(∂ih)
]

+ eχ
∂V

∂h
= 0. (4.2)

We evaluate the expansion rate by using the spatially averaged energy density as

H =
√
〈ρ〉

3M2
Pl
, (4.3)

where

ρ = 1
2

[
φ̇2 + 1

a2 (∂iφ)2
]

+ 1
2e
−χ
[
ḣ2 + 1

a2 (∂ih)2
]

+ V (φ, h). (4.4)

Compared to the conventional inflation models without the R2 term, there are several
differences in the equations of motion; in eq. (4.2), we can find cross terms of the inflaton
and the Higgs in the square bracket and also a factor of eχ in front of the derivative of the
potential, which do not exist in the case of the conventional inflation. They may affect the
dynamics of the Higgs field.

We are interested in the Higgs dynamics with the scalar potential given in eq. (2.11).
The potential is, however, unbounded below with taking into account the scale dependence
of the quartic coupling constant λ. Such a potential is problematic for our lattice simulation
because it makes the numerical calculation unstable. We add a h6 term to stabilize the
potential to cure this difficulty. In our lattice simulation, we use the following potential:

V (φ, h) = 3µ2M2
Pl

4

(
1− e−χ + ξ

M2
Pl
e−χh2

)2

+
λ
(
Q =

√
〈h2〉

)
4 e−2χh4 + c

6M2
Pl
e−2χh6,

(4.5)

where c is a positive constant. With our choice of c, the Higgs potential at H ∼ ΛI is
almost unaffected although the h6 term changes the behavior of the potential at large
Higgs amplitude. Thus, the onset of the instability is not affected by the h6 term in our
analysis, as we show in the following. The Higgs potential given in eq. (4.5) has its minimum
h = hmin which is given by

hmin '

√
|λ(Q = hmin)|

c
MPl, (4.6)

where λ(Q = hmin) < 0 is assumed. We take c = 2× 103 unless otherwise mentioned.
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In the lattice simulation, the field amplitudes of the inflaton and the Higgs field at the
lattice sites are followed by numerically solving eqs. (4.1) and (4.2). We modify the GABE
code [60], which uses the second-order Runge-Kutta method to solve differential equations,
to simulate the inflaton-Higgs coupled system of our interest. We start the calculation from
the end of the inflation, i.e., t = t∗ (see eq. (2.14)). We take the initial box size L = 20/µ
with the number of grids N = 128 per edge. The time step is taken to be dt = 10−3/µ. The
scale factor is normalized as a(t∗) = 1. We are paying particular attention to the Higgs
production by the parametric resonance. Then, we are interested in the Higgs fluctuations
with the wave number of the order of ∼ µ, corresponding to the wavelength of ∼ 2π

µ . On
the contrary, the lattice spacing is ∼ 0.2a(t)µ−1 with our choice of the lattice parameters.
Then, the lattice spacing may become too large to resolve the Higgs fluctuation from the
parametric resonance when a(t) & 10 or so, which is the case when µt & O(10). (We found
that the scale factor is 5.0, 5.7, and 6.4 for t = 20µ−1, 25µ−1, and 30µ−1, respectively.) We
expect that our numerical calculation is reliable as far as µt . O(10).

For the initial field values of the inflaton and canonically normalized Higgs, we presume
that they originate from the quantum fluctuations at t = t∗; we firstly evaluate them with
neglecting the cosmic expansion. In the lattice simulation, we study the evolutions of the
field values at lattice sites ~x = L

N (nx, ny, nz) with 0 ≤ nx,y,z < N . The field operators at
the lattice sites can be expressed as

X̂(lattice)(~x, t) = 1
L3/2

∑
~k

1√
2ωk

[
â~k(t)e

i~k~x + h.c.
]
, (4.7)

where X = φ and hc (see eq. (2.25)). Here, ~k = 2π
L (n′x, n′y, n′z) with 0 ≤ n′x,y,z < N

and ω2
k = ~k2 + ∂2Ṽ /∂X2. Then, after the conventional canonical quantization, we find

