't Hooft expansion of $\operatorname{SO}(N)$ and $\operatorname{Sp}(N) \mathcal{N}=4$ SYM revisited

Kazumi Okuyama

Department of Physics, Shinshu University,
3-1-1 Asahi, Matsumoto 390-8621, Japan
E-mail: kazumi@azusa.shinshu-u.ac.jp

AbSTRACT: We study the 't Hooft expansion of $d=4 \mathcal{N}=4$ supersymmetric Yang-Mills (SYM) theory with the gauge group $\mathrm{SO}(N)$ or $\operatorname{Sp}(N)$. We consider the $1 / N_{5}$ expansion with fixed $g_{s} N_{5}$, where g_{s} denotes the string coupling of bulk type IIB string theory on $A d S_{5} \times \mathbb{R P}^{5}$ and N_{5} refers to the RR 5 -form flux through $\mathbb{R P}^{5} . N_{5}$ differs from N due to a shift coming from the RR charge of O3-plane. As an example, we consider the $1 / N_{5}$ expansion of the free energy of $\mathcal{N}=4 \mathrm{SYM}$ on S^{4} and the $1 / 2$ BPS circular Wilson loops in the fundamental representation of $\mathrm{SO}(N)$ or $\operatorname{Sp}(N)$. We find that the $1 / N_{5}$ expansion is more "closed string like" than the ordinary $1 / N$ expansion.

Keywords: $1 / N$ Expansion, AdS-CFT Correspondence, Matrix Models

ArXiv EPRINT: 2207.09191

Contents

1 Introduction
$21 / N_{5}$ expansion of the volume of $\operatorname{SO}(N)$ and $\operatorname{Sp}(N)$
$31 / 2$ BPS Wilson loops in the fundamental representation of $\mathrm{SO}(N)$ and $\operatorname{Sp}(N)$
$3.11 / N_{5}$ expansion of $W_{G} \quad 4$
3.2 Relation to the ordinary $1 / N$ 't Hooft expansion

4 Conclusions and outlook

A Proof of (3.4)

1 Introduction

$d=4 \mathcal{N}=4$ supersymmetric Yang-Mills (SYM) theory with the gauge group $\mathrm{SO}(N)$ or $\operatorname{Sp}(N)$ is realized as a worldvolume theory on D3-branes in the presence of orientifold 3-plane, and it is holographically dual to the type IIB string theory on $A d S_{5} \times \mathbb{R P}^{5}$ [1]. In $[2,3]$, the $1 / 2$ BPS circular Wilson loops in $\operatorname{SO}(N)$ and $\operatorname{Sp}(N) \mathcal{N}=4 \mathrm{SYM}$ are studied in the $1 / N$ expansion with fixed $g_{s} N$, where g_{s} denotes the string coupling of bulk type IIB string theory. Note that g_{s} is proportional to the square of the Yang-Mills coupling constant g_{YM}^{2}. In $[4,5]$, it is suggested that in the context of AdS/CFT correspondence, it is more natural to consider the $1 / N_{5}$ expansion with fixed $g_{s} N_{5}$, where N_{5} refers to the RR 5 -form flux through $\mathbb{R P}^{5}$ in the bulk type IIB string theory on $A d S_{5} \times \mathbb{R}^{5}{ }^{5}$

$$
\begin{equation*}
N_{5}=\int_{\mathbb{R P}^{5}} \frac{G_{5}}{2 \pi} \tag{1.1}
\end{equation*}
$$

As shown in [6-8], N_{5} is shifted from N due to the RR charge of orientifold 3-plane

$$
N_{5}= \begin{cases}\frac{N}{2}-\frac{1}{4}, & \text { for } \operatorname{SO}(N) \tag{1.2}\\ \frac{N}{2}+\frac{1}{4}, & \text { for } \operatorname{Sp}(N)\end{cases}
$$

Rather surprisingly, the $1 / N_{5}$ expansion with fixed $g_{s} N_{5}$ has not been fully explored in the literature before, as far as we know. In this paper, we will study the $1 / N_{5}$ expansion for the partition function of $\mathcal{N}=4 \mathrm{SYM}$ on S^{4} as well as the $1 / 2$ BPS circular Wilson loops in the fundamental representation of $\operatorname{SO}(N)$ or $\operatorname{Sp}(N) .{ }^{1}$ In the original $1 / N$ expansion, both

[^0]even and odd powers of $1 / N$ appear in the expansion of the $1 / 2$ BPS Wilson loops [2, 3]. It turns out that the $1 / N_{5}$ expansion is more "closed string like": in the $1 / N_{5}$ expansion of the partition function, only the even powers of $1 / N_{5}$ appear and in the $1 / N_{5}$ expansion of $1 / 2$ BPS Wilson loops only the odd powers of $1 / N_{5}$ appear, except for a constant term. This is consistent with the general property of holography where D-branes/O-planes are replaced by a closed string background in the bulk gravitational picture. ${ }^{2}$

This paper is organized as follows. In section 2 , we study the $1 / N_{5}$ expansion of the partition function of $\mathcal{N}=4 \mathrm{SYM}$, which is inversely proportional to the volume of the gauge group $\mathrm{SO}(N)$ or $\operatorname{Sp}(N)$. We find that the volume of the gauge group is characterized by a universal function $V\left(N_{5}\right)$ for both $\mathrm{SO}(N)$ and $\mathrm{Sp}(N)$, up to an overall factor $2^{ \pm N_{5}}$. It turns out that the $1 / N_{5}$ expansion of $\log V\left(N_{5}\right)$ contains only even powers of $1 / N_{5}$. In section 3, we study the $1 / N_{5}$ expansion of the $1 / 2$ BPS circular Wilson loops of $\mathcal{N}=4 \mathrm{SYM}$ in the fundamental representation of $\mathrm{SO}(N)$ or $\operatorname{Sp}(N)$. Finally, we conclude in section 4 with some discussions. In appendix A, we present a proof of the relation (3.4).

$21 / N_{5}$ expansion of the volume of $\mathrm{SO}(N)$ and $\mathrm{Sp}(N)$

In this section, we consider the $1 / N_{5}$ expansion of the free energy of $\mathcal{N}=4 \mathrm{SYM}$ on S^{4} with the gauge group $G=\operatorname{SO}(N)$ or $G=\operatorname{Sp}(N)$. As shown by Pestun [12], the partition function of $\mathcal{N}=4 \mathrm{SYM}$ on S^{4} reduces to a Gaussian matrix model owing to the supersymmetric localization

$$
\begin{equation*}
Z_{G}=\frac{1}{\operatorname{vol}(G)} \int_{\operatorname{Lie}(G)} d M e^{-\frac{1}{2 g g} \operatorname{Tr} M^{2}}, \tag{2.1}
\end{equation*}
$$

where the integral of M is over the Lie algebra of gauge group G. Since the integral of M is Gaussian, the g_{s}-dependence of Z_{G} is rather simple

$$
\begin{equation*}
Z_{G}=\frac{\left(2 \pi g_{s}\right)^{\frac{1}{2} \operatorname{dim} G}}{\operatorname{vol}(G)} \tag{2.2}
\end{equation*}
$$

and Z_{G} is essentially determined by the volume of the gauge group G. Thus, in what follows we will consider the $1 / N_{5}$ expansion of $\operatorname{vol}(G)$.

The volume of $\mathrm{SO}(N)$ is given by [13-15]

$$
\operatorname{vol}[\mathrm{SO}(N)]=\frac{2^{N-\frac{1}{2}} \pi^{\frac{1}{4} N(N+1)}}{\prod_{k=1}^{N} \Gamma(k / 2)}= \begin{cases}\frac{2^{\frac{1}{2}}(2 \pi)^{n^{2}}}{(n-1)!\prod_{i=1}^{n-1}(2 i-1)!}, & (N=2 n), \tag{2.3}\\ \frac{2^{n+\frac{1}{2}}(2 \pi)^{n^{2}+n}}{\prod_{i=1}^{n}(2 i-1)!}, & (N=2 n+1)\end{cases}
$$

Our definition of the volume of $\operatorname{SO}(2 n)$ is the same as that in [15], but the volume of $\mathrm{SO}(2 n+1)$ differs from [15] by a factor of $(\pi / 2)^{\frac{1}{4}}$. The volume of $\mathrm{Sp}(N)$ is given by [15]

$$
\begin{equation*}
\operatorname{vol}[\operatorname{Sp}(2 n)]=\frac{2^{-n}(2 \pi)^{n^{2}+n}}{\prod_{i=1}^{n}(2 i-1)!} \tag{2.4}
\end{equation*}
$$

[^1]From the definition of N_{5} in (1.2), one can rewrite the above volumes in terms of N_{5} as

$$
\begin{align*}
& \operatorname{vol}(G)=2^{ \pm N_{5}} V\left(N_{5}\right), \\
& V\left(N_{5}\right)=\frac{2^{N_{5}} \pi^{\left(N_{5}+1 / 4\right)\left(N_{5}+3 / 4\right)} G_{2}(1 / 2)}{G_{2}\left(N_{5}+\frac{3}{4}\right) G_{2}\left(N_{5}+\frac{5}{4}\right)}, \tag{2.5}
\end{align*}
$$

where the \pm sign corresponds to $G=\operatorname{SO}(N)$ and $G=\operatorname{Sp}(N)$, respectively, and $G_{2}(z)$ denotes the Barnes G-function.

Now, let us consider the free energy coming from the volume of the gauge group G

$$
\begin{equation*}
-\log [\operatorname{vol}(G)]=\mp N_{5} \log 2-\log V\left(N_{5}\right) . \tag{2.6}
\end{equation*}
$$

The $1 / N_{5}$ expansion of the Barnes G-function in (2.5) can be computed by integrating the asymptotic expansion of the Γ-function ${ }^{3}$

$$
\begin{equation*}
\log \Gamma(z+a)=(z+a-1 / 2) \log z-z+\frac{1}{2} \log (2 \pi)+\sum_{k=2}^{\infty} \frac{(-1)^{k} B_{k}(a)}{k(k-1) z^{k-1}} \tag{2.7}
\end{equation*}
$$

where $B_{k}(a)$ denotes the Bernoulli polynomial. After some algebra, we find

$$
\begin{align*}
-\log V\left(N_{5}\right)= & c_{0}+N_{5}^{2}\left(-\frac{3}{2}+\log \frac{N_{5}}{\pi}\right)-\frac{5}{48} \log N_{5} \\
& +\sum_{g=2}^{\infty} N_{5}^{2-2 g}\left[\frac{B_{2 g}(1 / 4)}{2 g(g-1)}-\frac{B_{2 g-1}(1 / 4)}{4(g-1)(2 g-1)}\right], \tag{2.8}
\end{align*}
$$

where c_{0} is some constant. As we mentioned in the Introduction, the $1 / N_{5}$ expansion of $\log V\left(N_{5}\right)$ has only even powers of $1 / N_{5}$.