[â~k, â
†
~k′ ] = δ~k,~k′ and 〈â~kâ

†
~k
〉 = 1 (with 〈· · · 〉 being the vacuum expectation value). We set

the initial values of the scalar amplitudes as

X(lattice)(~x, t∗) = 1
L3/2

∑
~k

1√
2ωk

(
X̃~ke

i~k~x + c.c.
)
, (4.8)

where X̃~k’s are regarded as statistical variables. The statistical properties of X̃~k’s are
determined so that 〈X̂(lattice)(~x, t∗)X̂(lattice)(~x′, t∗)〉 = 〈X(lattice)(~x, t∗)X(lattice)(~x′, t∗)〉stat
(with 〈· · · 〉stat being statistical average). Then, we find 〈X̃∗~kX̃~k〉stat = 1

2 ; in the lattice
simulation, X̃~k’s are sampled by assuming that ReX̃~k and ImX̃~k obey Gaussian distribution
N(0, 1

4). The time dependence of X̃~k is given by X̃~k ∝ a−1e−iωkt, and the initial time
derivative is

˙̃X~k = (−iωk −H(t∗))X̃~k. (4.9)

Finally, fluctuations of the canonically normalized Higgs field and its time derivative are
rescaled back to those of the original Higgs field and then added to the homogeneous parts.

In order to check the reliability of our numerical analysis, we have performed the
analysis with N = 256 (as well as N = 128) for ξ = 1.4 and 1.8 taking central values of the
standard-model couplings. For ξ = 1.4, we found that the electroweak vacuum is stable
until µt . 30 for both choices of the number of grids while two results show difference at a
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later epoch; at µt & 30, there is no sign of the instability for N = 128 while, for N = 256,
the Higgs variance shows a significant increase. In addition, for N = 256, we found that
the detail of the behavior at µt & 30 is dependent on the initial configuration. As we
have mentioned earlier, the lattice spacing becomes of the same order as the wavelength
of our interest when µt ∼ O(10), which may be the cause of the difference. For ξ = 1.8,
destabilization happens at µt ∼ 20 both for N = 128 and 256 and two choices of the number
of grids does not show the qualitative difference.7 Thus, we expect that our numerical
calculation with N = 128 is reliable for µt . 30 while the results for µt & 30 may be affected
by numerical artifacts. In the following, we rely on the numerical results for µt ≤ 25 with
taking N = 128 to derive a bound on ξ; we could not increase N because of the limitation
of the computational resource.

If the destabilization happens, the Higgs variance starts to blow up. The destabilization
process may be affected by the scattering (and thermalization) processes of the Higgs field.
At the epoch of our interest, i.e., µt . 30, we presume that the effects of the scatterings
are not important. During such an epoch, the Higgs occupation number η exponentially
increases, while the scattering cross section is σ ∼ g4

4π
1
µ2 (with g being the gauge coupling

constant).8 Then, the scattering rate is Γscatt ∼ ηµ3σ ∼ g4

4πηµ. Because the resonance
parameter q is at most ∼ 1 for the case we consider (see eq. (3.6)) and the redshift effect
takes the enhanced modes away from the resonance band, η is not expected to be extremely
large and the scattering rate is expected to be smaller than the expansion rate, which is
O(0.1)µ for µt . 30. Thus, we neglect the effects of the scattering processes.

In the following, we derive a conservative bound on ξ concentrating on the resonance
regime. The time of the end of the resonance regime, denoted as tend, is estimated by
studying the Higgs dynamics with λ = 0; the Higgs variance for λ = 0 is denoted as 〈h2〉0.
After tend, the peak value of 〈h2〉0 is expected to decrease because the effect of the Hubble
friction wins over the effect of the parametric resonance. In figure 3, we show the evolution
of 〈h2〉0, taking ξ = 1.4 and ξ = 2.5. We can see that 〈h2〉0 reaches the highest peak in the
time interval of 20 . µt . 30; we have checked that, when 1.4 ≤ ξ ≤ 2.5, the highest peak
is realized during this period. For larger ξ, the parametric resonance stops at a later epoch.
In the following, we consider the cases with 1.4 ≤ ξ ≤ 2.5 and take µtend = 20 and 25.