This $1 / N_{5}$ expansion (2.8) should be compared with the $1 / N$ expansion appearing in the topological string. In the case of topological string, the natural expansion parameter is $1 / N_{\text {top }}$, where $N_{\text {top }}$ is given by [15]

$$
\begin{equation*}
N_{\text {top }}=N \mp 1 . \tag{2.9}
\end{equation*}
$$

Here the upper and lower sign correspond to $G=\mathrm{SO}(N)$ and $G=\operatorname{Sp}(N)$, respectively. The $1 / N_{\text {top }}$ expansion of the volume of G is computed in [15]

$$
\begin{equation*}
-\log [\operatorname{vol}(G)]=\frac{1}{2} \sum_{g}\left(\chi\left(\mathcal{M}_{g}\right) N_{\mathrm{top}}^{2-2 g} \pm \chi\left(\mathcal{M}_{g}^{1}\right) N_{\mathrm{top}}^{1-2 g}\right), \tag{2.10}
\end{equation*}
$$

where $\chi\left(\mathcal{M}_{g}\right)$ and $\chi\left(\mathcal{M}_{g}^{1}\right)$ denote the Euler characteristic of the moduli space of Riemann surfaces of genus g with zero and one cross-cap, respectively [16]

$$
\begin{equation*}
\chi\left(\mathcal{M}_{g}\right)=\frac{B_{2 g}}{2 g(2 g-2)}, \quad \chi\left(\mathcal{M}_{g}^{1}\right)=\frac{2^{2 g-1} B_{2 g}(1 / 2)}{2 g(2 g-1)} . \tag{2.11}
\end{equation*}
$$

One can see that the $1 / N_{\text {top }}$ expansion of $\operatorname{vol}(G)$ contains both even and odd powers of $1 / N_{\text {top }}$, while the $1 / N_{5}$ expansion of $\operatorname{vol}(G)$ contains only even powers of $1 / N_{5}$ except for

[^2]the first term of (2.6). This difference comes from the different definition of N_{5} in (1.2) and $N_{\text {top }}$ in (2.9). As discussed in $[15,17]$, the shift of N in $N_{\text {top }}(2.9)$ comes from the RR charge of topological O-plane, which differs from the RR charge of O3-plane in type IIB string theory. Thus the $1 / N_{\text {top }}$ expansion (2.10) cannot be applied to our case of $\mathcal{N}=4 \mathrm{SYM}$. In the holographic duality between $\mathcal{N}=4 \mathrm{SYM}$ with the gauge group $\mathrm{SO}(N)$ or $\operatorname{Sp}(N)$ and the type IIB string theory on $A d S_{5} \times \mathbb{R P}^{5}$, we should use the $1 / N_{5}$ expansion (2.8), instead of the $1 / N_{\text {top }}$ expansion (2.10).

$31 / 2$ BPS Wilson loops in the fundamental representation of $\operatorname{SO}(N)$ and $\operatorname{Sp}(N)$

In this section, we consider the $1 / N_{5}$ expansion of the $1 / 2$ BPS circular Wilson loops in the fundamental representation of $G=\mathrm{SO}(N)$ or $G=\operatorname{Sp}(N)$. As shown in [12, 18, 19], the expectation value of the $1 / 2$ BPS circular Wilson loop is given by the Gaussian matrix model

$$
\begin{equation*}
W_{G}=\left\langle\operatorname{Tr}_{F} e^{M}\right\rangle \tag{3.1}
\end{equation*}
$$

where the expectation value is defined by the Gaussian measure (2.1). Note that in our definition of W_{G} we do not divide it by the dimension N of the fundamental representation. The Gaussian integral (3.1) can be evaluated by the method of orthogonal polynomials and the result is written in terms of the Laguerre polynomials [2]

$$
\begin{align*}
W_{\mathrm{SO}(2 n)} & =2 e^{\frac{1}{2} g_{s}} \sum_{i=0}^{n-1} L_{2 i}\left(-g_{s}\right), \\
W_{\mathrm{SO}(2 n+1)} & =1+2 e^{\frac{1}{2} g_{s}} \sum_{i=0}^{n-1} L_{2 i+1}\left(-g_{s}\right), \tag{3.2}\\
W_{\mathrm{Sp}(2 n)} & =2 e^{\frac{1}{2} g_{s}} \sum_{i=0}^{n-1} L_{2 i+1}\left(-g_{s}\right) .
\end{align*}
$$

One can check that they are correctly normalized as

$$
\begin{equation*}
\left.W_{\mathrm{SO}(N)}\right|_{g_{s}=0}=N,\left.\quad W_{\mathrm{Sp}(N)}\right|_{g_{s}=0}=N . \tag{3.3}
\end{equation*}
$$

As explained in appendix A, the derivative of W_{G} with respect to g_{s} has a simple form

$$
\begin{equation*}
\partial_{g_{s}} W_{\mathrm{SO}(N)}=e^{\frac{1}{2} g_{s}} L_{N-2}^{(2)}\left(-g_{s}\right), \quad \partial_{g_{s}} W_{\mathrm{Sp}(N)}=e^{\frac{1}{2} g_{s}} L_{N-1}^{(2)}\left(-g_{s}\right), \tag{3.4}
\end{equation*}
$$

which are both written in terms of N_{5} as

$$
\begin{equation*}
\partial_{g_{s}} W_{G}=e^{\frac{1}{2} g_{s}} L_{2 N_{5}-\frac{3}{2}}^{(2)}\left(-g_{s}\right) . \tag{3.5}
\end{equation*}
$$

$3.11 / N_{5}$ expansion of W_{G}

In this subsection, we consider the $1 / N_{5}$ expansion of W_{G} with fixed 't Hooft parameter λ

$$
\begin{equation*}
\lambda=8 g_{s} N_{5} . \tag{3.6}
\end{equation*}
$$

To do this, it is useful to express W_{G} as a contour integral [20]. Let us first consider $W_{\mathrm{SO}(N)}$ for definiteness. Using the series expansion of the Laguerre polynomial

$$
\begin{equation*}
L_{n}^{(\alpha)}\left(-g_{s}\right)=\sum_{i=0}^{n}\binom{n+\alpha}{n-i} \frac{g_{s}^{i}}{i!}, \tag{3.7}
\end{equation*}
$$

$\partial_{g_{s}} W_{\mathrm{SO}(N)}$ in (3.4) is written as

$$
\begin{align*}
\partial_{g_{s}} W_{\mathrm{SO}(N)} & =e^{\frac{1}{2} g_{s}} \sum_{i=0}^{N-2}\binom{N}{N-2-i} \frac{g_{s}^{i}}{i!} \\
& =e^{\frac{1}{2} g_{s}} \sum_{i=0}^{N-2} \frac{N!g_{s}^{i}}{(N-2-i)!(i+2)!i!} \tag{3.8}\\
& =e^{\frac{1}{2} g_{s}} \oint \frac{d w}{2 \pi \mathrm{i}} \sum_{i=0}^{N-2} \frac{N!}{(N-2-i)!(i+2)!} w^{i-1} \frac{g_{s}^{i}}{i!w^{i}} \\
& =e^{\frac{1}{2} g_{s}} \oint \frac{d w}{2 \pi \mathrm{i}} \frac{(1+w)^{N}}{w^{3}} e^{\frac{g_{s}}{w}},
\end{align*}
$$

where the contour of w-integral is a circle surrounding $w=0$ counterclockwise. By the change of variable $w=e^{2 z}-1$ we find

$$
\begin{align*}
\partial_{g_{s}} W_{\mathrm{SO}(N)} & =\oint \frac{d z}{2 \pi \mathrm{i}} \frac{1}{4 \sinh ^{3} z} e^{(2 N-1) z+\frac{g_{s}}{2} \operatorname{coth} z} \tag{3.9}\\
& =\oint \frac{d z}{2 \pi \mathrm{i}} \frac{1}{4 \sinh ^{3} z} e^{4 N_{5} z+\frac{g_{s}}{2} \operatorname{coth} z},
\end{align*}
$$

where the contour of z-integral is around $z=0$. For the $\operatorname{Sp}(N)$ case, one can show that $\partial_{g_{s}} W_{\operatorname{Sp}(N)}$ is also given by the same formula (3.9). Thus we find

$$
\begin{equation*}
\partial_{g_{s}} W_{G}=\oint \frac{d z}{2 \pi \mathrm{i}} \frac{1}{4 \sinh ^{3} z} e^{4 N_{5} z+\frac{g_{s}}{2} \operatorname{coth} z} . \tag{3.10}
\end{equation*}
$$

Finally, integrating this expression with respect to g_{s}, we arrive at

$$
\begin{equation*}
W_{G}= \pm \frac{1}{2}+\oint \frac{d z}{2 \pi \mathrm{i}} \frac{1}{\sinh z \sinh 2 z} e^{4 N_{5} z+\frac{g_{s}}{2} \operatorname{coth} z} . \tag{3.11}
\end{equation*}
$$

Here we have determined the integration constant by the normalization condition (3.3).
In order to study the 't Hooft expansion of W_{G}, it is convenient to further rewrite the second term of (3.11) as

$$
\begin{align*}
\oint \frac{d z}{2 \pi \mathrm{i}} & \frac{1}{\sinh z \sinh 2 z} e^{4 N_{5} z+\frac{g_{s}}{2} \operatorname{coth} z} \\
& =\oint \frac{d z}{2 \pi \mathrm{i}}\left(\frac{1}{2 \sinh ^{2} z}-\frac{2 \sinh ^{2} \frac{z}{2}}{\sinh z \sinh 2 z}\right) e^{4 N_{5} z+\frac{g_{s}}{2} \operatorname{coth} z} \\
& =\oint \frac{d z}{2 \pi \mathrm{i}}\left(-\frac{1}{g_{s}} e^{4 N_{5} z} \partial_{z} e^{\frac{g_{s}}{2} \operatorname{coth} z}\right)-\oint \frac{d z}{2 \pi \mathrm{i}} \frac{2 \sinh ^{2} \frac{z}{2}}{\sinh z \sinh 2 z} e^{4 N_{5} z+\frac{g_{s}}{2} \operatorname{coth} z} \tag{3.12}\\
& =\frac{4 N_{5}}{g_{s}} \oint \frac{d z}{2 \pi \mathrm{i}} e^{4 N_{5} z+\frac{g_{s}}{2} \operatorname{coth} z}-\oint \frac{d z}{2 \pi \mathrm{i}} \frac{2 \sinh ^{2} \frac{z}{2}}{\sinh z \sinh 2 z} e^{4 N_{5} z+\frac{g_{s}}{2} \operatorname{coth} z} .
\end{align*}
$$

One can show that the first term of (3.12) is equal to the $1 / 2$ BPS Wilson loop of $\mathrm{U}\left(2 N_{5}\right)$ $\mathcal{N}=4$ SYM [19]

$$
\begin{equation*}
\frac{4 N_{5}}{g_{s}} \oint \frac{d z}{2 \pi \mathrm{i}} e^{4 N_{5} z+\frac{g_{s}}{2} \operatorname{coth} z}=e^{\frac{1}{2} g_{s}} L_{2 N_{5}-1}^{(1)}\left(-g_{s}\right)=W_{\mathrm{U}\left(2 N_{5}\right)} \tag{3.13}
\end{equation*}
$$

Let us consider the 't Hooft expansion of $W_{U\left(2 N_{5}\right)}$ in (3.13) following the approach of [20]. By rescaling $z \rightarrow g_{s} z, W_{\mathrm{U}\left(2 N_{5}\right)}$ is written as

$$
\begin{equation*}
W_{\mathrm{U}\left(2 N_{5}\right)}=4 N_{5} \oint \frac{d z}{2 \pi \mathrm{i}} e^{\frac{1}{2}\left(\lambda z+z^{-1}\right)+\frac{g_{s}}{2} \operatorname{coth} g_{s} z-\frac{1}{2} z^{-1}} \tag{3.14}
\end{equation*}
$$