In order to quantify the instability of the electroweak vacuum, we use the fact that the
Higgs variance 〈h2〉 becomes significantly larger than 〈h2〉0 once the instability occurs. In
figure 4, we show the evolutions of 〈h2〉 and 〈h2〉0 for ξ = 1.4 and 1.8; here we take c = 20,
200, and 2000. For the case of ξ = 1.4, the instability does not occur and 〈h2〉 behaves

7We note that N cannot be taken too large because, in the present prescription, the dispersion relation
of the Higgs may be significantly altered by the initial fluctuation. Rigorously speaking, a renormalization is
necessary to subtract such a correction (cf., ref. [30]). In the present case, however, it is neglected because
the effect is unimportant for the study of the parametric resonance. Substituting the initial fluctuation into
λ〈h2〉, the correction to the Higgs mass squared is estimated to be ∼ λ

16π2
(2π)2N2

L2 . It is smaller than the

typical momentum squared relevant for the parametric resonance (i.e., µ2) as far as N . 400
√

0.01
|λ| . In our

calculation, this condition is met.
8We do not consider the possibly fast decay process, e.g., H → tt̄, which may be kinematically blocked

due to the plasma mass induced by the large Higgs occupation number.
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Figure 3. Time evolution of the Higgs field variance 〈h2〉0 for λ = 0. The non-minimal Higgs-gravity
couplings are taken to be ξ = 1.4 (blue) and ξ = 2.5 (red). We take µtend = 20 and 25 to derive the
upper bound on ξ.
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Figure 4. Lattice simulation results of the Higgs field variance 〈h2〉 for ξ = 1.4 and 1.8 and varying
values of c: 20 (red), 200 (purple) and 2000 (blue). The top quark mass is taken to be Mt = 172GeV,
and the strong coupling is the central value αs = 0.1179. Time evolution of 〈h2〉0 is shown in green
line. Both 〈h2〉 and 〈h2〉0 are multiplied by a3 and normalized by M2

Pl.

as 〈h2〉0. With larger value of ξ, 〈h2〉 starts to deviate from 〈h2〉0 at t ∼ tinst and shows
significant increase after t ∼ tc; for the case of ξ = 1.8 shown in figure 4, tinst ' 20µ−1 and
tc ' 22µ−1. The Higgs variance at t . tc is insensitive to the choice of c. On the contrary,
〈h2〉 at t & tc depends on c; we can see that, in such an epoch, 〈h2〉 is approximately
proportional to c−1(t− tc)3. We comment that such behavior arises when the universe is
filled with the “false vacuum region” with h � hmin and the “true vacuum bubble,” in
which h ∼ hmin, whose wall velocity is close to the speed of light.9 The deviation of 〈h2〉

9We comment that the observation here indicates a new possibility to realize a relativistic expansion of
bubble walls. Let us consider a scalar field s, with its mass smaller than Hinf , whose potential has a negative
quartic coupling and a positive Planck-suppressed higher dimensional term. If s has a non-minimal coupling
∼ s2R, s is trapped at the origin during the inflation, and its amplitude may be parametrically enhanced
after inflation. The dynamics of s is similar to that of the Higgs studied in our analysis. If the amplification
of the amplitude of s is large enough, the tachyonic instability of s may happen, resulting in the formation
of bubbles in which s is at the minimum of its potential. The latent energy carried by s once become the
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from 〈h2〉0 is expected to be a sign of the instability. In our analysis, we adopt the following
criterion for the instability:

〈h2〉 − 〈h2〉0
〈h2〉0

∣∣∣∣∣
t=tend

> 2. (4.10)

With too large ξ, the above condition is met, indicating that the tachyonic mass induced
by Higgs self coupling dominates the total effective mass and that the instability of the
electroweak vacuum is triggered.