The first part of the exponential $e^{\frac{1}{2}\left(\lambda z+z^{-1}\right)}$ is essentially the generating function of the modified Bessel function of the first kind $I_{n}(x)$

$$
\begin{equation*}
e^{\frac{1}{2}\left(\lambda z+z^{-1}\right)}=\sum_{n \in \mathbb{Z}} \frac{\widehat{I}_{n}}{z^{n}}, \tag{3.15}
\end{equation*}
$$

where \widehat{I}_{n} is given by

$$
\begin{equation*}
\widehat{I}_{n}=\frac{I_{n}(\sqrt{\lambda})}{(\sqrt{\lambda})^{n}} \tag{3.16}
\end{equation*}
$$

The second part of the exponential in (3.14) can be expanded in g_{s} as

$$
\begin{equation*}
e^{\frac{g_{s}}{2} \operatorname{coth} g_{s} z-\frac{1}{2} z^{-1}}=1+\frac{z}{6} g_{s}^{2}+\left(\frac{z^{2}}{72}-\frac{z^{3}}{90}\right) g_{s}^{4}+\mathcal{O}\left(g_{s}^{6}\right) \tag{3.17}
\end{equation*}
$$

Then, taking the residue at $z=0$ we find the small g_{s} expansion of $W_{\mathrm{U}\left(2 N_{5}\right)}$

$$
\begin{equation*}
W_{\mathrm{U}\left(2 N_{5}\right)}=\frac{\lambda}{2 g_{s}}\left[\widehat{I}_{1}+\frac{\widehat{I}_{2}}{6} g_{s}^{2}+\left(\frac{\widehat{I}_{3}}{72}-\frac{\widehat{I}_{4}}{90}\right) g_{s}^{4}+\mathcal{O}\left(g_{s}^{6}\right)\right] . \tag{3.18}
\end{equation*}
$$

Note that the small g_{s} expansion with fixed $\lambda=8 g_{s} N_{5}$ is basically the same as the $1 / N_{5}$ expansion since g_{s} and $1 / N_{5}$ are related by

$$
\begin{equation*}
g_{s}=\frac{\lambda}{8 N_{5}} . \tag{3.19}
\end{equation*}
$$

Next consider the second term of (3.12), which we will denote by W_{T}

$$
\begin{equation*}
W_{T}=-\frac{g_{s}}{4} \oint \frac{d z}{2 \pi \mathrm{i}} \frac{8 \sinh ^{2} \frac{g_{s} z}{2}}{\sinh g_{s} z \sinh 2 g_{s} z} e^{\frac{1}{2}\left(\lambda z+z^{-1}\right)+\frac{g_{s}}{2} \operatorname{coth} g_{s} z-\frac{1}{2} z^{-1}} \tag{3.20}
\end{equation*}
$$

Again, the first part of the exponential has the expansion (3.15) and the rest of the integrand can be expanded in g_{s} as

$$
\begin{align*}
\frac{8 \sinh ^{2} \frac{g_{s} z}{\sinh g_{s} z \sinh 2 g_{s} z}}{} e^{\frac{g_{s}}{2} \operatorname{coth} g_{s} z-\frac{1}{2} z^{-1}}= & 1+\left(\frac{z}{6}-\frac{3 z^{2}}{4}\right) g_{s}^{2} \\
& +\left(\frac{z^{2}}{72}-\frac{49 z^{3}}{360}+\frac{3 z^{4}}{8}\right) g_{s}^{4}+\mathcal{O}\left(g_{s}^{6}\right) \tag{3.21}
\end{align*}
$$

Taking the residue at $z=0$, we find the small g_{s} expansion of W_{T} with fixed λ

$$
\begin{equation*}
W_{T}=-\frac{g_{s}}{4}\left[\widehat{I}_{1}+\left(\frac{\widehat{I}_{2}}{6}-\frac{3 \widehat{I}_{3}}{4}\right) g_{s}^{2}+\left(\frac{\widehat{I}_{3}}{72}-\frac{49 \widehat{I}_{4}}{360}+\frac{3 \widehat{I}_{5}}{8}\right) g_{s}^{4}+\mathcal{O}\left(g_{s}^{6}\right)\right] \tag{3.22}
\end{equation*}
$$

To summarize, we find that W_{G} is decomposed as

$$
\begin{equation*}
W_{G}= \pm \frac{1}{2}+W_{\mathrm{U}\left(2 N_{5}\right)}+W_{T} \tag{3.23}
\end{equation*}
$$

and the last two terms are expanded as

$$
\begin{align*}
W_{\mathrm{U}\left(2 N_{5}\right)} & =\sum_{g=0}^{\infty} a_{g}(\lambda) g_{s}^{2 g-1}=\sum_{g=0}^{\infty} a_{g}(\lambda)\left(\frac{\lambda}{8 N_{5}}\right)^{2 g-1} \\
W_{T} & =\sum_{g=0}^{\infty} b_{g}(\lambda) g_{s}^{2 g+1}=\sum_{g=0}^{\infty} b_{g}(\lambda)\left(\frac{\lambda}{8 N_{5}}\right)^{2 g+1} \tag{3.24}
\end{align*}
$$

where $a_{g}(\lambda)$ and $b_{g}(\lambda)$ are some functions of λ whose explicit forms can be found in (3.18) and (3.22). One can see that $W_{\mathrm{U}\left(2 N_{5}\right)}$ and W_{T} are both expanded in $1 / N_{5}$ with only odd powers of $1 / N_{5}$.

3.2 Relation to the ordinary $1 / N$ ' t Hooft expansion

Let us compare our $1 / N_{5}$ expansion of W_{G} with the ordinary $1 / N$ expansion of W_{G}. For definiteness, we consider the $G=\mathrm{SO}(N)$ case. The $1 / N$ expansion of $W_{\mathrm{SO}(N)}$ is studied in $[2,3]$ where the 't Hooft coupling λ^{\prime} is defined as

$$
\begin{equation*}
\lambda^{\prime}=8 g_{s} N \tag{3.25}
\end{equation*}
$$

To this end, it is convenient to start with the expression of $W_{\mathrm{SO}(N)}$ found in $[2]^{4}$

$$
\begin{align*}
W_{\mathrm{SO}(N)} & =e^{\frac{1}{2} g_{s}} L_{N-1}^{(1)}\left(-g_{s}\right)-\frac{1}{2} \int_{0}^{g_{s}} d x e^{\frac{1}{2} x} L_{N-1}^{(1)}(-x) \\
& =W_{\mathrm{U}(N)}\left(g_{s}\right)-\frac{1}{2} \int_{0}^{g_{s}} d x W_{\mathrm{U}(N)}(x) \tag{3.26}
\end{align*}
$$

From the known $1 / N$ expansion of the $1 / 2$ BPS Wilson loop in $\mathrm{U}(N) \mathcal{N}=4$ SYM [19], one can easily compute the $1 / N$ expansion of $W_{\mathrm{SO}(N)}$
$W_{\mathrm{SO}(N)}=\frac{1}{2}+\frac{2 \sqrt{2} N}{\sqrt{\lambda^{\prime}}} I_{1}\left(\sqrt{\lambda^{\prime} / 2}\right)-\frac{1}{2} I_{0}\left(\sqrt{\lambda^{\prime} / 2}\right)+\frac{\lambda^{\prime} I_{2}\left(\sqrt{\lambda^{\prime} / 2}\right)}{96 N}-\frac{\lambda^{\prime 3 / 2} I_{3}\left(\sqrt{\lambda^{\prime} / 2}\right)}{384 \sqrt{2} N^{2}}+\mathcal{O}\left(N^{-3}\right)$.
One can check that the $1 / N$ expansion in (3.27) and our $1 / N_{5}$ expansion are related by the change of parameters $\left(\lambda^{\prime}, N\right) \rightarrow\left(\lambda, g_{s}\right)$

$$
\begin{equation*}
\lambda^{\prime}=2 \lambda+4 g_{s}, \quad N=\frac{\lambda}{4 g_{s}}+\frac{1}{2} \tag{3.28}
\end{equation*}
$$

[^3]Plugging this relation into (3.27) and expanding in g_{s}, we find

$$
\begin{equation*}
W_{\mathrm{SO}(N)}=\frac{1}{2}+\frac{\lambda}{2 g_{s}}\left[\widehat{I}_{1}+\frac{\widehat{I}_{2}}{6} g_{s}^{2}\right]-\frac{g_{s}}{4} \widehat{I}_{1}+\mathcal{O}\left(g_{s}^{3}\right) . \tag{3.29}
\end{equation*}
$$

This agrees with our result of $1 / N_{5}$ expansion (3.18) and (3.22) up to this order $\mathcal{O}\left(g_{s}^{3}\right)$, as expected.

Note that, in the original $1 / N$ expansion (3.27) both even and odd powers of N^{-1} appear. On the other hand, in our case (3.23) only the odd powers of g_{s} arise, except for the constant term $\pm 1 / 2$ in (3.23). Although our decomposition (3.23) is similar to (3.26), we stress that they are different. In particular, our W_{T} is not equal to the second term of (3.26).

4 Conclusions and outlook

In this paper, we have studied the $1 / N_{5}$ expansion of the volume of the gauge group G and the $1 / 2$ BPS Wilson loops in the fundamental representation of G in $\mathcal{N}=4$ SYM with $G=\mathrm{SO}(N)$ or $G=\mathrm{Sp}(N)$. Due to the shift of N coming from the RR charge of O3plane (1.2), the $1 / N_{5}$ expansion with fixed 't Hooft parameter $\lambda=8 g_{s} N_{5}$ is different from the ordinary $1 / N$ expansion. We found that the $1 / N_{5}$ expansion looks more "closed string like" than the ordinary $1 / N$ expansion. For instance, we found that the $1 / N_{5}$ expansion of the volume of G contains only the even powers of $1 / N_{5}$, except for the first term $\mp N_{5} \log 2$ in (2.6). This is different from the $1 / N_{\text {top }}$ expansion of $\operatorname{vol}(G)$ in topological string [15]. It would be interesting to find a mathematical meaning, if any, of the coefficient of $N_{5}^{2-2 g}$ in (2.8) as a certain quantity on the moduli space of Riemann surfaces of genus g.

We have also studied the $1 / N_{5}$ expansion of the $1 / 2$ BPS Wilson loop W_{G} in the fundamental representation of $G=\mathrm{SO}(N)$ or $G=\operatorname{Sp}(N)$. We found that W_{G} is decomposed as (3.23). Except for the constant term $\pm 1 / 2$ in (3.23), $W_{\mathrm{U}\left(2 N_{5}\right)}$ and W_{T} are both expanded in $1 / N_{5}$ with only odd powers of $1 / N_{5}$. It is tempting to speculate that $W_{\mathrm{U}\left(2 N_{5}\right)}$ and W_{T} correspond to the untwisted and the twisted sector of bulk type IIB string theory on $A d S_{5} \times \mathbb{R} \mathbb{P}^{5}$. It would be interesting to understand the bulk gravitational interpretation of the decomposition (3.23) more clearly.

It would be interesting to extend our analysis to more general observables in $\mathcal{N}=4$ SYM with the gauge group $\mathrm{SO}(N)$ or $\mathrm{Sp}(N)$, such as an integrated four-point correlator [5] and the $1 / 2$ BPS Wilson loop in the spinor representation of $\operatorname{SO}(N)[2,3]$, to name a few. We leave this as an interesting future problem.

Acknowledgments

This work was supported in part by JSPS Grant-in-Aid for Transformative Research Areas (A) "Extreme Universe" No. 21H05187 and JSPS KAKENHI Grant No. 22K03594.