We have studied the behavior of the Higgs variable for several choices of the non-minimal
coupling ξ and the top quark mass Mt. We take the non-minimal coupling ξ with the
interval of 0.1 and top quark mass in the range of 171.5− 173.5GeV with the interval of
0.5GeV. The sample points on which we perform the lattice simulation are indicated by
the dots on figure 5; for the figure, the central value of the strong coupling constant is used
while µtend is taken to be 20 and 25. The red dots on the figure show the sample points on
which the destabilization is observed (see eq. (4.10)) while the blue ones are sample points
without the sign of instability. We have connected the red dots at the boundary, which we
regard as an upper bound on the non-minimal coupling. We can see that the upper bound
on ξ becomes smaller as the top quark becomes heavier. This is due to the fact that, with
larger top quark mass, λ becomes smaller meaning that the absolute value of the tachyonic
mass induced by Higgs self coupling is more enhanced (see figure 1).

In order to see how the bound depends on the strong coupling constant, we also perform
the lattice simulation for several values of αs; the result is shown in figure 6 (for which
the top quark mass is taken to be the central value Mt = 172.76 GeV). As in the case
of figure 5, the red and blue dots indicate the sample points with and without the sign
of the destabilization before tend. We can see that the upper bound becomes larger for
larger value of αs, which is due to the fact that λ(Q) with fixed Q > Mt increases with the
increase of αs.

The upper bound on the non-minimal coupling depends slightly on the choice of tend.
For 20 < µtend < 25, the upper bound varies ∼ O(10) % and is larger for smaller tend.
Adopting the central values of Mt and αs, the upper bound on ξ is 1.6− 1.7. The bound
is significantly smaller than the one obtained in the case of conventional inflation models
without the R2 term, which gives ξ . 5 [30, 36].

5 Conclusions and discussion

We have discussed the stability of the electroweak vacuum during and after the Starobinsky
inflation. We paid particular attention to the non-minimal coupling of the Higgs to gravity,

kinetic energy of the wall, then transferred to the energy of radiation, e.g., with bubble collisions. Contrary
to the case of the standard-model Higgs, a viable cosmological scenario is possible because we may live
in a vacuum with a very large amplitude of s. Since the phenomena may be similar to that in the strong
first-order phase transition with relativistic bubble expansion, relevant particle production mechanisms may
be applicable [61–66]. However, the gravitational waves due to the bubble wall collisions or sound waves
may be too high-frequency to be observed in the near future if the inflation scale is high.
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Figure 5. Vacuum stability bounds on ξ for different values of the top quark mass Mt, taking
αs = 0.1179 and µtend = 20 and 25. The red (blue) dots show the sample points with (without) the
instability of the electroweak vacuum. The red line indicates our upper bounds on ξ.
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Figure 6. Vacuum stability bounds on ξ for different values of the strong coupling αs, taking
Mt = 172.76 GeV and µtend = 20 and 25. The red (blue) dots show the sample points with (without)
the instability of the electroweak vacuum. The red line indicates our upper bounds on ξ.

and studied the enhancement of the Higgs amplitude due to the parametric resonance
after the inflation. Because the Starobinsky inflation requires the expansion rate during
inflation to be larger than the instability scale of the Higgs potential in the standard model,
the quantum fluctuation during inflation may make the Higgs amplitude larger than the
instability scale, resulting in the run-away behavior of the Higgs field. The non-minimal
coupling of the Higgs field to the Ricci scalar is introduced to avoid such instability. The
non-minimal coupling, however, may induce a parametric-resonance production of the Higgs
after inflation, which may destabilize the Higgs amplitude. The effect of the parametric
resonance is more enhanced as the non-minimal coupling constant ξ becomes larger.

We have studied the dynamics of the Higgs field in the preheating epoch after inflation
in detail in the Starobinsky inflation model. In the case of the Starobinsky inflation,
the evolution equation of the Higgs field differs from that in the case of simple inflation
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models (which are based on the Einstein-Hilbert action without the R2 term). We used the
numerical lattice simulation to follow the evolution of the Higgs field and investigated the
stability of the Higgs amplitude. We have seen that the Higgs amplitude is destabilized if
the non-minimal coupling constant ξ is large. With requiring that the Higgs amplitude does
not show the run-away behavior, we derived an upper bound on the non-minimal coupling
constant ξ. With the central values of the standard-model parameters, for example, we
found that ξ should be smaller than ∼ 1.6− 1.7 in order to realize the electroweak vacuum
in the present universe.
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