A Proof of (3.4)

In this appendix, we present a proof of the relation (3.4). For definiteness we consider $W_{\mathrm{SO}(2 n)}$. To this end, we can use the fact that the Laguerre polynomial is written as a
matrix element of the harmonic oscillator (see e.g. [21])

$$
\begin{equation*}
\langle i| e^{\sqrt{g_{s}}\left(a+a^{\dagger}\right)}|j\rangle=\langle j| e^{\sqrt{g_{s}}\left(a+a^{\dagger}\right)}|i\rangle=\sqrt{\frac{i!}{j!}} g_{s}^{\frac{j-i}{2}} L_{i}^{(j-i)}\left(-g_{s}\right), \tag{A.1}
\end{equation*}
$$

where

$$
\begin{equation*}
\left[a, a^{\dagger}\right]=1, \quad a|0\rangle=0, \quad|k\rangle=\frac{\left(a^{\dagger}\right)^{k}}{\sqrt{k!}}|0\rangle . \tag{A.2}
\end{equation*}
$$

Then $W_{\mathrm{SO}(2 n)}$ in (3.2) is written as

$$
\begin{align*}
W_{\mathrm{SO}(2 n)} & =2 \sum_{i=0}^{n-1}\langle 2 i| e^{\sqrt{g_{s}\left(a+a^{\dagger}\right)}}|2 i\rangle \tag{A.3}\\
& =\sum_{k=0}^{2 n-1}\left[1+(-1)^{k}\right]\langle k| e^{\sqrt{g_{s}}\left(a+a^{\dagger}\right)}|k\rangle .
\end{align*}
$$

Thus $W_{\mathrm{SO}(2 n)}$ is naturally decomposed as

$$
\begin{equation*}
W_{\mathrm{SO}(2 n)}=W_{\mathrm{SO}(2 n)}^{+}+W_{\mathrm{SO}(2 n)}^{-}, \tag{A.4}
\end{equation*}
$$

where

$$
\begin{align*}
W_{\mathrm{SO}(2 n)}^{+} & =\sum_{k=0}^{2 n-1}\langle k| e^{\sqrt{g_{s}}\left(a+a^{\dagger}\right)}|k\rangle, \\
W_{\mathrm{SO}(2 n)}^{-} & =\sum_{k=0}^{2 n-1}(-1)^{k}\langle k| e^{\sqrt{g_{s}}\left(a+a^{\dagger}\right)}|k\rangle . \tag{A.5}
\end{align*}
$$

Note that $W_{\mathrm{SO}(2 n)}^{+}$is equal to the Wilson loop of $\mathrm{U}(2 n) \mathcal{N}=4$ SYM [19]. The sum over k in $W_{\mathrm{SO}(2 n)}^{+}$can be simplified as

$$
\begin{align*}
\sqrt{g_{s}} W_{\mathrm{SO}(2 n)}^{+} & =\sum_{k=0}^{2 n-1}\langle k|\left[a, e^{\sqrt{g_{s}}\left(a+a^{\dagger}\right)}\right]|k\rangle \\
& =\sum_{k=0}^{2 n-1}\left[\sqrt{k+1}\langle k+1| e^{\sqrt{g_{s}}\left(a+a^{\dagger}\right)}|k\rangle-\sqrt{k}\langle k| e^{\sqrt{g_{s}}\left(a+a^{\dagger}\right)}|k-1\rangle\right] \tag{A.6}\\
& =\sqrt{2 n}\langle 2 n| e^{\sqrt{g_{s}}\left(a+a^{\dagger}\right)}|2 n-1\rangle \\
& =\sqrt{g_{s}} e^{\frac{1}{2} g_{s}} L_{2 n-1}^{(1)}\left(-g_{s}\right) .
\end{align*}
$$

In the last step we used (A.1). Thus we find

$$
\begin{equation*}
W_{\mathrm{SO}(2 n)}^{+}=W_{\mathrm{U}(2 n)}=e^{\frac{1}{2} g_{s}} L_{2 n-1}^{(1)}\left(-g_{s}\right), \tag{A.7}
\end{equation*}
$$

which agrees with the known result of $W_{\mathrm{U}(2 n)}$ in [19].

Next, let us consider the g_{s}-derivative of $W_{\mathrm{SO}(2 n)}^{-}$

$$
\begin{align*}
\partial_{g_{s}} W_{\mathrm{SO}(2 n)}^{-} & =\frac{1}{2 \sqrt{g_{s}}} \sum_{k=0}^{2 n-1}(-1)^{k}\langle k| e^{\sqrt{g_{s}}\left(a+a^{\dagger}\right)}\left(a+a^{\dagger}\right)|k\rangle \\
& =\frac{1}{2 \sqrt{g}} \sum_{k=0}^{2 n-1}(-1)^{k}\left[\sqrt{k}\langle k| e^{\sqrt{g_{s}}\left(a+a^{\dagger}\right)}|k-1\rangle+\sqrt{k+1}\langle k| e^{\sqrt{g_{s}}\left(a+a^{\dagger}\right)}|k+1\rangle\right] \\
& =\frac{1}{2 \sqrt{g_{s}}} \sum_{k=0}^{2 n-1}\left[(-1)^{k} \sqrt{k}\langle k| e^{\sqrt{g_{s}}\left(a+a^{\dagger}\right)}|k-1\rangle-(-1)^{k+1} \sqrt{k+1}\langle k+1| e^{\sqrt{g_{s}}\left(a+a^{\dagger}\right)}|k\rangle\right] \\
& =-\frac{1}{2 \sqrt{g_{s}}} \sqrt{2 n}\langle 2 n| e^{\sqrt{g_{s}}\left(a+a^{\dagger}\right)}|2 n-1\rangle \\
& =-\frac{1}{2} e^{\frac{1}{2} g_{s}} L_{2 n-1}^{(1)}\left(-g_{s}\right) . \tag{A.8}
\end{align*}
$$

Finally, we find

$$
\begin{align*}
\partial_{g_{s}} W_{\mathrm{SO}(2 n)} & =\partial_{g_{s}} W_{\mathrm{SO}(2 n)}^{+}+\partial_{g_{s}} W_{\mathrm{SO}(2 n)}^{-} \\
& =\partial_{g_{s}}\left[e^{\frac{1}{2} g_{s}} L_{2 n-1}^{(1)}\left(-g_{s}\right)\right]-\frac{1}{2} e^{\frac{1}{2} g_{s}} L_{2 n-1}^{(1)}\left(-g_{s}\right) \tag{A.9}\\
& =e^{\frac{1}{2} g_{s}} L_{2 n-2}^{(2)}\left(-g_{s}\right) .
\end{align*}
$$

This proves (3.4) for the $\mathrm{SO}(2 n)$ case. $\mathrm{SO}(2 n+1)$ and $\mathrm{Sp}(N)$ cases can be proved in a similar manner.

Open Access. This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited. SCOAP ${ }^{3}$ supports the goals of the International Year of Basic Sciences for Sustainable Development.

References

[1] E. Witten, Baryons and branes in anti-de Sitter space, JHEP 07 (1998) 006 [hep-th/9805112] [INSPIRE].
[2] B. Fiol, B. Garolera and G. Torrents, Exact probes of orientifolds, JHEP 09 (2014) 169 [arXiv:1406.5129] [inSPIRE].
[3] S. Giombi and B. Offertaler, Wilson loops in $N=4 \mathrm{SO}(N) S Y M$ and D-branes in $A d S_{5} \times R P^{5}, J H E P 10$ (2021) 016 [arXiv:2006.10852] [INSPIRE].
[4] L.F. Alday, S.M. Chester and T. Hansen, Modular invariant holographic correlators for $N=4$ SYM with general gauge group, JHEP 12 (2021) 159 [arXiv:2110.13106] [InSPIRE].
[5] D. Dorigoni, M.B. Green and C. Wen, Exact results for duality-covariant integrated correlators in $N=4$ SYM with general classical gauge groups, arXiv:2202.05784 [INSPIRE].
[6] M. Blau, K.S. Narain and E. Gava, On subleading contributions to the AdS/CFT trace anomaly, JHEP 09 (1999) 018 [hep-th/9904179] [INSPIRE].
[7] O. Aharony and A. Rajaraman, String theory duals for mass deformed $\operatorname{SO}(N)$ and $\operatorname{USp}(2 N)$ $N=4$ SYM theories, Phys. Rev. D 62 (2000) 106002 [hep-th/0004151] [inSPIRE].
[8] O. Bergman, E.G. Gimon and S. Sugimoto, Orientifolds, RR torsion, and k-theory, JHEP 05 (2001) 047 [hep-th/0103183] [INSPIRE].
[9] R.L. Mkrtchian, The equivalence of $\operatorname{Sp}(2 N)$ and $\mathrm{SO}(-2 N)$ gauge theories, Phys. Lett. B 105 (1981) 174 [inSPIRE].
[10] P. Cvitanovic and A.D. Kennedy, Spinors in negative dimensions, Phys. Scripta 26 (1982) 5 [INSPIRE].
[11] B. Fiol, J. Martínez-Montoya and A. Rios Fukelman, Wilson loops in terms of color invariants, JHEP 05 (2019) 202 [arXiv:1812.06890] [inSPIRE].
[12] V. Pestun, Localization of gauge theory on a four-sphere and supersymmetric Wilson loops, Commun. Math. Phys. 313 (2012) 71 [arXiv:0712.2824] [INSPIRE].
[13] K. Zyczkowski and H.-J. Sommers, Hilbert-Schmidt volume of the set of mixed quantum states, J. Phys. A 36 (2003) 10115 [quant-ph/0302197].
[14] I.G. Macdonald, The volume of a compact Lie group, Invent. Math. 56 (1980) 93.
[15] H. Ooguri and C. Vafa, World sheet derivation of a large N duality, Nucl. Phys. B 641 (2002) 3 [hep-th/0205297] [INSPIRE].
[16] I. Goulden, J. Harer and D. Jackson, A geometric parametrization for the virtual Euler characteristics of the moduli spaces of real and complex algebraic curves, Trans. Amer. Math. Soc. 353 (2001) 4405.
[17] S. Sinha and C. Vafa, SO and Sp Chern-Simons at large N, hep-th/0012136 [inSPIRE].
[18] J.K. Erickson, G.W. Semenoff and K. Zarembo, Wilson loops in $N=4$ supersymmetric Yang-Mills theory, Nucl. Phys. B 582 (2000) 155 [hep-th/0003055] [InSPIRE].
[19] N. Drukker and D.J. Gross, An exact prediction of $N=4$ SUSYM theory for string theory, J. Math. Phys. 42 (2001) 2896 [hep-th/0010274] [INSPIRE].
[20] K. Okuyama, 't Hooft expansion of $1 / 2$ BPS Wilson loop, JHEP 09 (2006) 007 [hep-th/0607131] [INSPIRE].
[21] K. Okuyama, Spectral form factor and semi-circle law in the time direction, JHEP 02 (2019) 161 [arXiv:1811.09988] [INSPIRE].

[^0]: ${ }^{1}$ Note that $\mathrm{SO}(2 n)$ gauge theories and $\mathrm{Sp}(2 n)$ gauge theories are formally related by the replacement $n \rightarrow-n[9,10]$.

[^1]: ${ }^{2}$ The question of open versus closed string expansions for the expectation values of Wilson loops of $\mathcal{N}=4 \mathrm{SYM}$ was addressed for $G=\mathrm{SU}(N)$ in [11].

[^2]: ${ }^{3}$ See e.g. http://dlmf.nist.gov/5.11.E8.

[^3]: ${ }^{4}$ See also appendix A for a derivation of this expression.

